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Abstract—We consider the enumeration of maximal bipartite
cliques (bicliques) from a large graph, a task central to many
practical data mining problems in social network analysis and
bioinformatics. We present novel parallel algorithms for the
MapReduce platform, and an experimental evaluation using
Hadoop MapReduce.

Our algorithm is based on clustering the input graph
into smaller sized subgraphs, followed by processing different
subgraphs in parallel. Our algorithm uses two ideas that enable
it to scale to large graphs: (1) the redundancy in work between
different subgraph explorations is minimized through a careful
pruning of the search space, and (2) the load on different
reducers is balanced through the use of an appropriate total
order among the vertices. Our evaluation shows that the
algorithm scales to large graphs with millions of edges and
tens of millions of maximal bicliques. To our knowledge, this
is the first work on maximal biclique enumeration for graphs
of this scale.

Keywords-Graph Mining; Maximal Biclique Enumeration;
MapReduce; Hadoop; Parallel Algorithm; Biclique

I. INTRODUCTION

A graph is a natural abstraction to model relationships
in data. Today’s interlinked data from sources such as the
web and online social networks has led to massive graphs.
Finding patterns and insights from such data can often be
reduced to mining substructures from massive graphs.

We consider scalable methods for discovering densely
connected subgraphs within a large graph. We focus on a
fundamental dense substructure called a biclique. A biclique
in an undirected graph G = (V,E) is a pair of subsets
of vertices L ⊆ V and R ⊆ V such that (1) L and R
are disjoint and (2) there is an edge (u, v) ∈ E for every
u ∈ L and v ∈ R. For instance, consider the following
graph relevant to an online social network, where there
are two types of vertices, users and webpages. There is an
edge between a user and a webpage if the user “likes” the
webpage on the social network. A biclique in this graph
consists of a set of users U and a set of webpages W such
that every user in U has liked every page in W . Uncovering
such a biclique yields a set of users who share a common
interest, and is valuable for understanding and predicting
the actions of users on this social network. Usually, it is
useful to identify maximal bicliques in a graph, which are
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Figure 1: Maximal Bicliques
those bicliques that are not contained within any other larger
bicliques. See Figure 1 for an example.

We consider the problem of enumerating all maximal
bicliques from a graph (henceforth referred to as MBE).

Many applications in mining data from the web and online
social networks have relied on biclique enumeration on an
appropriately defined graph. The analysis of web search
queries has considered the “click-through” graph [34], which
has two types of vertices, web search queries and web pages.
There is an edge from a search query to every page that a
user has clicked in response to the search query. MBE was
used in clustering queries using the click through graph.
MBE has been used in social network analysis, in detection
of communities in social networks [12], and in finding
antagonistic communities in trust-distrust networks [17]. It
has also been applied in detecting communities in the web
graph [11, 24].

In bioinformatics, MBE has been used widely in con-
struction of the phylogenetic tree of life [6, 25, 33, 21], in
discovery and analysis of structure in protein-protein interac-
tion networks [3, 26], analysis of gene-phenotype relation-
ships [32], prediction of miRNA regulatory modules [35],
modeling of hot spots at protein interfaces [15], and in
analysis of relationships between genotypes, lifestyles, and
diseases [20]. Other applications include Learning Context
Free Grammars [36], finding correlations in databases [10],
data compression [1].

Enumerating all maximal bicliques in a graph is an NP-
hard problem [23]. This does not however mean that typical
cases are unsolvable. There are output-polynomial-time al-
gorithms whose runtime is bounded by a polynomial in the
number of vertices and the number of maximal bicliques that
are output [2]. Thus it is reasonable to expect algorithms for
MBE that work on large graphs, as long as the number of
maximal bicliques output is not too high.

