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Abstract: Pentahexagonal annuli are closed chains consisting of regular pentagons and hexagons.
Such configurations can be easily recognized in various complex designs, in particular, in molecular
carbon constructions. Results of computer enumeration of annuli without overlapping on the plane
are presented for up to 18 pentagons and hexagons. We determine how many annuli have certain
properties for a fixed number of pentagons. In particular, we consider symmetry, pentagon separation
(the least ring-distance between pentagons), uniformity of pentagon distribution, and pentagonal
thickness (the size of maximal connected part of pentagons) of annuli. Pictures of all annuli with the
number of pentagons and hexagons up to 17 are presented (more than 1300 diagrams).
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1. Introduction

Polycyclic molecules are widespread in nature and comprehensively studied in chemistry [1].
Currently, they also cause a growing interest of experts in nanotechnology [2,3]. Among cycles,
hexagons are the most frequent elements of molecular constructs. In particular, benzenoid
hydrocarbons [4–7], whose carbon skeleton mimics patches of the honeycomb, are entirely composed
from fused hexagonal benzene rings. The nearest by size, pentagonal and heptagonal rings (as well as
larger ones) are less abundant in nature but they also are incorporated in diverse molecules [8–11].
Since we follow herein a plane graphic model of polycyclic molecules, where all cycles are depicted as
regular polygons, it is worth recalling that the plane can unrestrictedly be paved only by congruent
regular triangles, squares, and hexagons [12,13]. While no other congruent regular polygons of only
one type can tile the plane [14]. Here, it is important that there are polycyclic mosaic tilings of plane
where cycles may have unequal lengths [12,15]. A surface of a polygonal cage (which consists of
polyhedron faces) is effectively a closed mosaic tiling [16,17]. Each plane unfolding of the latter is
again similar to a polycyclic molecule. A very important type of polycyclic tilings, by hexagons and
pentagons, is due to the discovery of a broad spectrum of fullerene molecules [18]. Herein, we do
not restrict our consideration only by patches of fullerene cages [19,20], but we may impose other
restrictions on such objects (see later).

Pentahexagonal annuli are molecular graphs of pentahexagonal corannulenes [21–23]. The last
chemical term is borrowed from the theory of benzenoid hydrocarbons [4], where it was originally
applied to ‘simpler molecules’ that contain only hexagons. In addition, synonyms of the word
‘corannulenes’ in organic chemistry are circulenes and primitive (catacondensed) coronoids [24]. Coronoids
are regarded by us as substances of potential use to nanotechnology fields (e.g., due to their unique
electronic properties; see [25,26] and bibl.). Avoiding the detailed motivation of this statement, we offer
here only a few possible examples. In particular, circulenes can be assembled by stacking into columns.
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Owing to the possession of capillary voids, such columns can be used as nanotubules (see [27,28]
and bibl.). A continued growth of the columns may produce long hollow fibers. The latter may be
(self)woven to produce carpetlike tissues (sheets), which may in turn be rolled up to give (multiwall)
nanotubes or the 3-dimensional bulk materials. Thin layered sheets thus obtained may be used
as membranes. Such assembled constructs add to ones that are obtained using (strands of) natural
DNA/RNA or protein molecules (see [27,29] and bibl.), but have a different chemical nature. A possible
area of application (e.g., of the columns) is molecular electronics, where they may, in particular,
play a role of semiconductors. And molecular photonics is another such area, where targeted photonic
effects are achieved using a respective ordering of molecules (e.g., of corannulenes) in a medium
through which passes a beam of light. Such effects (entailed by the controlled ordering/disordering of
medium) can be produced using disc-shaped molecules in a (columnar) discotic liquid crystal [30–32],
by application of an electric and/or a magnetic field. The simultaneous presence of pentagonal and
hexagonal rings, with different proportions thereof, allows one to extend the range of useful properties
of envisioned corannulene molecules, due to the difference between the rings.

2. Classes of Annuli

A pentahexagonal annulus has a connected part formed from rings that are regular pentagons or
hexagons in the plane. Two adjacent rings have an edge in common, and no two nonadjacent rings
or three arbitrary ones share a common point. Every ring of an annulus is adjacent with two other
rings, i.e., every annulus may be regarded as a closed ribbon consisting of penta- and hexagonal rings
(see Figure 1). A pentahexagonal chain is constructed in a similar way, with the only distinction that,
therein, there are two end rings having each only one adjacent neighbor. Each annulus (res. chain)
made up from n ≥ 2 rings is obtained by addition of the n-th ring to both end rings (res. a fixed end
ring) of a certain chain composed of n − 1 rings.

Figure 1. Minimal pentahexagonal annuli, r = 10.

Denote by Gr the set of all pentahexagonal annuli with r rings without overlapping in the plane.
It means that non-adjacent rings have no common points. For the set of all pentahexagonal annuli
with p pentagons and h hexagons, we will use notation Gp,h,

Gr =
⋃

p+h=r

Gp,h.

A graph of class Gp,h has 3p + 4h + 2 vertices and 4p + 5h + 1 edges. In this paper, we consider
pentahexagonal annuli having p > 0 pentagons.

