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Abstract

We determine the exact and asymptotic number of unlabeled outerplanar graphs.
The exact number gn of unlabeled outerplanar graphs on n vertices can be computed
in polynomial time, and gn is asymptotically g n−5/2ρ−n, where g ≈ 0.00909941 and
ρ−1 ≈ 7.50360 can be approximated. Using our enumerative results we investigate
several statistical properties of random unlabeled outerplanar graphs on n vertices,
for instance concerning connectedness, the chromatic number, and the number of
edges. To obtain the results we combine classical cycle index enumeration with
recent results from analytic combinatorics.
Keywords: unlabeled outerplanar graphs, dissections, combinatorial enumeration,
cycle index, asymptotic estimates, singularity analysis

1 Introduction and results

Singularity analysis is very successful for the asymptotic enumeration of combinatorial
structures [14], once a sufficiently good description of the corresponding generating func-
tions is provided. When we count unlabeled structures, i.e., when we count the structures
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up to isomorphism, the potential symmetries of the structures often require a more power-
ful tool than generating functions, e.g., cycle index sums, introduced by Pólya [30]. From
the cycle index sums for classes of combinatorial structures we can obtain the correspond-
ing generating functions, to which we can then apply singularity analysis. However, when
the cycle index sums are given only implicitly, it might be a challenging task to apply this
technique. This is well illustrated by the attempts for the enumeration of planar graphs:
The asymptotic number of labeled planar graphs was recently determined by Giménez
and Noy [20], based on singularity analysis, whereas the enumeration of unlabeled planar
graphs has been left open for several decades [39].

In this paper we determine the exact and asymptotic number of unlabeled outerplanar
graphs, an important subclass of the class of all unlabeled planar graphs. We provide
a polynomial-time algorithm to compute the exact number gn of unlabeled outerplanar
graphs on n vertices, and prove that gn is asymptotically g n−5/2ρ−n, where g ≈ 0.00909941
and ρ−1 ≈ 7.50360 can be approximated. Building on our enumerative results we derive
typical properties of a random unlabeled outerplanar graph on n vertices (i.e., a graph
chosen uniformly at random among all unlabeled outerplanar graphs on n vertices), for ex-
ample connectedness, the chromatic number, the number of components, and the number
of edges (see Section 5).

Before we provide a more detailed exposition of the main results of this paper, we give
a brief survey on the vast literature on enumerative results for planar structures. The
exact and asymptotic number of embedded planar graphs (i.e., planar maps) has been
studied intensively, starting with Tutte’s seminal work on the number of rooted oriented
planar maps [35]. The number of three-connected planar maps is related to the number of
three-connected planar graphs [25, 35], since a three-connected planar graph has a unique
embedding on the sphere [40]. Bender, Gao, and Wormald used this property to count
labeled two-connected planar graphs [2], and Giménez and Noy extended this work to
the enumeration of labeled planar graphs [20]. Many interesting properties of a random
labeled planar graph were studied in [11, 18, 19, 24, 27]. It is also known how to generate
labeled three-connected planar graphs, labeled planar maps, and labeled planar graphs
uniformly at random [5, 8, 16, 17, 33].

The asymptotic number of general unlabeled planar graphs has not yet been deter-
mined, but has been studied for quite some time [39]. Moreover, no polynomial time
algorithm for the computation of the exact number of unlabeled planar graphs on n ver-
tices is known. Such an algorithm is only known for unlabeled rooted two-connected
planar graphs [6], and for unlabeled rooted cubic planar graphs [7].

An outerplanar graph is a graph that can be embedded in the plane such that every
vertex is incident to the outer face. Such graphs can also be characterized in terms of
forbidden minors [10], namely K2,3 and K4. The class of outerplanar graphs is often used
as a first non-trivial test-case for results about the class of all planar graphs; apart from
that, this class appears frequently in various applications of graph theory. Two-connected
outerplanar graphs can be identified with dissections of a convex polygon (see, e.g., [4]).
Further, Read provided counting formulas for the number of unlabeled two-connected
outerplanar graphs [31]. General outerplanar graphs can be decomposed according to their
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degree of connectivity: an outerplanar graph is a set of connected outerplanar graphs, and
a connected outerplanar graph can be decomposed into two-connected blocks.

In the labeled case this decomposition yields equations that link the exponential gen-
erating functions of two-connected, connected, and general outerplanar graphs. Once la-
beled dissections are enumerated, these equations yield formulas for counting outerplanar
graphs. The asymptotic number of labeled outerplanar graphs was recently determined [4].

In the unlabeled case the same decomposition can be used, but generating functions
have to be replaced by cycle index sums (as introduced by Pólya [30]) to deal with po-
tential symmetries [21, page 188]. From cycle index sums we obtain implicit equations
for the ordinary generating functions for unlabeled outerplanar graphs (see Section 3).
We then apply singularity analysis, a very powerful tool that is thoroughly developed
in the forthcoming book of Flajolet and Sedgewick [14]. A similar strategy was applied
by Labelle, Lamathe, and Leroux for the enumeration of unlabeled k-gonal 2-trees [22].
However, the singularity analysis for outerplanar graphs is more challenging. A new dif-
ficulty we have to face is that the generating function for connected outerplanar graphs
is defined implicitly via substitution into 2-connected components. Consequently, finding
the singular development for this series requires a careful treatment of cases when ap-
plying the singular implicit function theorem (see Section 4.1 for the details). Singular
developments then make it possible to obtain the asymptotic results.

Contributions. From now on we always consider outerplanar graphs as unlabeled ob-
jects, unless stated otherwise. Our first result is the exact and asymptotic number of
unlabeled outerplanar graphs.

Theorem 1.1. The exact numbers of two-connected outerplanar graphs dn, connected
outerplanar graphs cn, and outerplanar graphs gn with n vertices can be computed in
polynomial time.

See the sequences A001004, A111563, and A111564 from [34] for initial values.

Theorem 1.2. The numbers dn, cn, and gn of two-connected, connected, and general
outerplanar graphs with n vertices have the asymptotic estimates

dn ∼ d n−5/2δ−n,

cn ∼ c n−5/2ρ−n,

gn ∼ g n−5/2ρ−n,

with exponential growth rates δ−1 = 3+2
√

2 ≈ 5.82843 and ρ−1 ≈ 7.50360, and constants
d ≈ 0.00596026, c ≈ 0.00760471, and g ≈ 0.00909941. (See Theorems 4.1, 4.3, and 4.4.)

The growth rates for the labeled case are given in [4, 13]. Observe that the exponential
growth rates of unlabeled and labeled two-connected outerplanar graphs coincide. Hence,
asymptotically almost all two-connected outerplanar graphs are asymmetric. For the
connected and general case, the growth rates differ.
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Having the asymptotic estimates of connected outerplanar graphs and outerplanar
graphs, we investigate asymptotic distributions of parameters such as the number of
components and the number of isolated vertices of a random outerplanar graph (i.e., a
graph chosen uniformly at random among all outerplanar graphs on n vertices) as n tends
to infinity.

Theorem 1.3. (1) The probability that a random outerplanar graph is connected is
asymptotically c/g ≈ 0.845721.

(2) The expected number of components in a random outerplanar graph is asymptotically
equal to a constant ≈ 1.17847.

(3) The asymptotic distribution of the number of isolated vertices in a random out-
erplanar graph follows a geometric law with parameter ρ. In particular, the ex-
pected number of isolated vertices in a random outerplanar graph is asymptotically
ρ/ (1 − ρ) ≈ 0.153761.

Next, we study the distribution of the number of edges in a random outerplanar graph.

