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Abstract

In this paper we describe a share package XMOD of functions for computing with finite, per-

mutation crossed modules, cat1-groups and their morphisms, written using the GAP group theory

programming language. The category XMod of crossed modules is equivalent to the category

Cat1 of cat1-groups and we include functions emulating the functors between these categories.

The monoid of derivations of a crossed module X , and the corresponding monoid of sections of a

cat1-group C, are constructed using the Whitehead multiplication. The Whitehead group of invert-

ible derivations, together with the group of automorphisms of X, are used to construct the actor

crossed module of X which is the automorphism object in XMod. We include a table of the 350

isomorphism classes of cat1-structures on groups of order at most 30.
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1 Introduction

Our aim in this paper is to describe a share package XMOD [2] for the GAP [20] computational group

theory language. This package implements calculations with finite, permutation crossed modules and

their morphisms, and also with the equivalent cat1-groups and their morphisms. We also present the

results of the computation of all isomorphism classes of cat1-group structures on groups of order at

most 30.

This is the first computational contribution to the general programme of “higher-dimensional group

theory” described, for example, by Brown in [4] and [5]. The 2-dimensional part of this programme

is concerned with group objects in the category of groupoids, and these objects may equivalently be

considered as crossed modules or cat1-groups.

Whereas the theory of groups started with groups of permutations and developed into abstract

groups and topological groups, the impetus for the study of “2-dimensional groups” comes from

algebraic topology, in describing the homotopy double groupoid of a based pair of spaces. Nevertheless,

the algebraic motivation is equally compelling: the automorphism group Aut(G) of a group G is most

clearly exhibited as part of the automorphism crossed module (inn : G→ Aut(G)) determined by the

inner automorphism map.

The term crossed module was introduced by J. H. C. Whitehead in [21]. See [6, 7, 8] and [12]

for a variety of applications. In [16] Loday reformulated the notion of a crossed module as a cat1-

group (though he used the term 1-cat group) and showed that the category XMod is equivalent to

the category Cat1. Loday also generalised the notion of cat1-group to that of catn-group, for all

n ≥ 1. Crossed modules and their higher analogues were considered by Ellis in [13]. A proof that the

categories of catn-groups and crossed n-cubes are equivalent was given by Ellis and Steiner in [14].

The category XMod is also equivalent to the category GpGpd of group-groupoids and to the

category of 1-truncated simplicial groups with trivial Moore complex (see [3, 16]). These structures

are not included in the current version of the package.

In section 2 we recall the basic properties of crossed modules and their derivations and of cat1-

groups and their sections. In section 3 we describe the implementation of these structures in GAP

and include a short example illustrating how the package is used. In section 4 we discuss some of the

algorithms used to compute lists of derivations, sections and cat1-structures.

In section 5 we tabulate, for groups G of order at most 30, the order of End(G); the number

of idempotent endomorphisms; the number of cat1-structures on G; and the number of isomorphism

classes of these structures.

The authors wish to thank R. Brown and T. Porter for many profitable discussions concerning the

algebraic constructions. Considerable help with the implementation has been given by many members

of the GAP team at Aachen, led by J. Neubüser, and by D. Holt who is the appointed editor for

the package. The first author is supported by Dumlupınar University, Turkey, for studies at Bangor

culminating in his thesis [1]. The second author is grateful for the invitation to attend the GAP4

workshop in September 1996 and for the hospitality provided. The computational work was done

using a Digital Alpha computing laboratory set up with a SERC grant (GR/J63552) in 1993.
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2 Crossed Modules and Cat1-Groups

In this section we recall the descriptions of three equivalent categories: XMod, the category of crossed

modules and their morphisms; Cat1, the category of cat1-groups and their morphisms; and GpGpd,

the subcategory of groups in the category Gpd of groupoids. We also describe functors between these

categories which exhibit the equivalences. We state the axioms using right actions, since this is the

convention used by most computational group packages, but all functions will be written on the left.

A crossed module X = (∂ : S → R) consists of a group homomorphism ∂, called the boundary of

X , together with an action α : R→ Aut(S) satisfying, for all s, s′ ∈ S and r ∈ R,

XMod 1: ∂(sr) = r−1(∂s)r

XMod 2: s∂s
′

= s′−1ss′.

The kernel of ∂ is abelian and the image of ∂ is normal in R.

Standard constructions for crossed modules include the following:

1. A conjugation crossed module is an inclusion of a normal subgroup S � R, where R acts on S

by conjugation.

2. An automorphism crossed module has as range a subgroup R of the automorphism group Aut(S)

of S which contains the inner automorphism group Inn(S) of S. The boundary maps s ∈ S to

the inner automorphism of S by s.

3. An R-Module crossed module has an R-module as source and ∂ = 0.

4. Any homomorphism ∂ : S → R, with S abelian and im ∂ in the centre of R, provides a crossed

module with R acting trivially on S.