However, the current state of the art methods for MBE



do not scale to large graphs. In particular, current methods
have the following drawbacks. First, most are sequential
algorithms that are unable to make use of the power of
multiple processors. For handling large graphs, it is impera-
tive to have methods that can process a graph in parallel.
Next, they have been evaluated only on relatively small
graphs of a few thousands of vertices, and have not been
shown to scale to large graph sizes. For instance, the popular
“consensus” method for biclique enumeration [2] presents
experimental data only on graphs of up to 2,000 vertices
and other works [14, 16] are also similar. 1.

Our goal is to design a parallel method that can enu-
merate maximal bicliques in large graphs, with millions of
edges and tens of millions of maximal bicliques, and which
can scale with the number of processors.

A. Contributions

We present a parallel solution to MBE. At a high level, our
solution clusters the input graph into overlapping subgraphs
that are typically much smaller than the input graph, and
processes these subgraphs in different tasks that are run in
parallel. For the above clustering approach to be effective
on large graphs, we needed to solve two problems.

The first problem is the overlap in work within different
tasks. For biclique enumeration, it is usually not possible to
assign disjoint subgraphs to different tasks, and subgraphs
assigned to different tasks will overlap, sometimes signifi-
cantly. The challenge is to ensure that work done in different
tasks should overlap as little as possible with each other.
We accomplish this through a careful partitioning of the
search space so that even if different tasks are processing
overlapping subgraphs, they still explore disjoint portions of
the search space.

The second problem is load balancing among different
tasks. With a graph analysis task such as biclique enumer-
ation, the complexity of different subgraphs varies signifi-
cantly, depending on the density of edges in the subgraph.
With a naive assignment of subgraphs to tasks, this will lead
to a case where most tasks finish quickly, while a few take a
long time, leading to a poor parallel performance. We present
a solution to keep the load more balanced, using an ordering
of vertices, which reduces enumeration load on subgraphs
that are dense, and increases the load on subgraphs that are
sparse, leading to a better load balance overall.

We also considered another approach to parallel MBE, us-
ing a direct parallelization of the “consensus” algorithm [2],
which is probably the most commonly used sequential al-
gorithm for MBE. We found that this method takes substan-
tially greater runtime than our clustering based method. We
also consider the related problem of generating only large
maximal bicliques, which have at least a certain number

1In our experiments, we show that the consensus method and other
current methods are unable to process our input graphs in a reasonable
time

of vertices. Our parallel algorithms can be easily adapted to
this case, using appropriate changes to underlying sequential
algorithms.

Experiments: We implemented our parallel algorithm
for MBE on the MapReduce framework [5], and present
detailed experimental results on real-world and synthetic
graphs. Overall, the clustering approach using a sequential
algorithm based on depth-first-search, when combined with
our pruning and load balancing optimizations, performs the
best on large graphs. This algorithm can process graphs with
millions of edges and tens of millions of maximal bicliques,
and can scale out with the cluster size. To our knowledge,
these are the largest reported graph instances where bicliques
have been successfully enumerated.

B. Prior and Related Work
Alexe et. al [2] present a sequential algorithm for MBE

using the “consensus” method. Another technique for MBE
is based on a recursive depth first search (DFS) [30, 14, 16].
While [14] presents an approach based on a connection
with mining closed patterns in a transactional database, [16]
present a more direct algorithm based on depth first search.
Our parallel algorithm uses a sequential algorithm for pro-
cessing bicliques within each task, and we considered both
the consensus and the DFS based algorithms; the DFS-based
algorithms ran faster overall, and it was easier to optimize
the DFS based methods. Due to space constraints, we omit
a description of these sequential methods, for details, please
refer to an expanded version of this paper [19].

Another approach to MBE is through a reduction to
the problem of enumerating maximal cliques, as described
in [8]. Given a graph G on which we need to enumerate max-
imal bicliques, a new graph G′ is derived such that through
enumerating maximal cliques in G′ using an algorithm such
as [28, 29], it is possible to derive the maximal bicliques in
G. However, this approach is not practical for large graphs
since in going from G to G′, the number of edges in the
graph increases significantly.

