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Abstract

Let Ng(f ) denote the number of rooted maps of genus g having f edges. An exact formula for Ng(f )

is known for g = 0 (Tutte, 1963), g = 1 (Arques, 1987), g = 2,3 (Bender and Canfield, 1991). In the
present paper we derive an enumeration formula for the number Θγ (e) of unrooted maps on an orientable
surface Sγ of a given genus γ and with a given number of edges e. It has a form of a linear combination∑

i,j ci,jNgj (fi) of numbers of rooted maps Ngj (fi) for some gj � γ and fi � e. The coefficients ci,j

are functions of γ and e. We consider the quotient Sγ /Z� of Sγ by a cyclic group of automorphisms Z� as a
two-dimensional orbifold O. The task of determining ci,j requires solving the following two subproblems:

(a) to compute the number Epio(Γ,Z�) of order-preserving epimorphisms from the fundamental group Γ

of the orbifold O = Sγ /Z� onto Z�;
(b) to calculate the number of rooted maps on the orbifold O which lifts along the branched covering

Sγ → Sγ /Z� to maps on Sγ with the given number e of edges.

The number Epio(Γ,Z�) is expressed in terms of classical number-theoretical functions. The other prob-
lem is reduced to the standard enumeration problem of determining the numbers Ng(f ) for some g � γ

and f � e. It follows that Θγ (e) can be calculated whenever the numbers Ng(f ) are known for g � γ and
f � e. In the end of the paper the above approach is applied to derive the functions Θγ (e) explicitly for
γ � 3. We note that the function Θγ (e) was known only for γ = 0 (Liskovets, 1981). Tables containing the
numbers of isomorphism classes of maps with up to 30 edges for genus γ = 1,2,3 are presented.
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1. Introduction

By a map we mean a 2-cell decomposition of a compact connected surface. Enumeration of
maps on surfaces has attracted a lot of attention in the last few decades. As shown in monograph
[29] the enumeration problem was investigated for various classes of maps. Generally, problems
of the following sort are considered:

Problem 1. How many isomorphism classes of maps with a given property P and given number
of edges (vertices, faces) are there?

The beginnings of the enumerative theory of maps are closely related with the enumeration
of plane trees considered in 1960s by Tutte [38] and Harary et al. [16] (see [15,28] as well). The
foundations of the theory were built by Tutte in a series of “Census” papers published in years
1962–1963 [34–37]. Later many other distinguished classes of maps including triangulations,
outerplanar, cubic, Eulerian, non-separable, simple, loopless, two-face maps, etc. were consid-
ered. Research in these areas until year 1998 is well represented in [29]. Although there are more
than 100 published papers on map enumeration, see, for instance, [5,8,13,22,27,39,41,44], most
of them deal with the enumeration of rooted maps of given property. In particular, there is a
lack of results on enumeration of unrooted maps of genus � 1. The present paper can be viewed
as an attempt to fill in this gap. A map on an orientable surface is called oriented if one of the
two global orientations is specified. Isomorphisms between oriented maps preserve the chosen
orientation. The problem considered in this paper reads as follows.

Problem 2. What is the number of isomorphism classes of oriented unrooted maps of given
genus g and given number of edges e?

An oriented map is called rooted of one of the darts (arcs) is distinguished as a root. By a dart
of a map we mean an edge endowed with one of the two possible orientations. Isomorphisms
between oriented rooted maps take root onto root. A rooted variant of Problem 2 follows.

Problem 3. What is the number of isomorphism classes of oriented rooted maps of given genus
g and given number of edges e?

The rooted version of the problem was first considered in 1963 by Tutte [37] for g = 0, i.e.
for the planar case. A corresponding planar case of the unrooted version (Problem 2 for g = 0)
was settled by Liskovets [23,24] and Wormald [43]. An attempt to enumerate rooted maps of
given genus g > 0 and given number of edges was done by Walsh and Lehman in [40,41]. They
derived an algorithm based on a recursion formula. The algorithm is applied to enumerate maps
with small number of edges. An explicit formula for the number of rooted maps for g = 1 is
obtained by Arquès [2].

In 1988 Bender et al. [6] derived an explicit enumeration formula for the number of rooted
maps on the torus and projective plane. Three years later [4] Bender and Canfield determined the
function Ng(e) of rooted maps of genus g with e edges for any genus g up to some constants.
For g = 2 and g = 3 the generating functions are derived. Some refinement of these results can
be found in [3].

In the present paper we shall deal with the problem of enumeration of oriented unrooted maps
with given genus and given number of edges. Inspired by a fruitful concept of an orbifold used
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in low-dimensional topology and in the theory of Riemann surfaces we introduce a concept of a
map on an orbifold. In the present paper, by an orbifold we will mean a quotient of a surface by a
finite group of automorphisms. As it will become clear later, cyclic orbifolds, that is the quotients
of the type Sγ /Z�, where Sγ is an orientable surface of genus γ surface and Z� is a cyclic
group of automorphisms of Sγ , will play a crucial role in the enumeration problem. In order
to establish an explicit enumeration formula we first derive a general counting principle which
enables us to decompose the problem into two subproblems (see Theorem 3.1). First one requires
an enumeration of certain epimorphisms defined on Fuchsian groups (or on F -groups) onto a
cyclic group. This problem is completely solved in Section 4. The other requires enumerating
rooted maps on cyclic orbifolds associated with the considered surface. Unfortunately, quotients
of (ordinary) maps may have half-edges called semiedges here. In Section 5 we reduce this
problem to the problem of enumeration of rooted maps without semiedges.

In order to formulate our main result we need to introduce some concepts.
Let Sγ be an orientable surface of genus γ and Z� a cyclic group of automorphisms of Sγ .

Denote by [g;m1,m2, . . . ,mr ], 2 � m1 � m2 � · · · � mr � �, the signature of orbifold O =
Sγ /Z�. That is, the underlying space of O is an oriented surface of genus g and the regular cyclic
covering Sγ → O = Sγ /Z� is branched over r points of O with branch indexes m1,m2, . . . ,mr,

respectively. In 1966 Harvey [17] derived necessary and sufficient conditions for the existence of
a cyclic orbifold Sγ /Z� with signature [g;m1,m2, . . . ,mr ] (see Theorem 4.3).

Given an orbifold O of the signature [g;m1,m2, . . . ,mr ] define, the orbifold fundamental
group π1(O) to be the F -group generated by the 2g generators a1, b1, a2, b2, . . . , ag, bg and the
r generators ej , j = 1, . . . , r , satisfying the relations

g∏
i=1

[ai, bi]
r∏

j=1

ej = 1, e
mj

j = 1 for every j = 1, . . . , r.

An epimorphism π1(O) → Z� onto a cyclic group of order � is called order-preserving if it
preserves the orders of generators ej , j = 1, . . . , r . Equivalently, an order-preserving epimor-
phism π1(O) → Z� has a torsion-free kernel. We denote by Epi0(π1(O),Z�) the number of
order-preserving epimorphisms π1(O) → Z�.

For a technical reason it is convenient to modify the signature of O = Sγ /Z� as follows. Let

[g;m1,m2, . . . ,mr ] = [g;2, . . . ,2︸ ︷︷ ︸
q2 times

,3, . . . ,3︸ ︷︷ ︸
q3 times

, . . . , �, . . . , �︸ ︷︷ ︸
q� times

].

Then we will write [g;2q2,3q3 , . . . , �q� ] rather than [g;m1,m2, . . . ,mr ], listing only jqj with
j > 0.

We denote by Orb(Sγ /Z�) set of �-tuples [g;2q2,3q3 , . . . , �q� ] formed by signatures of cyclic
orbifolds of the type Sγ /Z� for some Sγ and Z�. By the definition, the fundamental group π1(O)

is uniquely determined by the signature of the orbifold O. Hence, for any O ∈ Orb(Sγ /Z�),
O = [g;2q2 ,3q3, . . . , �q� ], the group π1(O) is well defined. The main result of this paper follows.
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Theorem 1.1. The number Θγ (e) of unrooted oriented maps with e edges on an orientable
surface of genus γ is

1

2e

∑
�|e

∑
O∈Orb(Sγ /Z�)

O=[g;2q2 ,3q3 ,...,�q� ]

Epi0
(
π1(O),Z�

) q2∑
s=0

(
2e/�

s

)( e
�

− s
2 + 2 − 2g

q2 − s, q3, . . . , q�

)
Ng

(
e

�
− s

2

)
,

where Ng(n) denotes the number of rooted maps with n edges on an orientable surface of genus
g with a convention that Ng(n) = 0 if n is not an integer.