The generation algorithm of annuli is based on the algorithm of generation of pentahexagonal
chains [33]. Every chain with r rings is coded by three binary sequences. The first sequence of length
r contains information about sizes of rings (5 or 6). The other two sequences of length r − 2 represent
two half-boundaries of the chain. They define how the chain grows, namely, the bitwise sum of
these sequences determines the acceptable attachment of the rings. During the generation process,
coordinates of annulus vertices are calculated. If the terminal rings have two suitable overlapping
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edges, then the edges are fused and an annulus appears. To obtain plane annuli, edge intersections
are checked. Since two nonisomorphic chains can give isomorphic annuli, the checking of graph
isomorphism is implemented.

Polycyclic structures with rings of various sizes are a subject of constructive or analytical
investigation. We mention several studies in this direction. Hexagonal annuli of G0,r are known
under the name ‘primitive coronoids’. A comprehensive bibliography on the theory of coronoids
can be found in books [24,34]. A mathematical formalization of the theory of coronoids and related
structures was developed in [35]. The numbers of helicenic hexagonal chains were reported in [36,37].
Various classes of hexagonal systems were enumerated in [38–43] by constructive and analytical
methods. A survey on computer enumeration of polycyclic hexagonal structures was presented
in [44]. A fast algorithm for computer generation of polycyclic chains with arbitrary ring sizes was
proposed in [45]. Pentahexagonal chains with up to 13 rings were counted with respect to their
symmetries in [46], and some problems concerning pentagonal chains and annulus were discussed
in [47]. An explicit expression of the counting formula for some hexagonal annuli of the belt-type
and Möbius-type was derived in [48]. Certain families of cyclic polyazulenoids consisting of five- and
seven-membered rings were enumerated in [49,50].

3. Structural Properties of Annuli

The numbers of pentahexagonal annuli of the sets Gr and Gp,h have been obtained for 10 ≤ r ≤ 18
where 1 ≤ p ≤ 18 and 0 ≤ h ≤ 17 by computer calculations. The corresponding data are presented in
Table 1. Here, column r contains the numbers of all rings of the considered annuli. The number of all
annuli of Gr for the corresponding r is presented in column total. Columns below the letter p contain
the cardinality of classes Gp,r−p for the corresponding number of pentagons p = 4, 6, 8, 9, . . . , 18 and
the number of rings r. For example, the number of annuli of class G6,11 with p = 6 pentagons and
r = 17 rings is equal to 60.

Table 1. Numbers of pentahexagonal annuli with r rings and p pentagons.

r
p

Total
4 6 8 9 10 11 12 14 15 18

10 2 - - - 1 3
12 11 2 - - 1 - - 14
13 3 - - - - - - 3
14 61 3 18 - 6 - - 1 89
15 49 8 - - 1 - - - - 58
16 358 32 124 4 33 - - 5 - 556
17 515 60 42 1 3 - - - 621
18 2322 309 1137 1 199 9 104 52 1 5 4139

Three minimal graphs form the set G10 = G10,0 ∪ G4,6 and their diagrams are depicted in Figure 1.
Diagrams of all graphs of up to 17 pentagons and hexagons are presented as supplement data.
The smallest graphs with an odd number of pentagons, p = 9, appears for 16 rings (see Figure 2).
Since fragments of pentagonal chains may have parallel edges, it is easy to construct pentahexagonal
annuli with an arbitrary number of rings (see two small pentagonal fragments and an annulus with
22 rings in Figure 3).
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Figure 2. Minimal annuli with an odd number of pentagons, p = 9.

Figure 3. Two pentagonal bricks and a large annulus.

3.1. Pentagon Separation

One can see that pentagons are separated by hexagons in various ways. Properties of some
complex molecular formations consisting of pentagons and hexagons may depend on location of
pentagons relative to each other. For instance, fullerenes where no two pentagons share an edge tend
to be more stable [51,52].

By ring-distance between two pentagons of an annulus we mean the minimal number of rings
between them. The pentagon separation, ps(G), of an annulus G is the least ring-distance between
pentagons of G. Pentagon separation of fullerenes is studied in [53]. In particular, if an annulus G

has adjacent pentagons, then ps(G) = 0. In general case, 0 ≤ ps(G) ≤ ⌊h/p⌋ for G ∈ Gp,h, p ≥ 2.
One graph of Figure 1 has ps(G) = 1, while the others have ps(G) = 0. We have examined the
pentagon separation for the considered families of annuli. Distributions of graphs by their pentagonal
separation are given in Table 2. Diagrams of several graphs G with 16 rings and ps(G) = 3 are shown
in Figure 4.

Table 2. Pentagonal separation ps of annuli with r rings.

r
ps

Total
0 1 2 3

10 2 1 - - 3
12 7 5 2 - 14
13 2 1 - - 3
14 55 20 14 - 89
15 36 18 4 - 58
16 348 123 62 23 556
17 388 172 47 14 621
18 2758 846 322 213 4139
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Figure 4. Pentahexagonal annuli of G4,12 with pentagonal separation 3.