To our knowledge, the only prior work on parallel algo-
rithms for MBE is by Nataraj and Selvan [22]. However, this
work does not explore aspects of load balancing and total
work such as we do, and moreover, their evaluations are not
for large graphs; the largest graph they have considered has
500 vertices and about 9000 edges.

There is a variant of MBE where we only seek induced
maximal bicliques in a graph. An induced maximal biclique
is a maximal biclique which is also an induced subgraph
of the original graph. We consider the non-induced version,
where the enumerated biclique is not necessarily an induced
subgraph. If only induced bicliques are needed, they can
be obtained by post-processing the output of our algorithm.
Note that for a bipartite graph, every maximal biclique is
also an induced maximal biclique.

MBE is related to, but different from the problem of



finding the largest sized biclique within a graph (maximum
biclique). There are a few variants of the maximum biclique
problem, including maximum edge biclique, which seeks the
biclique in the graph with the largest number of edges, and
maximum vertex biclique, which seeks a biclique with the
largest number of edges; for further details and variants,
see [4]. MBE is harder than finding a maximum biclique,
since it enumerates all maximal bicliques, including all
maximum bicliques.

II. PRELIMINARIES

We present a precise problem definition and briefly review
the MapReduce parallel programming model.

Problem Definition: We consider a simple undirected
graph G = (V,E) without self-loops or multiple edges,
where V is the set of all vertices and E is the set of all
edges of the graph. Let n = |V | and m = |E|. Graph
H = (V1, E1) is said to be a sub-graph of graph G if
V1 ⊂ V and E1 ⊂ E. H is known as an induced subgraph
if E1 consists of all edges of G that connect two vertices in
V1. For vertex u ∈ V , let η(u) denote the vertices adjacent
to u. For a set of vertices U ⊆ V , let η(U) =

⋃
u∈U

η(u).

For vertex u ∈ V and k > 0, let ηk(u) denote all vertices
that can be reached from u in k hops. For U ⊆ V , let
ηk(U) =

⋃
u∈U

ηk(u). We call ηk(U) as the k-neighborhood

of U . For a set of vertices U ⊆ V , let Γ(U) =
⋂

u∈U

η(u).

A biclique B = 〈L,R〉 is a subgraph of G containing two
non-empty and disjoint vertex sets, L and R such that for any
two vertices u ∈ L and v ∈ R, there is an edge (u, v) ∈ E. A
biclique M = 〈L,R〉 in G is said to be a maximal biclique if
there is no other biclique M ′ = 〈L′, R′〉 6= 〈L,R〉 such that
L ⊂ L′ and R ⊂ R′. The Maximal Biclique Enumeration
Problem (MBE) is to enumerate all maximal bicliques in G.

MapReduce [5] is a popular framework for processing
large data sets on a cluster of commodity hardware. A
MapReduce program is written through specifying map and
reduce functions. The map function takes as input a key-
value pair 〈k, v〉 and emits zero, one, or more new key-
value pairs 〈k′, v′〉. All tuples with the same value of the
key are grouped together and passed to a reduce function,
which processes a key k and all values associated with k,
and outputs a final list of key-value pairs. The outputs of one
MapReduce round can be the input to the next round. Further
details and examples of use are available in [5, 9]. We used
Hadoop [31], an open source implementation of MapReduce,
on top of a distributed file system HDFS [27]. While we
evaluated an implementation on top of MapReduce, the
idea in our parallel algorithm is more generally applicable
and can easily be adapted to other frameworks such as
Pregel [18].

III. PARALLEL ALGORITHMS FOR MBE
We describe our parallel algorithms for MBE, and give

an outline of how these are implemented using MapReduce.

We first present a basic clustering approach, which can be
used with any sequential algorithm for MBE, followed by
enhancements to the basic clustering approach. We present
results about the performance and correctness of our algo-
rithms, but omit most proofs due to space constraints.

