
Discrete Comput Geom (2008) 40: 31–46
DOI 10.1007/s00454-007-9026-x

Enumerating Constrained Non-crossing Minimally
Rigid Frameworks

David Avis · Naoki Katoh · Makoto Ohsaki ·
Ileana Streinu · Shin-ichi Tanigawa

Received: 23 October 2006 / Revised: 7 May 2007 /
Published online: 18 September 2007
© Springer Science+Business Media, LLC 2007

Abstract In this paper we present an algorithm for enumerating without repetitions
all the non-crossing generically minimally rigid bar-and-joint frameworks under edge
constraints, which we call constrained non-crossing Laman frameworks, on a given
set of n points in the plane. Our algorithm is based on the reverse search paradigm of
Avis and Fukuda. It generates each output graph in O(n4) time and O(n) space, or,
with a slightly different implementation, in O(n3) time and O(n2) space. In particu-
lar, we obtain that the set of all the constrained non-crossing Laman frameworks on
a given point set is connected by flips which preserve the Laman property.

D. Avis’s research was supported by NSERC and FQRNT grants.
N. Katoh’s, M. Ohsaki’s and S.-i. Tanigawa’s research was supported by NEXT Grant-in-Aid for
Scientific Research on priority areas of New Horizons in Computing.
I. Streinu’s research was supported by NSF grant CCF-0430990 and NSF-DARPA CARGO
CCR-0310661.

D. Avis (�)
School of Computer Science, McGill University, McGill, Canada
e-mail: avis@cs.mcgill.ca

N. Katoh · M. Ohsaki · S.-i. Tanigawa
Department of Architecture and Architectural Engineering, Kyoto University Katsura,
Nishikyo-ku, Kyoto 615-8450, Japan

N. Katoh
e-mail: naoki@archi.kyoto-u.ac.jp

M. Ohsaki
e-mail: ohsaki@archi.kyoto-u.ac.jp

S.-i. Tanigawa
e-mail: is.tanigawa@archi.kyoto-u.ac.jp

I. Streinu
Dept. of Comp. Science, Smith College, Northampton, MA 01063, USA
e-mail: streinu@cs.smith.edu

mailto:avis@cs.mcgill.ca
mailto:naoki@archi.kyoto-u.ac.jp
mailto:ohsaki@archi.kyoto-u.ac.jp
mailto:is.tanigawa@archi.kyoto-u.ac.jp
mailto:streinu@cs.smith.edu

32 Discrete Comput Geom (2008) 40: 31–46

Keywords Geometric enumeration · Rigidity · Constrained non-crossing minimally
rigid frameworks · Constrained Delaunay triangulation

1 Introduction

Let G be a graph with vertices {1, . . . , n} and m edges. G is a Laman graph if m =
2n−3 and every subset of n′ ≤ n vertices spans at most 2n′ −3 edges. An embedding
of the graph G(P) on a set of points P = {p1, . . . , pn} ⊂ R2 is a mapping of the
vertices to points in the Euclidean plane i �→ pi ∈ P . The edges ij of G are mapped
to straight line segments pipj . An embedding is planar or non-crossing if no pair
of segments pipj and pkpl corresponding to non-adjacent edges i, j /∈ {k, l} have a
point in common. Where no ambiguity arises, we simply denote a vertex pi by i and
an edge pipj by ij .

An embedded Laman graph on a planar point set is called a Laman framework.
It has the special property of being minimally rigid when viewed as a bar-and-joint
framework with fixed edge-lengths, under some rather weak conditions on the point
set [13, 19]. This motivates the tremendous interest in their properties. Let F be a
set of non-crossing edges (bars) on P . A Laman framework containing F is called F-
constrained. In this paper we give an algorithm for enumerating all the F-constrained
non-crossing Laman frameworks on a given point set P .

A pseudo-triangle is a simple polygon with exactly three convex vertices.
A pseudo-triangulation is the partition of the convex hull of a planar point set P

into the interior disjoint pseudo-triangles, the vertices of which are points in P . It is
known that a pseudo-triangulation with minimum number of edges, called a minimum
pseudo-triangulation or a pointed pseudo-triangulation, is a non-crossing Laman
framework [23]. However a minimum pseudo-triangulation contains all the edges of
the convex hull of the underlying point set, whereas a non-crossing Laman framework
need not as illustrated in Fig. 1. Bereg showed that minimum pseudo-triangulations
are connected via simple flips, in which the removal of any non-convex-hull edge
leads to the choice of a unique other edge that can replace it, in order to maintain
the pseudo-triangulation property [8]. This leads to the definition of a graph whose
vertices are minimum pseudo-triangulations and whose edges are simple flips. He
showed that this graph is connected and showed how to apply the reverse search
technique to generate all of its vertices (minimum pseudo-triangulations). Bereg’s ef-
ficient algorithm makes use of specific properties of minimum pseudo-triangulations
which do not extend to arbitrary non-crossing Laman frameworks. In particular,

Fig. 1 a Minimum
pseudo-triangulation.
b Non-crossing Laman
framework

Discrete Comput Geom (2008) 40: 31–46 33

Fig. 2 Non-crossing Laman
frameworks need not form the
bases of a matroid

remove-add flips are not unique, relative to the removed edge, in the case of a non-
crossing Laman framework.

In our previous paper [5] we studied a graph whose nodes were non-crossing
Laman frameworks on a given point set. Two vertices are adjacent in the graph if one
can be obtained from the other by a single edge insertion and deletion in the corre-
sponding non-crossing Laman frameworks. We showed that this graph is connected.
The rather involved proof relies on some properties of the one-degree-of-freedom
mechanisms that are obtained by removing a single edge from a Laman framework.