An explicit formula to calculate Epi0(π1(O),Z�) is given in Section 4, Proposition 4.2. The
number Epi0(π1(O),Z�) is expressed in terms of classical number-theoretical functions. In Sec-
tions 6 and 7, Theorem 1.1 is applied to derive explicit enumeration functions for γ = 0,1,2,3.
For γ = 0 we have confirmed the result of Liskovets [23]; the enumeration formulas for γ = 1,2
and 3 are original. To apply the theorem for γ > 1 one needs to determine the elements of
Orb(Sγ /Z�) for all admissible �. Since the set of cyclic orbifolds coming from Sγ can be easily
determined (see Section 4), oriented unrooted maps on Sγ can be enumerated using Theorem 1.1
provided that the numbers Ng(n) of rooted maps are known for g � γ .

2. Maps, coverings and orbifolds

In what follows we build a part of the theory of maps which reflects some well-known ideas
from topology of low-dimensional manifolds.

Maps on surfaces. By surface we mean a connected, orientable surface without a border.
A topological map is a 2-cell decomposition of a surface. Usually, maps on surfaces are described
as 2-cell embeddings of connected graphs. A (combinatorial) graph is a 4-tuple (D,V, I,L),
where D and V are disjoint sets of darts and vertices, respectively, I is an incidence function
I :D → V assigning to each dart an initial vertex, and L is the dart-reversing involution. The
edges of a graph are the orbits of L. In what follows we shall deal with the category of ori-
ented maps, that means that one of the two global orientations of the underlying surface is fixed.
A given oriented map M can be described combinatorially as a triple M = (D,R,L), where D is
the set of darts (edges endowed with an orientation), L is an involutory permutation of D (called
the dart-reversing involution) permuting darts sharing the same edge, and R is a permutation
of D permuting cyclically (following the global orientation) for each vertex v the darts whose
initial vertex is v. By the connectivity of the underlying graph the group 〈R,L〉 acts transitively
on D. Conversely, given an abstract combinatorial map (D,R,L), where Mon(M) = 〈R,L〉 is
a transitive group of permutations of D and L2 = 1, we can construct an associated topologi-
cal map as follows: The orbits of R, L and RL give rise to the vertices, edges and boundary
walks of faces of the map, respectively, and the incidence relations between vertices, edges and
faces is given by non-empty intersections of the respective sets of darts. If x is a vertex, edge
or face, the degree of x is the size of the respective orbit of R, L or RL. The degree of an edge
is two or one. Semiedges are edges of degree one. Maps without semiedges will be called ordi-
nary maps. The group Mon(M) = 〈R,L〉 will be called a monodromy group. Given an element
w(R,L) = Ri1Lj1Ri2Lj2 · · ·RinLjn ∈ Mon(M) and a dart x0, there is an associated dart-walk
formed by the darts x0,L

jn(x0),RLjn(x0), . . . ,R
inLjn(x0), . . . ,w(R,L)(x0). This walk can be

topologically realized in the topological map associated with (D;R,L) as a curve with the ini-
tial point at x0 and terminal point at w(R,L)(x0). Thus the action of Mon(M) has a topological
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meaning. In fact it gives information about the action of the fundamental groupoid of the surface
restricted to a certain class of curves.

Given maps Mi = (Di,Ri,Li), i = 1,2, a covering M1 → M2 is a mapping ψ :D1 → D2
such that ψR1 = R2ψ and ψL1 = L2ψ . Note that transitivity of the actions of the monodromy
groups force ψ to be onto. In particular, two maps Mi = (D,Ri,Li), i = 1,2, based on the same
set of darts D are isomorphic if and only if there exists ψ in the symmetric group SD such that
R2 = R

ψ

1 and L2 = L
ψ

1 . The coverings M → M form a group Aut(M) of automorphisms of a
map M . Since the monodromy group is transitive on the set of darts, the automorphism group
acts with trivial stabilizers, i.e. the action of Aut(M) is semi-regular. More information about
combinatorial maps can be found in [19].

Regular coverings. Let ψ :M → N be a covering of maps. The covering transformation group
consists of automorphisms α of M satisfying the condition ψ = ψ ◦ α. A covering ψ :M → N

will be called regular if the covering transformation group acts transitively on a fibre ψ−1(x)

over a dart x of N . The regular coverings can be constructed by taking a subgroup G � Aut(M),
M = (D,R,L), and setting D̄ to be the set of orbits of G, R̄[x] = [Rx], L̄[x] = [Lx]. Then the
natural projection x �→ [x] defines a regular covering M → N , where N = (D̄, R̄, L̄). Regular
coverings of maps are extensively used in many considerations on maps and graph embeddings
(see, for instance, [14,30]).

Signatures of maps and orbifolds associated with maps. Given regular covering ψ :M → N ,
let x ∈ V (N) ∪ F(N) ∪ E(N) be a vertex, face or edge of N . The ratio of degrees b(x) =
deg(x̃)/deg(x), where x̃ ∈ ψ−1(x) is a lift of x along ψ , will be called a branch index of x. It
is a routine matter to show that a branch index is a well-defined positive integer not depending
on the choice of the lift x̃. In some considerations, it is important to save information about
branch indexes coming from some regular covering defined over a map N . This can be done by
introducing a signature σ on M . A signature is a function σ :x ∈ V (N) ∪ F(N) ∪ E(N) → Z+
assigning a positive integer to each vertex, edge and face, with only the following restriction: If x

is an edge of degree 2, then σ(x) = 1 and if it is of degree 1 then σ(x) ∈ {1,2}. We say that a
signature σ on N is induced by a covering ψ :M → N if it assigns to vertices, faces and edges
of N their branch indexes with respect to ψ .

If a map M = (D,R,L) is finite we can calculate the genus g of M by the well-known Euler–
Poincaré formula: v(M) − e2(M) + f (M) = 2 − 2g, where v(M) is the number of vertices,
e2(M) is the number of edges of degree two, and f (M) is the number of faces. Given a couple
(M,σ), where M is a finite map and σ is a signature, we define an orbifold type of (M,σ) to be
an (r + 1)-tuple of the form [g;m1,m2, . . . ,mr ], where g is the genus of the underlying surface,
1 < m1 � m2 � · · · � mr are integers, and mi appears in the sequence si > 0 times if and only if
σ takes the value mi exactly si times. The orbifold fundamental group π1(M,σ) of (M,σ) is an
F -group

π1(M,σ) = F [g;m1,m2, . . . ,mr ]

=
〈
a1, b1, a2, b2, . . . , ag, bg, e1, . . . , er

∣∣∣∣∣
g∏

i=1

[ai, bi]
r∏

j=1

ej = 1, e
m1
1 = 1, . . . , emr

r = 1

〉
.

(2.1)

Let ψ :M → N be a regular covering and σ be a signature defined on N . We say that ψ is
σ -compatible if for each element x ∈ V (N) ∪ E(N) ∪ F(N) the branch index b(x) of x is
a divisor of σ(x). The signature σ defined on N lifts along a σ -compatible regular covering
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ψ :M → N to a derived signature σψ on M defined by the following rule: σψ(x̃) = σ(x)/b(x)

for each x̃ ∈ ψ−1(x) and each x ∈ V (N) ∪ E(N) ∪ F(N). We note that if σ(x) = 1 for each
x ∈ V (N) ∪ E(N) ∪ F(N), then σ -compatible covers over M are just smooth regular covers
over M . Such a signature will be called trivial.

Let M → M/G be a regular covering with a covering transformation group G and suppose
M be finite. Denote the respective orbifold type of N = M/G by [g;m1,m2, . . . ,mr ]. Then the
Euler characteristic of the underlying surface of M is given by the Riemann–Hurwitz equation:

χ = |G|
(

2 − 2g −
r∑

i=1

(
1 − 1

mi

))
.