Basic Clustering Approach: For each v ∈ V , let
subgraph (cluster) C(v) be defined as the induced subgraph
on all vertices in η2(v) (i.e. the 2-neighborhood of v in G).
We first note the following.

Lemma 1. Each maximal biclique B in G = (V,E) is a
maximal biclique in C(v) for every vertex v that is contained
in B. Further, for any v ∈ V , each maximal biclique in C(v)
is also a maximal biclique in G.

Proof: We show the following two properties. First,
every maximal biclique in G must be output as a maximal
biclique from cluster C(v) for some v ∈ V . Second,
every maximal biclique output from each cluster must be a
maximal biclique in G. To prove the first direction, consider
a maximal biclique M = 〈L,R〉 in G. Let v be the smallest
vertex in M in lexicographic order, and without loss of
generality suppose that v ∈ L. By the definition of a
biclique, for each u ∈ R, u is a neighbor of v. Similarly,
every vertex w ∈ L is a neighbor of v, and is hence in η2(v).
Hence M is completely contained in C(v). Note that M is
also a maximal biclique in C(v). To see this, note that if M
is not maximal biclique in C(v), then M is not maximal in
G either.

We prove by contradiction that every maximal biclique
in each cluster C(v) is also a maximal biclique in G.
Consider a biclique M emitted as maximal from cluster
C(v) such that it is not maximal in G. Then, there exists
a maximal biclique M ′ that can be generated by extending
M . However, it is easy to see that every vertex in M ′ must
also be contained in η2(v), and hence M ′ is also contained
in C(v), contradicting our assumption that M is a maximal
biclique in C(v).

With the above observation, a basic parallel algorithm for
MBE first constructs the different clusters {C(v)|v ∈ V },
and then enumerates the maximal bicliques in the different
clusters in parallel, using a sequential algorithm for MBE
for enumerating the bicliques within each cluster.

While each maximal biclique in G is indeed enumerated
by the above approach, the same biclique may be enumer-
ated multiple times. To suppress duplicates, the following
strategy is used: a maximal biclique B arising from cluster
C(v) is emitted only if v is the smallest vertex in B
according to a lexicographic total order on the vertices. The
basic clustering framework is generic and can be used with
any sequential algorithm for MBE. We have used a variant
of the DFS-based sequential algorithm due to [16], as well
as the sequential consensus algorithm due to [2]. We call the
above basic clustering algorithm using DFS-based sequential
algorithm as “CDFS”.



Lemma 2. The basic clustering approach enumerates every
maximal bicliques in graph G = (V,E) exactly once.

For an implementation on Hadoop MapReduce, we as-
sume that the graph is presented as a file in HDFS organized
as a list of edges with each line in the file containing one
edge. We generate the cluster C(v) for each vertex using
two rounds of MapReduce. The reducer for vertex v in the
second round has the cluster C(v), and processes this using
a sequential algorithm as described above. Further details
can be found in the Technical Report [19].

There are two significant problems with the basic clus-
tering approach described above. First is redundant work.
Although each maximal biclique in G is emitted only once,
through suppressing duplicate output, it will still be gen-
erated multiple times, in different clusters. This redundant
work significantly adds to the runtime of the algorithm.
Second is an uneven distribution of load among different
subproblems. The load on subproblem C(v) depends on two
factors, the complexity of cluster C(v) (i.e. the number and
size of maximal bicliques within C(v)) and the position of
v in the total order of the vertices. The earlier v appears in
the total order, the greater is the likelihood that a maximum
biclique in C(v) has v has its smallest vertex, and hence
the greater is the responsibility for emitting bicliques that
are maximal within C(v). A lexicographic ordering of the
vertices will lead to a significantly increased workload for
clusters C(v) where v appears early in the total order and
a correspondingly low workload for clusters C(v) where v
occurs earlier in the total order.

