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Abstract. We enumerate all algebraic tangles of seven crossings or less up to equivalence.

These tangles are mutually distinguished by the corresponding links and their double. The

result will be used for enumerating θ-curves and handcuff graphs in a forthcoming paper.

1. Introduction

In [4] J. H. Conway introduced the concept of a tangle in order to enumerate
knots and links. A tangle is a disjoint union of two arcs and some or no loops
properly embedded in a 3-ball B3. Two tangles T and S are isotopic if there is
an isotopy of the 3-ball B3 that takes one tangle to the other while fixing each
point of the boundary, and freely equivalent if there is a homeomorphism of B3

which takes T to S without restriction that the endpoints stay fixed. In [14] Y.
Nakanishi listed a table of algebraic tangles of five crossings or less up to isotopy by
using Conway’s method. In [17] H. Yamano gave a table of prime 2-string tangles
of seven crossings or less up to free equivalence by using Conway’s method. In [7]
T. Kanenobu, H. Saito and S. Satoh classified 2-string tangles of seven crossings or
less up to free equivalence by using disk-graphs. In this paper, we classify algebraic
tangles of seven crossings or less up to equivalence, which is weaker than isotopy,
but stronger than free equivalence (Definition 2.1). In a forthcoming paper ([11]
and [12]), we give an enumeration of prime θ-curves and handcuff graphs with up to
seven crossings by using the result of this paper and θ-polyhedra. A θ-polyhedron
is a connected graph embedded in 2-sphere, whose two vertices are 3-valent, and
the others are 4-valent. We can obtain a θ-curve or handcuff graph diagram from
a θ-polyhedron by substituting algebraic tangles for their 4-valent vertices. This
paper is organized as follows: In Section 2, we give some definitions. In Section
3, we list a table of algebraic tangles. In Section 4, we give some applications to
θ-curves and handcuff graphs.
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2. Algebraic tangles

We review Conway’s method [4]. We define a tangle as a pair (B3, t), where t is
a 1-manifold properly embedded in a unit 3-ball B3 = {(x, y, z) ∈ R3 |x2+y2+z2 ≤
1 } with four boundary components
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see Figure 1.
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Figure 1: A 3-ball and its 4 boundary components.

Let T = (B3, t) be a tangle such that t consists of two arcs and n circles. We
say T is a V n-tangle (resp. an Hn-tangle, an Xn-tangle) if T has an arc connecting
NE and SE (resp. NW, SW).

We present a tangle by a regular diagram as in Figure 2(a), where we use the pro-
jection (x, y, z) 7→ (x, y). Let R be a tangle. We denote by µR, νR, ρxR, ρyR, ρzR
the tangles obtained from R by reflecting with regard to the xy-plane; µ(x, y, z) =
(x, y,−z), by turning it counter-clockwise by π/2; ν(x, y, z) = (−y, x, z), by ro-
tating it through angle π; ρx(x, y, z) = (x,−y,−z), ρy(x, y, z) = (−x, y,−z), and
ρz(x, y, z) = (−x,−y, z), respectively. We present these tangles diagrammatically
as shown in Figure 2. We call µR the mirror image of R.

R R

R
R

R

(a) (b) (c)

(d) (e) (f)

Figure 2: (a) A tangle R. (b) The tangle µR. (c) The tangle νR.
(d) The tangle ρxR. (e) The tangle ρyR. (f) The tangle ρzR.



Enumeration of Algebraic Tangles with Applications 339

We say that two tangles are isotopic if there is an isotopy of the 3-ball B3 that
takes one tangle to the other while fixing each point of the boundary, that is, their
diagrams are related by a finite sequence of Reidemeister moves as shown in Figure
3 inside the circle defining the tangle while the endpoints of the strings remain fixed.

I

II

III

Figure 3: Reidemeister moves.

Definition 2.1. We say that two tangles T and T ′ are equivalent if T is isotopic
to one of the following eight tangles:

T ′, ρxT ′, ρyT ′, ρzT
′, νT ′, νρxT ′, νρyT ′, νρzT

′.

For a tangle diagram D, we denote by c(D) the number of crossings of D. The
crossing number of a tangle T , denoted by c(T ), is the minimal number of c(D)’s
for all the diagrams D which present the equivalence class of T .