Unfortunately, it is not feasible to generate all Laman frameworks of practical
interest due to the huge output size. However, certain engineering considerations,
discussed later in this section, allow us to limit ourselves to Laman frameworks con-
taining a given set F of non-crossing edges. It is not at all clear how to adapt our
earlier proof to apply to these F -constrained Laman frameworks.

In this paper we use both matroids and triangulations as important tools to solve
this problem. Firstly we note that although Laman graphs form the bases of a matroid
defined on the edges of a given base graph (see, e.g., [13, 25]) this is not true in
general for non-crossing Laman frameworks on a point set P . In fact for the two
non-crossing Laman frameworks L1 and L2 depicted in Fig. 2a and b there exists no
edge to insert into L1 − {ab} from L2 − L1 that maintains the non-crossing property.
However, by choosing a non-crossing base graph, all subgraphs are automatically
non-crossing, and hence the non-crossing Laman frameworks which are subgraphs
of this graph do form the bases of a matroid. Triangulations are natural candidates
for such base graphs, are connected by flip operations, and handle rather naturally the
condition of being F -constrained.

The reverse search enumeration technique of Avis and Fukuda [3, 4] has been
successfully applied to a variety of combinatorial and geometric enumeration prob-
lems. The necessary ingredients to use the method are an implicitly described con-
nected graph on the objects to be generated, and an implicitly defined spanning tree
in this graph. In this paper we use triangulations and matroids to supply these ingre-
dients for the problem of generating constrained Laman frameworks. After proving
the correctness of our approach, we give an implementation based on reverse search
that allows the enumeration without repetitions of all the F -constrained non-crossing
Laman frameworks on n points in O(n4) time and O(n) space per output framework.
A slightly different implementation yields O(n3) time and O(n2) space per output
framework. For the unconstrained case, also using reverse search but with very dif-
ferent parent function, we obtain the same time and space complexity results in [5].
The method presented here is, however, considerably simpler.

34 Discrete Comput Geom (2008) 40: 31–46

In our implementation we make use of the pebble game algorithm of Jacobs and
Hendrickson [14] for 2-dimensional rigidity, see also [9]. Our complexity analysis re-
lies on recent results, due to Lee, Streinu and Theran [20, 21], regarding the complex-
ity of finding and maintaining rigid components during the pebble game algorithm.
Indeed, the time-space trade-off of our algorithm is inherited from [21].

In the remainder of this section, we briefly describe how this problem came to our
attention via the work of the third author. The motivating application described here
is not essential for understanding the results of the paper, but may be of interest to
readers interested in structural rigidity. Graph theoretical approaches are widely used
in structural mechanics [17], where the edges and vertices in the graph represent the
bars and rotation-free joints of a structure called a truss. It is well-known that the
stiffest truss under static loads is statically determinate that is equivalent to a Laman
graph [7].

Another bar-joint system, which is widely used in industrial applications, is a link
mechanism that is unstable and generates large deformations, or changes in the di-
rection of the nodal displacement. Applications of link mechanisms can be found
in, e.g., automobile suspensions, robot hands, umbrellas, crankshafts, etc. Kawamoto
et al. [18] presented a method which used the enumeration of planar graphs to find an
optimal mechanism. However, their method was developed for their specific problem,
and no general approach was given.

Recently, a new type of mechanism, called a compliant mechanism, has been de-
veloped and applied mainly in the field of micro-mechanics. A compliant mechanism
has flexible parts, which are not present in conventional unstable mechanisms, to
stabilize the structure. Although a compliant mechanism is usually modeled as a con-
tinuum with elastic joints, it is possible to generate a similar mechanism by using a
bar-joint system. Ohsaki and Nishiwaki [22] presented a method for generating com-
pliant flexible bar-joint mechanisms using a nonlinear programming approach, and
found that the optimal structure is statically determinate, i.e., minimally rigid. They
utilized snap-through behavior to generate multi-stable mechanisms that have mul-
tiple self-equilibrium states. Such a mechanism can be used as a switching device,
robot hand, gripper, deployable structure, etc. In their method, the optimal locations
of bars and joints are found from a highly connected initial structure that has bars
between all pairs of the nodes whose distances are small enough. However, due to
high nonlinearity of the analysis and optimization problems, the nonlinear program-
ming problem should be solved many times starting from different initial solutions to
obtain a few types of mechanisms.

Since the compliant bar-joint mechanism is usually statically determinate, the op-
timization problem can be solved easily if the design space is limited to statically
determinate structures. Combining an implementation of our earlier method for gen-
erating unconstrained Laman frameworks [5] with this nonlinear programming ap-
proach, we could obtain many new compliant mechanisms with up to 10 joints [16].
However the number of Laman frameworks grows too rapidly to allow a complete
enumeration for significantly larger examples.

In view of practical requirements, the optimal structure should not have intersect-
ing members, and some pre-selected members should always exist. Therefore, the
computational cost could be much reduced if the candidate set of statically deter-
minate non-crossing trusses (non-crossing Laman frameworks) is restricted to those

Discrete Comput Geom (2008) 40: 31–46 35

containing pre-selected members. Thus it is desirable to enumerate all Laman frame-
works which contain a given set of specified edges.

2 Preliminaries

Let L be a non-crossing Laman framework on a given point set P . A mechanism is
a flexible framework obtained by removing one or more edges from a Laman frame-
work. Its number of degrees of freedom or dof ’s, is the number of removed edges. We
will encounter mostly one-degree-of-freedom (1dof) mechanisms, which arise from
a Laman framework by the removal of one edge. In particular, a mechanism with k

dofs has exactly 2n−3−k edges, and each subset of n′ vertices spans at most 2n′ −3
edges. A subset of some n′ vertices spanning exactly 2n′ − 3 edges is called a rigid
block. A maximal rigid block is called a rigid component.