A. Reducing Redundant Work

In order to reduce the redundant work at different clusters,
we modify the sequential DFS algorithm that is executed
at each reducer. Algorithm 1 shows the modified DFS
Algorithm. The basic observation here is that in cluster
C(v), only those maximal bicliques need be enumerated for
which v is the smallest vertex. As shown in Algorithm 1, we
use this observation to prune the search space at the reducer.
We call the above DFS based clustering algorithm, with the
pruning optimization as “CD0”. Due to space constraints, we
omit the details of the entire algorithm description, which,
along with all proofs of correctness can be found in our
technical report [19].

B. Load Balancing

In Algorithm CD0, vertices were ordered using a lexi-
cographic ordering, which is agnostic of the properties of
the cluster C(v). The way the optimized DFS algorithm
works, the enumeration load on a cluster C(v) depends on
the number of maximal bicliques within this cluster as well
as the position of v within the total order. The earlier that
v is in the total order, the greater is the load on the reducer
handling C(v).

Algorithm 1: Optimized DFS – CD0 Seq(G′, X , T ,
key, s)

Input: G′,X ,T ,key,s
1 forall the vertex v ∈ T do
2 if |Γ(X ∪ {v})| < s then
3 T ← T \ {v}

4 if |X|+ |T | < s then
5 return
6 Sort vertices in T as per ascending order of
|Γ(X ∪ {v})|

7 forall the vertex v ∈ T do
8 T ← T \ {v}
9 if |X ∪ {v}|+ |T | ≥ s then

10 N ← Γ(X ∪ {v})
11 Y ← Γ(N)
12 if Y contains vertices smaller than key then
13 continue

14 Biclique B ← 〈Y,N〉
15 if (Y \ (X ∪ {v})) ⊆ T then
16 if |Y | ≥ s then
17 vs ← Smallest vertex in B
18 if vs = key then
19 // Maximal biclique

found
20 Emit (key ← ∅,value← B)

21 CD0 Seq(G′, Y , T \ Y , key, s)

For improving load balance, our idea is to adjust the
position of vertex v in the total order according to the
properties of its cluster C(v). Intuitively, the more complex
cluster C(v) is (i.e. more and larger the maximal bicliques),
the higher should be position of v in the total order, so that
the burden on the reducer handling C(v) is reduced. While it
is hard to compute (or even accurately estimate) the number
of maximal bicliques in C(v), we consider two properties of
vertex v that are simpler to estimate, to determine the relative
ordering of v in the total order: (1) Size of 1-neighborhood
of v (Degree), and (2) Size of 2-neighborhood of v.

Intuitively, we can expect that vertices with higher degrees
are potentially part of a denser part of the graph and are
contained within a greater number of maximal bicliques. The
size of the 2-neighborhood is also the number of vertices in
C(v) and may provide a better estimate of the complexity of
handling C(v), but this is more expensive to compute than
the size of the 1-neighborhood of the vertex.

The discussion below is generic and holds for both
approaches to load balancing. To run the load balanced
version of DFS, the reducer running the sequential algorithm
must now have the following information for the vertex (key



of the reducer) : (1) 2-neighborhood induced subgraph, and
(2) vertex property for every vertex in the 2-neighborhood
induced subgraph, where “vertex property” is the property
used to determine the total order, be it the degree of the
vertex or the size of the 2-neighborhood. The second piece of
information is required to compute the new vertex ordering.
However, the reducer of the second round does not have
this information for every vertex in C(v), and a third round
of MapReduce is needed to disseminate this information
among all reducers. Further details as well as descriptions of
algorithms are presented in the Technical Report [19]. We
call the Algorithm using the size of 1–neighborhood of a
vertex v as the heuristic as CD1 and the one using the size
of 2–neighborhood as CD2.

C. Communication Complexity

We consider the communication complexity of Algo-
rithms CD0, CD1 and CD2. For input graph G = (V,E),
let m = |E|, ∆ denote the largest degree and β denote the
output size (i.e. the sum of the sizes of all the bicliques that
are output). The communication complexity of a MapReduce
Algorithm is defined as the sum of the total number of
bytes emitted by all Mappers and the total number of bytes
emitted by all the Reducers. We consider the output size
for reducers as contributing the communication complexity
since each reducer writes into the distributed le system, thus
incurring communication. For a multi-round MapReduce
algorithm, the communication complexity is the sum of the
complexities over all the rounds.