A topological counterpart of a (combinatorial) map M with a signature σ can be established
as follows. By an orbifold O we mean a surface S with a distinguished discrete set of points B

assigned by integers m1,m2, . . . ,mi, . . . such that mi � 2, for i = 1,2, . . . . The elements of B

will be called branch points. If S is a compact connected orientable surface of genus g, then B is
finite of cardinality |B| = r and O is determined by its type [g;m1,m2, . . . ,mr ]. Hence we write
O = O[g;m1,m2, . . . ,mr ]. The fundamental group π1(O) of O is an F -group defined by (2.1).
A topological map on an orbifold O is a map on the underlying surface Sg of genus g satisfying
the following properties:

(P1) if x ∈ B then x is either an internal point of a face, or a vertex, or an end-point of a semiedge
which is not a vertex;

(P2) each face contains at most one branch point;
(P3) the branch index of x lying at the free end of a semiedge is two.

A mapping ψ : Õ → O is a covering if it is a branched covering between underlying surfaces
mapping the set of branch points B̃ of Õ onto the set B of branch points of O and each x̃i ∈
ψ−1(xi) is mapped uniformly with the same branch index d dividing the prescribed index ri of
xi ∈ B . The following result is a consequence of the well-known theorem of Koebe:

Theorem 2.1. (Koebe [42]) Let O be a compact connected orbifold of type [g;m1,m2, . . . ,mr ].
Then there is a universal orbifold Õ covering O satisfying the following conditions:

(a) if there is a regular covering ϕ :O1 → O then there is a regular covering ψ : Õ → O1;
(b) the covering Φ : Õ → O is regular with the covering transformation group isomorphic to

F(g;m1,m2, . . . ,mr) and Φ = ψ ◦ ϕ.

Remark. The reader familiar with Koebe’s theorem may ask where the ‘bad orbifolds’ of type
[0; r] and [0; r, q] r 	= q , gcd(r, q) = 1 disappeared. They are included in the statement only that
they give rise to trivial universal covers. Note that F [0; r] = F [0; r, q] = 1 is a trivial group in
this case. The underlying surface of the universal cover is either a sphere or a plane, depending on
whether the respective F -group is finite or infinite. In general, the universal cover of the orbifold
O = O[0; r, q], r 	= q is O = O[0; r/d, q/d], where d = gcd(r, q).

It is easy to see a bridge between maps with signatures and orbifolds. Indeed, a finite
map M with signature σ of orbifold type [g;m1,m2, . . . ,mr ] determines an orbifold O =
O[g;m1,m2, . . . ,mr ] with signature [g;m1,m2, . . . ,mr ] by taking the corresponding topologi-
cal map and placing a branch point of index mi inside the corresponding vertex, edge or face x



712 A. Mednykh, R. Nedela / Journal of Combinatorial Theory, Series B 96 (2006) 706–729
with σ(x) = mi , for each i = 1, . . . , r . Moreover, σ -compatible covers over M are in correspon-
dence with orbifolds covering O . Given the universal covering Φ : Õ → O we can lift the map
M to a map M̃ on Õ . The respective map M̃ will be called a universal cover with respect to
(M,σ). As a consequence we have the following statement.

A homomorphism α :F [g;m1,m2, . . . ,mr ] → H is called order-preserving if it preserves the
orders m1,m2, . . . ,mr of generators e1, e2, . . . , er .

Theorem 2.2. Let N be a finite map with signature σ induced by a regular covering ϕ :M → N

with a group of covering transformations A. Let Φ : Ñ → N be the universal covering with
respect to (N,σ ). Then a regular covering ψ : Ñ → M such that Φ = ψ ◦ ϕ induces an
order-preserving group epimorphism ψ∗ :π1(N,σ ) → A. Moreover, the monodromy action of
Mon(M) on a fibre ϕ−1(x), x ∈ N , is uniquely determined by ψ∗.

Proof. Let M = (D,R,L) and Ñ = (D̃, R̃, L̃). Fix a dart x0 ∈ N and fibres Φ−1(x0), ϕ−1(x0).
In what follows all the considered darts will be elements of these two fibres. We show that every
covering transformation τ̃ of Φ projects onto some covering transformation τ ∈ A. Choose a dart
x̃ ∈ Φ−1(x0).

Let τ̃ take x̃ �→ ỹ. Let x = ψ(x̃) and y = ψ(ỹ). By regularity of the action of A there is a
unique covering transformation τ ∈ A taking x �→ y. For any z̃ ∈ Φ−1(x0) there exists w(R̃, L̃) ∈
Mon(Ñ) such that w(R̃, L̃)x̃ = z̃. We show that ψτ̃ = τψ . We have

ψτ̃(z̃) = ψτ̃w(R̃, L̃)(x̃) = ψw(R̃, L̃)τ̃ (x̃) = ψw(R̃, L̃)(ỹ)

= w(R,L)ψ(ỹ) = w(R,L)τ(x) = τw(R,L)(x) = τ(z) = τψ(z̃).

Hence the mapping ψ∗ : τ̃ �→ τ is a group homomorphism. Since for each y ∈ ϕ−1(x0) there
is a preimage ỹ ∈ Φ−1(x0); it is an epimorphism.

By Theorem 2.1 N lifts to a map Ñ → N on the universal orbifold with the group of covering
transformations acting regularly on a fibre over a dart x. Moreover, this group is isomorphic to
π1(N,σ ). Thus ψ∗ takes π1(N,σ ) onto A. Furthermore, by regularity we may label darts of
Φ−1(x0) by elements of π1(N,σ ) and darts of ϕ−1(x0) by elements of A. If ψ∗ is determined
then the covering ψ is determined on Φ−1(x0), and consequently, the action of Mon(M) on
ϕ−1(x0) is prescribed by the projection of the action of Mon(Ñ) along ψ .

The assumption that the derived signature σϕ is trivial forces the covering Φ : Ñ → M to be
smooth. Take an element g ∈ π1(N,σ ) of finite order n. Then there exists an associated word
w(R̃, L̃) taking a dart labelled by 1 onto a dart labelled by g. Then wj(R̃, L̃) takes 1 �→ gj , and
in particular, wn(R̃, L̃)(1) = 1. Thus it gives rise to a closed walk in Ñ . The covering ψ takes
wj(R̃, L̃) �→ wj(R,L). The respective walk in M is closed if and only if (ψ∗(g))j = 1. Since ψ

is smooth, wj(R,L) is not closed for 1 � j < n. Then (ψ∗(g))j 	= 1 for j = 1, . . . , n−1. Hence
ψ∗ is order-preserving. �

Reconstruction of M . With the above notation, given N = (D̄; R̄, L̄) on an orbifold Ō and
an epimorphism ψ∗ :π1(N,σ ) → A one may ask whether there is way to reconstruct the cover
M = (D;R,L) explicitly. To do this one can use the idea of ordinary voltage assignments used
to describe regular covers of graphs [14] and modified in [30] to describe branched coverings
of maps with branch points at vertices, faces and edges. Firstly we form a truncated map T (N)

whose vertices are darts of N and whose darts are ordered pairs of the form xR̄x, xR̄−1x

and xLx. The dart-reversing involution of T (N) interchanges the pairs (xR̄x, (R̄x)x); and
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(xL̄x, (L̄x)x), while the rotation cyclically permutes (xL̄x, xR̄x, xR̄−1x) for any x ∈ D̄. We
choose a spanning tree T of T (N) and define an ordinary voltage assignment ν in A on darts of
T to be 1. We fix a vertex x0 ∈ D̄ of T (N). If z is a dart of T (N) not belonging to T it creates (to-
gether with some paths of T joining x0 to the initial and terminal vertex of z) a closed walk based
at x0. This closed walk corresponds to some word w(R̄, L̄) which lifts to w(R̃, L̃) taking x̃0 onto
ỹ = w(R̃, L̃)x0. By regularity there is a unique element h ∈ π1(N,σ ) such that h(x̃0) = ỹ. We
set ν(z) = ψ∗(h). In this way the voltage assignment is defined at each dart of T (N). We lift
T (N) using the definition of the derived graph and derived map (see [14, pp. 162–170]) onto a
truncation T (M) of a map M . Then we contract the faces of T (M) which correspond to vertices
of M to points, thus obtaining M . Taking different epimorphisms ψ∗ :π1(N,σ ) → A we get all
the σ -compatible regular covers over N with the covering transformation group isomorphic to A.