Theorem 1.4. The distribution of the number of edges in a random outerplanar graph on
n vertices is asymptotically Gaussian with mean µn and variance σ2n, where µ ≈ 1.54894
and σ2 ≈ 0.227504. The same holds for a random connected outerplanar graph with
the same mean and variance and for a random two-connected outerplanar graph with
asymptotic mean

(

1 +
√

2/2
)

n ≈ 1.70711n and asymptotic variance
√

2/8 n ≈ 0.176777n.

Further, we study the chromatic number of a random outerplanar graph. An out-
erplanar graph is easily shown to be 3-colourable. In order to further investigate the
distribution of the chromatic number of a random outerplanar graph we also estimate the
asymptotic number of bipartite outerplanar graphs.

Theorem 1.5. The number of bipartite outerplanar graphs (gb)n on n vertices has the
asymptotic estimate (gb)n ∼ bn−5/2ρ−n

b
, with ρ−1

b
≈ 4.57717.

The fact that the growth constant of bipartite outerplanar graphs is smaller than the
growth constant of outerplanar graphs yields the following result:

Theorem 1.6. The probability that the chromatic number of a random outerplanar graph
is different from three converges to zero exponentially fast.

2 Preliminaries

We recall some concepts and techniques that we need for the enumeration of unlabeled
graphs, and some facts from singularity analysis to obtain asymptotic estimates.
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2.1 Cycle index sums and ordinary generating functions

To enumerate unlabeled graphs, cycle index sums were introduced by Pólya (see e.g., [21,
30]). For a group of permutations A on an object set X = {1, . . . , n} (for example, the
vertex set of a graph), the cycle index Z (A) of A with respect to the formal variables
s1, . . . , sn is defined by

Z (A) := Z (A; s1, s2, . . .) :=
1

|A|
∑

α∈A

n
∏

k=1

s
jk(α)
k ,

where jk (α) denotes the number of cycles of length k in the decomposition of α ∈ A into
disjoint cycles. For a graph G on n vertices with automorphism group Γ (G), we write
Z (G) := Z (Γ (G)), and for a set of graphs K, we write Z (K) for the cycle index sum for
K defined by

Z (K) := Z (K; s1, s2, . . .) :=
∑

K∈K
Z (K; s1, s2, . . .) .

It can be shown [3] that, if K̄ is the corresponding class of labeled graphs, then

Z(K) =
∑

n≥0

1

n!

∑

K∈K̄n

∑

α∈Γ(K)

n
∏

k=1

s
jk(α)
k ,

which coincides with the classical definition of a cycle index series and shows the close
relationship of cycle index sums to exponential generating functions in labeled counting.

Indeed, cycle index sums can be used for the enumeration of unlabeled structures in a
similar way as generating functions for labeled enumeration. First of all, the composition
of graphs corresponds to the composition of the associated cycle indices. Consider an
object set X = {1, . . . , n} and a permutation group A on X. A composition of n graphs
from K is a function f : X → K. Two compositions f and g are similar, f ∼ g, if there
exists a permutation α ∈ A with f ◦ α = g. We write G for the set of equivalence classes
of compositions of n graphs from K (with respect to the equivalence relation ∼). Then

Z (G) = Z (A) [Z (K)] := Z (A; Z (K; s1, s2, . . .) , Z (K; s2, s4, . . .) , . . .) , (2.1)

i.e., Z(G) is obtained from Z(A) by replacing each si by Z (K; si, s2i, . . .) [21]. Hence,
Formula (2.1) makes it possible to derive the cycle index sum for a class of graphs by
decomposing the graphs into simpler structures with a known cycle index sum.

In many cases, such a decomposition is only possible when, for example, one vertex
is distinguished from the others in the graphs, so that there is a unique point where the
decomposition is applied. Graphs with a distinguished vertex are called vertex rooted
graphs. The automorphism group of a vertex rooted graph consists of all automorphisms
of the unrooted graph that fix the root vertex. Hence, one can expect a close relation
between the cycle index sum for unrooted graphs and the cycle index sum for their rooted
counterparts. As shown in [21], if G is an unlabeled set of graphs and Ĝ is the set of
graphs of G rooted at a vertex, then

Z(Ĝ) = s1
∂

∂s1
Z (G) . (2.2)
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This relationship can be inverted to express the cycle index sum for the unrooted graphs
in terms of the cycle index sum for the rooted graphs,

Z (G) =

∫ s1

0

1

t1
Z(Ĝ) |s1=t1 dt1 + Z (G) |s1=0 . (2.3)

Observe that permutations without fixed points are not counted by the cycle indices of
the rooted graphs, so that their cycle indices are added as a boundary term to Z (G).

Once the cycle index sum for a class of graphs of interest is known, the corresponding
ordinary generating function can be derived by replacing the formal variables si in the
cycle index sums by xi (note that Z (G; x, x2, . . .) = x|G| for a graph G, where |G| denotes
the number of vertices of G). More generally, for a group A and an ordinary generating
function K(x) we define

Z (A; K(x)) := Z
(

A; K(x), K(x2), K(x3), . . .
)

as the ordinary generating function obtained by substituting each si in Z (A) by K(xi),
i ≥ 1.

2.2 Singularity analysis

To determine asymptotic estimates of the coefficients of a generating function we use
singularity analysis [14]. The fundamental observation is that the exponential growth of
the coefficients of a complex-valued function that is analytic at the origin is determined
by the dominant singularities of the function, i.e., singularities at the boundary of the disc
of convergence. By Pringsheim’s theorem [14, Thm. IV.6], a generating function F (x)
with non-negative coefficients and finite radius of convergence R has a singularity at the
point x = R. If x = R is the unique singularity on the disk |z| = R, it follows from the
exponential growth formula [14, Thm. IV.7] that the coefficients fn = [xn]F (x) satisfy

fn = θ (n) R−n with lim supn→∞ |θ (n)|1/n = 1. A closer look at the type of the dominant
singularity, for example, the order of the pole, enables the computation of subexponential
factors as well. The following lemma describes the singular expansion for a common
case [14, Thm. VI.1].

Lemma 2.1 (standard function scale). Let F (x) = (1 − x)−α with α 6∈ {0,−1,−2, ...}.
Then the coefficients fn of F (x) have a full asymptotic development in descending powers
of n,

fn =

(

n + α − 1

n

)

∼ nα−1

Γ (α)

(

1 +

∞
∑

k=1

ek (α)

nk

)

(2.4)

where Γ (α) is the Gamma-Function, Γ (α) :=
∫∞
0

e−ttα−1dt for α 6∈ {0,−1,−2, . . .}, and
ek (α) is a polynomial in α of degree 2k.

In our calculations, it will appear that a generating function F (x) is given only im-
plicitly by an equation H(x, F (x)) = 0. Theorem VII.3 in [14] describes how to derive
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a full singular expansion of F (x) in this case. We state it here in a slightly modified
version. A generating function is called aperiodic, if it can not be written in the form
Y (x) = xaỸ (xd) with d ≥ 2 and Ỹ (x) analytic at 0.