An important tool in our work is the generic rigidity matroid, also called the
Laman matroid, which can be defined on the edges of the complete graph Kn, see
[13, 25]. A subset T of edges of Kn is independent in the matroid if for every subset
S ⊆ T we have |S| ≤ 2|V (S)|−3, where V (S) is the subset of vertices spanned by the
edges in S. The bases are those independent sets which contain exactly 2n− 3 edges,
i.e., the Laman graphs on n vertices. Two bases L1 and L2 are connected by a flip if
their edge sets agree on 2n−4 elements. The flip is given by the pair of edges (e1, e2)

such that e1 ∈ L1 −L2, e2 ∈ L2 −L1. In other words, we have L2 = L1 −{e1}∪ {e2},
which for simplicity we will write as L2 = L1 − e1 + e2 throughout the paper.

The definition of Laman matroid may be generalized by replacing the base graph
Kn by any graph G. In order that the matroid be non-empty, G must contain at least
one Laman subgraph. We may further extend the definition by fixing an independent
set F of edges of G. The independent edge sets of G that contain F also form a
matroid, which we will call the F-constrained Laman matroid.

Let G be an n vertex graph that contains a Laman subgraph, and let F be an inde-
pendent set of edges in G. Using flips, we can define a new graph whose nodes are
the bases of the F -constrained Laman matroid defined on G. Its edges correspond to
bases connected by flips. It follows from the properties of a matroid that this graph is
connected. But a priori, the subset of F -constrained non-crossing Laman frameworks
may not necessarily be. We will prove this later in Sect. 3.

Reverse search is a memory efficient method for visiting all the nodes of a con-
nected graph that can be defined implicitly by an adjacency oracle. It can be used
whenever a spanning tree of the graph can be defined implicitly by a parent function.
This function is defined for each vertex of the graph except a pre-specified root. Iter-
ating the parent function leads to a path to the root from any other vertex in the graph.
The set of such paths defines a spanning tree, known as the search tree.

3 Constrained Non-crossing Laman Frameworks

Let T be a triangulation on a given set of n points P in the plane, containing k

triangles. The angle vector of T is the vector of 3k interior angles sorted into non-
decreasing order. We say that T is an F-constrained triangulation, denoted T (F),

36 Discrete Comput Geom (2008) 40: 31–46

Fig. 3 a F -constrained triangulation, b F -constrained Delaunay triangulation and c Unconstrained De-
launay triangulation, where the bold edges denote the edges of F

if it contains a given set of non-crossing edges F . Many facts about F -constrained
triangulations are contained in the survey by Bern and Eppstein [10]. If F is an inde-
pendent set in the Laman matroid on Kn, then a Laman framework on P containing
F is called F -constrained, and is denoted L(F). The following lemma, a well known
fact about the Laman matroid, follows from rigidity considerations (see, e.g. [25]).

Lemma 1 Let F be a non-crossing edge set on P that is an independent set in the
Laman matroid on Kn. Every F -constrained triangulation T (F) on P contains an
F -constrained Laman framework L(F).

The F -constrained Delaunay triangulation plays an important role for developing
our results, which we define by means of legal (illegal) edge and D-flip as follows:

Definition 1 (Legal edge) Let T be a triangulation on a point set P . An edge ac that
bounds two triangles whose edges are in T , say abc and acd , is a legal edge (with
respect to T) if the circumcircle of abc does not contain d in its interior.

Definition 2 (D-flip) Let T (F) be an F -constrained triangulation on a non-crossing
edge set F . Let ac be an illegal edge (with respect to T (F)) that is not in F and is
the diagonal of a convex quadrilateral abcd whose edges are contained in T (F). The
replacement of edge ac by edge bd in T (F) is called a D-flip.

Definition 3 (F-constrained Delaunay Triangulation) Let T (F) be an F -constrained
triangulation on a non-crossing edge set F . T (F) is an F-constrained Delaunay
Triangulation, denoted DT(F) if it admits no D-flips. Equivalently, all edges in
T (F) − F are legal.

In Fig. 3a, b and c, we illustrate examples of an F -constrained triangulation T (F),
the F -constrained Delaunay triangulation DT(F) and the unconstrained Delaunay
triangulation DT(∅), respectively, where F = {13,16,23,25,27,47,57,67}. We ob-
serve that T (F) and DT(F) have illegal edges {15,25} and {25}, respectively, and
DT(∅) has no illegal edge. Replacing edge {15} in T (F) by edge {36} is a D-flip.

Fact 1 An F -constrained triangulation T (F) can be converted to DT(F) by at most
O(n2) D-flips, taken in any order [10, Lemma 4].

Discrete Comput Geom (2008) 40: 31–46 37

If P has four or more co-circular points, using a linear transformation as described
in [6], we may transform P into a point set P̄ with a unique DT(F) so that P and P̄

have the same number of non-crossing Laman frameworks since the transformation
does not change the relative order with respect to x- and y-coordinates among any
three points. We will assume in what follows that P has a unique DT(F).

Two points a and b are visible (with respect to F) if no edge of F properly inter-
sects the segment ab. ab is visible to point c (with respect to F) if the triangle abc

is not properly intersected by an edge of F . Then the following fact gives another
characterization of F -constrained Delaunay triangulation.

Fact 2 Let F be a non-crossing edge set on P . An F-constrained Delaunay Triangu-
lation contains the edge ab between points a and b in P if and only if a is visible to
b, and some circle through a and b contains no point of P visible to segment ab. We
call ab a Delaunay-edge (with respect to F) [10, Definition 1].