5. A central extension crossed module has as boundary a surjection ∂ : S → R with central kernel,

where r ∈ R acts on S by conjugation with ∂−1r.

6. The direct product of X1 = (∂1 : S1 → R1) and X2 = (∂2 : S2 → R2) is X1 × X2 = (∂1 × ∂2 :

S1 × S2 → R1 ×R2) with R1, R2 acting trivially on S2, S1 respectively.

A morphism between two crossed modules X1 and X2 is a pair (σ, ρ), where σ : S1 → S2 and

ρ : R1 → R2 are homomorphisms satisfying

∂2σ = ρ∂1, σ(sr) = (σs)ρr.

When X2 = X1 and σ, ρ are automorphisms then (σ, ρ) is an automorphism of X1. The group of

automorphisms is denoted by Aut(X1).

The Whitehead monoid Der(X ) of X was defined in [22] to be the monoid of all derivations from

R to S, that is the set of all maps R→ S, with composition ◦ , satisfying

Der 1: χ(qr) = (χq)r (χr)

Der 2: (χ1 ◦ χ2)(r) = (χ1r)(χ2r)(χ1∂χ2r).
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Invertible elements in the monoid are called regular. The Whitehead group W(X ) is the group of

Der(X ). The actor of X is a crossed module (∆ : W(X ) → Aut(X )) which was shown by Lue and

Norrie, in [17, 18, 19], to be the automorphism object of X in the category XMod. Gilbert, in [15],

has discussed a connection between derivations and group extensions.

In [16] Loday reformulated the notion of a crossed module as a cat1-group, namely a group G with

a pair of endomorphisms t, h : G → G having a common image R and satisfying certain axioms. We

prefer a definition in which a cat1-group C = (e; t, h : G → R) has source group G, range group R,

and three homomorphisms: two surjections t, h : G→ R and an embedding e : R→ G satisfying:

Cat 1: te(r) = he(r) = r for all r ∈ R,

Cat 2: [ker t, kerh] = {1G}.

The maps t, h are usually referred to as the source and target, but we choose to call them the tail and

head of C, because source is the GAP term for the domain of a function.

A morphism C1 → C2 of cat1-groups is a pair (γ, ρ) where γ : G1 → G2 and ρ : R1 → R2 are

homomorphisms satisfying

h2γ = ρh1, t2γ = ρt1, e2ρ = γe1. (1)

An arbitrary cat1-group C = (e; t, h : G → R) is isomorphic to the cat1-group C′ = (e′; t′, h′ :

Rn S → R) where S = ker t, R acts on S by

sr = ser = (er)−1s(er),

and the semidirect product Rn S has composition and inverse given by

(r1, s1)(r2, s2) = (r1r2, s
r2
1 s2), (r, s)−1 = (r−1, (s−1)r

−1
).

The homomorphisms in C′ are given by

t′(r, s) = r, h′(r, s) = r(∂s), e′r = (r, 1) (2)

and the isomorphism (θ, idR) : C′ → C is given by

θ : Rn S → G, (r, s) 7→ (er)s

with inverse

θ−1 : G→ Rn S, g 7→ (tg, (etg−1)g).

The crossed module X = (∂ : S → R) associated to C and C′ has ∂ = h|S . The cat1-group C = C′

associated to X = (∂ : S → R) has G = R n S, where the action is that in X , and homomorphisms

given by (2). We denote by ε the inclusion of S in G, so that ∂ = hε.

The construction for cat1-groups equivalent to the derivation of a crossed module is the section,

namely a group monomorphism ξ : R→ G satisfying:

Sect 1: tξ(r) = r for all r ∈ R.
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The equation

ξr = (er)(εχr) = (r, χr) (3)

defines a section ξ of C in terms of a derivation χ of X , and conversely. These sections form the monoid

Sect(C) of C, whose composition rule we determine from the rule Der 2 for Der(X ) by evaluating:

(ξ1 ◦ ξ2)r = (er)(ε(χ1 ◦ χ2)r)

= (er)(εχ1r)(εχ2r)(εχ1hεχ2r)

= (ξ1r)(er
−1)(ξ2r)(eh(εχ2r)

−1)(ξ1hεχ2r)

= (ξ1r)(er
−1)(ξ2r)(eh((ξ2r)

−1(er)))(ξ1h((er−1)(ξ2r)))

= ((er)(ξ1r
−1))−1((ξ2r)(ehξ2r

−1))((er)(ξ1r
−1))(ξ1hξ2r).

Since (er)(ξ1r
−1) and (ξ1hξ2r)(ehξ2r

−1) ∈ ker t while (ξ2r)(ehξ2r
−1) ∈ kerh, this reduces to

Sect 2: (ξ1 ◦ ξ2)r = (ξ2r)(ehξ2r
−1)(ξ1hξ2r) = (ξ1hξ2r)(ehξ2r

−1)(ξ2r).