Theorem 2.2 (singular implicit functions). Let H (x, y) be a bivariate function that is
analytic in a complex domain |x| < R, |y| < S and verifies H(0, 0) = 0, ∂

∂y
H (0, 0) = −1,

and whose Taylor coefficients hm,n satisfy the following positivity conditions: they are
nonnegative except for h0,1 = −1 (because ∂

∂y
H (0, 0) = −1) and hm,n > 0 for at least one

pair (m, n) with n ≥ 2. Assume that there are two numbers ρ ∈ (0, R) and τ ∈ (0, S)
such that

H (ρ, τ) = 0,
∂

∂y
H (ρ, τ) = 0,

∂2

∂y2
H (ρ, τ) 6= 0, and

∂

∂x
H (ρ, τ) 6= 0. (2.5)

Assume further that the equation H (x, Y (x)) = 0 admits a solution Y (x) that is analytic
at 0, has non-negative coefficients, and is aperiodic. Then ρ is the unique dominant
singularity of Y (x), and Y (x) converges at x = ρ, where it has the singular expansion

Y (x) = τ +
∑

i≥1

Yi

(√

1 − x

ρ

)i

, with Y1 = −

√

√

√

√

2ρ ∂
∂x

H (ρ, τ)
∂2

∂y2 H (ρ, τ)
6= 0,

and computable constants Y2, Y3, · · · . Hence,

[xn] Y (x) = − Y1

2
√

πn3
ρ−n

(

1 + O

(

1

n

))

.

The first two equations in (2.5) are condition I3 in [14, Def. II.4], whereas the latter two
equations are to ensure that Y1 is well-defined and nonzero. The formulas that express the
coefficients Yi in terms of partial derivatives of H (x, y) at (ρ, τ) can be found in [12, 29].

When a parameter ξ of a combinatorial structure is studied, the generating function
F (x) has to be extended to a bivariate generating function F (x, y) =

∑

n,m fn,mxnym

where the second variable y marks ξ. We can determine the asymptotic distribution of
ξ from F (x, y) by varying y in some neighbourhood of 1. The following theorem follows
from the so-called quasi-powers theorem [14, Thm. IX.7].

Theorem 2.3. Let F (x, y) be a bivariate generating function of a family of objects F ,
where the power in y corresponds to a parameter ξ on F , i.e., [xnym]F (x, y) = |{F ∈
F||F | = n, ξ (F ) = m}|. Assume that, in a fixed complex neighbourhood of y = 1, F (x, y)
has a singular expansion of the form

F (x, y) =
∑

k≥0

Fk (y)

(
√

1 − x

ρ(y)

)k

(2.6)

where ρ(y) is the dominant singularity of x 7→ F (x, y). Furthermore, assume that there
is an odd k0 ∈ N such that for all y in the neighbourhood of 1, Fk0

(y) 6= 0 and Fk (y) = 0
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for 0 < k < k0 odd. Assume that ρ(y) and Fk0
(y) are analytic at y = 1, and that ρ(y)

satisfies the variance condition, ρ′′(1)ρ(1) + ρ′(1)ρ(1) − ρ′(1)2 6= 0.
Let Xn be the restriction of ξ onto all objects in F of size n. Under these conditions,

the distribution of Xn is asymptotically Gaussian with mean

E [Xn] ∼ µn with µ = −ρ′(1)

ρ(1)

and variance

V [Xn] ∼ σ2n with σ2 = −ρ′′(1)

ρ(1)
− ρ′(1)

ρ(1)
+

(

ρ′(1)

ρ(1)

)2

.

The speed of convergence is O(n−1/2), that is

P

[

Xn − µn

σn

√
n

≤ x

]

= Φ(x) + O(n−1/2),

where Φ(x) denotes the cumulative distribution function of the standard normal distribu-
tion.

3 Exact enumeration of outerplanar graphs

In the next sections we derive the cycle index sums for rooted and unrooted two-connected,
rooted and unrooted connected, general, and bipartite outerplanar graphs.

3.1 Enumeration of dissections (two-connected outerplanar graphs)

A graph is two-connected if at least two of its vertices have to be removed to disconnect it.
It is well known that a two-connected outerplanar graph with at least three vertices has
a unique Hamiltonian cycle and can therefore be embedded uniquely in the plane so that
this Hamiltonian cycle is the contour of the outer face. This unique embedding is thus
a dissection of a convex polygon. Hence, the task of counting two-connected outerplanar
graphs coincides with the task of counting dissections of a polygon. Furthermore, changing
to the dual of a dissection, it is seen that the task of counting dissections coincides with the
task of counting embedded trees with no vertex of degree 2. Read utilized this property
to derive the generating function for unlabeled dissections [31]. First, he derived the
generating functions for several types of vertex, edge, and face rooted dissections, then
he used these functions to express the generating function for unrooted dissections by an
application of the dissimilarity characteristic theorem for trees [21, page 56]. Vigerske [37]
extended Read’s work to derive the following cycle index sums. We denote the set of
two-connected outerplanar graphs (i.e., dissections) by D and the set of vertex rooted
two-connected outerplanar graphs by V.
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Theorem 3.1. The cycle index sum for two-connected outerplanar graphs is given by

Z (D) = − 1

2

∑

d≥1

ϕ (d)

d
log

(

3

4
− 1

4
sd +

1

4

√

s2
d − 6sd + 1

)

+
s2 + s2

1 − 4s1 − 2

16
(3.1)

+
s2
1 − 3s2

1s2 + 2s1s2

16s2
2

+
3 − s1

16

√

s2
1 − 6s1 + 1 − 1

16

(

1 +
s2
1

s2
2

+
2s1

s2

)

√

s2
2 − 6s2 + 1,

where ϕ denotes the Euler-ϕ-function, defined as follows: ϕ(n) = n
∏

p|n(1− p−1), n ∈ N,
where the product is over all prime numbers p which divide n.

Using Formula (2.2) and Theorem 3.1 we derive the cycle index sum for vertex rooted
dissections, which we will need later.

Corollary 3.2. The cycle index sum for vertex rooted dissections is given by

Z (V; s1, s2) =
s1

8

(

1 + s1 −
√

s2
1 − 6s1 + 1

)

+
s1

8s2
2

(s1 + s2)

(

1 − 3s2 −
√

s2
2 − 6s2 + 1

)

.

(3.2)

3.2 Enumeration of connected outerplanar graphs

We denote the set of unrooted connected outerplanar graphs by C, and the set of vertex
rooted connected outerplanar graphs by Ĉ. All rooted graphs considered in this section
are rooted at a vertex. Again, ordinary generating functions are denoted by capital letters
and coefficients by small letters. Thus, Ĉ (x) =

∑

n ĉnxn and C (x) =
∑

n cnxn.
The cycle index sum for rooted connected outerplanar graphs is derived by decom-

posing the graphs into rooted two-connected outerplanar graphs, i.e., vertex rooted dis-
sections. First, every connected outerplanar graph rooted at a cut-vertex is decomposed
into a set of non-cut-vertex rooted connected outerplanar graphs. Then, a non-cut-vertex
rooted connected outerplanar graph can be constructed unambiguously by taking a rooted
dissection and attaching a rooted connected outerplanar graph at each vertex of the dis-
section other than the root vertex. This decomposition goes back to Norman [26] and was
generalized by Robinson [32] and Harary and Palmer [21, page 188] for general graphs.