Given two tangles T and S, we define new tangles T + S, TS, T+ and T− as
shown in Figure 4; T + S and TS are the sum and product of T and S respectively.
Notice that TS = ρxµν(T ) + S, where ρxµν(T ) is the tangle obtained from T by
reflecting across the NW and SE diagonal line.

T S S
T T

T + S T S
T + T 

_

Figure 4: The operations.

The simplest tangles are the 0 and ∞ tangles as shown in Figures 5 (a) and (b).
Further, for a positive integer n we define the n tangle and the −n tangle as shown
in Figures 5 (c) and (d), which are called integral tangles.
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...

n crossings

...

n crossings

(a) (b) (c) (d)

Figure 5: (a) The 0 tangle. (b) The ∞ tangle. (c) The n tangle. (d) The
−n tangle.

A tangle T is said to be algebraic if T is obtained from the 0 and ∞ tangles
by a finite sequence of the operations given in Figure 4. Thus, an algebraic tan-
gle is obtained from the 0, ∞, and integral tangles by the operations of addition
and multiplication. We denote the n tangle simply by n, and the −n tangle by n̄.
For integral tangles a1, a2, a3, · · · , ai−1, ai, the tangle a1a2a3 · · · ai−1ai, abbrevi-
ating ((· · · (a1 a2)a3 · · · ai−1)ai), is called a rational tangle. Two rational tangles
a1a2 · · · ai−1ai and b1b2 · · · bj−1bj are isotopic if and only if the corresponding ra-
tional numbers (including 1/0 = ∞)

ai +
1

ai−1 +
1

. . . +
1

a2 +
1
a1

and bj +
1

bj−1 +
1

. . . +
1

b2 +
1
b1

are the same.

Remark 2.2. For the above continued fraction, we can assume that each am (1 ≤
m ≤ i) has the same sign.

The comma notation (a1, a2, · · · , ai) = (a1 0) + (a2 0) + · · ·+ (ai 0) is preferred
to the sum notation, but is only used with two or more terms in the bracket. Figure
6 shows the step-by-step formation of two algebraic tangles 2 1 1 1 and 2 1, 2 as
examples.

A tangle T = (B3, t) is said to be splittable if there exists a disk ∆ such that ∆
does not meet t, but splits two arcs of t in B3.

Let T be a tangle. We define the numerator, N(T ), and denominator, D(T ), the
links as shown in Figure 7. We call the set of links {N(T ), D(T )} the corresponding
links for T . Clearly, we have

Proposition 2.3. Suppose that T and S are equivalent tangles. Then their cor-
responding links {N(T ), D(T )} and {N(S), D(S)} present the same set of isotopic
links.
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2 21 211 2111

21, 2

Figure 6: Algebraic tangles.

T T

(a) (b)

Figure 7: (a) The numerator N(T ). (b) The denominator D(T ).

Let R be a tangle. We define the double, W (R) by the link as shown in Figure
8;

W (R) = N(R + ρyµR).

R

Figure 8: The double W (R).

Clearly, we have

Proposition 2.4. Suppose that T and S are equivalent tangles. Then, their doubles
W (T ) and W (S) are isotopic.

3. Table of algebraic tangles

We list a table of unsplittable algebraic tangles with seven crossings or less up
to equivalence in Definition 2.1. However, we list either T or µT for each tangle T ,
even if they are not equivalent.
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Theorem 3.1. Table 1 exhibit diagrams of unsplittable algebraic tangles with up to
seven crossings.

Links in the second column correspond to Rolfsen’s knot table [15]. Specifically,
0 is the trivial knot, L1#L2 is a connected sum of links L1 and L2, and L is the
mirror image of L. The last column gives the type of the algebraic tangle, where
X = X0, H = H0, V = V 0.

Table 1: Algebraic tangles with up to 7 crossings.

T
(
N(T ), D(T )

)
type

1 (0, 0) X

2 (22
1, 0) H

3 (31, 0) X
2 1 (31, 22

1) V

4 (42
1, 0) H

3 1 (42
1, 31) H

2 2 (41, 22
1) V

2 1 1 (41, 31) X

2, 2 (42
1, 22

1#22
1) V 1

2, 2̄ (02
1, 22

1#22
1) V 1

5 (51, 0) X

4 1 (51, 42
1) V

3 2 (52, 31) X
3 1 1 (52, 42

1) V
2 3 (52, 22

1) V
2 2 1 (52, 41) X
2 1 2 (52

1, 31) H

2 1 1 1 (52
1, 41) H

2, 2+ (52
1, 22

1#22
1) V 1

(2, 2)1 (52
1, 42

1) X1

(2, 2)1̄ (02
1, 42

1) X1

3, 2 (51, 31#22
1) V

3, 2̄ (0, 31#22
1) V

2 1, 2 (52, 31#22
1) V
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Table 1: Algebraic tangles with up to 7 crossings (continued).