Let H(F) be a non-crossing edge set on P containing F , and let us consider
H(F)-constrained Delaunay triangulation DT(H(F)). We observe the following
facts that will be often utilized later. First note that all illegal edges in DT(H(F)) are
contained in H(F). This is because all edges of DT(H(F)) − H(F) are legal edges
by Definition 3. We also notice that if an edge e ∈ H(F) is a legal edge in DT(H(F)),
we have DT(H(F)) = DT(H(F) − e) since all edges of DT(H(F)) − (H(F) − e)

are legal in DT(H(F)). On the other hand DT(H(F)−e) cannot contain e if e is ille-
gal. In fact DT(H(F)− e) can be obtained from DT(H(F)) after performing at least
one D-flip. Note in addition that a D-flip increases the angle vector lexicographically.
This can be used to prove the following.

Fact 3 DT(F) has the lexicographically maximum angle vector of all F -constrained
triangulations on P (Theorem 1, [10]).

Now let us consider non-crossing Laman frameworks.

Definition 4 An F-constrained Delaunay Laman Framework, DL(F), is an F -con-
strained Laman framework that is a subset of DT(F).

Note that, unlike DT(F), DL(F) is not uniquely defined in general. In the sequel
we will often make use of a constraining edge set F that is either a Laman framework
L or a 1dof mechanism L − e.

Definition 5 (L-flip) An L-flip is an edge insertion and deletion that takes a Laman
framework L to a new Laman framework L′.

Theorem 1 Every F -constrained non-crossing Laman framework L(F) can be
transformed to a DL(F) by at most O(n2) L-flips.

Proof Construct the L(F)-constrained Delaunay triangulation T = DT(L(F)). If
T = DT(F), then in fact L(F) is a DL(F) and we are done. Otherwise T contains
some illegal edge ac /∈ F by Definition 3. Now all edges in T − L(F) are legal

38 Discrete Comput Geom (2008) 40: 31–46

Fig. 4 An example of L-flip described in the proof of Theorem 1. The bold lines represent
F = {13,16,23,25,27,47,57,67}, and the dotted lines represent additional edges for the constrained
Delaunay triangulations

edges with respect to T , so ac must be an edge of L(F) − F . Consider now the con-
strained Delaunay triangulation DT(L(F)−ac) which contains L(F)−ac. We apply
Lemma 1 with F and T (F) in the lemma replaced by L(F)−ac and DT(L(F)−ac)

respectively. By the lemma, DT(L(F) − ac) contains a (L(F) − ac)-constrained
Laman framework L′. Since L′ contains L(F) − ac it must contain one additional
edge, say st , and so L′ = L(F) − ac + st . In other words L′ is obtained from L(F)

by an L-flip. Observe that L′ is F -constrained since ac /∈ F .
Now we can construct DT(L(F) − ac) from DT(L(F)) by a series of D-flips,

starting by deleting the illegal edge ac. Each of these D-flips lexicographically in-
creases the angle vector. If DT(L(F) − ac) is not DT(F) then we repeat the above
procedure. From Fact 1, using a maximum of O(n2) D-flips we will obtain DT(F).
The corresponding Laman framework L′ is a DL(F), and will have been obtained by
using at most O(n2) L-flips. �

In Fig. 4 we show an example of L-flip described in the proof of Theorem 1 in
which L(F) is not a DL(F): deleting the illegal edge 15 in DT(L(F)) − F , and
updating the constrained Delaunay triangulation to DT(L(F) − 15) we find another
non-crossing Laman framework shown in the rightmost and upper corner of Fig. 4.

For edges e = ij with i < j and e′ = kl with k < l, we use the notation e ≺ e′ or
e′ � e when e is lexicographically smaller than e′ i.e., either i < k or i = k and j < l,
and e = e′ when they coincide. For an edge set A we use the notations max{e | e ∈ A}
and min{e | e ∈ A} to denote the lexicographically largest and smallest edges in A,
respectively.

Definition 6 (Lexicographic edge list) Let E = {e1 ≺ e2 ≺ · · · ≺ em} and E′ = {e′
1 ≺

e′
2 ≺ · · · ≺ e′

m} be the lexicographically ordered edge lists. Then E is lexicographi-
cally smaller than E′ if ei ≺ e′

i for the smallest i such that ei
= e′
i .

Theorem 2 Let L1(F) and L2(F) be two F -constrained non-crossing Laman
Frameworks on a point set P . Then L1(F) can be transformed to L2(F) by at most
O(n2) L-flips.

Discrete Comput Geom (2008) 40: 31–46 39

Proof By Theorem 1, starting from L1(F) we can perform L-flips O(n2) times to
reach a DL(F), say L(F). Let L∗(F) be the DL(F) with lexicographically smallest
edge list. We show that we can do edge flips from L(F) to L∗(F), at most n − 3
times, maintaining the non-crossing Laman property.

Consider the Laman matroid with base graph DT(F). Both L(F) and L∗(F) are
bases in this matroid, i.e., they are Laman subgraphs of DT(F). Delete from L(F)

the lexicographically largest edge ac in L(F) − L∗(F). By the matroid properties,
there will always be an edge st in L∗(F) − L(F) such that L′(F) = L(F) − ac + st

is an F -constrained Laman framework (see e.g. [24]). L′(F) is non-crossing since it
is a subgraph of the non-crossing graph DT(F). A triangulation on n points has at
most 3n − 6 edges and a Laman framework has 2n − 3 edges, so after at most n − 3
such L-flips we reach L∗(F).