The embedding e is the identity for this composition, and equation (3) determines a monoid

isomorphism Der(X ) ∼= Sect(C). A section is regular when hξ is an automorphism and the group of

regular sections is isomorphic to the Whitehead group.

Each χ or ξ determines endomorphisms of R,S,G,X and C, namely

ρ : R→ R, r 7→ r(∂χr) = hξr,

σ : S → S, s 7→ s(χ∂s) = s(e∂s−1)(ξ∂s),

γ : G→ G, g 7→ (ehξtg)(ξtg−1)g(ehg−1)(ξhg),

(σ, ρ) : X → X ,

(γ, ρ) : C → C,

and these assignments determine group homomorphisms from the Whitehead group to these five

endomorphism groups. The accompanying diagram shows the relationship between the various groups

and homomorphisms.

Aut(S)
y

S
ε //

∂

��

σ

// G

h

��

t

��

γ

oo

R

α

OO

χ

//

idR
// R

e

//

ξ

oo

ρ

OO
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When axioms XMod 2: and Cat 2: are not satisfied, the corresponding structures are known as

pre-crossed modules and pre-cat1-groups. In this case the Peiffer subgroup P of S is the subgroup of

ker(∂) generated by Peiffer commutators

[[ s1, s2 ]] = (s−11 )∂s2s−12 s1s2.

Then P = (0 : P → {1R}) is a normal sub-pre-crossed module of X and X/P = (∂ : S/P → R) is a

crossed module. The restriction of ε : S → Rn S to P is given by

ε [[ s1, s2 ]] = [(1R, s
∂s2
1 ), ((∂s2)

−1, s2)] ∈ [ker t, kerh].

The image εP is the Peiffer subgroup [ker t, kerh] of R n S and, if ι is the inclusion {1R} → R, then

C/(ε, ι)P = (e; t, h : (R n S)/εP → R) is the cat1-group corresponding to X/P. This construction is

used when implementing induced cat1-groups.

The underlying groupoid G of a cat1-group C has the elements of R as the set of objects and the

elements of G as arrows. The identity arrow at r is er. For each arrow g the source(tail) is tg and

the target(head) is hg. Arrows g, g′ are composable only when hg = tg′, in which case the composite

arrow is

g ∗ g′ = g(etg′−1)g′ = g(ehg−1)g′

with tail tg and head hg′. The groupoid inverse g̃ of g for this composition is given by g̃ =

(ehg)g−1(etg) with tg̃ = hg, hg̃ = tg, g ∗ g̃ = etg and g̃ ∗ g = ehg. The equivalent formulae in

Rn S are (r, s) ∗ (r(∂s), s′) = (r, ss′) and (̃r, s) = (r(∂s), s−1).

Since g−1(etg) ∈ ker t and (ehg)g−1 ∈ kerh, the map g 7→ g̃ is an automorphism of G which

restricts to the identity map on eR and provides a cat1-isomorphism from C to the reverse cat1-group

C̃ = (e;h, t : G → R) of C. The set of arrows out from 1R is ker t while the set of arrows in to 1R is

kerh, so ker ∂ is the set of loops at 1R. The set of objects in the component of G connected to 1R is

the image of ∂, so G is discrete when ∂ = 0.

3 GAP implementation

The group theory program GAP [20] is designed to facilitate the implementation of new structures as

record types with their own output form. In version 3.4 of this package a separate operations record

allows the overloading of functions such as kernel, centre and inner automorphism. We have developed

a share package for GAP 3.4.4 containing some 160 functions for crossed modules, their morphisms and

derivations; cat1-groups, their morphisms and sections; and related constructions. All crossed modules

and cat1-groups require permutation groups as source and range, though groups of automorphisms,

semidirect products and finitely presented groups are used by many of the functions. For each non-

permutation group we find it convenient to set up a pairing with an isomorphic permutation group.

Thus, if A is a group of automorphisms of a groupG and if θ is an isomorphism from A to a permutation

group P , an AutoPair for A is a record pairA with fields pairA.auto := A, pairA.perm := P,

pairA.a2p := θ, pairA.p2a := θ−1 and pairA.isAutoPair := true. Such pairings are known in

GAP4 as “nice isomorphisms”.
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Also included are functions to compute the actor crossed module of a crossed module; and other

crossed modules and morphisms in the actor square (see Norrie, [18, 19]); and functions to calculate

induced crossed modules (see Brown and Wensley, [9, 10, 11]) and induced cat1-groups ([1], Chapter

3).

A revised version of the package using GAP4 syntax is in preparation, in which the basic data

structures are pre-crossed modules and pre-cat1-groups. Functions for constructing Peiffer subgroups;

the underlying groupoid G; crossed squares and their morphisms will be included.

