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1. Introduction 

Enumerat ion problems which can be solved by  applying P61ya's Theorem [9] or Burn- 

side's Lemma [1] always require a formula for/V(A), the number  of orbits of group A, or 

a formula for its cycle index Z(A). For example, P61ya [9] expressed the cycle index of the 

wreath product A[B] of A around B in terms of the cycle indices Z(A) and Z(B). This 

result played a key role in the enumeration of k-colored graphs [13] and nonseparable 

graphs [14]. 

The exponentiation group [B] A of two permutat ion groups A and B was defined by  

Hara ry  in [3]. I t  is abstractly isomorphic to the wreath product of A around B. But  while 

A[B] has as its object set the cartesian product X • Y of the object sets of A and B, [B] ~ 

acts on yx,  the functions from X into Y. Formulas for Z([Sn] z*) and Z([S2] z~) were found 

b y  Hara ry  [2] and Slepian [16] respectively. Harrison and High [6] have constructed an 

algorithm for finding Z([B] z') and have used their results to enumerate Post functions. 

In  this paper we verify an explicit general formula for Z([B] A) in terms of Z(A) and Z(B) 

for any A and B. The result is easily obtained by  substituting certain operators for the 

variables of Z(A) and then letting them act on Z(B). Several applications will then be 

sketched, including the enumeration of boolean functions, bicolored graphs, and Post  

functions. 
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The matr ix  group [A; B] introduced in [8] is another useful representation of the 

wreath product. I t  can be viewed as acting on classes of matrices with A permuting the 

rows among themselves while the row entires arc permuted independently by elements of 

B. Our formula for the number  N[A; B] of orbits of this group generalizes Redfield's 

Enumerat ion Theorem [12] and enables us to enumerate a variety of interesting combina- 

torial structures. These include multigraphs or multidigraphs with a specified number  of 

points and lines, and superpositions of interchangeable copies of a given graph or digraph. 

For definitions and results not given here we refer to the books [4, 5]. 

2. Permutation groups 

Let  A be a permutat ion group with object set X = { 1 ,  2 ..... m}. The order of A is 

denoted by  [A ] and the degree of A is m. For any permutat ion ~ in A, we denote by  ?'k(~) 

the number of cycles of length k in the disjoint cycle decomposition of ~. The cycle type 

Z(~) is the monomial in the variables a 1, a S ... . .  a m defined by  Z(~)=1-I~-1 a~r The cycle 

index Z(A) is 

I t  is often convenient to use the expression 

Z(A) =Z(A; eh, a S ..... am) 
to display the variables used. 

Let  B be another  permutat ion group of order ]B[ and degree n with object set Y = 

{1, 2 ... . .  n}. The wreath product of A around B, denoted A[B], is a permutat ion group with 

object set X • Y. For each permutat ion ~ in A and each function ~ from X into B there is 

a permutat ion in A[B] denoted (~, ~) such tha t  for every element (x, y) of X x Y 

(o:, ~)(x, y) = (ax, ~(x)y). 

I t  is easily checked tha t  this is a collection of permutat ions closed under composition and 

hence forms a group. 

For each integer k >/1, let 

Zk(B ) = Z(B; bk, b~, ..... b,a,). 

Thus Zk(B) is the polynomial obtained from Z(B) by multiplying each subscript by  

k. P61ya [9, p. 180] used his enumeration theorem to establish the following formula for 

Z(A[B]). 

THrOREM 1 (P61ya). The cycle index Z(A[B]) is obtained by replacing each vari~le 

ak o/Z(A) by the polynomial Z~(B); symbolically 



E N U M E R A T I O N  U N D E R  R E P R E S E N T A T I O N S  O F  T H E  W R E A T H  P R O D U C T  125 

Z(A[B]) = Z(A; Z~(B), Z2(B) ..... Zm(B)). 

Our formulas for the cycle index of the exponentiation group and the number  of or- 

bits of the matr ix  group are considerably more complicated than tha t  of Theorem 1 but 

are similar in tha t  they involve the replacement of each variable ak in Z(A) by a suitable 

transformation of Z(B) which depends on k. 

A generalization of the wreath product is possible when A is intransitive. Suppose 

X = [J ~=1 Xt and each X~ is a union of transit ivi ty sets of A. Let  B 1 ..... Bt be permutat ion 

groups with disjoint object sets Y1 .. . .  , Yt respectively. The generalized wreath product, 

denoted A[B 1 . . . .  , Bt], acts on U ~ I  X~ • Y:. For each ~ in A and each sequence T1 ..... Tt 

with each ~ in B~ ~ there is an element denoted (a; zl, z2 ... . .  zt) in A[B 1 . . . . .  Bt] defined as 

follows. For any  (x, y) in X~ • Y~ 

(~: vl .. . . .  vt) (x, y) = (o~x, z,(x)y). 

To express the cycle index of this group we require the cycle index of A in the ge- 

neralized form introduced by  PSlya [9, p. 174]. For each :r in A let 

t 

Z x  ...... x , (a )  = YI 1-I ~,."J<"8) 
t = l  8 

where j(i, s) is the number  of cycles of length s induced by  ~ in X~. Then let 

1 ~ Zx ...... x,(o:). 