A similar argument shows that we can start with L2(F) and reach L∗(F) in at
most O(n2) L-flips, completing the proof of the theorem. �

4 Algorithm

Let L(F) be the set of F -constrained non-crossing Laman frameworks on P , and
DL(F) be the set of F -constrained Delaunay Laman frameworks. Clearly DL(F) ⊆
L(F) holds. Let L∗(F) be the DL(F) with the lexicographically smallest edge list as
denoted in Sect. 3. We define the following parent function f : L(F) − {L∗(F)} →
L(F) based on Theorems 1 and 2.

Definition 7 (Parent function) Let L(F) ∈ L(F) with L(F)
= L∗(F). Then L′(F) =
L(F) − ac + st is the parent of L(F), where

Case 1 L(F) ∈ DL(F), ac = max{e | e ∈ L(F) − L∗(F)} and st = min{e ∈
L∗(F) − L(F) | L(F) − ac + e ∈ L(F)},

Case 2 L(F) ∈ L(F)−DL(F), ac = max{e ∈ L(F)−F | e is illegal in DT(L(F))}
and st = min{e ∈ DT(L(F) − ac) − L(F) | L(F) − ac + e ∈ L(F)}.

To simplify the notations, we denote the parent function depending on Cases 1
and 2 by f1 : DL(F) − {L∗(F)} → DL(F) and f2 : L(F) − DL(F) → L(F), re-
spectively.

The reverse search algorithm can be considered on the underlying graph in which
each vertex corresponds to a non-crossing Laman framework and two frameworks
are adjacent if and only if one can be obtained from the other by a L-flip. Then, for
L′(F) ∈ L(F) the adjacency function, Adj, is defined as follows:

Adj(L′(F), e1, e2) :=
{

L′(F) − e1 + e2 if L′(F) − e1 + e2 ∈ L(F),

null otherwise,

where e1 ∈ L′(F) − F and e2 ∈ Kn − L′(F). The number of candidate edge pairs
(e1, e2) is O(n3).

Let elistL′ and elistKn be lists of edges of L′(F) and Kn ordered lexicographically,
and let elistL′(i) and elistKn(i) be the i-th elements of elistL′ and elistKn , respectively.

40 Discrete Comput Geom (2008) 40: 31–46

Algorithm Enumerating F -constrained non-crossing Laman frameworks.

Fig. 5 Algorithm for enumerating F -constrained non-crossing Laman frameworks

We also denote the above defined adjacency function by Adj(L′(F), i, j) for which
e1 = elistL′(i) with e1 /∈ F and e2 = elistKn(j) with e2 /∈ L′. Then, based on the
algorithm in [3, 4], we describe our algorithm in Fig. 5. An example of the search
tree on a set of F -constrained non-crossing Laman frameworks on seven points are
illustrated in Fig. 6.

As we will show later, both the parent function and the adjacency function need
O(n2) time for each process. The while-loop from line 4 to 17 has |L′(F)| · |Kn| iter-
ations which require O(n5) time if the tests in lines 8 and 10 are performed naively.
In order to improve O(n5) time to O(n3) time we will use the following two lemmas:

Lemma 2 Let L(F) and L′(F) be two distinct F -constrained Delaunay Laman
frameworks for which L(F) = Adj(L′(F), e1, e2) for e1 ∈ L′(F) − F and e2 ∈
Kn − L′(F). Then, f1(L(F)) = L′(F) holds if and only if e1 and e2 satisfy the fol-
lowing conditions:

Discrete Comput Geom (2008) 40: 31–46 41

Fig. 6 An example of the search tree of our algorithm on seven points. The constraint edges F are illus-
trated by the bold edges, and each edge of the search tree is distinguished by using the bold or dotted line
according to whether it corresponds to Cases 1 or 2 of Definition 7

(a) e1 ∈ L∗(F),
(b) e2 ∈ DT(L∗(F)) − L∗(F),
(c) e1 ≺ min{e ∈ L∗(F) − L′(F) | L′(F) − e1 + e ∈ L(F)},
(d) e2 � max{e | e ∈ L′(F) − L∗(F)}.

42 Discrete Comput Geom (2008) 40: 31–46

Lemma 3 Let L(F) and L′(F) be two distinct F -constrained non-crossing Laman
frameworks for which L(F) = Adj(L′(F), e1, e2) for edges e1 ∈ L′(F)−F and e2 ∈
Kn −L′(F) with L(F) ∈ L(F)−DL(F). Then, f2(L(F)) = L′(F) holds if and only
if e1 and e2 satisfy the following conditions:

(a) e1 is a legal edge in DT(L′(F)),
(b) e2 ∈ Kn − DT(L′(F)),
(c) e1 ≺ min{e ∈ DT(L′(F)) − L′(F) | L′(F) − e1 + e ∈ L(F)},
(d) e2 = max{e ∈ (L′(F) − e1 + e2) − F | e is illegal in DT(L′(F) − e1 + e2)}.

We will explain later (in the proof of Theorem 3) how Lemmas 2 and 3 are used to
obtain O(n3) time for generating each output of our algorithm. Notice that for L′(F)

and L(F) ∈ L(F) such that L(F) = L′(F) − e1 + e2, at most one of f1(L(F)) =
L′(F) and f2(L(F)) = L′(F) holds from the conditions (b) of Lemmas 2 and 3. In
the following proofs of Lemmas 2 and 3 we write L for L(F), L′ for L′(F), etc., for
simplicity because the constraining set F is fixed throughout.