Lemma 3. Total communication complexity of Algorithm
CD1 / CD2 is O (m ·∆ + β).

IV. EXPERIMENTAL RESULTS

We implemented our parallel algorithms on a Hadoop
cluster, using both real-world and synthetic datasets. The
cluster has 28 nodes, each with a quad-core AMD Opteron
processor with 8GB of RAM. All programs were written
using Java version 1.5.0 with 2GB of heap space, and the
Hadoop version used was 0.20.203.

We implemented the DFS based algorithms CDFS (clus-
tering DFS with no optimizations), CDO (clustering DFS
with the pruning optimization), CD1 (clustering DFS with
pruning and load balancing using degree), and CD2 (clus-
tering DFS with pruning and load balancing using size of
2-neighborhood).

We also implemented the sequential DFS algorithm [16],
and the sequential consensus algorithm (MICA) [2]. The se-
quential algorithms were not implemented on top of Hadoop
and hence had no associated Hadoop overhead in their
runtime. But on the real-world graphs that we considered,
the sequential algorithms did not complete within 12 hours,
except for the p2p-Gnutella09 graph. In addition, we imple-
mented the parallel clustering algorithm using the consensus-
based sequential algorithm, and we also implemented an

alternate parallel implementation of the consensus algorithm
that was not based on the clustering method.
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Figure 3: Runtime versus Number of Reducers.
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Figure 4: Speedup versus Number of Reducers.

We used both synthetic and real-world graphs. A summary
of all the graphs used is shown in Table I. The real-
world graphs were obtained from the SNAP collection of
large networks [13] and were drawn from social networks,
collaboration networks, communication networks, product
co-purchasing networks, and internet peer-to-peer networks.
Some of the real world networks were so large and dense
that no algorithm was able to process them. For such graphs,
we thinned them down by deleting edges with a certain
probability. This makes the graphs less dense, yet preserves
some of the structure of the real-world graph. We show
the edge deletion probability in the name of the network.
For example, graph “ca-GrQc-0.4” is obtained from “ca-
GrQc” by deleting each edge with probability 0.4. Synthetic
graphs are either random graphs obtained by the Erdos-
Renyi model [7], or random bipartite graphs obtained using
a similar model. To generate a bipartite graph with n1 and
n2 vertices respectively in the two partitions, we randomly
assign an edge between each vertex in the left partition to
each vertex in the right partition. A random Erdos-Renyi
graph on n vertices is named “ER-〈n〉”, and a random
bipartite graph with n1 and n2 vertices in the bipartitions is
called “Bipartite-〈n1〉-〈n2〉”.

We seek to answer the following questions from the
experiments: (1) What is the relative performance of the
different methods for MBE? (2) How do these methods scale
with increasing number of reducers? and (3) How does the
runtime depend on the input size and the output size?

Figure 2 presents a summary of the runtime data for the
algorithms in Table I. All data used for these plots was



Table I: Various properties of the input graphs used, and runtime (in seconds) of different algorithms to enumerate all
maximal bicliques within the graph using 100 reducers. DNF means that the algorithm did not finish in 12 hours. The size
threshold was set as 1 to enumerate all maximal bicliques. Runtime includes overhead of all MapReduce rounds including
graph clustering, i.e. formation of 2–neighborhood.