Lemma 3.3 (rooted connected outerplanar graphs). The cycle index sum for vertex
rooted connected outerplanar graphs is implicitly determined by the equation

Z(Ĉ) = s1 exp





∑

k≥1

Z
(

V; Z
(

Ĉ; sk, s2k, . . .
)

, Z
(

Ĉ; s2k, s4k, . . .
))

k Z
(

Ĉ; sk, s2k, . . .
)



 . (3.3)

To derive the cycle index sum for unrooted connected outerplanar graphs, one can use
Formula (2.3). The boundary term in (2.3) corresponds here to connected outerplanar
graphs with no fixed vertex. Since each fixed-point free permutation in a connected
graph has a unique block whose vertices are setwise fixed by the automorphisms of the
graph [21, page 190], this term can be replaced by Z (D) |s1=0 [Z(Ĉ)]. Using the special
structure (3.3) of Z(Ĉ), a closed solution for the integral in (2.3) can be found [32, 37]
and we obtain the following result.
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Theorem 3.4 (connected outerplanar graphs). The cycle index sum for connected
outerplanar graphs is given by

Z (C) = Z(Ĉ) + Z
(

D; Z(Ĉ)
)

− Z
(

V; Z(Ĉ)
)

. (3.4)

Replacing si by xi in Z(Ĉ), the generating function Ĉ(x) counting vertex rooted con-
nected outerplanar graphs satisfies

Ĉ (x) = x exp





∑

k≥1

Z
(

V; Ĉ
(

xk
)

, Ĉ
(

x2k
)

)

k Ĉ (xk)



 , (3.5)

from which the coefficients Ĉn counting vertex rooted connected outerplanar graphs can
be extracted in polynomial time: Ĉ (x) = x+x2 +3x3 +10x4 +40x5 +181x6 +918x7 + . . .,
see [36, 37] for more entries. The numbers in [36] verify the correctness of our result and
were computed by the polynomial algorithm proposed in [9].

In addition, it follows from (3.4) that the generating function C(x) counting connected
outerplanar graphs satisfies

C (x) = Ĉ (x) + Z(D; Ĉ (x)) − Z(V; Ĉ (x)), (3.6)

from which the coefficients cn can be extracted in polynomial time: C(x) = x+x2 +2x3 +
5x4 + 13x5 + 46x6 + 172x7 + . . ., see [34, A111563] for more entries.

3.3 Enumeration of outerplanar graphs

We denote the set of outerplanar graphs by G, its ordinary generating function by G (x)
and the number of outerplanar graphs with n vertices by gn. As an outerplanar graph
is a collection of connected outerplanar graphs, it is now easy to obtain the cycle index
sum for outerplanar graphs. An application of the composition formula (2.1) with the
symmetric group Sl and object set C yields that Z (Sl) [Z (C)] is the cycle index sum for
outerplanar graphs with l connected components. Thus, by summation over all l ≥ 0 (we
include also the empty graph into G for convenience), we obtain the following theorem.

Theorem 3.5 (outerplanar graphs). The cycle index sum for outerplanar graphs is
given by

Z (G) = exp

(

∑

k≥1

1

k
Z (C; sk, s2k, . . .)

)

.

Hence the generating functions G(x) and C(x) of outerplanar and connected outer-
planar graphs are related by

G (x) = exp

(

∑

k≥1

1

k
C
(

xk
)

)

. (3.7)

From this, we can extract in polynomial time the coefficients gn counting outerplanar
graphs, G(x) = 1 + x + 2x2 + 4x3 + 10x4 + 25x5 + 80x6 + 277x7 + . . ., see [34, A111564]
for more entries.
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3.4 Enumeration of bipartite outerplanar graphs

To study the chromatic number of a typical outerplanar graph we enumerate bipartite
outerplanar graphs. Observe that an outerplanar graph is bipartite if and only if all of
its blocks are bipartite. As discussed, blocks of an outerplanar graph are dissections, and
it is clear that a dissection is bipartite when all of its inner faces have an even number
of vertices. The decomposition for (general) dissections can be adapted to dissections
where all faces have even degree. Once the cycle index sum for bipartite dissections is
obtained, the computation of the cycle index sums for bipartite connected outerplanar
graphs, and then for bipartite outerplanar graphs works in the same way as for the general
case, see [37] for details. From that the coefficients of the series Gb(x) counting bipartite
outerplanar graphs can be extracted in polynomial time: Gb(x) = 1 + x + x2 + x3 + 7x4 +
12x5 + 29x6 + 61x7 + . . ., see the sequences A111757, A111758, and A111759 of [34] for
the coefficients of two-connected, connected, and general bipartite outerplanar graphs.

4 Asymptotic enumeration of unlabeled outerplanar

graphs

To determine the asymptotic number of two-connected, connected, and general outer-
planar graphs, we use singularity analysis as introduced in Section 2.2. To compute
the growth constants and subexponential factors we expand the generating functions for
outerplanar graphs around their dominant singularities. For unlabeled two-connected
outerplanar graphs we present an analytic expression of the growth constant. For the
connected and the general case we give numerical approximations of the growth constants
in Section 4.2.

4.1 Asymptotic estimates

We now prove the first part of Theorem 1.2 on the asymptotic number of dissections.

Theorem 4.1 (asymptotic number of unrooted dissections). The number dn of
unlabeled two-connected outerplanar graphs on n vertices has the asymptotic estimate
dn ∼ d n−5/2δ−n with growth rate δ−1 = 3 + 2

√
2 ≈ 5.82843 and constant d ≈ 0.00596026.

Proof. The smallest root of x2 − 6x + 1 is δ = 3 − 2
√

2. Equation (3.1) implies that
D(x) = Z(D; x, x2, . . .) can be written as

D (x) = −1

2
log

(

1 −
√

x2 − 6x + 1

x − 3

)

+
3 − x

16

√
x2 − 6x + 1 + A (x) ,

where A (x) is analytic at 0 with radius of convergence > δ. Since the logarithmic term
is analytic for |x| < δ, we can expand it and collect ascending powers of

√
x2 − 6x + 1 in

D (x). Thus,

D (x) =

(

− 1

16 (x − 3)
+

1

6 (x − 3)3

)

(
√

x2 − 6x + 1
)3

+
∑

k≥4

1

2k

(√
x2 − 6x + 1

x − 3

)k

+ Ã (x) ,
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where Ã (x) is again analytic at 0 with radius of convergence > δ.
Finally, using

√
x2 − 6x + 1 =

√

1 − x/δ
√

1 − δx for x ≤ δ and applying Lemma 2.1
we obtain

dn =

(

− 1

16 (δ − 3)
+

1

6 (δ − 3)3

)

(√
1 − δ2

)3 1

Γ (−3/2)
n−5/2δ−n

(

1 + O

(

1

n

))

∼
√

99
√

2 − 140

8
√

π
n−5/2

(

3 + 2
√

2
)n

.

For the number of dissections with n vertices that are labeled clockwise Flajolet and

Noy in [13] determined the asymptotic estimate 1
4
√

π

√

99
√

2 − 140n−3/2(3 + 2
√

2)n.
We now turn to the problem of asymptotic enumeration of connected outerplanar

graphs. First we have to establish the singular development of the generating function
for vertex rooted connected outerplanar graphs Ĉ (x). Let ρ be the radius of convergence
of Ĉ (x). Observe that the coefficients ĉn are bounded from below by the number of
unlabeled vertex rooted dissections vn, which have exponential growth. The coefficients
are bounded from above by the number of embedded outerplanar graphs with a root
edge, which also have exponential growth (this follows from classical enumerative results
on planar maps; see [35]). Hence ρ is in (0, 1).

To apply Theorem 2.2 for rooted connected outerplanar graphs, we consider the func-
tion

H (x, y) := x exp





Z
(

V; y, Ĉ (x2)
)

y
+
∑

k≥2

Z
(

V; Ĉ
(

xk
)

, Ĉ
(

x2k
)

)

k Ĉ (xk)



− y. (4.1)

Observe that Equation (3.5) implies that H(x, Ĉ(x)) = 0. The difficulty in the ap-
plication of the singular implicit functions theorem (Thm. 2.2) is the verification of the
requirements of this theorem. Hence, to apply Theorem 2.2, we have to check that the
dominant singularity of the generating functions for the connected components is deter-
mined by its implicit definition (like (3.5)) and not by a singularity of H(x, y). This
analysis is the main purpose of the next lemma. Observe that it can be easily applied to
other classes of connected unlabeled graphs with known blocks.