3. A formula for counting maps of given genus

In this section we shall deal with the problem of enumeration of oriented unrooted maps of
given genus γ . Recall that a map is called rooted if it has one distinguished dart x0 called a root.
A morphism between rooted maps takes root onto root. A map is called labelled if all its darts
are distinguished by some labelling. Since the automorphism group of a rooted map as well as
that of a labelled map is trivial, each rooted map with n darts gives rise to (n− 1)! labelled maps.
Moreover, if (M,x) and (M,y) are two rooted maps based on the same map with a dart-set D

then the number of isomorphism classes for (M,x) and (M,y) is the same. We note that there is
a 1–1 correspondence between isomorphism classes of rooted (and labelled) maps defined in the
category of oriented maps and isomorphism classes of rooted (and labelled) maps in the category
of maps on orientable surfaces as they are defined, for example in monograph [29, p. 7].

To be more precise, we fix the set of darts D and consider different maps based on D. We
want to determine the number of isomorphism classes of (unrooted) maps based on n darts and
of a given genus γ . This number will be denoted by NUMγ (n). Denote by M = M(n) the
set of all (labelled) maps on D of a given genus. The symmetric group Sn, |D| = n, acts on
M by conjugation as follows: M = (D;R,L) �→ Mψ = (D;Rψ,Lψ). By definition ψ is a
map isomorphism taking M �→ Mψ . Then the number of orbits M/Sn = NUMγ (n) and the
number of orbits of the stabilizer Sn−1 of a dart x0 ∈ D is equal to the number of rooted maps:
NRMγ (n) = M/Sn−1.

By Burnside’s lemma [11, pp. 494–495]

NUMγ (n) =
∑
α∈Sn

|FixM(α)|
n! ,

where FixM(α) is the set of maps on D fixed by the action of α. Since the set of darts is fixed,
each such a map is determined by a pair of permutations (R,L) acting on D such that 〈R,L〉 is
transitive and L2 = 1. In what follows we shall concentrate on FixM(α).

Hall’s result, see [25,26], implies the following assertion:
If FixM(α) 	= ∅ then α is a regular permutation; that means that α can be expressed as a

product of m (disjoint) cycles of the same length �, say α = C1C2 . . .Cm, where �m = n.
Thus we may reduce our investigation to regular permutations. Since all permutations with

a prescribed cyclic structure are conjugate in Sn, the size of sets FixM(α) depends only on the
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decomposition n = �m. Denote by [�m] the conjugacy class of regular permutations of order �.
By a well-known formula |[�m]| = n!

m!�m . Hence Burnside’s formula specializes to

NUMγ (n) =
∑

�|n,n=�m

|FixM[�m]|
�mm! ,

where FixM[�m] is the set of maps in M fixed by some regular permutation α with cycle struc-
ture �m.

Since FixM(α) = {(D,R,L) ∈ M | Rα = R, Lα = L}, 〈α〉 is a cyclic group of map au-
tomorphisms for each M = (D,R,L) ∈ FixM(α). Take the quotient N = M/〈α〉 = (D̄, R̄, L̄).
The covering ϕ : M �→ N determines the signature σ on N assigning to vertices, faces and
edges their branch index with respect to ϕ. Denote by O the respective orbifold associated with
(N,σ ). By Theorem 2.2 there is a covering ψ : Ñ → M which induces an order-preserving epi-
morphism ψ∗ :π1(N,σ ) → Z�. The map N is a labelled map on the orbifold O whose darts
are assigned by C1,C2, . . . ,Cm. Since for given N = (R̄, L̄) every monodromy action on the
cycle C1 is determined by an epimorphism from the orbifold fundamental group into the cyclic
group Z�

∼= 〈α〉, we have Epi0(π1(N,σ ),Z�) = Epi0(π1(O),Z�) possibilities to reconstruct the
action of Mon(M) on C1. Here O denotes the orbifold associated with (N,σ ). Now in each
cycle Ci = {vi,1, vi,2, . . . , vi,�}, i 	= 1, we choose one dart. We have �m−1 such choices. In this
way the labelling of the darts of M is determined by the following rule: vi,x ∈ Ci (i 	= 1) has the
second coordinate x = j if and only if a monodromy transformation τ taking v1,1 �→ v1,j maps
vi,1 �→ vi,x . Thus the permutations (R,L) are completely determined by the action of 〈R̄, L̄〉 and
by the action of the set-wise stabilizer of C1.

Denote by Orb(Sγ /Z�) the set of all orbifolds arising as cyclic quotients by some action of
Z� from a surface of genus γ and by NLMO(m) the number of labelled quotient maps for a given
orbifold type O which lift onto maps on a surface of genus γ , having n = �m darts.

We have proved that

NUMγ (n) =
∑

�|n,n=�m

|FixM[�m]|
�mm!

=
∑

�|n,n=�m

∑
O∈Orb(Sγ /Z�)

Epi0(π1(O),Z�)�
m−1NLMO(m)

�mm! .

Denote by NRMO(m) the number of rooted maps on a cyclic orbifold Sγ /Z� which lift to
maps without semiedges possessing exactly m� darts. Since NLMO(m) = (m − 1)!NRMO(m)

we get the following theorem.

Theorem 3.1. With the above notation the following enumeration formula holds:

NUMγ (n) = 1

n

∑
�|n,n=�m

∑
O∈Orb(Sγ /Z�)

Epi0(π1(O),Z�)NRMO(m).

Remark 1. The above theorem establishes a general counting principle which makes it possible
to reduce the problem of enumerating of maps of given genus γ sharing a certain map prop-
erty P to a problem of enumerating the rooted maps on associated cyclic orbifolds which lift
to maps of genus γ sharing the property P . In this paper we are interseted in enumeration of
ordinary maps of genus γ ; so P means here: no semiedges in M . Generally, by a map property
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we mean a property preserved by isomorphisms of unrooted maps. Checking the proof of The-
orem 3.1 one can see that its proof is independent of the choice of P ; hence one can apply this
counting principle for more restricted families of maps such as one-face maps, loopless maps,
non-separable maps, etc. It remains, however, to solve the problem of determining the numbers
Epi0(π1(O),Z�) and NRMO(P,m), where NRMO(P,m) denotes the number of rooted maps
on a cyclic orbifold Sγ /Z� which lift to maps with m� darts sharing property P . In what follows
we shall deal with both problems.

Remark 2. As noted by Liskovets (personal communication) using results of the following sec-
tions one can prove that the above formula derived in Theorem 3.1 agrees with the general
reductive formula derived in [25, Theorem 2.8] (see [26] as well).

4. The number of epimorphisms from an F -group onto a cyclic group

As one can see from Theorem 3.1 to derive an explicit formula for the number of unrooted
maps of a given genus and given number of edges one needs to deal with the numbers Epi0(Γ,Z�)

of order-preserving epimorphisms from an F -group Γ onto a cyclic group Z�. The aim of this
section is to calculate these numbers.