Label Input Graph #vertices #edges #max–bicliques Output Size CDFS CD0 CD1 CD2

1 p2p-Gnutella09 8114 26013 20332 407558 113 92 132 130
2 email-EuAll-0.6 125551 168087 292008 9161154 42023 4640 683 626
3 com-Amazon 334863 925872 706854 12739908 186 113 185 221
4 amazon0302 262111 1234877 886776 14553776 396 272 151 153
5 com-DBLP-0.6 251226 419573 1875185 82814962 1659 409 374 478
6 email-EuAll-0.4 175944 252075 2003426 111370926 DNF DNF 6365 4154
7 ego-Facebook-0.6 3928 35397 6597716 315555360 8657 3858 1512 2943
8 loc-BrightKite-0.6 49142 171421 10075745 777419528 28585 11451 2506 2998
9 web-NotreDame-0.8 150615 300398 19941634 942300172 DNF DNF 1688 2327
10 ca-GrQc-0.4 5021 17409 16133368 3101214314 37279 6895 5790 6374
11 ER-50K 50000 275659 51756 1116752 96 89 133 136
12 ER-60K 60000 330015 61821 1334716 98 89 135 135
13 ER-70K 70000 393410 71962 1589408 98 90 135 132
14 ER-80K 80000 448289 81983 1809070 102 90 136 134
15 ER-90K 90000 526943 92214 2125544 109 96 142 140
16 ER-100K 100000 600038 102663 2421528 114 97 144 143
17 ER-250K 250000 1562707 252996 6274864 167 114 165 162
18 ER-500K 500000 3751823 506319 15057870 374 167 251 252
19 Bipartite-50K-100K 150000 1999002 306874 9256056 873 183 227 253
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Figure 2: Runtime in seconds of parallel algorithms on real and random graphs. If an algorithm failed to complete in 12
hours the result is not shown. All algorithms were run using 100 reducers. Runtime includes overhead of all MapReduce
rounds including graph clustering, i.e. formation of 2–neighborhood.

generated with 100 reducers. The runtime data given for
the Parallel Algorithms include the time required to run all
MapReduce rounds including time required to construct 2–
neighborhood etc.

Inpact of the Pruning Optimization. From Figure 2,
we can see that the optimizations to basic DFS clustering
through eliminating redundant work make a significant im-
pact to the runtime for all input graphs. For instance, in
Figure 2d, on input graph email–EuAll–0.6 CD0, which
incorporates these optimizations, runs 9 times faster than
CDFS, the basic clustering approach without reducing re-
dundant work.

Impact of Load Balancing. From Figure 2, we also

observe that for graphs on which the algorithms do not
finish very quickly (within 200 seconds), load balancing
helps significantly. In Figure 2d, for graph email–EuAll–
0.6, the Load Balancing approaches (CD1 and CD2) are 7
to 7.4 times faster than CD0, which incorporates the pruning
optimization, without load balancing. In Figure 2e, we note
that for input graph loc–BrightKite–0.6, CD1 was 4.5 times
faster than CD0 and CD2 was about 3.8 times faster. For
some graphs, such as email-EuAll-0.4 and web-NotreDame-
0.8, CD0 failed to complete even after 12 hours, but CD1
and CD2 completed in less than 2 hours.

For most input graphs, the versions optimized through
both load balancing and pruning worked the best overall,



and both these optimizations helped significantly in
reducing the runtime.

However, for graphs that completed quickly, load bal-
ancing performs slightly slower than CD0 (see Figure 2a).
This can be explained by the additional overhead of load
balancing (an extra round of MapReduce), which does not
payoff unless the work done at the DFS step is significant.

Among the two different approaches to load balancing,
one based on the vertex degree and the other on the size
of the 2-neighborhood of the vertex. From Figure 2 we
observed that no one approach was consistently better than
the other, and the performance of the two were close to each
other. For some input graphs, like Email-EuAll-0.4, the 2-
neighborhood approach (CD2) fared better than the degree
approach (CD1), whereas for some other input graphs like
web-NotreDame-0.8, the degree approach fared better.

To better understand the impact of load balancing, we
calculated the mean and the standard deviation of the run
time of each of the 100 reducers for the last round of
MapReduce of CD0, CD1 and CD2. We present results of
this analysis for input graphs loc-BrightKite-0.6 and ego-
Facebook-0.6 in Table II. The load balanced algorithms
CD1 and CD2 have a much smaller standard deviation
for reducer runtimes than CD0.