Lemma 4.2. The generating function Ĉ(x) has a singular expansion

Ĉ (x) =
∑

k≥0

ĈkX
k, with X :=

√

1 − x

ρ
, Ĉ0 = τ, Ĉ1 = −

√

√

√

√

2ρ ∂
∂x

H (ρ, τ)
∂2

∂y2 H (ρ, τ)
, (4.2)

and constants Ĉk, k ≥ 2, which can be computed from the derivatives of H (x, y) at (ρ, τ),
where ρ is the dominant singularity of Ĉ(x) and τ := limx→ρ− Ĉ(x).

Proof. We show that Ĉ(x) satisfies the conditions of Theorem 2.2 with the function

H (x, y) from Equation (4.1), R := min(
√

ρ,

√

Ĉ−1(δ)), and S := δ. As a consequence,

we obtain the singular expansion (4.2) of Ĉ(x).
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The conditions H(0, 0) = 0 and ∂
∂y

H(0, 0) = −1 can be verified easily (note from (3.2)

that Z(V; y, Ĉ(x2))/y in (4.1) is well defined for y = 0). The positivity conditions on
the coefficients of H(x, y) follow from the positivity of the coefficients of Z (V). The
analyticity domain of H(x, y) is determined by the dominant singularity δ of Z (V); that
is, H (x, y) is analytic for x and y such that |y| < δ, |xl| < ρ, and |Ĉ

(

xl
)

| < δ for each

l ≥ 2. Since Ĉ (x) is strictly increasing for positive x and since ρ < 1, |Ĉ
(

xl
)

| ≤ |Ĉ (x2) |
for all l ≥ 2 and |x| < ρ. Therefore, H (x, y) is analytic for |x| < R and |y| < δ.

We show next that ρ < R and τ < δ.

1. We show τ ≤ δ. Let H̃(x, y) := H(x, y) + y. H̃(x, y) satisfies H̃(x, Ĉ(x)) = Ĉ(x)
and has the same domain of analyticity as H(x, y). Assume τ > δ. Then there
exists x0 < ρ such that Ĉ (x0) = δ. Observe that, if |x| < x0 then |Ĉ(x2)| ≤
|Ĉ(x)| < Ĉ(x0) = δ. Thus (x, Ĉ(x)) is in the analyticity domain of H̃(x, y), so that
H̃(x, Ĉ(x)) = Ĉ(x). By continuity we obtain H̃(x0, Ĉ(x0)) = Ĉ(x0). We have now
the contradiction that Ĉ(x) is analytic at x0 since x0 < ρ, whereas H̃(x, Ĉ(x)) is
singular at x0 because Ĉ(x0) = δ.

2. From 1 we know that τ ≤ δ, i.e., ρ ≤ Ĉ−1(δ). Hence R =
√

ρ > ρ.

3. It remains to prove that τ < δ. Assume τ = δ. Observe from (3.2) and (3.5) that

Ĉ(x) = x exp(Ψ(Ĉ(x)) + A(x))

where Ψ(y) = 1/8(1 + y −
√

1 − 6y + y2) has a dominant singularity at y = δ and

A(x) =
Ĉ(x) + Ĉ(x2)

8Ĉ(x2)2

(

1 − 3Ĉ(x2) −
√

Ĉ(x2)2 − 6Ĉ(x2) + 1

)

+
∑

k≥2

Z(V; Ĉ(xk), Ĉ(x2k))

kĈ(xk)

is analytic for |x| < ρ and having nonnegative coefficients (because the double of
the first summand of A(x) is the generating function for reflective vertex rooted
dissections [37]). Hence, for 0 < x < ρ, Ĉ ′(x) ≥ Ĉ ′(x)Ψ′(Ĉ(x))Ĉ(x), so that
Ψ′(Ĉ(x)) ≤ 1/Ĉ(x). Thus, Ψ′(Ĉ(x)) is bounded when x → ρ−, which contradicts
the fact that limy→δ− Ψ′(y) = +∞.

Thus, H(x, y) is analytic at (ρ, τ) and H(ρ, τ) = 0 is satisfied. As pointed out before,
the dominant singularity ρ of Ĉ(x) is determined either by a singularity in a component
of Equation (3.5), or by a non-uniqueness in the definition of Ĉ(x) by Equation (3.5).
The relation τ < δ excludes the first case, so that the singularity is caused by a non-
uniqueness of the inversion. Hence, the derivative of H(x, y) with respect to y has to
vanish at (x, y) = (ρ, τ), since otherwise the implicit function theorem ensures a (unique)
analytic continuation of Ĉ(x) at x = ρ. Therefore, the first two equations of (2.5) are
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satisfied. Furthermore, it is easily verified that

∂2

∂y2
H(x, y)

∣

∣

∣

∣

(x,y)=(ρ,τ)

=
1

τ
+

∂2

∂s2
1

Z(V; s1, Ĉ(ρ2))

s1

∣

∣

∣

∣

∣

s1=τ

=
1

τ
+

τ

(τ 2 − 6τ + 1)3/2
,

∂

∂x
H(x, y)

∣

∣

∣

∣

(x,y)=(ρ,τ)

=τ





1

ρ
+

∂

∂x

Z
(

V; τ, Ĉ (x2)
)

τ
+
∑

k≥2

Z
(

V; Ĉ
(

xk
)

, Ĉ
(

x2k
)

)

k Ĉ (xk)

∣

∣

∣

∣

∣

∣

x=ρ



 .

From 0 < τ < δ and the fact that the derivative in ∂
∂x

H(ρ, τ) is a derivative of a formal
power series with positive coefficients evaluated at ρ > 0, it follows that both derivatives
are strictly positive and hence do not vanish.

Finally, the aperiodicity of Ĉ(x) is easily seen from the fact that ĉ1 6= 0 and ĉ2 6= 0.

Theorem 4.3 (asymptotic number of connected outerplanar graphs). The func-
tion C (x) has a singular expansion of the form

C (x) = C (ρ) +
∑

k≥2

CkX
k, X :=

√

1 − x

ρ
, (4.3)

with constants Ck, k ≥ 2, which can be computed from the constants Ĉk, and with ρ as in
Lemma 4.2. Hence, cn ∼ 3

4
√

π
C3 n−5/2ρ−n.

Proof. Recall Formula (3.6) for the ordinary generating function for connected outerplanar
graphs. Since τ < δ, it is clear that the dominant singularity of C (x) is the same as
Ĉ (x) [14, Cha. VI.9]. The singular expansion of C (x) around ρ can then be obtained by
injecting the singular expansion of Ĉ (x) into Formula (3.6):

C (x) =
∑

k≥0

ĈkX
k + Z

(

D;
∑

k≥0

ĈkX
k, Ĉ

(

ρ2
(

1 − X2
)2
)

, Ĉ
(

ρ3
(

1 − X2
)3
)

, . . .

)

−Z

(

V;
∑

k≥0

ĈkX
k, Ĉ

(

ρ2
(

1 − X2
)2
)

, Ĉ
(

ρ3
(

1 − X2
)3
)

, . . .

)

.

(4.4)
Developing it in terms of X (at X = 0) gives a singular expansion C(x) =

∑

k≥0 CkX
k.

It remains to check that C1 = 0 and C3 6= 0. From (4.4) it is clear that

C1 = Ĉ1 + Ĉ1
∂

∂s1
Z (D)

∣

∣

∣

∣

(s1,s2)=(τ,Ĉ(ρ2))

− Ĉ1
∂

∂s1
Z (V)

∣

∣

∣

∣

(s1,s2)=(τ,Ĉ(ρ2))

.