Denote by Hom0(Γ,Z�) the set of order-preserving homomorphisms from the group Γ

into Z�. Let

Γ = F [g;m1, . . . ,mr ]

=
〈

a1,b1, . . . ,ag,bg, x1, . . . , xr :
g∏

i=1

[ai ,bi]
r∏

j=1

xj = 1, xm1
1 = 1, . . . , xmr

r = 1

〉

be an F -group of signature (g;m1, . . . ,mr).
Following the arguments used by Jones in [18] we obtain

Epi0(Γ,Z�) =
∑
d|�

μ

(
�

d

)∣∣Hom0(Γ,Zd)
∣∣,

where μ( �
d
) denotes the Möbius function. Set m = lcm(m1, . . . ,mr) to be the least common

multiple of m1,m2, . . . ,mr . We note that if r = 0 then the group F [g; ∅] = F [g;1]; so, we set
m = 1 for r = 0. Since Hom0(Γ,Zd) is empty if at least one of m1, . . . ,mr is not a divisor of d ,
we also have

Epi0(Γ,Z�) =
∑
m|d|�

μ

(
�

d

)∣∣Hom0(Γ,Zd)
∣∣. (4.1)

We suppose that the numbers m1, . . . ,mr are divisors of d. Identify the group Zd with the
additive group of residues {1, . . . , d} mod d. Since the group Zd is abelian, there is a one-to-one
correspondence between order-preserving epimorphisms from Hom0(Γ,Zd) and the elements of
the set{

(a1, b1, . . . , ag, bg, x1, . . . , xr ) ∈ Z
2g+r
d :

x1 + · · · + xr = 0 mod d, (x1, d) = d1, . . . , (xr , d) = dr

}
,

where (x, d) is the greatest common divisor of x and d (well defined in the group Zd ). Set
d1 = d , . . . , dr = d .
m1 mr
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Hence∣∣Hom0(Γ,Zd)
∣∣ = d2g · Ed(m1, . . . ,mr), (4.2)

where Ed(m1, . . . ,mr) is the number of solutions of the equation x1 + · · · + xr = 0 mod d ,
(x1, d) = d1, . . . , (xr , d) = dr .

Denote by μ(n),φ(n) and Φ(x,n) the Möbius, Euler and von Sterneck functions, respec-
tively. The relationship between them is given by the formula

Φ(x,n) = φ(n)

φ( n
(x,n)

)
μ

(
n

(x,n)

)
,

where (x,n) is the greatest common divisor of x and n. It was shown by Hölder that Φ(x,n)

coincides with the Ramanujan sum
∑

1�k�n, (k,n)=1 exp( 2ikx
n

). For the proof, see Apolstol [1,
p. 164] and [31].

Lemma 4.1. Let m1, . . . ,mr be divisors of d and d1 = d
m1

, . . . , dr = d
mr

. Then the number E =
Ed(m1, . . . ,mr) of solutions (x1, x2, . . . , xr ), xj ∈ Zd for j = 1,2, . . . , r , of the system of the
equations

x1 + · · · + xr = 0 mod d, (x1, d) = d1, . . . , (xr , d) = dr

is given by the formula

E = 1

d

d∑
k=1

Φ(k,m1) · Φ(k,m2) · . . . · Φ(k,mr).

Proof. Consider the polynomial

P(z) =
∑

1�x1,...,xr�d
(x1,d)=d1,...,(xr ,d)=dr

zx1+···+xr .

Then the number of solutions E coincide with the sum of the coefficients of P(z) whose expo-
nents are divisible by d. Hence

E = 1

d

d∑
k=1

P
(
εk

)
, where ε = e

2πi
d .

We have

P
(
εk

) =
∑

1�x1�d
(x1,d)=d1

∑
1�x2�d
(x2,d)=d2

. . .
∑

1�xr�d
(xr ,d)=dr

(εk)x1+···+xr

=
∑

1�x1�d
(x1,d)=d1

εkx1 ·
∑

1�x2�d
(x2,d)=d2

εkx2 · . . . ·
∑

1�xr�d
(xr ,d)=dr

εkxr

=
∑

1�x1�d
(x1,d)=d1

e
2πikx1

d ·
∑

1�x2�d
(x2,d)=d2

e
2πikx2

d · . . . ·
∑

1�xr�d
(xr ,d)=dr

e
2πikxr

d

=
∑

1�y1�m1

e
2πiky1

m1 ·
∑

1�y2�m2

e
2πiky2

m2 · . . . ·
∑

1�yr�mr

e
2πikyr

mr
(y1,m1)=1 (y2,m2)=1 (yr ,mr )=1
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= Φ(k,m1) · Φ(k,m2) · . . . · Φ(k,mr).

Hence

E = 1

d

d∑
k=1

Φ(k,m1) · Φ(k,m2) · . . . · Φ(k,mr). �

As was observed by Liskovets (personal communication) Ed(m1,m2, . . . ,mr) = Em(m1,m2,

. . . ,mr) for any d , m|d . Thus the function Ed(m1,m2, . . . ,mr) does not depend on d and we set

E(m1,m2, . . . ,mr) = 1

m

m∑
k=1

Φ(k,m1) · Φ(k,m2) · . . . · Φ(k,mr), (4.3)

where m = lcm(m1,m2, . . . ,mr). Recall that the Jordan multiplicative function φk(n) of order k

can be defined as (for more information see [12, p. 199], [20,33])

φk(n) =
∑
d|n

μ

(
n

d

)
dk.

From the above arguments we obtain the following proposition.

Proposition 4.2. Let Γ = F [g;m1, . . . ,mr ] be an F -group of signature (g;m1, . . . ,mr). Denote
by m = lcm(m1, . . . ,mr) the least common multiple of m1, . . . ,mr and let m|�. Then the number
of order-preserving epimorphisms of the group Γ onto a cyclic group Z� is given by the formula

Epi0(Γ,Z�) = m2gφ2g(�/m)E(m1,m2, . . . ,mr),

where

E(m1,m2, . . . ,mr) = 1

m

m∑
k=1

Φ(k,m1) · Φ(k,m2) · . . . · Φ(k,mr),

φ2g(�) is the Jordan multiplicative function of order 2g, and Φ(k,mj ) is the von Sterneck func-
tion.

In particular, if Γ = F [g; ∅] = F [g;1] is a surface group of genus g, then we have

Epi0(Γ,Z�) = φ2g(�).

Proof. By (4.1) and (4.2)

Epi0(Γ,Z�) =
∑
m|d|�

μ

(
�

d

)∣∣Hom0(Γ,Zd)
∣∣ =

∑
m|d|�

μ

(
�

d

)
d2g · Ed(m1, . . . ,mr).

By Lemma 4.1

Ed(m1, . . . ,mr) = 1

m

m∑
k=1

Φ(k,m1) · Φ(k,m2) · . . . · Φ(k,mr).

Hence

Epi0(Γ,Z�) =
∑

μ

(
�

d

)
d2g · E(m1, . . . ,mr).
m|d|�
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Inserting d = d1m and � = �1m we get

Epi0(Γ,Z�) = m2g
∑
d1|�1

μ

(
�1m

d1m

)
d

2g

1 · E(m1, . . . ,mr)

= m2gφ2g(�/m)E(m1,m2, . . . ,mr). �
We note that the condition m|� in the above proposition gives no principal restriction,

since Epi0(Γ,Z�) = 0 by the definition, provided that m does not divide �. An orbifold O =
O[g;m1, . . . ,mr ] will be called γ -admissible if it can be represented in the form O = Sγ /Z�,

where Sγ is an orientable surface of genus γ and Z� is a cyclic group of automorphisms of Sγ .

By the Koebe’s theorem there is an orbifold O = Sγ /Z� with signature [g;m1,m2, . . . ,mr ]
if and only if there exists � such that the number Epi0(π1(O),Z�) 	= 0 and the numbers γ ,
g, m1, . . . ,mr and � are related by the Riemann–Hurwitz equation 2 − 2γ = �(2 − 2g −∑r

i=1(1 − 1/mi)). Although the condition Epi0(π1(O),Z�) 	= 0 can be checked using Propo-
sition 4.2, for practical use it is more convenient to employ the following result by Harvey [17],
see [7,9] as well. The Wiman theorem [10, p. 131] ensures us that 1 � � � 4γ + 2 for γ > 1.

Theorem 4.3. [17] Let O = O[g;m1, . . . ,mr ] be an orbifold. Then O is γ -admissible if and
only if there exists an integer � such that following conditions are satisfied:

(1) m = lcm(m1,m2, . . . ,mr) divides � and m = � if g = 0;
(2) 2 − 2γ = �(2 − 2g − ∑r

i=1(1 − 1/mi)) (Riemann–Hurwitz equation);
(3) lcm(m1, . . . ,mi−1,mi,mi+1, . . . ,mr) = lcm(m1, . . . ,mi−1,mi+1, . . . ,mr) for each i =

1,2, . . . , r ;
(4) if m = lcm(m1,m2, . . . ,mr) is even, then the number of mj divisible by the maximal power

of 2 dividing m is even;
(5) if γ � 2, then r 	= 1 and r � 3 for g = 0; if γ = 1, then r ∈ {0,3,4}; if γ = 0, then r = 2 or

r = 0.

