ENUMERATION OF POSETS GENERATED BY DISJOINT UNIONS AND ORDINAL SUMS ${ }^{1}$

RICHARD P. STANLEY

Abstract

Let f_{n} be the number of n-element posets which can be built up from a given collection of finite posets using the operations of disjoint union and ordinal sum. A curious functional equation is obtained for the generating function $\Sigma f_{n} x^{n}$. Using a result of Bender, an asymptotic estimate can sometimes be given for f_{n}. The analogous problem for labeled posets is also considered.

Let P and Q be partially ordered sets (or posets). Regard P and Q as being relations on two disjoint sets T and T^{\prime}, respectively. The disjoint union $P+Q$ is defined to be the partial ordering on $T \cup T^{\prime}$ satisfying: (1) If $x \in T, y \in T$, and $x \leq y$ in P, then $x \leq y$ in $P+Q$; (2) if $x \in T^{\prime}, y \in T^{\prime}$, and $x \leq y$ in Q then $x \leq y$ in $P+Q$. The ordinal sum $P \oplus Q$ is defined to be the partial ordering on $T \cup T^{\prime}$ satisfying (1), (2), and the additional condition (3) if $x \in T$ and $y \in T^{\prime}$, then $x \leq y$ in $P \oplus Q$. Hence + is commutative but \oplus is not.

The question we consider is the following. Let S be a set of nonvoid isomorphically distinct finite posets, such that no element P of S is a disjoint union or an ordinal sum of two nonvoid posets. (We say that P is $(+, \oplus)$-irreducible.) How many isomorphically distinct posets of cardinality n can be built up from the elements of S by the operations of disjoint union and ordinal sum? Call a poset that can be obtained in this way an S-poset. Hence if P and Q are S-posets, then so are $P+Q$ and $P \oplus Q$. Moreover, the $(+, \oplus)$-irreducible S-posets are simply the members of S. For instance, if S consists of a single one-element poset, then there are two 2-element S-posets and five 3 -element S-posets, viz., $21,2,31,2+1,(21) \oplus 1,1 \oplus(21)$, and 3. Here n denotes an n-element chain and $n P$ a disjoint union $P+\cdots+$ P of n copies of P.

Received by the editors April 23, 1973.
AMS (MOS) subject classifications (1970). Primary 05A15; Secondary 06A10.
Key words and phrases. Poset, partially ordered set, disjoint union, ordinal sum, generating function, Pólya's enumeration theorem, functional equation.
${ }^{1}$ The research was supported by a Miller Research Fellowship at the University of Califomia at Berkeley.

Let f_{n} denote the number of S-posets of cardinality n. We set $f_{0}=1$. Define the generating function $F(x)=\sum_{n=0}^{\infty} f_{n} x^{n}$. We shall determine a functional equation for $F(x)$. The technique used is analogous to that appearing in [3, Chapter $6, \S 10$] for the enumeration of series-parallel networks. However, instead of a duality principle allowing us to obtain an explicit functional equation for $F(x)$, we instead are helped by the triviality of one of the two groups arising from the enumeration.

If P is an S-poset and P can be written $P_{1}+P_{2}$ where neither P_{i} is void, then we say P is essentially + . Similarly if $P=P_{1} \oplus P_{2}$ where neither P_{i} is void, we say P is essentially \oplus. Every S-poset not a member of S is either essentially + or essentially \oplus, but not both. By convention we agree that every member of S is both essentially + and essentially \oplus.

Let a_{n} be the number of n-element members of S, so $a_{0}=0$ since we are assuming the members of S to be nonvoid. Let u_{n} be the number of n-element essentially $+S$-posets and v_{n} the number of n-element essentially $\oplus S$-posets. We define $u_{0}=v_{0}=0$. Hence $f_{n}=u_{n}+v_{n}-a_{n}$ if $n \geq 1$. Define the generating functions

$$
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad U(x)=\sum_{n=0}^{\infty} u_{n} x^{n}, \quad V(x)=\sum_{n=0}^{\infty} v_{n} x^{n} .
$$

It follows that

$$
\begin{equation*}
F(x)=U(x)+V(x)-A(x)+1 \tag{1}
\end{equation*}
$$

Now every essentially $+S$-poset P not belonging to S can be written uniquely as a disjoint union $P_{1}+P_{2}+\cdots+P_{m}$ of $m \geq 2$ essentially \oplus S-posets P_{i}, where the order of the P_{i} 's is immaterial. Let $u_{m n}$ be the number of essentially $+S$-posets of cardinality n which are the disjoint union of m essentially $\oplus S$-posets. Define for $m \geq 2$ the generating functions $U_{m}(x)=\sum_{n=1}^{\infty} u_{m n} x^{n}$.