As asserted in [14, p. 336] 

Z(A[B1, ..., Bt]) - Zx ...... x,(A) [a~.8~Zs (Bt)] 

where the arrow indicates substitution. 

When t = 1, X = X 1 and B = B 1, this formula gives the same result as Theorem 1. 

3. The exponentiation group 

The permutat ion groups A and B have object sets X = (1, 2, ..., m)  and Y = (1, 2, ..., n)  

respectively. Since the wreath product acts on X • Y, it can be viewed as permuting the 

subsets of X • Y which correspond to functions from X into Y. This representation of the 

wreath product is called the exponentiation of A and B and is denoted by  [B] A. Thus each 

element (:r v) of the wreath product A[B] permutes the functions / in y x  according to the 

rule 



126 E .  M.  P A L M E R  A N D  R .  W .  R O B I N S O N  

((~, z)/)x = ~(x)(/(~-Ix)) 
for each x in X. 

To state the theorem which expresses Z([B] A] in terms of Z(A) and Z(B) we require 

the next few definitions. Let R = Q[bl, bs .... ] be the ring of polynomials in the commut- 

ing variables bl, b s .... over the ring Q of rational numbers. 

Now we recall the cartesian product operation • on R introduced by Harary [2]. For 

two monomials in R we define 

/~11/jt / J r .  v /~t:lkta 1,in - -  T -T  l~(s. t ) Js t  t 
~ l V 2  " ' "  t'rn ^ ~ ' lU2  " " ~ n - -  s : l  ~--llt '[s't]: (1) 

where Is, t] and (s, t) denote the 1.c.m. and g.c.d, respectively. I t  is clear tha t  this operation 

is associative for monomials. Then • is the unique Q-bilinear operation on R which satis- 

fies (1). We leave it in to the reader to check tha t  x is associative. 

Given any set S, we define scalar multiplication over Q, addition and multiplication for 

the elements of R s as follows. For every / and g in R s, ~t in Q and P in S: 

(;~/)P = ;t(/P) (2) 

( /+g)P = / P + g P  (3) 

(/g)P = / P  • gP. (4) 

With these operations R s becomes a commutat ive ring over Q, to be denoted by  

S(+, • 
For each positive integer r let I r be the unique Q-linear element of R( + ,  • ) which 

satisfies 

w.oro , . '  = v ~ (~ ks ('.w~ (6) 

the inside sum to be taken over all divisors k of w/(r, w). From the Q-linearity of IT we have 

I,(Z(B))= [-~ ~I,(Z(fl))" 

THEOREM 2. The cycle index Z([B] A) is the image o/Z(B) under the/unction obtained 
by substituting the operator Ir /or the variables a, in Z(A ); symbolically 

Z([B] A) = Z(A; 11 . . . . .  Im)Z(B). 
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Before launching the proof of Theorem 2 we illustrate its use by finding the cycle in- 

dex of a well known exponentiation group. Let  A --S s and B = S  2, the symmetric groups of 

degree three and two respectively. We seek the cycle index of [S~] s', which is the group of 

the cube. First we substitute the operator I r for each variable a~ in Z(Ss): 

1 
Z(Ss, 11, -/2, Is) = ~; (-/31 + 31112 + 2-/s). 

0. '  

The terms of (7) act on Z(S2) as follows: 

131 (Z(S2)) = 11 (Z(~2))  x I 1 (Z(~2))  x 11 (Z(S2))  

I l I  ~ (Z(S~)) = 11 (Z(Sz)) • 12 (Z(S2)). 

I t  follows from the definitions (5) and (6) that  

1 1 (Z(S~)) = Z(S2) = �89 (b31 + b2) 
and 

12 (Z(S2)) = �89 (12 (b31) + 12 (b2)) 

= �89 (b~b2 + b4) 
and 

I s (Z(S2)) = �89 (I s (b31) + I s (b2)) 

= �89 (b31 b~ + b2 be). 

(7) 

(8)  

From (8) and the definition of the cartesian product • for polynomials, we find 

131 (Z(Z(S~)) = ~ (58 + 7b~) 

1 4 2 b~-2b~). 1 1 1 5 (Z(S~)) = ~ (bib2 + 

Having determined the images of Z(S2) under I31, 1 1 Is and I s we have by linearity 

its image under Z(Ss; 11, I2, Is): 

1 (bS + ~ 54 b~ • 8 b~ b~ + 13 b~ + 8 b 2 56 + 12 b~). (9) Z ( [ S 2 ] s ' ) = 3 . - ~  v 1 2 T  

This result agrees pleasantly with the formula for the cycle index of the group of the cube 

worked out by P61ya [10]. 