If γ > 1, then the integer � is bounded by 1 � � � 4γ + 2.

Using Theorem 4.3, see [7,9,21] as well, we derive the following lists of γ -admissible orb-
ifolds, for γ = 0,1,2,3. Employing Proposition 4.2 the numbers Epi0(π1(O),Z�) are calculated
for each orbifold in the list.

Corollary 4.4. The 0-admissible orbifolds are O = O[0;�2], with Epi0(π1(O),Z�) = φ(�) for
any positive integer �.

Corollary 4.5. Let O = O[g;m1,m2, . . . ,mr ] = S1/Z� be a 1-admissible orbifold. Then one of
the following statements holds:

O = O[1; ∅], with Epi0
(
π1(O),Z�

) =
∑
k|�

μ(�/k)k2 = φ2(�) for any �,

� = 2 and O = O
[
0;24], with Epi0

(
π1(O),Z�

) = 1,

� = 3 and O = O
[
0;33], with Epi0

(
π1(O),Z�

) = 2,

� = 4 and O = O
[
0;42,2

]
, with Epi0

(
π1(O),Z�

) = 2,
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� = 6 and O = O[0;6,3,2], with Epi0
(
π1(O),Z�

) = 2.

Corollary 4.6. Let O = O[g;m1,m2, . . . ,mr ] = S2/Z� be a 2-admissible orbifold. Then one of
the following statements holds:

� = 1 and O = O[2; ∅], with Epi0
(
π1(O),Z�

) = 1,

� = 2 and O = O
[
1;22] or O

[
0;26],

with Epi0
(
π1(O),Z�

) = 4,1, respectively,

� = 3 and O = O
[
0;34], with Epi0

(
π1(O),Z�

) = 6,

� = 4 and O = O
[
0;22,42], with Epi0

(
π1(O),Z�

) = 2,

� = 5 and O = O
[
0;53], with Epi0

(
π1(O),Z�

) = 12,

� = 6 and O = O
[
0;22,32] or O = O

[
0;3,62],

with Epi0
(
π1(O),Z�

) = 2,2, respectively,

� = 8 and O = O
[
0;2,82], with Epi0

(
π1(O),Z�

) = 4,

� = 10 and O = O[0;2,5,10], with Epi0
(
π1(O),Z�

) = 4.

Corollary 4.7. Let O = O[g;m1,m2, . . . ,mr ] = S3/Z� be a 3-admissible orbifold. Then one of
the following statements holds:

� = 1 and O = O[3; ∅], with Epi0
(
π1(O),Z�

) = 1,

� = 2 and O = O[2; ∅], O
[
1;24] or O

[
0;28],

with Epi0
(
π1(O),Z�

) = 15,4,1, respectively,

� = 3 and O = O
[
1;32] or O

[
0;35],

with Epi0
(
π1(O),Z�

) = 18,10, respectively,

� = 4 and O = O
[
1;22], O

[
0;23,42] or O

[
0;44],

with Epi0
(
π1(O),Z�

) = 12,2,8, respectively,

� = 6 and O = O
[
0;2,32,6

]
or O

[
0;22,62],

with Epi0
(
π1(O),Z�

) = 2,2, respectively,

� = 7 and O = O
[
0;73], with Epi0

(
π1(O),Z�

) = 30,

� = 8 and O = O
[
0;4,82], with Epi0

(
π1(O),Z�

) = 8,

� = 9 and O = O
[
0;3,92], with Epi0

(
π1(O),Z�

) = 12,

� = 12 and O = O
[
0;2,122] or O[0;3,4,12],

with Epi0
(
π1(O),Z�

) = 4,4, respectively,

� = 14 and O = O[0;2,7,14], with Epi0
(
π1(O),Z�

) = 6.
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5. The numbers of rooted maps on cyclic orbifolds

Notation. Let M be a rooted map on an orbifold O such that M = M̃/Z� = (D;R,L) is
a quotient of an ordinary finite map M̃ on a surface S. Thus O = S/Z�. It follows that each
branch index is a divisor of � and we can write O = O[g;2q2, . . . , �q� ], where qi � 0 denotes
the number of branch points of index i, for i = 2, . . . , �. In order to shorten the length of expres-
sions, given an orbifold O = O[g;2q2, . . . , �q� ] we denote the number of rooted maps with m

darts embedded in O such that each semiedge is endowed with a branch point of index two by
νO(m) = ν[g;2q2 ,...,�q� ](m) = NRMO(m). Also we use the convention νg(m) = ν[g;∅](m) denot-
ing the number of rooted maps with m darts on a surface of genus g. We note that in this case m

is necessarily even and νg(m) = Ng(m/2), where Ng(m/2) denotes the number of rooted maps
with m/2 edges on a surface of genus g.

We denote by v, f , m and s the number of vertices, faces, darts and semiedges of a map M

on an orbifold O , respectively. Since we are primarily interested in enumeration of maps without
semiedges we assume that a free-end of each semiedge is incident with a branch point of index
two. Hence 0 � s � q2. Moreover, by the Euler–Poincaré formula v − m−s

2 + f = 2 − 2g. By
Cor(M) we denote an ordinary rooted map on Sg which arises from M by using the following
rules:

(1) delete all semiedges of M ;
(2) if the root of M occupies a semiedge x in M , we choose a root of Cor(M) to be the first dart

following x in the local rotation of M sharing an edge of degree 2;
(3) if Cor(M) is a map without darts we consider it as a unique rooted map.

Given integers x1, x2, . . . , xq and y � x1 + x2 + · · · + xq we denote by(
y

x1, x2, . . . , xq

)
= y!

x1!x2! · · ·xq !(y − ∑q

j=1 xj )!
,

the multinomial coefficient. Note that the meaning of the symbol consistently extends also to the
case of non-negative y satisfying y < x1 + x2 + · · ·+ xq . In this case the multinomial coefficient
takes value 0.

Reconstruction of M from Cor(M). We start from the map Cor(M) which is an ordinary
rooted map with m−s

2 edges. How many different rooted maps M on the orbifold O come from
a fixed ordinary rooted map Cor(M)? We split the discussion into three subcases.

Case 1. Number of distributions of branch points which are not attached to semiedges.
We have to find the number of divisions of the set V (M) ∪ F(M) of cardinality v + f =

e + 2 − 2g into disjoint subsets of cardinalities q1, q2 − s, . . . , q�. This is just the number( m−s
2 + 2 − 2g

q2 − s, q3, . . . , q�

)
(see, for instance, [11, p. 62]).

Case 2. Number of distributions of semiedges if the root of M is not located at a semiedge.
The family of semiedges of M = (D,R,L) splits into families Si , i = 1,2, . . . , defined by the

following rule: A semiedge determined by a unique dart x belongs to Si if and only if x belongs
to a sequence of darts x0, x1, . . . , xi, xi+1 satisfying
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(i) xj = R(xj−1) for j = 1, . . . , i + 1;
(ii) for the initial and terminal darts we have L(x0) 	= x0 and L(xi+1) 	= xi+1, or R =

(x1, x2, . . . , xi);
(iii) for the internal darts xj = L(xj ), j = 1,2, . . . , i.

Set ci = |Si |
i

. Clearly, ci is the number of sequences of darts satisfying the above conditions
(i)–(iii).

We have s = ∑
ici � m − s, because a position of such a sequence in M is uniquely deter-

mined by choosing its initial dart x0, which is a dart of Cor(M) as well. Note that cj = 0 if j > s.
Given partition s = c1 + 2c2 + · · · + scs we have(

m − s

c1, c2, . . . , cs

)
choices to distribute the respective sequences of semiedges in Cor(M). Denote by Par(s) the
set of partitions of s. In what follows we write a partition of s in the exponential form as
1c12c2 · · · scs .

It follows that the total number of distributions of semiedges is∑
Par(s)

(
m − s

c1, c2, . . . , cs

)
,

where the sum runs through all non-negative solutions (c1, c2, . . . , cs) of the equation x1 +2x2 +
· · · + sxs = s.