From (2.2) we know s1
∂

∂s1

Z (D) = Z (V) , so that

C1 = Ĉ1

(

1 +
Z (V)

s1

− ∂

∂s1

Z (V)

)∣

∣

∣

∣

(s1,s2)=(τ,Ĉ(ρ2))

.
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On the other hand, Equation (4.1) implies that

∂

∂y
H (x, y) = (H (x, y) + y)

(

1

y

∂

∂s1

Z
(

V; y, Ĉ
(

x2
)

)

− 1

y2
Z
(

V; y, Ĉ
(

x2
)

)

)

− 1. (4.5)

By (2.5) and Lemma 4.2, 0 = ∂
∂y

H (ρ, τ) = ∂
∂s1

Z (V) − 1
s1

Z (V) − 1
∣

∣

∣

(s1,s2)=(τ,Ĉ(ρ2))
. Thus,

C1 = 0. Assume C3 = 0. Then the expansion (4.3) yields cn ∼ O(n−k/2−1)ρ−n for some
odd number k ≥ 5. This contradicts ncn ≥ ĉn ∼ −Ĉ1/ (2

√
π)n−3/2ρ−n (by Lemma 4.2).

Theorem 4.4 (asymptotic number of outerplanar graphs). The function G (x) has
a singular expansion of the form

G (x) = G (ρ) +
∑

k≥2

GkX
k, X :=

√

1 − x

ρ
,

where ρ is as in Lemma 4.2, and where the constants Gk, k ≥ 2, can be computed from
the constants Ck, in particular G3 = G (ρ) C3. Hence, gn ∼ 3

4
√

π
G3 n−5/2ρ−n.

Proof. Recall Formula (3.7) for the ordinary generating function for outerplanar graphs.
As the exponential function exp(·) is regular, the dominant singularity of G (x) is the

same as C (x). Replacing C (x) by its singular expansion (4.3) and xk by ρk (1 − X2)
k

for
k ≥ 2, we get

G (x) = exp

(

C (ρ) +
∑

k≥2

CkX
k +

∑

k≥2

1

k
C
(

ρk
(

1 − X2
)k
)

)

,

from which the singular expansion of G (x) can be computed. Then, by Lemma 2.1 we
derive the asymptotic estimate of gn.

Finally, using the same techniques as for the general case, we can compute the asymp-
totic estimate of bipartite outerplanar graphs, given in Theorem 1.5.

4.2 Numerical approximation of the growth constants

The computation of analytic expressions for growth constants has not been possible for
some classes of unlabeled structures that are even simpler than outerplanar graphs, for
example, for unembedded trees, see [14, Cha. VII.5] and [28]. Nevertheless, we can simplify
the problem by reducing it to one variable, and provide numerical estimates of the growth
constants. With Formula (4.5) for ∂

∂y
H (ρ, τ) and the explicit formula for Z (V) from

Corollary 3.2 the equation ∂
∂y

H (ρ, τ) = 0 becomes

τ

(

1 + Ĉ
(

ρ2
)

(

Ĉ
(

ρ2
)

− 3
)

− Ĉ (ρ2)
2
(τ − 3)√

τ 2 − 6τ + 1
−
√

Ĉ (ρ2)2 − 6Ĉ (ρ2) + 1

)

= 8Ĉ
(

ρ2
)2

.

(4.6)
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By introducing two new variables for the square-root terms in Equation (4.6), it can be
reformulated as a system of three polynomial equations, regarding Ĉ (ρ2) as a fixed value.
With algebraic elimination [14, App. B.1], this system can be reduced to one polynomial
equation of degree 8 in τ with coefficients pi (ρ) (depending on Ĉ (ρ2)), i = 0, . . . , 8,

p0 (ρ)+p1 (ρ) τ+p2 (ρ) τ 2+p3 (ρ) τ 3+p4 (ρ) τ 4+p5 (ρ) τ 5+p6 (ρ) τ 6+p7 (ρ) τ 7+p8 (ρ) τ 8 = 0
(4.7)

(see [37] for details). The solutions of (4.7) do not need to satisfy Equation (4.6), but every
τ that is a solution of (4.6) is also a solution of (4.7). We denote the solutions of (4.7)
by τ1 (ρ) , . . . , τ8 (ρ). It remains to solve the equations H (ρ, τi (ρ)) = 0, i = 1, . . . , 8, and
to pick the correct solution ρ. Since H (x, y) depends on Ĉ (x), which we do not know
explicitly, and since it includes also an infinite sum that we were not able to simplify,
we can only approximate the solutions of H (ρ, τi (ρ)) = 0 by truncating the infinite sum
in H (x, y) at some index m and replacing Ĉ (x) with Ĉ [m] (x) :=

∑m
n=1 ĉnxn for known

coefficients ĉ1, . . ., ĉm. That is, we search for roots of the functions

H̃
[m]
i (ρ) := ρ exp





Z
(

V; τi (ρ) , Ĉ [m] (ρ2)
)

τi (ρ)
+

m
∑

k=2

Z
(

V; Ĉ [m]
(

ρk
)

, Ĉ [m]
(

ρ2k
)

)

k Ĉ [m] (ρk)



− τi (ρ) ,

i = 1, . . . , 8, in the interval (0, 1). We solved the equation H̃
[m]
i (ρ) = 0 for m = 25

numerically and obtained 8 solutions. From these 8 solutions we selected the real number
of smallest absolute value (in order to obtain a dominant singularity, see also Pringsheim’s
theorem [14, Thm. IV.6]). This gives the estimates

ρ ≈ 0.1332694 and τ ≈ 0.1707560.

The residuals in the equations H̃
[m]
i (ρ, τ) = 0 and ∂

∂y
H̃

[m]
i (ρ, τ) = 0 have an order of

10−58. Table 1 shows approximations of ρ for several values of m.

m approximation of ρ

1 0.13461876886110181369...
4 0.13327064317786556821...
8 0.13326943288029243729...
16 0.13326943266744682071...
25 0.13326943266744680944...

Table 1: The accuracy is improved by increasing the order of truncation.

We can now estimate the coefficients in the singular expansions of Ĉ (x), C (x), and
G (x). In particular Ĉ1 ≈ −0.0255905, C3 ≈ 0.0179720, and G3 ≈ 0.0215044.

The growth constant for bipartite outerplanar graphs can also be estimated in the
same way as ρ, and we get ρb ≈ 0.218475 (see [37] for details).
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5 A random outerplanar graph

This section investigates typical properties of a random outerplanar graph, i.e., a graph
chosen uniformly at random among all unlabeled outerplanar graphs with n vertices, as n
tends to infinity. We first discuss the probability of connectedness, the number and type
of components, and the number of isolated vertices, in a random outerplanar graph. Next,
we investigate the distribution of the number of edges in a random outerplanar graph.
Finally, we discuss the chromatic number of a random outerplanar graph.

5.1 Connectedness, components, and isolated vertices

We start with the proof of Theorem 1.3 (1).

Proof of Theorem 1.3 (1). The probability that a random outerplanar graph on n vertices
is connected is exactly cn/gn. The asymptotic estimates for cn and gn from Theorem 4.3
and Theorem 4.4 yield cn/gn ∼ C3/G3 ≈ 0.845721.

The number of components can be studied by augmenting the generating function for
outerplanar graphs with a variable that counts the number of components.