The hardest part  of these calculations occurs in the evaluation of/,(1-~-1 b~ k) by for- 

mulas (5) and (6). But  it is helpful to note that  if (r, v) = I, then iv =iv and i fp  is prime, then 

if PXr 

(]~-]I)/P if pit. [ 
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Furthermore, with the aid of these observations, it can be seen tha t  

I s b = [l~(j , 4) /  h),(J ,+JDhJaC2Jz+3J,-1) /2 
~ ~'4 " 6  � 9  ) 

and 

Is b ~ / j ( h  YD/ ~.((h+21,p_21r~)/6~.((h+81,)s_tT)l 0 
~ u $  ~ ' 6  u 9  �9 �9 �9 ) �9 

4. Proof  of  Theorem 2 

Let A and B be permutat ion groups with object sets X={1, ..., m} and Y={1 ..... n} 
respectively. 

For the first par t  of the proof assume ~ in A is the cycle (1 2 ... m), fix fl in B and 

consider any V in B x such tha t  

m:(m)T(m-- 1) ... "r(2)'~(1) = ,8. (I0) 

We wish to determine the number  of functions in yx left fixed by  (~, T) ~ where (~, T) is 

viewed as a number  of [B] A. Equivalently, we want the number  of functional subsets of 

X • Y left fixed by  (~, v) ~ where (~, T) is considered as a member  of A[B]. The lat ter  view- 

point is the one taken in the sequel. For any  y in Y we have 

(a, T)(1, y) = (a l ,  T(1)y) = (2, T(1)y) 

(~, V)2(1, y) = (3, T(2)V(1)y) 

(~, T)m(], Y) = 0 ,  T(m) ... , ( 1 ) y )  = (1,/~y) 

(~, ,)m~(], y) = (1, ~ y )  

(a, , ) '* (1 ,  y) = (1, y) 

where k is the least number  such tha t  ~ y  = y. Tha t  is, k is the length of the cycle to which 

y belongs in the disjoint cycle decomposition of ft. 

Thus (1, y) falls in a cycle of length mk in the cycle decomposition of (~, ~). Call this 

cycle C. The cycle into which (1, y) falls in the cycle decomposition of (~, T)" is found by  

taking every v ' th  member  of C, starting with (1, y). Call this cycle C~. The situation is 

illustrated in Figure 1 for the case m =  10, k=3, and v = 12. 

Let  s be the length of C,. The v ' th  power of any cycle of length mk consists of (v, ink) 
cycles of length mk/(v, mk). Hence s = mk/(v, ink). Now a necessary condition for a function 

] containing (1, y) to be fixed by  (~, T) ~ is tha t  / also contain all the other pairs in C,. In  
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F~gure l .  D i a g r a m  of C a n d  C v w i t h  k = 3 ,  m =  10, v = 12. 
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particular, C~ must not contain any pair of the form (1, y') with y'  #y .  This means that  

for 1 <~p <s, vp must not be a multiple of m. Therefore s ~m/(m, v). But sv is a multiple of 

m and hence we also have s=m/(m, v). But m/(m, v)=ink(ink, v) just if k I (v/(v, m)). 

Conversely, it is easily seen that  if y is in a cycle of length k in the cycle decomposition 

of fl and k](v/(v, m)), then (1, y) is in a cycle C, of length m/(m, v) induced by (:r v)L 

Moreover Cv is functional when viewed as a set of pairs, since there is nothing special about 

1 in the preceding analysis. The domain of C, contains j for 1 ~<j~m just if 

j+mq = 1 +rv 

for some integers q, r. This implies tha t  j = 1 modulo (m, v), a condition satisfied by exactly 

m/(m, v) integers between 1 and m. Since m/(m, v) is the length of C, and Cv is functional, 

the domain of Cv must contain all of these numbers. That  is, the domain of Cv is exactly 

{ill<~i<~m and i - 1  modulo (m,v)}. 

The pairs in C, are determined by (1, y) and (~, ~)~, and i f / (1)  = y  and (~, ~ ) ' / = / t h e y  

must all appear i n / .  This determines / on the domain of Cv. All tha t  is needed to deter- 

mine any / left fixed by (~, T) v, then, are the values/(1) , / (2)  ..... /((m, v)) since there is 

nothing special about 1 in the above analysis. 

Recall that  the cycle type Z(fl) of fl is b~' b~' ... b~". For any integer i between 1 and 

(m, v) the number of choices available for ](i) where (~, T)v/=/is ~*=~1 kjk; the asterisk 

9 -  732906 Acta  mathemativa 131, Imprim6 le 22 Octobre 1973 
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represents the restriction of the summation index k to divisors of v/(m, v). Since the (m, v) 

choices for/(1)  ..... /((m, v)) are independent, there are a total of 

n . \ ( r e . v )  

functions left fixed by (a, ~)~ 

Now let i~ be the number of cycles of length w in the cycle decomposition of (a, ~) 

viewed now as acting on YX. Then 

w/~ = ( 5 .  ~s 
wJv 

An explicit formula for iv is obtained by  an application of mhbius inversion, giving 

the formula (6) for the definition of Ira. Consequently the cycle type Z(a, ~) of (~, ~) act- 

ing on y x  is just Im(Z(fl)). There are [B] m-1 functions T in B x which satisfy (10) since 

v(m) ..... v(2) may be chosen from B arbitrarily, and then ~(1) is uniquely determined. 