3.2. Pentagon Distribution and Thickness

A noteworthy structural characteristic of pentahexagonal constructions is the distribution of
pentagons between hexagons. This notion comes from studies of fullerenes in which pentagons are
distributed as uniformly as possible [54–56]. Sizes of pentagon clusters of fullerenes are studied
in [57]. To quantify positions of pentagons in annuli, we introduce a numerical measure based on
cyclical structure of annuli. We assume that pentagons are uniformly distributed in an annulus G

if its pentagonal separation ps(G) is maximal, i.e., ps(G) = ⌊h/p⌋, p ≥ 2. Therefore, the length of
hexagonal subchains between closest pentagons will be differ in at most 1 ring. A minimal graph
with this property has 10 rings (see Figure 1). Table 3 presents the number of graphs of Gp,h with p

uniformly distributed pentagons. All graphs of Figure 4 have this property.

Table 3. Annuli with r rings and p uniformly distributed pentagons.

r
p

Total
4 6 8

10 1 - - 1
12 2 1 - 3
13 - - - 0
14 14 1 - 15
15 - 3 - 3
16 23 4 4 31
17 14 6 - 20
18 183 7 54 244
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An opposite and easily recognizable structural characteristic of an annulus is the number of rings
of maximal connected part consisting of pentagons only. This quantity will be called the pentagonal

thickness, pt(G), of an annulus G. Table 4 shows the pentagonal thickness of graphs with r rings.
Annuli consisting of pentagons only have maximal pentagonal thickness. An example of graph of G14,4

with pentagonal thickness pt = 6 is presented in Figure 5. The class of annuli with pt = 1 contains
annuli with uniformly distributed pentagons.

Table 4. Pentagonal thickness pt of annuli with r rings.

r
pt

Total
1 2 3 4 5 6 7 8 9 10 14 18

10 1 1 - - - - - - 1 3
12 7 6 - - 1 - - - - 14
13 1 2 - - - - - - - 3
14 34 38 8 6 2 - - - - 1 89
15 22 36 - - - - - - - - 58
16 208 248 60 30 5 - 4 1 - - 556
17 233 363 10 13 2 - - - - - 621
18 1381 1930 469 265 48 21 15 2 3 - - 5 4139

Figure 5. Annuli with 18 rings and pentagonal thickness 6.

3.3. Symmetry of Annuli

Molecular symmetry is a fundamental concept in chemistry, as it can predict or explain many of
a molecule’s chemical properties. A molecular graph has symmetry if it has a non-trivial automorphism.
Some problems related to symmetry of benzenoid systems and fullerenes are discussed in [58–62].
Synthesis and aromaticity of certain annuli with high symmetry are described in [25,26]. We have
determined how many annuli possess symmetry (without detailed classifications). The numbers of
graphs of Gr having symmetries are presented in Table 5. For example, all minimal graphs of G10

have non-trivial symmetries (see Figure 1). Several graphs of G18 with high symmetry are depicted in
Figure 6. The symmetry groups of these annuli are indicated near the diagrams.

Table 5. Numbers of symmetrical annuli with p pentagons.

r
p

Total
4 6 8 9 10 11 12 14 15 18

10 2 - - - 1 3
12 10 2 - - 1 - - 13
13 - - - - - - - 0
14 39 - 18 - 6 - - 1 64
15 - 6 - - 1 - - - - 7
16 142 3 97 2 26 - - 4 - 274
17 - - 10 - 3 - - - - 13
18 499 26 574 - 118 1 93 40 1 5 1357
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Figure 6. Some symmetric pentahexagonal annuli with 18 rings.

4. Complex Constructions

Pentahexagonal annuli can be used for building complex constructions in the plane. It may
concern a molecular self-assembly process in which components, either separate or linked,
spontaneously form ordered aggregates [63]. Here, we present some examples of infinitely growing
configurations. The both annuli of G4,6 are suitable for plane covering as illustrated in Figure 7. In these
cases, annuli connect with each other with overlapping rings. The configuration of Figure 7a is formed
from identically oriented annuli, while the configuration of Figure 7b contains annuli connected in two
ways. Two configurations with rotational symmetry are shown in Figures 8 and 9. These graphs can
be built by fusing edges of hexagonal rings of annuli.
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(a) (b)

Figure 7. Two configurations generated by annuli with overlapping rings. (a) Identically oriented
annuli; (b) Annuli connected in two ways.

Figure 8. 13 annuli of G6,6 fused by edges.
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Figure 9. 7 annuli of G12,6 fused by edges.

5. Conclusions

Pentahexagonal annuli can be considered as parts of various molecular complex carbon structures.
In this study, we have enumerated annuli without overlapping in the plane of up to 18 pentagons
and hexagons. We have counted how many annuli with a fixed number of pentagons have certain
properties, such as symmetry, pentagon separation, pentagonal thickness, and uniform distribution of
pentagons. The obtained numerical results are collected in Tables 1–5. The diagrams of annuli were
depicted in decreasing order of the number of pentagons up to 17 rings. It is shown that some complex
planar assemblies can be formed from pentahexagonal annuli.
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