Proof of Lemma 2 (“only if”-part) Since f1(L) = L′, e1 and e2 must be chosen as st

and ac in Case 1 of Definition 7. From Definition 7, e2(= ac) ∈ L − L∗. Since L ∈
DL, L ⊂ DT(L∗) holds, and we have (b). Similarly since e1(= st) ∈ L∗ − L ⊂ L∗,
we have (a). From e1 = st , we have

L′ − e1 = (L − ac + st) − e1 = L − ac. (1)

Let e′ = min{e ∈ L∗ −L′ | L′ −e1 +e ∈ L}. Suppose (c) does not hold, and e′ ≺ e1
holds. (Note that the equality does not hold since e1 ∈ L′ − F .) Then from (1) and
e′ ≺ e1 = st ≺ ac (which comes from Definition 7),

e′ = min{e ∈ L∗ − (L − ac + st) | L − ac + e ∈ L} (from (1))

= min{e ∈ L∗ − L | L − ac + e ∈ L} (from e′ ≺ st ≺ ac).

Thus, e′ would have been selected instead of e1 when the parent function f1 is applied
to L, which contradicts e1 = st . Hence, (c) holds.

Let e′′ = max{e | e ∈ L′ − L∗}, and suppose that (d) does not hold. A similar
argument leads a contradiction. Thus, (d) holds.

(“if”-part) From (a) and (b), L = L′ − e1 + e2 is DL(F). Since e1 ∈ L∗ from (a),

e2 � max{e | e ∈ L′ − L∗} (from (d))

= max{e | e ∈ (L + e1 − e2) − L∗} (from L = L′ − e1 + e2)

= max{e | e ∈ (L − e2) − L∗} (from e1 ∈ L∗)

holds. Thus, e2 = max{e | e ∈ L − L∗}, and hence f1 chooses e2 for an edge ac to be
deleted from L. From this we obtain L − ac = L′ − e1 + e2 − ac = L′ − e1. Since
e2 /∈ L∗ from (b),

e1 ≺ min{e ∈ L∗ − L′ | L′ − e1 + e ∈ L} (from (c))

= min{e ∈ L∗ − (L + e1 − e2) | L − ac + e ∈ L} (from L − ac = L′ − e1)

= min{e ∈ L∗ − (L + e1) | L − ac + e ∈ L} (from e2 /∈ L∗)

Discrete Comput Geom (2008) 40: 31–46 43

holds. Since e1 ∈ L∗ − L, we obtain e1 = min{e ∈ L∗ − L | L − ac + e ∈ L}. Thus,
f1 chooses e1 for an edge to be added, and f1(L) returns L′. �

Proof of Lemma 3 (“only if”-part) Since f2(L) = L′, e1 and e2 must be chosen as
st and ac in Case 2 of Definition 7. As in the proof of Lemma 2, we have (1) from
e2 = ac. Since st ∈ DT(L − ac) − L holds from Definition 7 and from Fact 2, st is
a Delaunay edge with respect to L − ac and then there exists a circle through both
endpoints of st containing no point visible to st with respect to L − ac. Since such
a circle still contains no point visible to st with respect to L − ac + st , st is still the
Delaunay edge with respect to L − ac + st = L′, which implies that st is not illegal
in DT(L′). Thus, from e1 = st , (a) holds. Moreover we observe that

DT(L′) = DT(L′ − e1) = DT(L − ac) (2)

holds since e1 is not illegal edge in DT(L′).
Let us consider e2. Since ac is illegal in DT(L) from Definition 7, we have ac =

e2 /∈ DT(L − ac). Therefore e2 /∈ DT(L′) holds from (2). Thus (b) holds. Also (d)
must hold since the parent function removes the lexicographically largest illegal edge
in DT(L) − F .

Finally let us consider e1. Let e′ = min{e ∈ DT(L′) − L′ | L′ − e1 + e ∈ L}. Sup-
pose that (c) does not hold. Then e′ ≺ e1 holds. (Note that the equality does not hold
since e1 ∈ L′ − F .) Therefore, we have

e′ = min{e ∈ DT(L − ac) − (L − ac + e1) | L − ac + e ∈ L} (from (1) and (2)),

= min{e ∈ DT(L − ac) − (L − ac) | L − ac + e ∈ L} (from e′ ≺ e1).

Then, e′ would have been selected when the parent function is applied to L, which
contradicts e1 = st . Hence (c) holds.

(“if”-part) From (a), e1 is legal in DT(L′). Then, we have DT(L′) = DT(L′ −
e1). The condition (d) says that e2 is the lexicographically largest illegal edge in
DT(L) − F . Thus, f2 chooses e2 for an edge ac to be deleted from L, and L′ − e1 =
L − ac.

From L′ − e1 = L − ac and DT(L′) = DT(L′ − e1) = DT(L − ac) the condition
(c) implies e1 ≺ min{e ∈ DT(L − ac) − (L − ac + e1) | L − ac + e ∈ L}. Thus,
e1 = min{e ∈ DT(L − ac) − L | L − ac + e ∈ L}. (Note that e1 ∈ DT(L − ac) and
ac /∈ DT(L − ac), because DT(L − ac) = DT(L′), and now we have e1 ∈ DT(L′)
and ac = e2 /∈ DT(L′) from (a) and (b), respectively.) Thus, f2 chooses e1 for an
edge to be added, and f2(L) returns L′. �

Using Lemmas 2 and 3, we will describe an O(n3) algorithm in the proof of the
following theorem. First we give a simple observation for checking the condition (d)
in Lemma 3 efficiently:

Observation 1 Let DT(F) be an F -constrained Delaunay triangulation constrained
by edges of a non-crossing edge set F , and let e1 ∈ F be a legal edge in DT(F) and
e2 ∈ Kn − DT(F) be an edge intersecting no edge of F . Then DT(F − e1 + e2) =
DT(F + e2).