T
(
N(T ), D(T )

)
type

6 (62
1, 0) H

5 1 (62
1, 51) H

4 2 (61, 42
1) V

4 1 1 (61, 51) X
3 3 (62

2, 31) H

3 2 1 (62
2, 52) H

3 1 2 (62, 42
1) V

3 1 1 1 (62, 52) X
2 4 (61, 22

1) V
2 3 1 (61, 52) X
2 2 2 (62

3, 41) H

2 2 1 1 (62
3, 52) H

2 1 3 (62, 31) X

2 1 2 1 (62, 52
1) V

2 1 1 2 (63, 41) X
2 1 1 1 1 (63, 52

1) V

2, 2 + + (62
3, 22

1#22
1) V 1

(2, 2)2 (63
1, 42

1) H1

(2, 2)2̄ (63
3, 42

1) H1

(2, 2̄)2 (63
3, 02

1) H1

3, 2+ (62, 31#22
1) V

2 1, 2+ (63, 31#22
1) V

(3, 2)1 (62, 51) X
(3, 2)1̄ (0, 51) X
(3, 2̄)1̄ (0, 52) X
(2 1, 2)1 (63, 52) X

(2, 2+)1 (62
3, 52

1) X1

(2, 2)1 1 (63
1, 52

1) H1

4, 2 (62
1, 42

1#22
1) V 1

4, 2̄ (22
1, 42

1#22
1) V 1

3 1, 2 (62
2, 42

1#22
1) V 1

2 2, 2 (61, 41#22
1) V

2 2, 2̄ (0, 41#22
1) V
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Table 1: Algebraic tangles with up to 7 crossings (continued).

T
(
N(T ), D(T )

)
type

2 1 1, 2 (62, 41#22
1) V

(2, 2), 2 (62
3, 42

1#22
1) V 1

(2, 2), 2̄ (42
1, 42

1#22
1) V 1

(2, 2̄), 2 (52
1, 02

1#22
1) V 1

3, 3 (62
1, 31#31) H

3, 3̄ (02
1, 31#31) H

3, 2 1 (61, 31#31) X
3, 2̄ 1̄ (31, 31#31) X

2 1, 2 1 (62
3, 31#31) H

2, 2, 2 (63
1, 22

1#22
1#22

1) V 2

2, 2, 2̄ (63
3, 22

1#22
1#22

1) V 2

7 (71, 0) X

6 1 (71, 62
1) V

5 2 (72, 51) X
5 1 1 (72, 62

1) V

4 3 (73, 42
1) V

4 2 1 (73, 61) X
4 1 2 (72

1, 51) H

4 1 1 1 (72
1, 61) H

3 4 (73, 31) X
3 3 1 (73, 62

2) V
3 2 2 (75, 52) X
3 2 1 1 (75, 62

2) V
3 1 3 (74, 42

1) V
3 1 2 1 (74, 62) X
3 1 1 2 (72

2, 52) H

3 1 1 1 1 (72
2, 62) H

2 5 (72, 22
1) V

2 4 1 (72, 61) X
2 3 2 (72

3, 52) H

2 3 1 1 (72
3, 61) H

2 2 3 (75, 41) X

2 2 2 1 (75, 62
3) V
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Table 1: Algebraic tangles with up to 7 crossings (continued).