We implement a crossed module X = (∂ : S → R) as a record X with fields:

X.source, the source group S of ∂,
X.boundary, the homomorphsim ∂,
X.range, the range group R of ∂,
X.aut, a group of automorphisms of S,
X.action, the homomorphism α from R to X.aut,
X.isXMod, a boolean flag, normally true,
X.isDomain, always true,
X.operations, a special set of operations XModOps,
X.name, a concatenation of the names of S and R.

Further fields, such as .isConjugationXMod, are added where appropriate.

The operations record XModOps includes functions for equality; size; list of elements; a special

output form; and various functions for the actor square.

A morphism (σ, ρ) of crossed modules is implemented as a record mor with fields:

mor.source, the source crossed module X,
mor.range, the range crossed module Y,
mor.sourceHom, the homomorphism σ from X.source to Y.source,
mor.rangeHom, the homomorphism ρ from X.range to Y.range,
mor.isXModMorphism, a Boolean flag, normally true,
mor.operations, a special set of operations XModMorphismOps,
mor.name, a concatenation of the names of X and Y.

The operations record XModMorphismOps includes functions for equality; kernel and image; com-

posite and inverse morphism; and tests such as IsEpimorphism.

A derivation χ : R → S is defined in the same way that a group homomorphism is defined, by

specifying a list of images for the generators of R:

chi := XModDerivationByImages( R, S, R.generators, genimages ); .

If w = r1r2 . . . rk is an element of R expressed as a word in the generators, then axiom Der 1: gives

χw = (χr1)
r2...rk(χr2)

r3...rk . . . (χrk−1)
rk(χrk). (4)

The function IsDerivation (see section 4.1) is used to test that such a χ is indeed a derivation.

We store χ as a record chi with fields: source; range; generators; genimages; xmod; operations;

isDerivation.

7



We implement a cat1-group C = (e; t, h : G → R) as a record C with fields: source; range;

tail; head; embedRange; kernel; embedKernel; boundary; isDomain; operations; name; isCat1. A

morphism mor = (γ, ρ) of cat1-groups is a record with fields similar to those of a morphism of crossed

modules.

The functors providing the equvalence between the categories Cat1 and XMod are implemented

as functions

• XModCat1(C), XModMorphismCat1Morphism(mor),

• Cat1XMod(X), Cat1MorphismXModMorphism(mor).

The second of these calculates the semidirect product R n S and then finds a suitable isomorphic

permutation group G to act as the source, producing a SemidirectPair. In order to minimise the

degree of G it is preferable to start with C, when a representation for C is known, and then construct

X .

There are two functions to determine the elements of the Whitehead group and the Whitehead

monoid of X , namely RegularDerivations and AllDerivations. If the whole monoid is needed

at some stage, then the latter function should be used. A sub-record D = X.derivations of X is

created which stores all the required information.

The functions WhiteheadMonoidTable and WhiteheadGroupTable calculate the multipli-

cation tables of the monoid or group using the Whitehead multiplication, while WhiteheadPer-

mGroup constructs a faithful, regular permutation representation of the group of regular derivations

from the multiplication table.

The corresponding functions for sections are RegularSections and AllSections. Both create or

modify a sub-record C.sections .

Example 3.1 Let R be the symmetric group S3 and S its normal subgroup C3. The conjugation

crossed module X = (ι : C3 → S3), the associated cat1-group, the derivation monoid of X and the

actor crossed module are obtained as follows.

gap> X := ConjugationXMod( s3, c3 );

Crossed module [c3->s3]

gap> XModPrint( X );

Crossed module [c3->s3] :-

: Source group has parent ( s3 ) and has generators:

[ (1,2,3) ]

: Range group has parent ( s3 ) and has generators:

[ (1,2), (2,3) ]

: Boundary homomorphism maps source generators to:

[ (1,2,3) ]

: Action homomorphism maps range generators to automorphisms:

(1,2) --> ( source gens --> [ (1,3,2) ] )

(2,3) --> ( source gens --> [ (1,3,2) ] )

These 2 automorphisms generate the group of automorphisms.

gap> C := Cat1XMod( X );

cat1-group [Perm(s3 |X c3) ==> s3]

gap> C.source.generators;
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[ (2,3)(4,5), (2,3)(5,6), (1,2,3) ]

gap> D := AllDerivations( X );

AllDerivations record for crossed module [c3->s3]

: 9 derivations found but unsorted.

gap> DerivationsSorted( D );

true

gap> D.regular;

6

gap> PrintList( WhiteheadMonoidTable( X ) );