44 Discrete Comput Geom (2008) 40: 31–46

Proof Since e1 is the legal edge in DT(F), we have DT(F) = DT(F − e1). Then
there exists a circle through both endpoints of e1 containing no point visible to e1 with
respect to F − e1 from Fact 2. And, when inserting e2 into F − e1, this circle clearly
does not contain any point visible to e1 with respect to F − e1 + e2. Thus e1 remains
a Delaunay edge with respect to F − e1 + e2, and this implies that DT(F − e1 + e2)

contains e1 from Fact 2 and DT(F + e2) = DT(F − e1 + e2). �

Theorem 3 The set of all F -constrained non-crossing Laman frameworks on a given
point set can be reported in O(n3) time per one F -constrained non-crossing Laman
framework using O(n2) space, or O(n4) time using O(n) space.

Proof As described in Sect. 3, we use a linear transformation if necessary to get a
unique DT(F). The complexity of testing the uniqueness of a DT(F) is O(n2) by
simply testing the circumcircle of each triangle in the DT(F) to see there is another
point other than vertices of the triangle on the circumcircle.

Given a non-crossing Laman framework L′(F) ∈ L(F) and L′(F)-constrained
Delaunay triangulation DT(L′(F)), the algorithm will either check if f1(Adj(L′(F),

e1, e2)) = L′(F) or if f2(Adj(L′(F), e1, e2)) = L′(F) at line 10 depending on the
edge pair (e1, e2). Here we will show that each condition in Lemmas 2 and 3 can be
checked in O(1) time for each of the O(n3) edge pairs (e1, e2) by the following way.

First, for all edges e2 ∈ elistKn , we calculate the number of edges e1 ∈ L′(F) in-
tersecting e2, which we denote by cross_n(e2,L

′(F)). If cross_n(e2,L
′(F)) > 1, we

delete e2 from elistKn since L′(F)−e1 +e2 is never non-crossing for any e1 ∈ elistL′ .
If cross_n(e2,L

′(F)) = 1, we associate with e2 a pointer cross_e(e2,L
′(F)) to the

edge e1 which intersects it.
Next, for each e1 ∈ elistL′ , we attach two flags to e1 which represent that e1 sat-

isfies the conditions (a) of Lemmas 2 and 3, respectively. These help us to check the
conditions (a) in Lemmas 2 and 3 in O(1) time. Similarly, we attach two flags to
e2 ∈ elistKn which represent that e2 satisfies the conditions (b) of Lemmas 2 and 3 to
check them in O(1) time for each e2. Additionally we calculate the lexicographically
largest edge in L′(F) − L∗(F) in O(n) time to check the condition (d) in Lemma 2
in O(1) time for each e2. This preprocessing can be done in O(n2) time using the
precomputed sorted edge list of L∗(F) and DT(L(F)).

Now let us consider how to identify a set of edges e2 ∈ elistL′ satisfying the
condition (d) in Lemma 3 in O(n3) time with O(n2) space. (In the case of O(n4)

time algorithm this process must be skipped, and the condition (d) in Lemma 3
will be checked simply by updating DT(L′(F)) to DT(L′(F) − e1 + e2) for each
pair (e1, e2) using O(n) time and O(n) space by applying the algorithm by Chin
and Wang [11].) It can be done regardless of the removed edge e1 when condi-
tion (a) in Lemma 3 is satisfied. From Observation 1 we can say that the con-
dition (d) holds if and only if e2 is the lexicographically largest illegal edge in
DT(L(F) + e2) − F when cross_n(e2,L

′(F)) = 0. It is sufficient to check condi-
tion (d) only in DT(L(F)−cross_e(e2,L

′(F)) + e2) when cross_n(e2,L
′(F)) = 1.

Updating the Delaunay triangulation takes O(n) time (see [2, 11, 12] for a linear time
update of the constrained Delaunay triangulation). Thus we can attach a flag to each
e2 ∈ elistKn in O(n) time which represents whether e2 satisfies (d) of Lemma 3 or
not, and this preprocessing for all edges in elistKn takes O(n3) time.

Discrete Comput Geom (2008) 40: 31–46 45

By using the above mentioned data, we will show that for a fixed e1 ∈ elistL′ ,
the inner while-loop from line 6 to 16 can be executed in O(n2). In order to ef-
ficiently test the condition (c) of Lemmas 2 and 3, we prepare the data structure
proposed by Lee, Streinu and Theran [20, 21] in O(n2) time for maintaining rigid
components of L(F) − e1. This data structure supports a pair-find query which de-
termines whether two vertices are spanned by a common component in O(1) time
using O(n2) preprocessing time with O(n2) space, or O(n) time using O(n2) pre-
processing time with O(n) space. From this, we can calculate Adj(L′(F), e1, e2)

(i.e., determine whether L′(F) − e1 + e2 ∈ L(F)) in O(1) time with O(n2) space,
or O(n) time with O(n) space, for each edge e2 ∈ elistKn . Also, we can com-
pute e′ = min{e ∈ L∗(F) − L′(F) | L′(F) − e1 + e ∈ L(F)} and e′′ = min{e ∈
DT(L′(F)) − L′(F) | L′(F) − e1 + e ∈ L(F)} in O(n) time with O(n2) space, or
O(n2) time with O(n) space. Using e′ and e′′ we can check condition (c) in Lemmas
2 and 3 in O(1) time.