Summing over all ~ satidying (10) we have 

Summing over all fl in B, which allows ~ to run through all of B x, and applying the 

linearity of I~, we find 
1 

~_, "~) = Im(Z(B)). (11) 

l~ow consider the case when ~ is a product of disjoint cycles ~1 and ~2 of lengths m 1 

and m2 respectively. We can view (~, v) for v in B x as the product of (%, Vl) and (~,  ~2) 

where v 1 and T2 are the restrictions of ~ to the elements permuted by ~1 and ~2. I f /1  and/~ 

are the restrictions to ~1 and ~ of a function / in yx, then we have /=Ix  U/3 and (~, ~ ) /=  

(%, vl)/1 U (~1, v2)/2, the unions being disjoint. Thus if/1 is in a cycle C x of length p induced 

by  (~1, ~2) and/3 is in a cycle C a of length q induced by (~,  v2), then / is in a cycle of length 

[p, q] induced by (~, T). The total pq of functions obtained by pairing one from C 1 with one 

from C~ must be divided into (p, q) cycles of length [p, q]. This corresponds to taking a 

factor b~ from Z(%, vl) and bq from Z(~ ,  v~) and finding b~ • bq =l'~ in Z(~, ~). These 

factors may  be chosen independently, and so using the associativity of the cartesian pro- 

duct operation • we find that  

Z(o~, "~) = Z(O~l, '~1) xZ (o~ ,  T2). 

Applying (11) to the cycles ~1 and ~2 we have for i --1,  2 
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1 Z 

where the sum is over all 75 from the set of elements permuted by ~ into B. Consequently 

1 
~ x Z ( ~ '  7) = Ira, (Z(B}) • Ira, (Z(B))  = I m ,  I , , ,  (Z(B)), 

the second step in view of the fact tha t  I ~  and Ira, belong to the ring R( +,  x ) for all 

algebraic purposes. 

This line of reasoning works as well when ~ is any product of disjoint cycles and so 

in general 
1 

m ~ Z(~, 7) = I ' ~ ' I ~ . . .  I~ '~(Z(B))  (12) 
] B ~eBx 

Z m u~ where (~) = ~ - 1  ak. The proof is concluded by summing (12) over all a in .4, and divid- 

ing by la I. 
The generalized wreath product A[B~ . . . . .  Bt] acting on LJ~=I Xt • Yt induces a group 

[ B  1 . . . .  , Bt] A which acts on y~r~ • • ytx~. This induced group is a generalized exponentia- 

tion group whose cycle index we shall now express. 

For any t-tuple (P~ . . . .  , P t )  in R t, any i = 1 to t and any positive integer s, let 

I, .~(P~ . . . . .  P~) = I , ( P , )  

On viewing the operators 1~,, as belonging to the ring R t ( + ,  x ), the cycle index formula 

is given by 

Z([B~ . . . . .  Bt] 4) = Z x  ...... x , (A )  [a,, s ~ I,.,] (Z (B , )  . . . . .  Z (Bt )  ). (13) 

The proof of (13) requires only straightforward modification of the proof of Theorem 2. 

5. Applications of  Theorem 2 

We shall now outline a few of the results which require the cycle index of an expo- 

nentiation group. 

A boolean function of n variables can be regarded as a mapping from the set of alI 

n-sequences of zeros and ones into {0, 1}. Hence it corresponds to a subset of the points 

of the n-cube Qn- P61ya [10] regarded two such subsets as equivalent if an automorphism 

of Qn takes one to the other. Denoting the group of the n-cube by  F(Q,), he used his enu- 

meration theorem to obtain the following result: the number N ( n ,  r) of boolean functions 

of n variables which have exactly r nonzero values is the coefficient of x r in Z(F(Q.), 1 +x). 

As observed in i2], F(Q.) and [$2] s. are identical and hence Theorem 2 can be used 

to complete this enumeration problem. 
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On substituting 1 +x  in Z([S~]S*), given by formula (9), we have 

1 +x+3x2+3xa+6x4+3xS+3xe+xT+x s. 

Then, for example, there are 6 boolean functions with 4 nonzero values. The 6 cubes which 

correspond to these functions are shown in Figure 2 where dark points represent the non- 

zero values. 

Figure 2. The 6 cubes wi th  4 points  of each value. 

PSlya calculated Z(F(Qn)) for n~<4 and Slepian [16] found a general method for cal- 

culating this cycle index and applied it for n = 5 and 6. 

A Post/unction of n variables can be defined as a mapping from the set of all n-sequen- 

ces of the numbers 0, 1, 2 ..... m - 1  into the set (0, 1 ..... m - 1 ~ .  When m = 2, these are 

just boolean functions and their total number, when equivalence is determined by the 

group [S~] s" of the n-cube, is Z([S2] s~, 2). When m variables are present, the number of 

Post functions is Z([Sm] sn, m) as mentioned in [6]. Harrison and High used their method 

for deriving the cycle index of the exponentiation group to calculate some of the values 

of Z([Sm] sn, m). They also found the number of Post functions under different equivalences 

determined when Sm is replaced by the cyclic or dihedral groups of degree m. 