[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],

[ 2, 1, 6, 5, 4, 3, 7, 9, 8 ],

[ 3, 4, 1, 2, 6, 5, 8, 7, 9 ],

[ 4, 3, 5, 6, 2, 1, 8, 9, 7 ],

[ 5, 6, 4, 3, 1, 2, 9, 8, 7 ],

[ 6, 5, 2, 1, 3, 4, 9, 7, 8 ],

[ 7, 7, 7, 7, 7, 7, 7, 7, 7 ],

[ 8, 8, 8, 8, 8, 8, 8, 8, 8 ],

[ 9, 9, 9, 9, 9, 9, 9, 9, 9 ] ]

gap> W := WhiteheadPermGroup( X );

WG([c3->s3])

gap> A := AutomorphismPermGroup( X );

PermAut([c3->s3])

gap> Act := Actor( X );;

gap> XModPrint( Act );

Crossed module Actor[c3->s3]

: Source group WG([c3->s3]) has generators:

[ (1,2)(3,4)(5,6), (1,3)(2,6)(4,5) ]

: Range group has parent ( PermAut(c3)xPermAut(s3) ) and has generators:

[ (3,4,5), (1,2)(4,5) ]

: Boundary homomorphism maps source generators to:

[ (1,2)(3,5), (1,2)(4,5) ]

: Action homomorphism maps range generators to automorphisms:

(3,4,5) --> ( source gens --> [ (1,5)(2,4)(3,6), (1,2)(3,4)(5,6) ] )

(1,2)(4,5) --> ( source gens --> [ (1,5)(2,4)(3,6), (1,3)(2,6)(4,5) ] )

These 2 automorphisms generate the group of automorphisms.

4 Outline algorithms

In this section we comment on the algorithms used to construct derivations, sections, and the set of

cat1-structures on a group G.

4.1 IsDerivation

This function tests that a chosen set of images for the generators of R does define a derivation. Let

genR = {r1, r2, . . . , rm} be the generating set of R, and let {s1, s2, . . . , sm} be the chosen images for

χ. First calculate the images χ(r−1i ) = ((χri)
r−1
i )−1. Construct an FpPair pairR for R with finitely

presented group F = pairR.fp having generating set {f1, f2, . . . , fm} and pairR.f2p mapping fi to

ri, (1 ≤ i ≤ m). For each relator rel in the presentation, with w the corresponding word in genR,

check that χw = ( ) using (4). When this is true, χr is well-defined for all r ∈ R. Note that pairR is

stored as a field in the record R, so the pairing only has to be set up once.
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4.2 RegularDerivations and AllDerivations

The default method for calculating all the derivations of X is a simple backtrack algorithm. Let

{R1, R2, . . . , Rm = R} be the sequence of subgroups of R in which Ri is generated by the first i

generators. The backtracking procedure constructs m-tuples of elements of S as potential images for

genR. As each si = χri is chosen, with order ki, the following are checked:

• ρi : Ri → R, rj 7→ rj(∂sj) (1 ≤ j ≤ i) is a homomorphism,

• sr
ki−1
i
i . . . srii si = ( ), which is the special case of (4) when w = rkii .

If either test fails, that part of the backtrack tree is discarded. The IsDerivation function is called

when a full set of images has been found. If only the regular derivations are needed, the corresponding

ρ : R → R is tested to see whether it is an automorphism. Note that all the derivations are found,

even when not required.

4.3 RegularSections and AllSections

If X.derivations already exists when C.sections is required (and conversely) the sections are quickly

obtained using ξr = (er)(εχr).

When X.derivations does not already exist, a different method is used by default to calculate

sections of C. A section ξ is determined by the choice of si = χri for each ri in genR. Since

r−1(ρr) = ∂χr it follows that χr ∈ ∂−1(r−1(ρr)). In order to find all regular sections, we use the

standard GAP function AutomorphismGroup to obtain Aut(R). For each ρ ∈ Aut(R), lists of

preimages

[∂−1(r−11 (ρr1)), ∂
−1(r−12 (ρr2)), . . . , ∂

−1(r−1m (ρrm))]

are constructed, and a backtrack procedure is used to select s1, s2, . . . , sm from these lists, with each

selection being tested to see whether it provides a partial homomorphism R → G. Only the regular

sections are found by this method.

A similar strategy is used to find all the sections, replacing Aut(R) by the endomorphism monoid

End(R). Since no standard GAP function yet exists for computing End(R), we have added a function

EndomorphismClasses.

4.4 EndomorphismClasses

An endomorphism ε of R is determined by

• a normal subgroup N of R and a faithful permutation representation of the quotient θ : R/N →
Q, giving a projection θ ◦ ν : R→ Q where ν : R→ R/N is the natural homomorphism;

• an automorphism α of Q;

• a subgroup H ′ in a conjugacy class [H] of subgroups of R isomorphic to Q having representative

H; an isomorphism φ : Q ∼= H; and a conjugating element c ∈ R such that Hc = H ′.
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Then ε takes values εr = (φαθνr)c.

Endomorphisms are placed in the same class if they have the same choice of N and [H], so the

number of endomorphisms is

|End(R)| =
∑
classes

|Aut(Q)| |[H]|.