Consensus versus Depth First Search. Though the
results are not shown here, we note that the consensus
algorithm performed very poorly compared with the DFS
based algorithm. In all instances except for very small input
graphs, clustering using consensus was 6-11 times slower
than CD1 and CD2 or worse, and in many cases, clustering
consensus did not finish within 12 hours while CD1 and CD2
finished within 1-2 hours. Further, direct parallel consensus,
which uses a different parallelization strategy was 13 to 100
times slower than clustering consensus. Further details can
be found in [19].

Scaling with Number of Reducers. In Figure 3 we plot
the runtime of CD1 and CD2 with increasing number of
reducers. In Figure 4, we also plot the speedup, defined as
the ratio of the time taken with 1 reducer to the time taken
with r reducers, as a function of the number of reducers
r. We observe that the runtime decreases with increasing
number of reducers, and further, the algorithms achieve near-
linear speedup with the number of reducers. This data shows
that the algorithms are scalable and may be used with larger
clusters as well.

Relationship to Output Size. We observed the change
in runtime of the algorithms with respect to the output size.
We define the output size of the problem as the sum of
the number of edges for all enumerated maximal bicliques.
Figure 5 shows the runtime of algorithms CD0, CD1, and
CD2 as a function of the output size. This data is only
constructed for random graphs, where the different graphs
considered are generated using the same model, and hence
have very similar structure. We observe that the runtime
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Figure 5: Runtime versus Output Size for random graphs.
All Erdos-Renyi random graphs were used. Output size is
defined as the number of edges summed over all maximal
bicliques enumerated.

increases almost linearly with the output size for all three
algorithms CD0, CD1, and CD2.

With real world graphs, this comparison does not seem
as appropriate, since the different real worlds graphs have
completely different structures; however, we observed that
the runtimes of Algorithms CD1 and CD2 are well correlated
with the output size, even on real world graphs.
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Figure 6: Runtime vs the size threshold for the emitted
maximal bicliques. All experiments were performed using
Algorithm CD1 and with 100 reducers.

Large Maximal Bicliques. Finally, we considered the
variant where only large bicliques, whose total number of
vertices is at least s, are required to be emitted. Figure 6
shows the runtime as the size threshold s varies from 1 to
5. We observe that the runtime decreases significantly as the
threshold increases.

V. CONCLUSION

Maximal biclique enumeration is a fundamental tool in
uncovering dense relationships within graphical data. We
presented a scalable parallel method for mining maximal
bicliques from a large graph. Our method uses a basic clus-
tering framework for parallelizing the enumeration, followed
by two optimizations, one for reducing redundant work, and
another for improving load balance. Experimental results
using MapReduce show that the algorithms are effective in
handling large graphs, and scale with increasing number
of reducers. To our knowledge, this is the first work to
successfully enumerate bicliques from graphs of this size;
previous reported results were mostly sequential methods
that worked on much smaller graphs.



Table II: Mean and Standard Deviation computation of all 100 reducer runtimes for Algorithms CD0, CD1 and CD2. The
analysis is done for the Reducer of the last MapReduce round as it performs the actual Depth First Search.

loc-BrightKite-0.6 CD0 CD1 CD2

Average 1005.94 631.92 625.14
Variance 3470135.82 256859.25 302764.97

Standard Deviation 1862.83 506.81 550.24

ego-Facebook-0.6 CD0 CD1 CD2

Average 479.37 380.32 422.7
Variance 473875.57.82 80146.79 273575.95

Standard Deviation 688.39 283.10 523.04

The following directions are interesting for exploration
(1) How does this approach perform on even larger clusters,
and consequently, larger input graphs? What are the bottle-
necks here? and (2) Can these be extended to enumerate
near-bicliques (quasi-bicliques) from a graph?
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