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ENUMERATION OF 4× 4 MAGIC SQUARES

MATTHIAS BECK AND ANDREW VAN HERICK

Abstract. A magic square is an n × n array of distinct positive integers
whose sum along any row, column, or main diagonal is the same number. We
compute the number of such squares for n = 4, as a function of either the magic
sum or an upper bound on the entries. The previous record for both functions
was the n = 3 case. Our methods are based on inside-out polytopes, i.e., the
combination of hyperplane arrangements and Ehrhart’s theory of lattice-point
enumeration.

1. It’s a kind of magic

A magic square is an n × n array of distinct positive integers whose sum along
any row, column, or main diagonal is the same number, the magic sum. The
history of magic squares is well documented; see, e.g., [8, 9, 21]. The contents of
a magic square have varied with time and writer; usually they have been the first
n2 consecutive positive integers, but often any arithmetic sequence and sometimes
fairly arbitrary numbers. The fixed ideas are that they are integers, positive, and
distinct.

In the last century mathematicians took an interest in results about the number
of squares with a fixed magic sum, but with simplifications: diagonal sums were of-
ten omitted and the fundamental requirement of distinctness was almost invariably
neglected [1, 3, 11, 16]. For example, classical formulas of MacMahon [15] include
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the number of 3 × 3 squares with (not necessarily distinct) nonnegative integer
entries that sum to t along any row and column, and
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the number of such squares in which the two main diagonals also sum to t. The
papers [6, 20] form, to the best of our knowledge, the beginning of a theory that
tackles counting problems related to magic squares with the distinctness of the
entries enforced.
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Our goal is to show that the ideas in [6] can be used to compute the number
of 4 × 4 magic squares (with distinct entries), as a function of a parameter that
is either the magic sum or an upper bound on the entries of the square. To be
precise, we define the affine magic counting function an(t) to be the number of
all n × n matrices consisting of distinct positive integers whose sum along any
row, column, or main diagonal is the same number t. The cubical magic counting
function cn(t) is the number of n × n matrices whose entries are distinct positive
integers less than t, whose sums along any row, column, or main diagonal are equal.
The previous record consisted of the 3 × 3 counting functions [6, 20] (see also [5]
for the computational implementation of [6])
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and [5, 6]
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Both of these functions are quasipolynomials, i.e., of the form cd(t) t
d+cd−1(t) t

d−1+
· · ·+ c0(t), where c0, c1, . . . , cd are periodic functions. It follows from [6] that an(t)
and cn(t) are always quasipolynomials in t; we will outline the basic arguments in
Section 2.

A handy, compact way of representing a quasipolynomial q(t) is through its
generating function Q(z) :=

∑
t≥0 q(t) z

t. It is not hard to prove (see, e.g., [4, 17])

that Q(z) is a rational function with poles at pth roots of unity, where p is a
common period of the coefficient functions of q(t). As examples we give the rational
generating functions for a3(t) and c3(t):
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2
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.

Our computational approach (which differs from both [6] and [20]) verified the
results for a3(t) and c3(t). Both papers [6, 20] commented that the 4 × 4 case
seems computationally infeasible, and we present some reasons for this assessment
in Section 3; one of the reasons is that the rational generating functions for a4(t)
and c4(t) take several pages to write down (in reduced form). Nevertheless, we
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were able to compute A4(z) and C4(z); since we did not want to waste paper, the
results are posted online at math.sfsu.edu/beck/papers/affmagic4.html and
math.sfsu.edu/beck/papers/cubmagic4.html.

2. Enter geometry

We start with the affine case. One treats a square with magic sum t as an integer

vector x ∈ Z
n2

confined to the affine subspace ts, where

s =
{
x ∈ R

n2

: all line sums equal 1
}
.

From a geometric point, a square with magic sum t is an integer point in the open
dilated polytope tP = R>0 ∩ ts, except that we need to require that the entries are
distinct; so our integer point has to lie outside of the hyperplane arrangement

H = {xij = xkl : 1 ≤ i, j, k, l ≤ n, (i, j) �= (k, l)} .
The pair (P,H) is referred to as an inside-out polytope [7]. One can now use Möbius
inversion on this hyperplane arrangement (the computational approach in [6]; one
appealing feature of this approach is that one computes generating functions for
polytopes of progressively smaller dimension) or view (R>0 ∩ ts)\

⋃
H as a disjoint

union of open polytopes (our approach, which we call region enumeration). Either
way, Ehrhart’s fundamental results on integer-point enumeration in polytopes [4, 10]
imply that an(t) is a sum/difference of Ehrhart quasipolynomials—lattice-point
enumerators of rational polytopes.