Proof of Theorem 1.3 (2). Let κn denote the number of components in a random ou-
terplanar graph on n vertices and let G (x, u) := exp(

∑

k≥1
1
k
ukC(xk)) be the generat-

ing function for outerplanar graphs, where the additional variable u marks the number
of components. Thus, the probability that an outerplanar graph has k components is
P [κn = k] =

[

xnuk
]

G (x, u) /gn, and the expected number of components is

E [κn] =
1

gn

∑

k≥1

k
[

xnuk
]

G (x, u) =
1

gn
[xn]

∂

∂u
G (x, 1) =

1

gn
[xn] G (x)

∑

k≥1

C
(

xk
)

.

Now split G(x)
∑

k≥1 C(xk) as G(x)C(x)+G(x)
∑

k≥2 C(xk). As the singularity ρ of C(x)

(and of G(x)) is smaller than 1 and C(x) = O(x) as x → 0, the series A(x) :=
∑

k≥2 C(xk)
is regular at ρ. Consequently,

[xn]G(x)A(x) ∼ [xn]G(x)A(ρ) ∼ G3
A(ρ)

Γ (−3/2)
n−5/2ρ−n. (5.1)

Next, the singular development of G(x)C(x) starts as

G(x)C(x) = G(ρ)C(ρ) + (C2G(ρ) + G2C(ρ))X2 + (C3G(ρ) + G3C(ρ))X3 + O(X4).

Hence, the leading term is in X3. Since G3 = G(ρ)C3, we obtain [X3]G(x)C(x) =
G3(1 + C(ρ)), so that

[xn]G(x)C(x) ∼ G3(1 + C(ρ))
1

Γ (−3/2)
n−5/2ρ−n. (5.2)
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Summing (5.1) and (5.2) and dividing by gn ∼ G3Γ(−3/2)−1n−5/2ρ−n, we obtain

E [κn] ∼ 1 +
∑

k≥1

C
(

ρk
)

≈ 1.17847,

where the value 1.17847 was computed by replacing infinite sums in E[κn] and the involved
generating functions by finite sums and using the approximated value for ρ.

Given a family A of connected outerplanar graphs, we can make the following state-
ments about the probability that a random outerplanar graph has exactly k components
in A. Denote the number of graphs in A that have exactly n vertices by an, and let
A (x) :=

∑

n anxn.

Theorem 5.1. Given an outerplanar graph G with n vertices, let κA
n be the number of

connected components of G belonging to A. If the radius of convergence α of A (x) is
strictly larger than ρ, that is, an is exponentially smaller than cn, then the probability that
a random outerplanar graph with n vertices has exactly k ≥ 0 components belonging to A
converges to a discrete law:

P
[

κA
n = k

]

∼ Z (Sk; A (ρ)) exp

(

−
∑

r≥1

1

r
A (ρr)

)

,

where Sk is the symmetric group on k vertices [21]. The expected number of components
belonging to A in a random outerplanar graph with n vertices is E[κA

n ] ∼
∑

r≥1 A(ρr).

Proof. Let GA(x, u) be the generating function for outerplanar graphs, where the addi-
tional variable u marks the number of components belonging to A,

GA (x, u) := exp

(

∑

k≥1

1

k

(

ukA
(

xk
)

+
(

C
(

xk
)

− A
(

xk
)))

)

=G (x) exp

(

∑

k≥1

uk − 1

k
A
(

xk
)

)

.

Hence, P
[

κA
n = k

]

=
[

xnuk
]

GA (x, u) /gn. Since A (x) is analytic at ρ, the dominant
singularity of GA (x, u) for fixed u is determined by G (x). Thus,

[xnuk]GA (x, u) ∼
n→∞

[uk] exp

(

∑

k≥1

uk − 1

k
A(ρk)

)

[xn]G(x),

i.e.,

P
[

κA
n = k

]

∼
n→∞

[

uk
]

exp

(

∑

k≥1

uk − 1

k
A
(

ρk
)

)

= Z (Sk; A (ρ)) exp

(

−
∑

k≥1

1

k
A
(

ρk
)

)

.
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For the expectation, we again use

E
[

κA
n

]

=
1

gn
[xn]

∂

∂u
GA (x, 1) =

1

gn
[xn] G (x)

∑

k≥1

A
(

xk
)

.

The statement follows from the analyticity of A (x) at ρ and Theorem 4.4.

The asymptotic distribution of the number of isolated vertices in a random outerplanar
graph can now be easily computed, as stated in Theorem 1.3 (3).

Proof of Theorem 1.3 (3). Let A be the family consisting of the graph that is a single
vertex, i.e., A (x) = x. By Theorem 5.1, P

[

κA
n = k

]

∼ ρk(1 − ρ), since Z (Sk; A (ρ)) = ρk

and −
∑

r
1
r
A (ρr) = log(1− ρ). Hence, the distribution of the number of isolated vertices

κA
n follows asymptotically a geometric law with parameter ρ.

Other consequences of Theorem 5.1 concern the number of two-connected components
and the number of bipartite components in a random outerplanar graph.

Corollary 5.2 (two-connected components). In a random outerplanar graph, the
expected number of connected components that are two-connected is asymptotically given
by
∑

k≥1 D(ρk) ≈ 0.175054.

Proof. Let A := D be the family of dissections, A (x) = D (x). The radius of convergence
of D (x) is δ > ρ (Lemma 4.2). Hence, by Theorem 5.1, E

[

κD
n

]

=
∑

k≥1 D
(

ρk
)

.

Corollary 5.3 (number of bipartite components). In a random outerplanar graph,
the expected number of connected components that are bipartite is asymptotically given by
∑

k≥1 Cb

(

ρk
)

≈ 0.175427, where Cb (x) is the generating function for bipartite connected
outerplanar graphs.

Proof. We apply Theorem 5.1 with A = Cb.

5.2 Number of edges

In this section, we analyze the distribution of the number of edges in a random outerplanar
graph. To do this, we add a variable y whose power (in the cycle index sums and generating
functions) indicates the number of edges. For a graph G on n vertices and m edges, and
with the automorphism group Γ (G) (acting on the vertices), we define

Z (G; s1, s2, . . . ; y) := Z (Γ (G) ; s1, s2, . . . ; y) := ym 1

|Γ (G)|
∑

α∈Γ(G)

n
∏

k=1

s
jk(α)
k .

Taking the number of edges into account in the calculations of Section 3, the cycle index
sums for all encountered families of outerplanar graphs can be derived with the additional
variable y, and further the coefficients counting outerplanar graphs with respect to the
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number of vertices and the number of edges can be computed in polynomial time, see [37]
for details.

With the help of Theorem 2.3, we can prove Theorem 1.4 giving the limit distribu-
tions of the number of edges in a random dissection and in a random outerplanar graph,
respectively.

Proof of Theorem 1.4. The limit distribution of the number of edges in a two-connected
unlabeled outerplanar graph coincides with the labeled case since the equation that de-
termines the dominant singularity is the same, so we refer to [4].

Next we determine the distribution of the number of edges in a rooted connected
outerplanar graph. The generating function Ĉ (x, y) is implicitly defined by

Ĉ (x, y) = x exp





∑

k≥1

Z
(

V; Ĉ
(

xk, yk
)

, Ĉ
(

x2k, y2k
)

; yk
)

k Ĉ (xk, yk)



 .