Thus, we have confirmed that all conditions of Lemmas 2 and 3 can be checked
in O(1) time for each pair (e1, e2) by taking O(n3) preprocessing time with O(n2)

space, or O(n) time for each (e1, e2) with O(n) space.
By using the above mentioned data structure for maintaining the rigid components,

we can perform parent function in O(n2) time with O(n2) space, or O(n3) time
with O(n) space. Thus, we have an O(n3) algorithm using O(n2) space, or O(n4)

algorithm using O(n) space. �

5 Conclusions

We have presented an algorithm for enumerating all the constrained non-crossing
Laman frameworks. We note in passing that the techniques in this paper can also be
used to generate all F -constrained non-crossing spanning trees of a point set since
they also form bases of the graphic matroid on any triangulation of P . The uncon-
strained case was considered in [1, 4].

An open problem, that is of considerable practical importance, is to generate ef-
ficiently all non-crossing Laman Frameworks that do not contain any edge from a
given set. This is equivalent to generating all non-crossing Laman frameworks that
are subgraphs of a given geometric graph. An indication that this problem may be
challenging, is that it is known that determining if a geometric graph contains a non-
crossing spanning tree is NP-complete [15].

Acknowledgements The authors would like to thank an anonymous referee for many ideas that lead to
an improved presentation of this research.

References

1. Aichholzer, O., Aurenhammer, F., Huemer, C., Vogtenhuber, B.: Gray code enumeration of plane
straight-line graphs. In: Proc. 22th European Workshop on Computational Geometry (EuroCG ’06),
pp. 71–74, Greece, 2006

2. Anglada, M.V.: An improved incremental algorithm for constructing restricted Delaunay triangula-
tions. Comput. Graph. 21(2), 215–223 (1997)

46 Discrete Comput Geom (2008) 40: 31–46

3. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements
and polyhedra. Discrete Comput. Geom. 8, 295–313 (1992)

4. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1-3), 21–46 (1996)
5. Avis, D., Katoh, N., Ohsaki, M., Streinu, I., Tanigawa, S.: Enumerating non-crossing minimally rigid

frameworks. Graphs Comb. 23(Suppl.), 117–134 (2007)
6. Beichl, I., Sullivan, F.: Coping with degeneracies in Delaunay triangulation. In: Flaherty, J.E., et al.

(eds.) Modelling, Mesh Generation and Adaptive Numerical Methods for Partial Differential Equa-
tions, pp. 23–30. Springer, New York (1995)

7. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer,
Berlin (2003)

8. Bereg, S.: Enumerating pseudo-triangulations in the plane. Comput. Geom. Theory Appl. 30(3), 207–
222 (2005)

9. Berg, A., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Battista, G.D., Zwick, U.
(eds.) Proc. 11th Annual European Symposium on Algorithms (ESA). Lecture Notes in Computer
Science, vol. 2832, pp. 78–89. Springer, Berlin (2003)

10. Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. In: Du and Hwang (eds.) Com-
puting in Euclidean Geometry, 2nd edn., pp. 23–90 (1992)

11. Chin, F., Wang, C.A.: Finding the constrained Delaunay triangulation and constrained Voronoi dia-
grams of a simple polygon in linear time. SIAM J. Comput. 28(2), 471–486 (1998)

12. de Floriani, L., Puppo, A.: An on-line algorithm for constrained Delaunay triangulation. Comput. Vis.
Graph. Image Process. 54(3), 290–300 (1992)

13. Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Mathematics,
vol. 2. American Mathematical Society, Providence (1993)

14. Jacobs, D.J., Hendrickson, B.: An algorithm for two-dimensional rigidity percolation: the pebble
game. J. Comput. Phys. 137, 346–365 (1997)

15. Jansen, K., Woeginger, G.J.: The complexity of detecting crossingfree configurations in the plane.
BIT 33(4), 580–595 (1993)

16. Katoh, N., Ohsaki, M., Kinoshita, T., Tanigawa, S., Avis, D., Streinu, I.: Enumeration of optimal pin-
jointed bistable mechanisms. In: Proc. 4th China-Japan-Korea Symp. of Structural and Mechanical
Systems, Kunming, November 2006

17. Kaveh, A.: Structural Mechanics: Graph and Matrix Methods, 3rd edn. Research Studies Press, Som-
erset (2004)

18. Kawamoto, A., Bendsøe, M., Sigmund, O.: Planar articulated mechanism design by graph theoretical
enumeration. Struct. Multidisc. Optim. 27, 295–299 (2004)

19. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970)
20. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. In: Proc. EUROCOMB, Berlin, Sep-

tember 2005
21. Lee, A., Streinu, I., Theran, L.: Finding and maintaining rigid components. In: Proc. Canad. Conf.

Comp. Geom., Windsor, Canada, August 2005
22. Ohsaki, M., Nishiwaki, S.: Shape design of pin-jointed multi-stable compliant mechanisms using

snapthrough behaviour. Struct. Multidisc. Optim. 30, 327–334 (2005)
23. Streinu, I.: Pseudo-triangulations, rigidity and motion planning. Discrete Comput. Geom. 34, 587–635

(2005)
24. Welsh, D.J.A.: Matroids: Fundamental concepts. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.)

Handbook of Combinatorics, vol. I, pp. 481–526. North-Holland, Amsterdam (1995)
25. Whiteley, W.: Matroids from discrete geometry. In: Bonin, J., Oxley, J., Servatius, B. (eds.) Matroid

Theory, pp. 171–313. AMS Contemporary Mathematics, Providence (1997)

	Enumerating Constrained Non-crossing Minimally Rigid Frameworks
	Abstract
	Introduction
	Preliminaries
	Constrained Non-crossing Laman Frameworks
	Algorithm
	Conclusions
	Acknowledgements

	References