T
(
N(T ), D(T )

)
type

2 2 1 2 (76, 52) X

2 2 1 1 1 (76, 62
3) V

2 1 4 (72
1, 31) H

2 1 3 1 (72
1, 62) H

2 1 2 2 (76, 52
1) V

2 1 2 1 1 (76, 62) X

2 1 1 3 (72
2, 41) H

2 1 1 2 1 (72
2, 63) H

2 1 1 1 2 (77, 52
1) V

2 1 1 1 1 1 (77, 63) X

2, 2 + ++ (72
3, 22

1#22
1) V 1

(2, 2)3 (72
4, 42

1) X1

(2, 2)3̄ (72
8, 42

1) X1

(2, 2̄)3 (72
7, 02

1) X1

3, 2 + + (75, 31#22
1) V

2 1, 2 + + (76, 31#22
1) V

(3, 2)2 (72
4, 51) H

(3, 2)2̄ (72
7, 51) H

(3, 2̄)2 (72
7, 0) H

(3, 2̄)2̄ (72
8, 0) H

(2 1, 2)2 (72
5, 52) H

(2 1, 2)2̄ (72
8, 52) H

(2, 2+)2 (73
1, 52

1) H1

(2, 2)1 2 (72
5, 52

1) X1

4, 2+ (72
1, 42

1#22
1) V 1

3 1, 2+ (72
2, 42

1#22
1) V 1

2 2, 2+ (76, 41#22
1) V

2 1 1, 2+ (77, 41#22
1) V

(2, 2), 2+ (72
5, 42

1#22
1) V 1

3, 3+ (74, 31#31) X
3, 2 1+ (72

2, 31#31) H
2 1, 2 1+ (77, 31#31) X
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Table 1: Algebraic tangles with up to 7 crossings (continued).

T
(
N(T ), D(T )

)
type

2, 2, 2+ (73
1, 22

1#22
1#22

1) V 2

(2, 2 + +)1 (72
3, 62

3) X1

(2, 2)2 1 (72
4, 63

1) V 1

(2, 2)2̄ 1̄ (72
8, 63

3) V 1

(2, 2̄)2 1 (72
7, 63

3) V 1

(3, 2+)1 (75, 62) X
(2 1, 2+)1 (76, 63) X
(3, 2)1 1 (72

4, 62) H
(2 1, 2)1 1 (72

5, 63) H
(2, 2+)1 1 (73

1, 62
3) H1

(2, 2)1 1 1 (72
5, 63

1) V 1

(4, 2)1 (72
1, 62

1) X1

(4, 2)1̄ (22
1, 62

1) X1

(4, 2̄)1̄ (62
2, 22

1) X1

(3 1, 2)1 (72
2, 62

2) X1

(2 2, 2)1 (76, 61) X
(2 2, 2)1̄ (0, 61) X
(2 2, 2̄)1̄ (62, 0) X
(2 1 1, 2)1 (77, 62) X
((2, 2), 2)1 (72

5, 62
3) X1

((2, 2), 2)1̄ (42
1, 62

3) X1

((2, 2), 2̄)1̄ (72
7, 42

1) X1

((2, 2̄), 2)1 (72
8, 52

1) X1

((2, 2̄), 2)1̄ (52
1, 52

1) X1

(3, 3)1 (74, 62
1) V

(3, 3)1̄ (31, 62
1) V

(3, 3̄)1 (61, 02
1) V

(3, 2 1)1 (72
2, 61) H

(3, 2̄ 1̄)1̄ (62
3, 31) H

(2 1, 2 1)1 (77, 62
3) V

(2, 2, 2)1 (73
1, 63

1) X2

(2, 2, 2)1̄ (63
3, 63

1) X2

(2, 2, 2̄)1̄ (63
3, 63

3) X2
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Table 1: Algebraic tangles with up to 7 crossings (continued).

T
(
N(T ), D(T )