The function returns a record E = R.endomorphismClasses having a subfield .classes which is a

list of records with fields:

.quotient, the group Q ∼= R/N ,

.projection, the homomorphism θ ◦ ν,

.autoGroup, a permutation representation of the automorphism group of Q,

.rangeNumber, the position of [H] in R.lattice.classes

.isomorphism, the isomorphism φ ◦ θ ◦ ν,

.conj, the list of conjugating elements c.

4.5 AllCat1s

A list A of cat1-groups with source G is initialised, containing (id; id, id : G → G) and (1; 0; 0 : G →
{1G}). A list of representatives {H1, H2, . . . ,Hm} of the non-trivial conjugacy classes of subgroups

of G is selected. (It would be more efficient to choose a set of representatives from the poset of

automorphism classes of subgroups, rather than the conjugacy poset - particularly when G is abelian.)

For each Hi, all the idempotent endomorphisms φ : G → Hi are constructed, and the images φgk of

the generators gk of G stored in a list Li. These φ are candidates for the tail and head maps, so from

each ordered pair of images in Li homomorphisms t, h are constructed. If [ker t, kerh] is trivial, then

t, h determine a cat1-group C. This C is compared with the entries in A already obtained, using an

AreIsomorphicCat1s function, and is added to A if no isomorphism is found.

4.6 Comparative timings

We now present average times, in seconds, for the calculation of derivations and sections for six crossed

modules, using the six standard constructions listed in section 2, each having | G = R n S |= 288.

Computations were performed on a DEC3000 Model 300LX Digital Alpha 64-bit workstation running

xgap with 20M memory. Details of the six examples used are shown in the following table.

For each of the six crossed modules X three calls were made to each of the following functions.

• AllDerivations(X), creating a field X.derivations.

• X.derivations deleted, then RegularDerivations(X) executed. This takes a little longer since

the irregular derivations are constructed and discarded.

• C := Cat1XMod(X) called to construct the cat1-group C.

• X.derivations deleted, then RegularSections(C) executed.
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Table 1: Six examples of crossed modules

No. Type Source Range im∂ degree of S,R,G

1 Conjugation a4 s4 a4 4, 4, 12

2 Inner automorphism q24 d12 d12 11, 8, 24

3 RModule c62 d8 I 12, 4, 12

4 Trivial action c12 c8 n c3 c4 12, 11, 23

5 Central extension sl(2,3) a4 a4 11, 4, 24

6 Direct product c3 × c8 s3 × c2 c3 11, 5, 29

• RegularDerivations(X) called again. This time, the existing list of sections is converted to a

list of derivations.

• X.derivations, C.sections and C.range.automorphismGroup deleted, then AllSections(C)

executed.

In order to eliminate one cause of fluctuating times, a garbage collection was performed before

each call. Execution times were recorded, and the following averages noted.

Table 2: Execution times in seconds
All Reg. Cat1 Reg. Reg. All

No. [S → R] Der. Der. XMod Sec. Der. Sec.

1 [a4→ s4] 40 44 34 8 0.2 18

2 [q24→ d12] 35 40 26 7.5 0.4 29

3 [c62 → d8] 298 292 42 89 0.8 95

4 [c12→ c8 n c3] 2.4 2.1 0.3 6.8 0.04 9.5

5 [sl(2, 3)→ a4] 35 40 46 8 0.2 10

6 [c3→ s3]× [c8→ c2] 275 283 42 23 1.2 42

Note that, given C, the algorithm of 4.3 is quicker that that of 4.2 except in the fourth example.

However in Examples 1,2,5, starting with X , algorithm 4.2 finds all the derivations more quickly, due

to the time required to construct a permutation representation of G = Rn S.

5 Table of cat1-structures

In the following table the 92 groups of size ≤ 30 are ordered by their GAP number. For each group G

we list the size of End(G); the size of the set IE(G) of idempotents in End(G), which are candidates

for t and h; the size of C(G), the set of all cat1-structures on G; and the number of isomorphism

classes of cat1-structures. For each G the first cat1-structure is C = (id; id, id : G→ G), corresponding

to X = (0 : I → G), and we omit this from the list. These are the only cat1-structures for the trivial
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group; the quaternion groups q8, q16; and the special linear group sl(2, 3). For each of the remaining

isomorphism classes we list the names of S,R and, when t 6= h and ∂ 6= 0, the kernel of the boundary.