The exponentiation group was also used by Harary [2] to count bicolored graphs: the 

number of bicolored graphs with r lines and n points of each color is the coefficient of x r 

in Z([S~] s~, 1 +x). 

An explicit formula for Z([Sn] s.) was found in [2] but our general formula also applies. 

For example, Theorem 2 can be used to find that  

Z([Sa]S') = ~2 (b~ + 12 by b~ + 8 b~ + 9 b 1 b~ + 18 b 1 b~ + 24 b 3 b6). 

Then the polynomial which counts bicolored graphs with 3 points of each color is 

1 + x + 2x ~ + 4x a + 5x 4 + 5x 5 + 4x e + 2x ~ + x s + x 9. 

The coefficient of x a is illustrated in Figure 3. 

We conclude by mentioning some results from [7] concerned with determining the 

cycle index of the group of a graph. 
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~ ~ o 

0 ~ O ~, 0 Q 

Figure 3. The 4 bieolored graphs with 3 lines and 3 points of each color. 

Sabidussi [15] int roduced a b inary  operat ion x on graphs and showed tha t  with re- 

spect to x every  nontrivial  connected graph has a unique factorization into prime graphs. 

F rom his results it also follows tha t  if G is a connected prime graph then the group of the 

cartesian product  of n copies of G is precisely the  exponentiat ion group [F(G)] s" where 

F(G) is the group of G. Thus Theorem 2 can be used to calculate Z(F(G x ... • G)) when 

Z(F(G)) is known. This in tu rn  provides a basis for applying Polya ' s  counting theorem to 

problems involving G x. . .  x G, for instance to find the number  of ways to color the  points 

of this graph  with a given number  of colors. 

6. The matrix group 

As before the permuta t ion  groups A and B have object sets X = {1, ..., m} and Y =  

{1 . . . . .  n} respectively, so tha t  the wreath  product  A[B] acts on X • Y. A part i t ion of 

X x Y is cal led/unct ional  if each subset of X • Y in the par t i t ion is a funct ion from X to  

Y. We have viewed the wreath  product  as act ing on functions from X to Y and next  shall 

regard it as permut ing the (n!) m-1 functional part i t ions of X • Y. Thus any  element (:r 3) 

of A[B] sends the functional part i t ion F = {]1,/~, -..,/=} to the set of functions which are 

the images of the /~  under  (~, 3) viewed as a member  of [B] A. I t  is obvious tha t  this new 

set of functions is again a functional  part i t ion of X x Y, and we denote this new repre- 

sentat ion of the wreath  product  by  [-4; B]. 
This representat ion was called the matrix group in [8] because each functional parti-  

t ion F corresponds in a natura l  fashion to an equivalence class of m x n matrices. For  this 

purpose two m x n matrices are equivalent if t hey  have the  same set of columns. Then if 

F = {/1 .. . .  ,/=}, a correspondent to F is the mat r ix  M for which the i, } en t ry  is ]j(i). Thus  

the images of the }th function determine the entries in the ?'th column of M. 

The action of [A; B] on the (n!) m-1 functional part i t ions is equivalent  to its action on 

these (n!) m-1 classes of matrices. Specifically, (~, 3) can be regarded as sending the class 

of matrices to which M belongs to the class to which M '  belongs, where M '  has as its i, ] 
en t ry  ~(~-li)/r Thus ~(k) permutes  each en t ry  in the  kth row of M and then the  

rows are permuted  by  ~ to get M' .  This in terpreta t ion of the  object set of [A; B] will be 

useful to us later. 

Each  functional par t i t ion F = { / 1  .. . . .  /~} has associated with it a permuta t ion  g roup  
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whose object set is F.  Suppose (~, T) in the exponentiation group [B] a fixes F setwise. 

Then the restriction of (a, r) to F is regarded as an automorphism of F and the total i ty  

of different restrictions make up the group o/F.  We denote the cycle index of this group 

by  Z(F). 

We now illustrate some of these concepts with A = $2 and B = {(1)(2)(3)(4), (13)(24)). 

We shall soon see tha t  the matr ix  group [82; B] has 7 orbits. Each of the seven 2 • 4 mat-  

rices in Table 1 corresponds to a functional partition, one from each of these orbits. Next  

to each matr ix  is the cycle index of the corresponding functional partition. 

Table 1. Cycle indices o[ 7 [undional partitions 

2 3 (123 

2 3 �88 

The next  theorem provides a formula for the sum of the cycle indices of the groups 

of any  set of distinct representatives of the orbits of [A; B]. This formula depends only 

on Z(A) and Z(B). To state the result we require a few preliminary definitions. 

The operation ~ introduced by  Redfield [12] is defined for monomials in R as follows: 

(b"b ~' b~) ~ (bl b2 . . . ~ ) - Y I ( k b k )  ~ .  (14) 1 2 . . .  h J, ,t - -  jz ." ! 

k 

if i k =Jk for all k and is zero otherwise.(1) Then ~ is the unique Q-bilinear operation on R 

which satisfies (14). Clearly ~ is associative. 