In fact it makes sense to consider only partitions satisfying c1 + c2 + · · · + cs � m − s but
in view of the remark after the definition of the multinomial coefficient the expression is correct
even if we do not write this condition in the subscript of the sum.

Case 3. The root of M lies on a semiedge.
By the definition of Cor(M) the position of the root of M is determined by the position

of the root of Cor(M) up to its position in the internal part of a sequence x0, x1, . . . , xi, xi+1
satisfying (i)–(iii). We use one semiedge z0 for the root. The remaining s − 1 semiedges have to
be distributed in m − (s − 1) = m − s + 1 places which are given by darts of Cor(M) and by z0.
Similar arguments as in Case 2 apply. We get∑

Par(s−1)

(
m − s + 1

c1, c2, . . . , cs−1

)

distributions in this case.

The number s of semiedges takes only values of the same parity as m, since we are assuming
that m−s

2 is the number of edges of Cor(M) which is an integer. Denote by p(m, s) the parity
function taking the value 0 if the numbers have different parity and 1 otherwise.

Given the integers n and s let

β(n, s) =
∑

Par(s)

(
n

c1, c2, . . . , cs

)
.

We set β(n,−1) = 0 and β(n,0) = 1 as well.
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Summarizing all the above calculations we finally get:

νO(m) =
q2∑

s=0

p(m, s)
(
β(m − s, s) + β(m − s + 1, s − 1)

)

×
( m−s

2 + 2 − 2g

q2 − s, q3, . . . , q�

)
Ng

(
m − s

2

)
.

The following lemma significantly simplifies the computation of β(n, s).

Lemma 5.1.

β(n, s) =
(

n + s − 1

s

)
.

Proof. By the multinomial formula [11, p. 123] we have

(
1 + x + x2 + x3 + · · ·)n =

∞∑
s=0

∑
c1+2c2+···+scs=s

(
n

c1, . . . , cs

)
xc1x2c2 · · ·xscs

=
∞∑

s=0

β(n, s)xs .

On the other hand,(
1 + x + x2 + x3 + · · ·)n = 1

(1 − x)n
=

(
n − 1

0

)
+

(
n

1

)
x + · · · +

(
n + s − 1

s

)
xs + · · · .

Comparing the coefficients of xs we get the result. �
Since β(m− s, s)+β(m− s +1, s −1) = (

m−1
s

)+ (
m−1
s−1

) = (
m
s

)
we have proved the following

statement.

Proposition 5.2. Let O = O[g;2q2 , . . . , �q� ] be an orbifold, qi � 0 for i = 2, . . . , �. Then the
number of rooted maps νO(m) with m darts on the orbifold O is

νO(m) =
q2∑

s=0

(
m

s

)( m−s
2 + 2 − 2g

q2 − s, q3, . . . , q�

)
Ng

(
(m − s)/2

)
, (5.1)

with the convention that Ng(n) = 0 if n is not an integer.

6. Counting unrooted maps on the sphere

In this section we apply the above results to calculate the number of unrooted maps with given
number of edges on the sphere. These numbers were derived by Liskovets in [23,24].

First we deal with the numbers νO(m) where O is one of the spherical orbifolds O = O[0;�2].
If � > 2 then the number s of semiedges of a rooted map M which are lifted to a spherical

map with m� darts is equal to 0. By Proposition 5.2 we have

ν[0;�2](m) =
(m

2 + 2
)
N0(m/2), � > 2 and m even,
2
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and

ν[0;�2](m) = 0, � > 2 and m odd.

If � = 2, then O = O[0;22] and the number of semiedges is s = 0 or s = 2 for m even and it
is s = 1 for m odd.

By Proposition 5.2

ν[0;22](m) =
(m

2 + 2

2

)
N0(m/2) +

(
m

2

)
N0(m/2 − 1), if m is even,

and

ν[0;22](m) = m

(
m − 1

2
+ 2

)
N0

(
(m − 1)/2

)
, if m is odd.

Now we are ready to apply our formula to express the number of ordinary unrooted maps
on the sphere with e edges in terms of the Tutte numbers N0(e) denoting the number of rooted
ordinary maps with e edges on the sphere [37].

We distinguish two cases.

Case 1. The number of edges e is even. Note that n = 2e and n ≡ 0 mod 4.
We have

Θ0(e) = NUM(n) = 1

n

∑
�|n

n=�m

∑
O∈Orb(S0/Z�)

Epi0
(
π1(O),Z�

)
νO(m).

Writing the terms for � = 1 and � = 2 separately and using the fact that given � > 1 there is only
one 0-admissible orbifold, namely O[0;�2], with Epi0(π1(O),Z�) = φ(�) (see Theorem 4.4),
we get

Θ0(e) = 1

n

(
ν0(n) +

(n
4 + 2

2

)
ν0(n/2) +

(n
2
2

)
ν0(n/2 − 2)

+
∑

�|n,�>2
n=�m,m even

φ(�)

(m
2 + 2

2

)
ν0(m)

)
.

Using e = 2n, ν0(n) = N0(
n
2 ) = N0(e) and ν0(m) = N0(

m
2 ) we rewrite it as follows:

Θ0(e) = 1

2e

(
N0(e) +

(
e

2

)
N0(e/2 − 1) +

∑
�|e
��2

φ(�)

( e
�

+ 2

2

)
N0(e/�)

)
.

Setting d = e
�

we have

Θ0(e) = 1

2e

(
N0(e) +

(
e

2

)
N0(e/2 − 1) +

∑
d|e
d<e

φ(e/d)

(
d + 2

2

)
N0(d)

)
, (6.1)

where e is an even number.
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Assume now that n ≡ 2 mod 4. Then extracting the first two terms from the sum and inserting
n = 2e we get

Θ0(e) = 1

2e

(
N0(e) + e

(
e − 1

2
+ 2

)
N0

(
(e − 1)/2

) +
∑

�|n=2e,�>2
n=�m,m even

φ(�)

(m
2 + 2

2

)
ν0(m)

)
.

All the conditions in the sum are satisfied if and only if m = 2d for some d|e. Hence we have

Θ0(e) = 1

2e

(
N0(e) + e

(
e − 1

2
+ 2

)
N0

(
(e − 1)/2

) +
∑
d|e
d<e

φ(e/d)

(
d + 2

2

)
N0(d)

)
(6.2)

for e odd. Hence we have proved the following result of Liskovets [23]. Recall that N0(e) denotes
the number of rooted planar maps with e edges and is given by N0(e) = 2(2e)!3e

e!(e+2)! (Tutte [37]).

Theorem 6.1. [23] The number of oriented spherical unrooted maps with e edges is given by
(6.1) if e is even, and (6.2) if e is odd.

7. Counting unrooted maps on surfaces of genus 1, 2 and 3

The aim of this section is to derive a more explicit formula for counting unrooted maps on
surfaces of genera 1, 2 and 3. The list of 1-admissible orbifolds and the respective numbers
Epio(π1(O),Z�) were derived in Theorem 4.5. Rooted toroidal maps were enumerated in [2]. It
was proved that

N1(e) =
e−2∑
k=0

2e−3−k
(
3e−1 − 3k

)(e + k

k

)
.

Following Theorem 1.1 and taking into account Corollary 4.5 we have

Θ1(e) = NUM1(n) = 1

n

(
ν[0;24](n/2) + 2ν[0;33](n/3) + 2ν[0;2,42](n/4) + 2ν[0;2,3,6](n/6)

+
∑
�|n

n=�m

∑
k|�

μ(�/k)k2ν1(n/�)

)
. (7.1)

Since ν1(n/�) = N1(e/�) for e = n/2, it remains to calculate the numbers of rooted maps on
orbifolds O[0;24], O[0;33], 0[2;42] and O[0;2,3,6].