Just 52 of these 350 structures have ∂ 6= 0.
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Table 3: Isomorphism classes of cat1-structures
GAP# G |End(G)| |IE(G)| |C(G)| |C/ ∼= | Names of S,R and ker ∂

1/1 I 1 1 1 1
2/1 c2 2 2 2 2 [c2,I]
3/1 c3 3 2 2 2 [c3,I]
4/1 k4 16 8 14 4 [k4,I], [c2,c2], [c2,c2,I]
4/2 c4 4 2 2 2 [c4,I]
5/1 c5 5 2 2 2 [c5,I]
6/1 c6 6 4 4 4 [c6,I], [c3,c2], [c2,c3]
6/2 s3 10 5 4 2 [c3,c2]
7/1 c7 7 2 2 2 [c7,I]
8/1 c23 512 58 226 6 [c23,I], [k4,c2], [k4,c2,c2],

[c2,k4], [c2,k4,I]
8/2 c4c2 32 10 18 6 [c4c2,I], [c4,c2], [c4,c2,c2],

[c2,c4], [c2,c4,I]
8/3 c8 8 2 2 2 [c8,I]
8/4 d8 36 10 9 3 [c4,c2], [k4,c2]
8/5 q8 28 2 1 1
9/1 c32 81 14 38 4 [c32,I], [c3,c3], [c3,c3,I]
9/2 c9 9 2 2 2 [c9,I]
10/1 c10 10 4 4 4 [c10,I], [c5,c2], [c2,c5]
10/2 d10 26 7 6 2 [c5,c2]
11/1 c11 11 2 2 2 [c11,I]
12/1 c6c2 48 16 28 8 [c6c2,I], [c6,c2], [c6,c2,c3], [k4,c3],

[c3,k4], [c2,c6], [c2,c6,I]
12/2 c12 12 4 4 4 [c12,I], [c4,c3], [c3,c4]
12/3 d12 64 21 12 4 [c6,c2], [c3,k4], [c2,s3]
12/4 q12 20 5 4 2 [c3,c4]
12/5 a4 33 6 5 2 [k4,c3]
13/1 c13 13 2 2 2 [c13,I]
14/1 c14 14 4 4 4 [c14,I], [c7,c2], [c2,c7]
14/2 d14 50 9 8 2 [c7,c2]
15/1 c15 15 4 4 4 [c15,I], [c5,c3], [c3,c5]
16/1 c24 65536 382 4162 9 [c24,I], [c23,c2], [c23,c2,k4], [k4,k4],

[k4,k4,c2], [k4,k4,I], [c2,c23], [c2,c23,I]
16/2 c4k4 1024 82 322 12 [c4k4,I], [c4c2,c2], [c4c2,c2,c4], [c4c2,c2,k4],

[c4,k4], [c4,k4,c2], [k4,c4], [k4,c4,c2],
[c2,c4c2], [c2,c4c2,I], [c2,c4c2,I]

16/3 c8c2 64 10 18 6 [c8c2,I], [c8,c2], [c8,c2,c4],
[c2,c8], [c2,c8,I]

16/4 c42 256 26 98 5 [c42,I], [c4,c4], [c4,c4,c2], [c4,c4,I]
16/5 c16 16 2 2 2 [c16,I]
16/6 d8c2 1088 82 97 9 [c4c2,c2], [c23,c2], [c4,k4], [c4,k4,c2],

[k4,k4], [k4,k4,c2], [c2,d8], [c2,d8,I]
16/7 q8c2 448 18 17 3 [c2,q8], [c2,q8,I]
16/8 d8y4 224 26 13 2 [c4c2,c2]
16/9 c2nc4c2 128 18 25 4 [c4c2,c2], [k4,c4], [k4,c4,c2]
16/10 c4nc4 96 10 17 3 [c4,c4], [c4,c4,c2]
16/11 c2nc8 48 6 5 2 [c8,c2]
16/12 d16 100 18 9 2 [c8,c2]
16/13 qd16 52 10 5 2 [c8,c2]
16/14 q16 36 2 1 1
17/1 c17 17 2 2 2 [c17,I]
18/1 c6c3 162 28 76 8 [c6c3,I], [c32,c2], [c6,c3], [c6,c3,c2],

[c3,c6], [c3,c6,I], [c2,c32]
18/2 c18 18 4 4 4 [c18,I], [c9,c2], [c2,c9]
18/3 d18 82 11 10 2 [c9,c2]
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GAP# G |End(G)| |IE(G)| |C(G)| |C/ ∼= | Names of S,R and ker ∂
18/4 s3c3 36 12 8 4 [c32,c2], [c3,c6], [c3,s3]
18/5 c2nc32 730 47 118 4 [c32,c2], [c3,s3], [c3,s3,I]
19/1 c19 19 2 2 2 [c19,I]
20/1 c10c2 80 16 28 8 [c10c2,I], [c10,c2], [c10,c2,c5], [c5,k4],