The cubical case is very similar, except that we replace the subspace by

s =
{
x ∈ R

n2

: all line sums equal
}

and the polytope by (0, 1)n
2 ∩ s. The hyperplane arrangement, which enforces

distinct entries in the square, is the same as in the affine case.

3. Computations

For the affine case (P = R>0 ∩ s), the present computational approach treats
tP\

⋃
H as a disjoint union of open polytopes (the regions of the inside-out polytope

(P,H)) and computes A4(z) by summing the Ehrhart generating functions of all
of the polytopes. The computation of C4(z) in the cubical case is similar. The
challenge in this approach is computing the regions and summing the resulting
rational functions efficiently. Our algorithm for computing the regions of an inside-
out polytope is fully described in [13] and runs in polynomial time for polytopes of
fixed dimension.

To briefly outline the process, we observe that the removal of a single transverse
hyperplane (i.e., one that intersects the relative interior of P) from an open poly-
tope splits the polytope into two new open polytopes. Removing a non-transverse
hyperplane simply results in the same open polytope. To enumerate the regions of
an inside-out polytope, we begin by splitting the original polytope with the first
hyperplane. We then proceed recursively, splitting the newly generated polytope(s)
with the next hyperplane, and so on, until all the hyperplanes in the arrangement
are exhausted. To determine whether a hyperplane is transverse to a given poly-
tope, we engage a linear solver, using a normal vector to the hyperplane as the
objective function, and the polytope as the feasible region. Computation of each
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620 MATTHIAS BECK AND ANDREW VAN HERICK

region’s Ehrhart generating function is accomplished using Barvinok’s algorithm
[2].

Aside from the running time of Barvinok’s algorithm (which is polynomial in
fixed dimension), the computational complexity of our approach has a similar order

of magnitude to Möbius inversion, namely
∑d+1

i=1

(
n
i

)
where d = dimP and n = |H|.

Implemented as a depth-first traversal of a binary tree [13], memory requirements
are linearly proportional to |H|. Despite the disadvantage of needing to compute
Ehrhart generating functions for maximal-dimensional polytopes (as opposed to
the Möbius inversion approach), region enumeration lends itself well to parallel
computation. At a predetermined level of recursion, we send a description of each
open polytope, together with the remaining hyperplanes, to separate processors
and accumulate the results.

We have implemented the region enumeration algorithm using C++, combining
the polytope libraries barvinok [19], polylib [14], and cdd [12] with the computer
algebra system GP/Pari [18] to form a suite of applications and a small library
capable of operations on inside-out polytopes, collectively referred to as IOP [13]
(http://iop.sourceforge.net/). As far as we are aware, IOP is the first software
implementation specifically capable of computing generating functions of inside-out
polytopes. The library includes the ability to convert an inside-out polytope to an
isomorphic, lattice-point equivalent problem with full dimension in the ambient
space, a feature that significantly reduces the time required to generate the regions.

To compute the number of 4×4 magic squares, we have reduced the scope of each
problem by taking advantage of the 32 symmetries described in [13]. The reduced
problems were fed to a 40-node Dell PowerEdge cluster. Computing the generating
functions A4(t) and C4(t) each took less than a day. Each reduced problem required
the enumeration of 3211412 polytopes and the computation, summation, and sim-
plification of an equal number of rational generating functions. In lowest terms, the
rational generating functions A4(t) and C4(t), respectively, occupy approximately
280k and 25k of disk space with numerator/denominator polynomials of degree
2900 (affine) and 533 (cubical) and coefficients exceeding 1042. Files containing the
results are available at

math.sfsu.edu/beck/papers/[affmagic4.html,cubmagic4.html].

The extreme nature of the simplified results justifies the skepticism voiced in [6] and
[20] about the feasibility of computing counting functions for 4× 4 magic squares.

During development of IOP we observed phenomena that may be worthy of future
investigation. The degree to which rational-function arithmetic affected computa-
tion time was surprising. In a test run for the affine case, a 1.4 gHz home computer
successfully enumerated the regions for a portion of the reduced problem [13, Equa-
tion 6.16] and output individual simplified Ehrhart generating functions to a file
in approximately a week’s continuous run-time. However, the attempt to generate
a simplified sum proved intractable, with a projected run-time of well over three
months. This is considerably more gHz-hours than were actually used by the Dell
cluster to tackle the entire reduced problem, suggesting that associative grouping
of the rational generating functions may play a significant role in the run-time. In
particular, we suspect that grouping rational functions in expressions correspond-
ing to an entire inside-out polytope may result in smaller simplified forms (hence,
faster computation time) than expressions grouped arbitrarily.
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