By Proposition 5.2 we have

ν[0;33](m) =
(m

2 + 2

3

)
N0(m/2), (7.2)

for m even, and it is 0 for m odd.
For the orbifold O = O[0;2,42] we have

ν[0;2,42](m) =
(m

2 + 2
)
N0(m/2), m even, (7.3)
1,2
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and

ν[0;2,42](m) = m

(m−1
2 + 2

2

)
N0

(
(m − 1)/2

)
, m odd. (7.4)

For the orbifold O = O[0;2,3,6] we get

ν[0;2,3,6](m) =
(m

2 + 2

1,1,1

)
N0(m/2), m even, (7.5)

and

ν[0;2,3,6](m) = m

(m−1
2 + 2

1,1

)
N0

(
(m − 1)/2

)
, m odd. (7.6)

And finally, by Proposition 5.2 we get

ν[0;24](m) =
(m

2 + 2

4

)
N0(m/2) +

(
m

2

)(m−2
2 + 2

2

)
N0

(
(m − 2)/2

)
+

(
m

4

)
N0

(
(m − 4)/2

)
(7.7)

for m even.

Table 1
The numbers of rooted and oriented unrooted maps on the torus with at most 30 edges

No. edges No. rooted maps No. unrooted maps

02 1 1
03 20 6
04 307 46
05 4280 452
06 56914 4852
07 736568 52972
08 9370183 587047
09 117822512 6550808
10 1469283166 73483256
11 18210135416 827801468
12 224636864830 9360123740
13 2760899996816 106189359544
14 33833099832484 1208328304864
15 413610917006000 13787042250528
16 5046403030066927 157700137398689
17 61468359153954656 1807893066408464
18 747672504476150374 20768681225892328
19 9083423595292949240 239037464947999900
20 110239596847544663002 2755989928117365244
21 1336700736225591436496 31826208029615881656
22 16195256987701502444284 368074022535205870382
23 196082659434035163992720 4262666509741017440552
24 2372588693872584957422422 49428931123444048643388
25 28692390789135657427179680 573847815786545413529104
26 346814241363774726576771244 6669504641624799675973078
27 4190197092308320889669166128 77596242450201993985513136
28 50605520500653135912761192668 903670008940406050891508432
29 610946861846663952302648987552 10533566583563768540393559344
30 7373356726039234245335035186504 122889278767322703855171530872
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For m odd Proposition 5.2 implies

ν[0;24](m) = m

(m−1
2 + 2

3

)
N0

(
(m − 1)/2

) +
(

m

3

)(
m − 3

2
+ 2

)
N0

(
(m − 3)/2

)
(7.8)

for odd m.
Now we are ready to formulate the statement establishing the number of unrooted toroidal

maps with given number of edges.

Theorem 7.1. The number of oriented unrooted toroidal maps with e edges is

1

2e

(
α(e) +

∑
�|e

φ2(�)N1(e/�)

)
,

where

α(e) = ν[0;24](e) + 2ν[0;33](2e/3) + 2ν[0;2,42](e/2) + 2ν[0;2,3,6](e/3), if e ≡ 0 mod 12,

α(e) = ν[0;24](e), if e ≡ ±1,±5 mod 12,

α(e) = ν[0;24](e) + 2ν[0;2,42](e/2), if e ≡ ±2 mod 12,

α(e) = ν[0;24](e) + 2ν[0;33](2e/3) + 2ν[0;2,3,6](e/3), if e ≡ ±3 mod 12,

α(e) = ν[0;24](e) + 2ν[0;2,42](e/2), if e ≡ ±4 mod 12,

α(e) = ν[0;24](e) + 2ν[0;33](2e/3) + 2ν[0;2,42](e/2) + 2ν[0;2,3,6](e/3), if e ≡ 6 mod 12.

Let us remark that φ2(�) denotes the Jordan function of order 2 and the other functions used in
the statement are defined by (7.2)–(7.8).

Let us remark that the initial values confirm the available data for e � 6 obtained by Walsh
[41] (the sequence M4253 in [32]).

The statements establishing Θγ (e) for genus two and genus three surfaces follow.

Theorem 7.2. The number of oriented unrooted maps on genus two surface with e edges is given
by the formula

1

2e

(
N2(e) + 4ν[1;22](e) + ν[0;26](e) + 6ν[0;34](2e/3) + 2ν[0;22,42](e/2) + 12ν[0;53](2e/5)

+ 2ν[0;22,32](e/3) + 2ν[0;3,62](e/3) + 4ν[0;2,82](e/4) + 4ν[0;2,5,10](e/5)
)
,

where νO(m) is defined in (5.1) and Ng(e) is the number of rooted maps of genus g.

Theorem 7.3. The number of oriented unrooted maps on genus three surface with e edges is
given by the formula

1

2e

(
N3(e) + 15N2(e/2) + 4ν[1;24](e) + ν[0;28](e) + 18ν[1;32](2e/3) + 10ν[0;35](2e/3)

+ 12ν[1;22](e/2) + 2ν[0;23,42](e/2) + 8ν[0;44](e/2)

+ 2ν[0;2,32,6](e/3) + 2ν[0;22,62](e/3) + 30ν[0;73](2e/7)

+ 8ν[0;4,82](e/4) + 12ν[0;3,92](2e/9) + 4ν[0;2,122](e/6)

+ 4ν[0;3,4,12](e/6) + 6ν[0;2,7,14](e/7)
)
,

where νO(m) is defined in (5.1) and Ng(e) is the number of rooted maps of genus g.
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Table 2
The numbers of rooted and oriented unrooted maps of genus two with at most 30 edges

No. edges No. rooted maps No. unrooted maps

04 21 4
05 966 106
06 27954 2382
07 650076 46680
08 13271982 830848
09 248371380 13804864
10 4366441128 218353000
11 73231116024 3328822880
12 1183803697278 49325772812
13 18579191525700 714586880940
14 284601154513452 10164338225482
15 4272100949982600 142403410942816
16 63034617139799916 1969831979334086
17 916440476048146056 26954132420126920
18 13154166812674577412 365393525753591368
19 186700695099591735024 4913176199287631232
20 2623742783421329300190 65593569635906036912
21 36548087103760045010148 870192550284377429780
22 505099724454854883618924 11479539192932030062066
23 6931067091334952379275496 150675371553731499821264
24 94498867785495807431128548 1968726412209522334197356
25 1280884669005154962723094680 25617693380147483835449016
26 17269149245085316894987194432 332099023944121243161761560
27 231687461653506761485020818832 4290508549139665515691123744
28 3094389154894054750463387898444 55256949194539206365604601052
29 41156529959321075124439691833704 709595344126234852207569048760
30 545290525617230994007326084007416 9088175426953885980802745018758

Tables 1–3 were computed using MATHEMATICA, Ver. 4. The input numbers of rooted maps
come from [6] for genus 1, and from [4] for genus 2 and 3.

Concluding remarks. There was some progress since the manuscript of this paper was sub-
mitted. Recently, we successfully employed the method presented in this paper to derive a
formula for the number of unrooted hypermaps of a given genus with a given number of darts;
equivalently, we can enumerate the numbers of conjugacy classes of subgroups of the free
group of rank 2 of a given genus and index. Liskovets investigated properties of the function
E(m1,m2, . . . ,mr) defined by (4.3) and found its expression in a multiplicative form.
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Table 3
The numbers of rooted and oriented unrooted maps of genus three with at most 30 edges

No. edges No. rooted maps No. unrooted maps

06 1485 131
07 113256 8158
08 5008230 313611
09 167808024 9326858
10 4721384790 236095958
11 117593590752 5345316004
12 2675326679856 111472798586
13 56740864304592 2182345314816
14 1137757854901806 40634231364914
15 21789659909226960 726322104184848
16 401602392805341924 12550075287918360
17 7165100439281414160 210738250570954064
18 124314235272290304540 3453173212810875280
19 2105172926498512761984 55399287587418128520
20 34899691847703927826500 872492296405529104608
21 567797719808735191344672 13518993329700676078500
22 9084445205688065541367710 206464663769623968602698
23 143182713522809088357084720 3112667685295345475820652
24 2226449757923955373340520612 46384369956820665320587902
25 34199303698053326789771187600 683986073961364663577206704
26 519494783678325912052481379156 9990284301507510446092217236
27 7811251314435936176791882965696 44652802119189104865404688680
28 116359017952552222876280159315184 2077839606295596379211506191640
29 1718465311469518829323877355423840 29628712266715926913818949155968
30 25178356967150456246664822271180140 419639282785841282782195528667536
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