[k4,c5], [c2,c10], [c2,c10,I]
20/2 c20 20 4 4 4 [c20,I], [c5,c4], [c4,c5]
20/3 d20 144 31 18 4 [c10,c2], [c5,k4], [c2,d10]
20/4 q20 52 7 6 2 [c5,c4]
20/5 c4nc5 36 7 6 2 [c5,c4]
21/1 c21 21 4 4 4 [c21,I], [c7,c3], [c3,c7]
21/2 c3nc7 57 9 8 2 [c7,c3]
22/1 c22 22 4 4 4 [c22,I], [c11,c2], [c2,c11]
22/2 d22 122 13 12 2 [c11,c2]
23/1 c23 23 2 2 2 [c23,I]
24/1 c6k4 1536 116 452 12 [c6k4,I], [c6c2,c2], [c6c2,c2,c6], [c23,c3],

[c6,k4], [c6,k4,c3], [k4,c6], [k4,c6,c2],
[c3,c23], [c2,c6c2], [c2,c6c2,I]

24/2 c12c2 96 20 36 12 [c12c2,I], [c12,c2], [c12,c2,c6], [c4c2,c3],
[c6,c4], [c6,c4,c3], [c4,c6], [c4,c6,c2],
[c3,c4c2], [c2,c12], [c2,c12,I]

24/3 c24 4 4 4 4 [c24,I], [c8,c3], [c3,c8]
24/4 d8c3 108 20 18 6 [c12,c2], [c6c2,c2], [c4,c6], [k4,c6], [c3,d8]
24/5 q8c3 84 4 2 2 [c3,q8]
24/6 s3k4 1792 157 116 8 [c6c2,c2], [c6,k4], [c6,k4,c3], [k4,s3]

[c3,c23], [c2,d12], [c2,d12,I]
24/7 s3c4 128 27 12 4 [c12,c2], [c4,s3], [c3,c4c2]
24/8 q12c2 160 25 36 6 [c6,c4], [c6,c4,c3], [c3,c4c2],

[c2,q12], [c2,q12,I]
24/9 c8nc3 40 5 4 2 [c3,c8]
24/10 a4c2 72 15 10 4 [c23,c3], [k4,c6], [c2,a4]
24/11 d8nc3 124 23 12 4 [c6c2,c2], [k4,s3], [c3,d8]
24/12 d24 196 33 20 4 [c12,c2], [c4,s3], [c3,d8]
24/13 q24 124 5 4 2 [c3,q8]
24/14 sl(2,3) 33 6 1 1
24/15 s4 58 12 5 2 [k4,s3]
25/1 c52 625 32 152 4 [c52,I], [c5,c5], [c5,c5,I]
25/2 c25 25 2 2 2 [c25,I]
26/1 c26 26 4 4 4 [c26,I], [c13,c2], [c2,c13]
26/2 d26 170 15 14 2 [c13,c2]
27/1 c33 19683 236 2108 6 [c33,I], [c32,c3], [c32,c3,c3],

[c3,c32], [c3,c32,I]
27/2 c9c3 243 20 56 6 [c9c3,I], [c9,c3], [c9,c3,c3],

[c3,c9], [c3,c9,I]
27/3 c27 27 2 2 2 [c27,I]
27/4 c3nc32 729 38 37 2 [c32,c3]
27/5 c3nc9 135 11 10 2 [c9,c3]
28/1 c14c2 112 16 28 8 [c14c2,I], [c14,c2], [c14,c2,c7], [c7,k4],

[k4,c7], [c2,c14], [c2,c14,I]
28/2 c28 28 4 4 4 [c28,I], [c7,c4], [c4,c7]
28/3 d28 256 41 24 4 [c14,c2], [c7,k4], [c2,d14]
28/4 q28 100 9 8 2 [c7,c4]
29/1 c29 29 2 2 2 [c29,I]
30/1 c30 30 8 8 8 [c30,I], [c15,c2], [c10,c3], [c6,c5],

[c5,c6], [c3,c10], [c2,c15]
30/2 d10c3 78 14 12 4 [c15,c2], [c5,c6], [c3,d10]
30/3 d6c5 50 10 8 4 [c15,c2], [c5,s3], [c3,c10]
30/4 d30 226 25 24 4 [c15,c2], [c5,s3], [c3,d10]
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Example 5.1 The data in the table is stored as a list Cat1List, so any cat1-group in the table may

be selected using the Cat1Select function. In the first call only the group G is specified, while in the

second call a third parameter is supplied.

gap> C := Cat1Select( 12, 5 );

There are 2 cat1-structures for the group a4.

[ [range gens], source & range names, [tail.genimages], [head.genimages] ] :-

[ [ (1,2,3),(2,3,4) ], tail = head = identity mapping ]

[ [ (2,4,3),(2,3,4) ], "k4", "c3", [ (2,4,3),(2,3,4) ], [ (2,4,3),(2,3,4) ] ]

Usage: Cat1Select( size, gpnum, num )

Group has generators [ (1,2,3), (2,3,4) ]

gap> C := Cat1Select( 12, 5, 2 );

cat1-group [a4 ==> c3]

gap> X := XModCat1( C );

Crossed module [k4->c3]
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