(1) The figure ~.~ used by Redfield is the astronomical symbol for the "descending node of the 
moon or a planet" (cf. Webster's unabridged dictionary). 
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For any set S let S( +,  93 ) be the ring with elements from R s, and operations defined 

as for S( + ,  • ) except to replace x by 93 in equation (4). 

For each positive integer r, let Jr be the unique Q-linear operation in R( + ,  93 ) which 

satisfies the two following equations. 

dr(b~) = i! kJ Z(Sj; dl, d2 . . . . .  dj) (15) 

(h ) = Jk ( 1 6 )  bJk Jr (bk) Jr k 

Here for each i between 1 and i we let 

I bk~/k if i[r and ( r / i ,b )=l  
d~ = [0 otherwise. 

Since Jr is linear we have 

1 
Jr(Z(B)) = ~ #~s5 Jr(Z(fl) ). 

THEORE~ 3. Let F~ be a [unctional partition in the lr orbit o/the matrix group [A; B] 

/or b = 1, 2 .... .  N[A; B]. The sum o/the cycle indices o/the F~ is the image o /Z(B)  under 

the/unction obtained by substituting the operators Jr /or  the variables ar in Z(A); symbolically 

5 Z(Fk) = Z(A : J1 . . . . .  Jm) Z(B). 
k 

To illustrate the theorem we again take A =S~ and B =  ((1)(2)(3)(4), (13)(24)} so that  

Z(A; J1, J2) = �89 (J~ + J2), 

and Z(B) = �89 (b~ + b~). 

We seek �89 ( J21 + J~) ( Z( B) ) = �89 ( J~l ( Z( B) ) + J2 ( Z( B) ) }. (1 7) 

Since J1 is by definition the identity operator 

J~ (Z(B))= JI(Z(B)) 93 J~ (Z(B))= Z(B) ~ Z(B). 

By the definition of ~ .  

Z(B) 93 Z(B) = �88 93 b~+ b~ 93 b~) = ~(4! b~ + 2 3 2b~) = 6514 + 2b~. (18) 

At this point it is helpful to observe that  for any prime p, formula (15) for J~(b~) can 

be written: 
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: [0, if plk but p [ j  

J~(b~) = ~ (J! k'("-l)'"b~)/((J/P)! P'/")' if p[lr and Pli 
[tlTJ] 

[,~o ( i ! -  8p)! 8!p') p~k k(v-1) S bSkvb~-Sv)/ ( O if 

The linearity of J~ and the previous formula imply 

J2 (Z(B)) = �89 (Jg. (b~) + J ,  (b~)) = �89 ((b~ + 6 b~b~ + abe) + 2ba). (19) 

Substituting (18) and (19) in the right side of (17) yields 

�89 (gl + g~) (Z(B)) = �89 {6 b~ + 2 b~ + �89 (b~ + 6 b~i b~ + 3 b~ + 2 b4) }. (20) 

The reader can verify tha t  the right side of (20) is indeed the cycle index sum for the 

7 functional partitions listed in Table 1. 

If only N[S~; B] is desired, it can be found by summing the coefficients of the right 

side of (20). This follows from the fact tha t  the coefficient sum of any cycle index is 1. 

COROLLARY. The number o/orbits N[A; B] o/the matrix group [A; B] is the coe//icient 

sum o/ Z(A; J1 .... , Jm)Z(B). 

7. Proof of  Theorem 3 

For each functional partition F of X • Y let T~ be the subgroup of [A; B] consisting 

of all elements which leave F fixed. For each (~, 3) in [A; B] let 

o(~, ~) = {F I (~, 3) e T~}. 
If F E O(a, 3) let 

Z((zr 3); F) = 1-I av ~, 
V=I 

where iv is the number of cycles of functions in F of length v induced by (~, v), viewed 

as being in [B] ~. Thus 
1 

Z(F) = I TFI (~,T)~ z((~, 3); F). 

Let  R be a set of distinct representatives for the equivalence classes induced by [A; B] 

on all the functional partitions of X • Y. By an extension of Burnside's lemma due to one 

of the authors [14, equation (2) on p. 329] 

1 
~ Z(F) = B z  ~ ~ Z((~, T); F).  (21) 

Direct evaluation of the sum on the right will be the basic task of this proof. 
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The use of this extension of Burnside's  lemma is not  justified unless 

Z(( r, a)-l(~, 3)(~, a); (~, a)-~F) = Z((~, 3); F) 

for all (~, 3) in TF and (7, a) in [,4; B]. To see this, view (:r v) and (r, a) as being in [B] A 

and note  tha t  (/1/~ ..' ]k) is a cycle of (g, ~) in F just  if ((7, a)-V1 ... (7, a)-l/k) is a cycle of 

(r, a)-l(  :r 3)(7, a) in (~, a)-lF. 

First  suppose tha t  a =  (1 2 ... m), fix any  v e B  x and let f l = v ( m ) ~ ( m - 1 ) , . ,  v(2)T(1). 