Since the order of addition in a disjoint union is immaterial, it follows immediately from Pólya's theorem, as expounded in [3, Chapter 6], that

$$
\begin{equation*}
U_{m}(x)=Z\left(\Im_{m} \mid V(x), V\left(x^{2}\right), V\left(x^{3}\right), \ldots\right), \quad m \geq 2 \tag{2}
\end{equation*}
$$

where $Z\left(\mathcal{G}_{m} \mid z_{1}, z_{2}, z_{3}, \ldots\right)$ is the cycle index polynomial of the symmetric group \mathcal{S}_{m} of degree m. Now $A(x)+\sum_{m=2}^{\infty} U_{m}(x)=U(x)$. Hence from (2) we obtain

$$
\begin{equation*}
U(x)=A(x)+\sum_{m=0}^{\infty} Z\left(\mathbb{E}_{m} \mid V(x), V\left(x^{2}\right), V\left(x^{3}\right), \ldots\right)-V(x)-1 \tag{3}
\end{equation*}
$$

Now it is well known that

$$
\sum_{m=0}^{\infty} Z\left(\Im_{m} \mid z_{1}, z_{2}, z_{3}, \ldots\right) t^{m}=\exp \left(z_{1} t+z_{2} t^{2} / 2+z_{3} t^{3} / 3+\cdots\right)
$$

(cf. [3, p. 133]). Thus from (3) we get

$$
\begin{equation*}
U(x)=\exp \left[\sum_{k=1}^{\infty} \frac{V\left(x^{k}\right)}{k}\right]-V(x)+A(x)-1 \tag{4}
\end{equation*}
$$

Similarly every essentially $\oplus S$-poset P not belonging to S can be written uniquely as an ordinal sum $P_{1} \oplus P_{2} \oplus \ldots \oplus P_{m}$ of $m \geq 2$ essentially $+S$-posets P_{i}, where now the order of the P_{i} 's is fixed. Define $v_{m n}$ and $V_{m}(x)$ for $m \geq 2$ in analogy to $u_{m n}$ and $U_{m}(x)$. Since now the order of summing cannot be altered, we get from Pólya's theorem that

$$
\begin{equation*}
V_{m}(x)=Z\left(G_{m} \mid U(x), U\left(x^{2}\right), U\left(x^{3}\right), \cdots\right), \quad m \geq 2 \tag{5}
\end{equation*}
$$

where $Z\left(G_{m} \mid z_{1}, z_{2}, z_{3}, \ldots\right)$ is the cycle index polynomial of the trivial group G_{m} of order one acting on an m-set. Since $Z\left(G_{m} \mid z_{1}, z_{2}, \ldots\right)=z_{1}^{m}$, we get

$$
\begin{equation*}
V_{m}(x)=U(x)^{m}, \quad m \geq 2 \tag{6}
\end{equation*}
$$

Of course (6) can be easily obtained directly, but we wanted to make clear the similarity of (2) and (5).

Now

$$
V(x)=A(x)+\sum_{m=2}^{\infty} V_{m}(x)=\sum_{m=0}^{\infty} U(x)^{m}-U(x)+A(x)-1,
$$

so

$$
\begin{equation*}
V(x)=1 /(1-U(x))-U(x)+A(x)-1 . \tag{7}
\end{equation*}
$$

Eliminating $U(x)$ from (1) and (7) yields

$$
\begin{equation*}
V(x)=F(x)+1 / F(x)-2+A(x) \tag{8}
\end{equation*}
$$

Thus by (4) and (8),

$$
\begin{aligned}
F(x) & =U(x)+V(x)-A(x)+1 \\
& =\exp \left[\sum_{k=1}^{\infty} \frac{1}{k}\left(F\left(x^{k}\right)+\frac{1}{F\left(x^{k}\right)}-2+A\left(x^{k}\right)\right)\right] .
\end{aligned}
$$