)
type

5, 2 (71, 51#22
1) V

5, 2̄ (31, 51#22
1) V

4 1, 2 (73, 51#22
1) V

3 2, 2 (73, 52#22
1) V

3 2, 2̄ (0, 52#22
1) V

3 1 1, 2 (74, 52#22
1) V

2 3, 2 (72, 52#22
1) V

2 3, 2̄ (31, 52#22
1) V

2 2 1, 2 (75, 52#22
1) V

2 1 2, 2 (72
1, 52

1#22
1) V 1

2 1 2, 2̄ (22
1, 52

1#22
1) V 1

2 1 1 1, 2 (72
2, 52

1#22
1) V 1

(3, 2), 2 (75, 51#22
1) V

(3, 2), 2̄ (52, 51#22
1) V

(3, 2̄), 2 (62, 22
1) V

(3, 2̄), 2̄ (63, 22
1) V

(2 1, 2), 2 (76, 52#22
1) V

(2 1, 2), 2̄ (51, 52#22
1) V

(2, 2+), 2 (72
3, 52

1#22
1) V 1

(2, 2+), 2̄ (02
1, 52

1#22
1) V 1

((2, 2)1), 2 (72
4, 52

1#22
1) V 1

((2, 2)1̄), 2̄ (72
8, 02

1#22
1) V 1

((2, 2̄)1), 2 (72
7, 42

1#22
1) V 1

4, 3 (71, 42
1#31) V

4, 3̄ (0, 42
1#31) V

3 1, 3 (73, 42
1#31) V

3 1, 3̄ (41, 42
1#31) V

2 2, 3 (72, 41#31) X
2 2, 3̄ (0, 41#31) X

2 1 1, 3 (72
1, 41#31) H

2 1 1, 3̄ (42
1, 41#31) H
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Table 1: Algebraic tangles with up to 7 crossings (continued).

T
(
N(T ), D(T )

)
type

(2, 2), 3 (72
3, 42

1#31) X1

(2, 2), 3̄ (52
1, 42

1#31) X1

(2, 2̄), 3 (62
3, 02

1#31) X1

4, 2 1 (72, 42
1#31) V

3 1, 2 1 (75, 42
1#31) V

2 2, 2 1 (72
3, 41#31) H

2 1 1, 2 1 (76, 41#31) X

(2, 2), 2 1 (73
1, 42

1#31) H1

(2, 2), 2̄ 1̄ (63
3, 42

1#31) H1

(2, 2̄), 2 1 (63
1, 02

1#31) H1

3, 2, 2 (72
4, 31#22

1#22
1) V 1

3, 2, 2̄ (72
7, 31#22

1#22
1) V 1

3, 2̄, 2̄ (72
8, 31#22

1#22
1) V 1

2 1, 2, 2 (72
5, 31#22

1#22
1) V 1

Sketch of proof of Theorem 3.1. First, we enumerate the rational tangles with up to
seven crossings. Second, we give algebraic (but not rational) tangle diagrams with
up to seven crossings by using operations in Figure 4. Third, we classify the tangles
up to equivalence.

In order to enumerate all the rational tangles of n crossings, by Definition 2.1
and Remark 2.2, we produce the sequences of positive integers a1a2 · · · ai satisfying

a1 + a2 + · · ·+ ai = n.

Specifically, we construct a binary tree as follows.

2

3 2 1

4 3 1 2 2 2 1 1

..
.

a1 a2 ... a
i

a1 a2 ... (a
i
 + 1) a1 a2 ... a

i
 1

... ... ......
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The sequence corresponds to the rational tangle a1a2 · · · ai (cf. [6]).
In order to enumerate all the algebraic (but not rational) tangle diagrams of n

crossings, we construct the following tree.

k

k  +  2 k   2

k  +  1 k   1

k  +  h k   h

k  +  k k   k

Here, k denotes an algebraic tangle with k crossings, k  +  h and k   h are new
algebraic tangles with (k + h) crossings (see Figure 9). By Definition 2.1, we may
assume 1 ≤ h ≤ k. If k is the rational tangle a1a2 · · · ai (am > 0), k  +  1 corre-
sponds to a1a2 · · · (ai + 1) and k   1 corresponds to a1a2 · · · ai 1.

Example. We give the case where k = h = 2 in Figure 9. Note that the algebraic
tangles with two crossings are 2, 2̄, 2 0, 2̄ 0.

Then, for each tangle T , we investigate the corresponding links {N(T ), D(T )}
and compare them. Except for the tangles 5 and (3, 2)1̄, we show these tan-
gles are mutually distinct by the corresponding links. In fact, {N(5), D(5)} =
{N((3, 2)1̄), D((3, 2)1̄)} = {0, 51}. However, their doubles W (5) and W ((3, 2)1̄) are
not isotopic. So, the tangles 5 and (3, 2)1̄ are not equivalent. ¤

4. Applications to spatial graphs

A spatial graph is a graph in S3. Specifically, a θ-curve Θ is a spatial graph
which consists of two vertices (v1, v2) and three edges (e1, e2, e3), such that each
edge joins the vertices. A handcuff graph Φ is also a spatial graph which consists of
two vertices (v1, v2) and three edges (e1, e2, e3), where e3 has distinct endpoints v1

and v2, and e1 and e2 are loops based at v1 and v2, respectively. A constituent knot
is a subgraph of Θ that consists of two vertices (v1, v2) and two edges (ei, ej). The
set of constituent knots is an invariant of θ-curves. A constituent link is a subgraph
of Φ that consists of two vertices (v1, v2) and two edges (ei, ej). The constituent
link is an invariant of handcuff graphs.