As shall be seen, 
Z z((~, ~); F) 

depends only  on m and Z(fl). 

Take any  y in Y and let k be the length of the cycle in fl to which y belongs. We are 

going to make  use of the following two observations from the  proof of Theorem 2. 

We have seen tha t  (1, y) is t aken  through a cycle C of length m/c by  (~, 3). As before 

let  C, be the  cycle in which (1, y) is permuted  by  (a, ~)'. Then  

(i) C, is functional  if and only if k[ (v/(m, v)), 

and 

(ii) when k I (v/(m, v)) the  domain of C, is 

(s[l<~s<~m and s ~ l  (modulo(re ,  v))}. 

Suppose F is some functional  par t i t ion of X • Y left  f ixed by  (~, 3). Le t  / be the ele- 

ment  of F such t ha t / ( 1 )  = y. Le t  v >~ 1 be minimal so tha t  (~, T)v/=/.  Le t  i = (m, v). By  fact  

(i) we can write v =rik for some r. Now (m, ik) = i  since (m, rile) =i. Clearly Cr~k is contained 

in C~k. But/c[  (ik/(m, ilc)) and, so by  fact (ii) C~k and Ctk have the  same domain.  Thus they  

are equal. Thus (~, ~)~k (1, y) is in Cr~k, hence is in ] since (~, z)rik/=/ .  But  also (:r $)~(1, y) 

is in (:r ~)tk]. Since / and (:r v) ~k] are members  of a part i t ion,  t hey  must  be equal. So 

the  minimal i ty  of v requires r = 1. 

To summarize our findings: if (~, 3) maps / E F  into a cycle of length v then  v =i/c 

where i [m and (k, re~i) = 1. Now it follows tha t  k is the length of the cycle which fl induces 

on any element of the range of [. For  if i 'k '~:ik,  i '[m and (k', m/i') ~ 1 then  it  is easy to 

see t ha t  i= i '  and / r  For  each k~>l let 

Dk = (y] 1 <.y<n and y is in a cycle of length k in fl}. 

Wha t  we have seen is t ha t  if (]1 . . . / , )  is a cycle of functions induced on F by  (a, 3) then  the  

ranges of ]1, . . . , / ,  all lie in a single set Dk, and v=ilc where i[m and (k, m/i )=l ,  

Now consider the problem of how m a n y  functional  part i t ions F are left f ixed by  (:r 3) 

and have a part icular  cycle type  induced by  (~, 3). Pick y E D k and a funct ion / containing 
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(1, y). Then / must lie in a cycle of length ik for some i as above in order for / to be in a 

functional partition fixed by  (~, ~). So fix such an i, and consider how many ways there 

are to form such a cycle of functions. Since / is fixed by  (~, T) ~ (viewed as a member of 

[B]~), / must contain all of the pairs (~, ~)r~(1, y) (viewing (~, ~)r~ as a member of A[B]) 

for r = l ,  2 . . . . .  By fact (if) this means that  / is determined for those arguments s ~ l  mo- 

dulo i. Moreover f cannot contain any pair (a, z)~(1, y) if ikXw. For then as before ff / is 

to be contained in some partition left fixed by (~, z) we would have (~, z)w/=/. This contra- 

dicts our assumption that  / is to be permuted in a cycle of length i/r by (~, z), which implies 

tha t  (a, T ) ' /= /  just ff iklv. Now (~, T)~(1, y) for w=0,  1, 2, ... runs through all the pairs 

(s, y') for 1 <~s<~m and y' in the same cycle of fl as y. Thus, the different equivalence clas- 

ses modulo i of {1, ..., m} must be sent into distinct cycles of fl, each of length k. Thus we 

must choose/(1) ..... /(i) to be in distinct cycles of Dk. Then by our facts (i) and (if) / is 

completely determined, and is permuted in a cycle of length ik which is a functional parti- 

tion of X x D, where D is the union of the cycles of Dk which contain/(1) ..... /(i). Fixing 

D, there are exactly kli! ways to choose such a n / .  For there are i cycles to choose/(1) 

from and ]c elements in each, i - 1  cycles left to choose /(2) from and /r elements in 

each, etc. 

In  all there are (l~ti!)/(ki) ways to obtain a cycle of length ki induced on a functional 

partition of X • D by  (~, T), since it makes no difference which of the ki members of the 

cycle is considered to be the first one. 

Suppose now tha t  D k contains exactly j cycles. There will be a functional partition of 

X • D~ fixed by  (~, ~) with cycle type I-L b~ just if 

(a) q~=0 unless Jim and (k, m/ i )=l ,  
and 

(b) E~ iq, = 1. 
In that  case we claim tha t  there are exactly 

i! [k'i!]., 
(22) 

ways to choose a functional partition. The left factor is the number of ways to arrange the 

j cycles into disjoint groups, q~ groups of size i for each i. Now each group of size i must 

be the range of a cycle of functions of length ik induced by  (~, ~), the choice of function 

cycle being independent for each group. So the right factor gives the total number of ways 

to complete the functional partition. 