[^0]We have obtained

Theorem 1. $F(x)$ satisfies the functional equation

$$
\begin{equation*}
F(x)=\exp \left[\sum_{k=1}^{\infty} \frac{1}{k}\left(F\left(x^{k}\right)+\frac{1}{F\left(x^{k}\right)}-2+A\left(x^{k}\right)\right)\right] . \tag{9}
\end{equation*}
$$

Since $\exp \left(\sum_{k=1}^{\infty} a x^{k}, k\right)=(1-x)^{-a}$, (9) may be rewritten in the rather curious form

$$
F(x)=\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{-\left(f_{i}+g_{i}+a_{i}\right)},
$$

where. $1 / F(x)=1+\Sigma_{1}^{\infty} g_{i} x^{i}$.
For instance, if S consists of a single one-element poset, then $A(x)=$ x and

$$
F(x)=1+x+2 x^{2}+5 x^{3}+15 x^{4}+48 x^{5}+167 x^{6}+\cdots
$$

Another case of interest is when S consists of all isomorphically distinct finite $(+, \oplus)$-irreducible posets. Then f_{n} is the number of isomorphically distinct posets of cardinality n. It can be shown (cf. [4] for the numbers f_{n}) that here

$$
\begin{aligned}
& A(x)=x+x^{4}+12 x^{5}+104 x^{6}+956 x^{7}+\cdots, \\
& F(x)=1+x+2 x^{2}+5 x^{3}+16 x^{4}+63 x^{5}+318 x^{6}+2045 x^{7}+\cdots
\end{aligned}
$$

A theorem of Bender [1, Theorem 5] allows the determination of an asymptotic formula for f_{n} when $A(x)$ is a polynomial. We shall spare the reader the details of the calculations and merely state that when $A(x)=x$, we get $f_{n} \sim C_{n}{ }^{-3 / 2} \alpha^{-n}$, where α is the unique positive root of $F(\alpha)-$ $(1+\sqrt{ } 5) / 2$, and C is a constant given by

$$
C=\left(\frac{1}{\pi(3 \sqrt{5}-5)}\left[\frac{\alpha}{1-\alpha}+\sum_{k=2}^{\infty} \alpha^{k} F^{\prime}\left(\alpha^{k}\right)\left(1-\frac{1}{F\left(\alpha^{k}\right)^{2}}\right)\right]\right)^{1 / 2} .
$$

Note that not surprisingly f_{n} is very much smaller than the total number p_{n} of posets of cardinality n, which by $[2]$ is given by $p_{n}=2^{n^{2} / 4+o\left(n^{2}\right)}$.

One can also ask analogous questions for labeled posets. A labeling of a finite poset P is an injection $\phi: P \rightarrow \mathbf{Z}$. Two labelings, ϕ and ψ, of P are equivalent if there is an automorphism $\rho: P \rightarrow P$ and an order-preserving injection $\sigma: \mathbf{Z} \rightarrow \mathbf{Z}$ such that $\phi=\sigma \psi \rho$. Let S be a set of nonvoid inequivalent $(+, \oplus)$-irreducible labeled finite posets. Let h_{n} be the number of n-element inequivalent labeled posets (P, ϕ) that can be built up from the members of S by the operations of + and \oplus, such that the restriction of ϕ to any $(+, \oplus)$-irreducible component of P is equivalent to the labeling of a
 ment members of S (so $b_{0}=0$). Define the exponential generating functions

$$
B(x)=\sum_{n=0}^{\infty} b_{n} \frac{x^{n}}{n!}, \quad H(x)=\sum_{n=0}^{\infty} h_{n} \frac{x^{n}}{n!} .
$$

Then by an argument analogous to that used to prove Theorem 1 , which we omit, one obtains

Theorem 2. $H(x)$ satisfies the functional equation

$$
H(x)=\exp [H(x)+1 / H(x)-2+B(x)] .
$$

REFERENCES

1. E. A. Bender, Asymptotic methods in enumeration, SIAM Rev. (to appear).
2. D. Kleitman and B. Rothschild, The number of finite topologies, Proc. Amer. Math. Soc. 25(1970), 276-282. MR 40 \#7157.
3. J. Riordan, A_{n} introduction to combinatorial analysis, Wiley, New York; Chapman \& Hall, London, 1958. MR 20 \#3077.
4. J. Wright, Cycle indices of certain classes of quasiorder types or topologies, Dissertation, University of Rochester, Rochester, N. Y., 1972.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

[^0]: License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