From Theorem 3.1, we can enumerate special θ-curves and handcuff graphs.
For a tangle T , we define a spatial graph diagram G(T ) as shown in Figure 10
(cf. [10]). If T is a V 0-tangle or an X0-tangle, then G(T ) is a θ-curve. And if T is
an H0-tangle, then G(T ) is a handcuff graph.
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2 2 0

2+2 2 2 (2 0)+2 (2 0) 2

2+(2 0) 2(2 0) (2 0)+(2 0) (2 0) (2 0)

2+(2 0) 2(2 0) (2 0)+(2 0) (2 0) (2 0)

2+2 2 2 (2 0)+2 (2 0) 2

Figure 9: The case k = h = 2.

T
G(T )

θ-curve

V 
0

X 
0

H 
0

handcuff graph

{

Figure 10: G(T ) produces a θ-curve or a handcuff graph.

We give an enumeration of special θ-curves with up to seven crossings as in
Table 2. Knots in the second column correspond to Rolfsen’s knot table [15], and
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θ-curves in the last column correspond to Litherland’s table [9]. The θ-curves are
ordered so that their constituent knots are in lexicographic order. A knot K and a
θ-curve Θ denote the mirror images of K and Θ, respectively.

Example. For the tangle 3, 2̄, we obtain the θ-curve by G(T ). Its constituent
knots are 31 and two trivial knot. By deformation as in Figure 11, we conclude the
θ-curve is 31.

3,2

{

trivial knot 31

31

Figure 11: The tangle 3, 2̄ produces the θ-curve 31.
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Table 2: θ-curves with up to 7 crossings.

Tangle constituent knot Θ

1 0, 0, 0 trivial
3 31, 0, 0 31

2 1 31, 0, 0 31

2 2 41, 0, 0 41

2 1 1 41, 0, 0 41

5 51, 0, 0 53

4 1 51, 0, 0 53

3 2 52, 0, 0 56

3 2 1 52, 0, 0 56

2 3 52, 0, 0 55

2 2 1 52, 0, 0 55

3, 2 51, 31, 0 54

3, 2̄ 31, 0, 0 31

2 1, 2 52, 31, 0 57

4 2 61, 0, 0 65

4 1 1 61, 0, 0 65

3 1 2 62, 0, 0 69

3 1 1 1 62, 0, 0 69

2 4 61, 0, 0 66

2 3 1 61, 0, 0 66

2 1 3 62, 0, 0 610

2 1 2 1 62, 0, 0 610

2 1 1 2 63, 0, 0 614

2 1 1 1 1 63, 0, 0 614

3, 2+ 62, 31, 0 612

2 1, 2+ 63, 31, 0 616

(3, 2)1 62, 31, 0 612

(3, 2)1̄ 31, 0, 0 31

(3, 2̄)1̄ 52, 31, 0 57

(2 1, 2)1 63, 31, 0 616

2 2, 2 61, 41, 0 68

2 2, 2̄ 41, 0, 0 41

2 1 1, 2 62, 41, 0 613

3, 2 1 61, 0, 0 67

3, 2̄ 1̄ 31, 0, 0 52
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Table 2: θ-curves with up to 7 crossings (continued).