In order to apply the singular implicit functions theorem 2.2 to the function x 7→ Ĉ (x, y)
with a fixed y close to 1, we define

Hy (x, z) := x exp





Z
(

V; z, Ĉ (x2, y2) ; y
)

z
+
∑

k≥2

Z
(

V; Ĉ
(

xk, yk
)

, Ĉ
(

x2k, y2k
)

; yk
)

k Ĉ (xk, yk)



−z

and search for a solution (x, z) = (ρ (y) , τ (y)) of the system

Hy (x, z) = 0,
∂

∂z
Hy (x, z) = 0, (5.3)

such that (ρ(y), τ(y)) is in the analyticity domain of Hy(x, z).
For y = 1, (5.3) is satisfied by x = ρ, z = τ (Lemma 4.2). The classical implicit

functions theorem, applied to the system (5.3), ensures that this solution can be extended
to a curve (ρ(y), τ(y)) for y close to 1, where the functions ρ(y) and τ(y) are analytic in a
neighbourhood of 1. Therefor, it remains to check that the determinant of the Jacobian
of system (5.3), with respect to x and z,







∂

∂x
Hy (x, z)

∂

∂z
Hy (x, z)

∂

∂x

∂

∂z
Hy (x, z)

∂

∂z

∂

∂z
Hy (x, z)






,

does not vanish at y = 1 and (x, z) = (ρ(1), τ(1)). This is clear, since from Lemma 4.2
we have ∂

∂z
H1(ρ(1), τ(1)) = 0, ∂

∂x
H1(ρ(1), τ(1)) 6= 0, and ∂2

∂z2 H1(ρ(1), τ(1)) 6= 0. Hence,
for y close to 1, there exist analytic functions ρ (y) and τ (y) such that

Hy(ρ(y), τ(y)) = 0,
∂

∂z
Hy(ρ(y), τ(y)) = 0, (5.4)

∂2

∂z2
Hy(ρ(y), τ(y)) 6= 0,

∂

∂x
Hy(ρ(y), τ(y)) 6= 0.
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In addition, by analyticity of H1(x, z) at (ρ, τ), the solution (ρ(y), τ(y)) is in the analyticity
domain of Hy(x, z) (for y close to 1). Next, the singular implicit functions theorem 2.2

yields a singular expansion Ĉ (x, y) =
∑

k≥0 Ĉk (y) (
√

1 − x/ρ (y))k with coefficients Ĉk (y)

analytic at y = 1 and verifying Ĉ1 (y) 6= 0 for y close to 1.
To find ρ′(1) and ρ′′(1) we compute the first and second derivatives of the first two

equations in (5.4) with respect to y, and express ρ′(y) and ρ′′(y) in terms of ρ(y), τ(y), and
the partial derivatives of Hy(x, z) at (x, z) = (ρ(y), τ(y)). Using the approximated values

from Section 4.2 we obtain ρ′(1) ≈ −0.206426, ρ′′(1) ≈ 0.495849, and − ρ′′(1)
ρ(1)

− ρ′(1)
ρ(1)

+

(ρ′(1)
ρ(1)

)2 ≈ 0.227504 6= 0. Theorem 2.3 implies that the distribution of the number of edges
in a random rooted connected outerplanar graph with n vertices asymptotically follows
a Gaussian law with mean µn and variance σ2n, where µ = −ρ′(1)

ρ(1)
≈ 1.54894 and σ2 ≈

0.227504. The same holds for unrooted connected outerplanar graphs and for outerplanar
graphs, since their generating functions have the same dominant singularity.

5.3 Chromatic number

In this section, we investigate the colouring of a random outerplanar graph. We first
observe that every outerplanar graph is 3-colourable. Next, we compute the asymptotic
fraction of 2-colourable outerplanar graphs among all outerplanar graphs. Theorems 1.2
and 1.5 imply that the fraction of bipartite outerplanar graphs on n vertices among all
outerplanar graphs on n vertices is

(gb)n

gn

∼ cχ ρn
χ,

where cχ = g
b

> 0 and ρχ =
ρ−1

b

ρ−1 ≈ 0.60999 < 1. That is, the probability that the
chromatic number of a random outerplanar graph is two tends to 0 exponentially fast.
This completes the proof of Theorem 1.6.

6 Concluding remarks

A summary of the estimated growth constants and other parameters for unlabeled outer-
planar graphs is presented in Table 2. For comparison we also include the corresponding
labeled quantities derived in [4]. As mentioned before, in the two-connected case the esti-
mated quantities for the unlabeled and labeled structures do not differ, since the number
of dissections with a non-trivial symmetry is exponentially small.

Our results show that the combination of enumeration by cycle index sums and sin-
gularity analysis is a powerful tool for the analysis of unlabeled structures. Hence, an in-
teresting direction for further research is the extension of the applied techniques to other
classes of unlabeled structures, e.g., series-parallel graphs or planar graphs. Thereby,
a first challenge is the construction of cycle index sums for the two-connected compo-
nents. While we used the unique embedding of two-connected components of outerplanar
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dissections outerplanar graphs
unlabeled or labeled unlabeled labeled

growth constant δ−1 ≈ 5.82843 ρ−1 ≈ 7.50360 λ−1 ≈ 7.32098
P [connectivity] 1 0.845721 0.861667
E [nr. of components] 1 1.17847 -
distr. nr. of isolated vertices Dirac Geom(ρ) Poiss(λ)
E [nr. of isolated vertices] 0 0.153761 0.136593
distr. of nr. of edges Gaussian Gaussian Gaussian
E [nr. of edges] 1.70711n 1.54894n 1.56251n
V [nr. of edges] 0.176777n 0.227504n 0.223992n
chromatic number 3 3 3

Table 2: Summary of growth constants, typical properties, and limit laws for unlabeled
and labeled dissections and outerplanar graphs.

graphs in our enumeration, this is no longer possible for series-parallel graphs or planar
graphs. Thus, although the case of three-connected unlabeled planar graphs is well stud-
ied [1, 15, 23, 35], not much is known about two-connected unlabeled planar graphs. For
two-connected series-parallel graphs, cycle index sums are known [38], but their asymp-
totic expansions haven’t been studied yet.

Another direction for further research is the extension of our analysis of properties of
random outerplanar graphs to other natural parameters. E.g., while Theorem 5.1 allows
to compute the distribution of the number of components of a specific type, an interesting
question is the analysis of the number of copies of a fixed outerplanar graph. For this
purpose, one way to approach this problem is to derive cycle index sums of dissections or
connected components with an extra variable marking the number of copies of the given
graph, to extend these formulas to outerplanar graphs by following the degree of connec-
tivity, and to apply singularity analysis in the spirit of Theorem 2.3 and [14, Cha. IX].
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[16] É. Fusy, Quadratic exact-size and linear approximate-size random sampling of planar
graphs, in the Proceedings of the International Conference on the Analysis of Algorithms
(AofA’05), DMTCS Proceedings Volume AD (2005), 125 – 138.
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[20] O. Giménez and M. Noy, Asymptotic enumeration and limit laws of planar graphs, available
online at http://arxiv.org/abs/math/0501269.

[21] F. Harary and E. M. Palmer, Graphical enumeration, Academic Press, New York (1973).

[22] G. Labelle, C. Lamathe, and P. Leroux, Labelled and unlabelled enumeration of k-gonal
2-trees, Journal of Combinatorial Theory, Series A, 106 (2004), 193 – 219.

the electronic journal of combinatorics 14 (2007), #R66 23



[23] V. A. Liskovets, A census of non-isomorphic planar maps, Colloq. Math. Soc. Janos Bolyai,
25 (1981), 479 – 494.

[24] C. McDiarmid, A. Steger, and D. Welsh, Random planar graphs, Journal of Combinatorial

Theory, Series B, 93 (2005), 187 – 205.

[25] R. C. Mullin and P. J. Schellenberg, The enumeration of c-nets via quadrangulations,
Journal of Combinatorial Theory, 4 (1968), 259 – 276.

[26] R.Z. Norman, On the number of linear graphs with given blocks, Doctoral dissertation,
University of Michigan, 1954.
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