Tangle constituent knot Θ

7 71, 0, 0 725

6 1 71, 0, 0 725

5 2 72, 0, 0 729

5 1 1 72, 0, 0 729

4 3 73, 0, 0 733

4 2 1 73, 0, 0 733

3 4 73, 0, 0 734

3 3 1 73, 0, 0 734

3 2 2 75, 0, 0 743

3 2 1 1 75, 0, 0 743

3 1 3 74, 0, 0 738

3 1 2 1 74, 0, 0 738

2 5 72, 0, 0 728

2 4 1 72, 0, 0 728

2 2 3 75, 0, 0 744

2 2 2 1 75, 0, 0 744

2 2 1 2 76, 0, 0 753

2 2 1 1 1 76, 0, 0 753

2 1 2 2 76, 0, 0 750

2 1 2 1 1 76, 0, 0 750

2 1 1 1 2 77, 0, 0 759

2 1 1 1 1 1 77, 0, 0 759

3, 2 + + 75, 31, 0 746

2 1, 2 + + 76, 31, 0 756

2 2, 2+ 76, 41, 0 757

2 1 1, 2+ 77, 41, 0 765

3, 3+ 74, 0, 0 739

2 1, 2 1+ 77, 0, 0 762

(3, 2+)1 75, 31, 0 746

(2 1, 2+)1 76, 31, 0 756

(2 2, 2)1 76, 41, 0 757

(2 2, 2)1̄ 41, 0, 0 41

(2 2, 2̄)1̄ 62, 41, 0 613

(2 1 1, 2)1 77, 41, 0 765
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Table 2: θ-curves with 7 crossings (continued).

Tangle constituent knot Θ

(3, 3)1 74, 0, 0 739

(3, 3)1̄ 31, 0, 0 52

(3, 3̄)1 61, 0, 0 67

(2 1, 2 1)1 77, 0, 0 762

5, 2 71, 51, 0 727

5, 2̄ 51, 31, 0 54

4 1, 2 73, 51, 0 736

3 2, 2 73, 52, 0 737

3 2, 2̄ 52, 0, 0 55

3 1 1, 2 74, 52, 0 742

2 3, 2 72, 52, 0 732

2 3, 2̄ 52, 31, 0 57

2 2 1, 2 75, 52,0 749

(3, 2), 2 75, 51, 0 748

(3, 2), 2̄ 51, 52, 0 718

(3, 2̄), 2 62, 0, 0 611

(3, 2̄), 2̄ 63, 0, 0 615

(2 1, 2), 2 76, 52, 0 758

(2 1, 2), 2̄ 51, 52, 0 718

4, 3 71, 31, 0 726

4, 3̄ 31, 0, 0 52

3 1, 3 73, 31, 0 735

3 1, 3̄ 41, 31, 0 64

2 2, 3 72, 0, 0 730

2 2, 3̄ 0, 0, 0 51

4, 2 1 72, 31, 0 731

3 1, 2 1 75, 31, 0 745

2 1 1, 2 1 76, 0, 0 754

We also give an enumeration of special handcuff graphs with up to seven cross-
ings as in Table 3. Links in the second column correspond to Rolfsen’s knot ta-
ble [15], and handcuff graphs in the last column correspond to our table [12]. The
handcuff graphs are ordered so that their constituent links are in lexicographic
order. A link L and a handcuff graph Φ denote the mirror images of L and Φ,
respectively. Moreover, #3 denotes an order 3 vertex connected sum (see [16]).
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Table 3: Handcuff graphs with up to 7 crossings.

Tangle constituent link Φ

2 22
1 21

4 42
1 41

3 1 42
1 41

2 1 2 52
1 51

2 1 1 1 52
1 51

6 62
1 65

5 1 62
1 65

3 3 62
2 67

3 2 1 62
2 67

2 2 2 62
3 68

2 2 1 1 62
3 68

3, 3 62
1 66

3, 3̄ 02
1 21#321

2 1, 2 1 62
3 69

4 1 2 72
1 718

4 1 1 1 72
1 718

3 1 1 2 72
2 722

3 1 1 1 1 72
2 722

2 3 2 72
3 726

2 3 1 1 72
3 726

2 1 4 72
1 719

2 1 3 1 72
1 719

2 1 1 3 72
2 723

2 1 1 2 1 72
2 723

(3, 2)2 72
4 728

(3, 2)2̄ 72
7 735

(3, 2̄)2 72
7 735

(3, 2̄)2̄ 72
8 736

(2 1, 2)2 72
5 730

(2 1, 2)2̄ 72
8 736

3, 2 1+ 72
2 724

(3, 2)1 1 72
4 728
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Table 3: Handcuff graphs with up to 7 crossings (continued).

Tangle constituent link Φ

(2 1, 2)1 1 72
5 730

(3, 2 1)1 72
2 724

(3, 2̄ 1̄)1̄ 62
3 69

2 1 1, 3 72
1 720

2 1 1, 3̄ 42
1 64

2 2, 2 1 72
3 721
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