The term in j!~Z(Sj) corresponding to the sequence ql, q2 .. . .  where ~ / q t  = i  is just 
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kJ]! ~I b~'. 
[ I  q~ ! iq' 

t 

Observe tha t  (22) times II~ b~ is obtained by  substituting b~/k for bt in this term. 

Refering to the definition (15) of Jm, we have shown tha t  if Y = Dk then 

Z ( ( ~ ,  3 ) ;  i v )  = ~! kI Z(St; dl, d 2 . . . . .  d~) = J , n ( b ~ ) .  ( 2 3 )  
Fe 0(~, r) 

I t  was seen earlier tha t  if F q 0(o~, 3) then F is the union of functional partitions of X • Dk, 

k = 1, 2 ... . .  n, each left fixed by  (:% 3). Since the choices for these partitions are independent 

for different k, we can apply (23) repeatedly, obtaining 

Z((a, 3); F) = Jm (b{') gm (b~9 ... Jm (b~ ~) = Jr, (b{'b~'... b~ ~) (24) 
PeO(~,'z) 

if Z(fl) =b~'b~' b jn This is under the original hypothesis tha t  a is a single cycle of length "" n " 

m and 
fl = 3(m)3(m - 1) ... 3(1). (25) 

Now, as seen in the proof of Theorem 2 there are just ]B] m-1 functions 3 in B x which 

satisfy (25). Summing (24) over this set of functions gives 

IBlm  y ,)z((~ Jm(Z(fl)). (26) 

Summing (24) over all 3 E B x corresponds to summing (26) over all fl 6 B, which gives 

1 
Z Z Z((~ (27) 

since Jm is q-linear. 

The assumption tha t  ~r is a single cycle is now dropped. Instead, let ~ be any  element 

of A and suppose tha t  X is the disjoint union of X1, X 2 where each is a union of cycles of 

g. Then g ( X 1 ) = X  1 and a(X~)=X2. Let  a l = a [ x ,  and ~ = ~ [ x , .  Similarly for any  i t in y x  

or 3 in B x, we can spht these into disjoint par ts /1  and/~  or 31 and 3~, by  considering the 

restrictions to X 1 and X~. Functional partitions of X x Y correspond in a natural  way to 

triples <F1, F2, ~> where F 1 is a functional parti t ion of X 1 x Y, F~ is a functional parti t ion 

of X~ • Y, and ~ is a 1 - 1 map from F 1 onto F~. With the triple <F 1, F 2, ~> corresponds 

the parti t ion 
{it u  (it) I it e F1}. 

This correspndence is easily seen to be 1 - 1  and onto. A necessary and sufficient set of 

conditions for <Fx, F~, ~> to correspond to a parti t ion in 0(cr v) is: 
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1. F l e O ( ~ l ,  T1) 

2. F2 e O(a~, v~) 

3. I f  (/1 .../~) is a cycle induced on F by  (al, Vl) then  (~(/1)  "'" r is a cycle induced 

on F~ b y  (g2, ~ ) .  

Condition 3 implies 

4. Z((al ,  T1); F 1 ) = Z ( ( ~  2, T2); F 2 ) .  

1-I~=1 b, ,  there  Given F , ,  F~ satisfying 1, 2, and  4 where the common cycle t ype  is ~ ~' 

are exac t ly  
rn 

t = 1  

ways  to choose a 1 - 1 correspondence ~ satisfying 3. To see this note  t h a t  for each i there  

are 1"~! ways  to  m a t c h  up the  i cycles of length i in F 1 wi th  the  ], cycles of length i in F 2. 

For  any  two par t icular  cycles of length i there  are just  i different  ways  to m a t c h  t h e m  up. 

Refer ing to the  definit ion of ~ (14) we have  shown t h a t  

Z((~I, T1); F1) '~'Z((~r T2); F2) = Z Z((oL "t'); F) 
F 

(28) 

for any  F 1 and  F~ satisfying 1 and  2, the  sum on the  r ight  to be t aken  over  all FEO(o~, "r) 
corresponding to <F1, 1'2, ~ )  for some ~. Summing  (28) over  all z, in B xl, all F t in 0(~1, Vx) , 

all v2 in B x" and all F 2 in O(~2, v2) gives 

( ~ ~ Z((al, T,) ;F1))~ ( ~ ~ Z((a2, T2);F2)) = ~ ~ Z((a,~);F),  (29) 
"zleBXa FleO(o~1. rl) "raeBX 2 FseO(o~s. lr~) ~:eBX TeO(~. 7:) 

in light of the  Q-lineari ty of ~3- 

Now we claim t h a t  in general  

1 
] Bl"~Esx ~ FEo(~.~)~ Z((o~, "r) ; F) = Z(o~; J1 . . . . .  Jm) Z(B), (30) 

and  proceed b y  induct ion on the  n u m b e r  of cycles of a. I f  a is a single cycle this reduces to 

(27). I f  ~ has more  t han  one cycle then  X is the  disjoint union of sets X1, X 2 which are 

unions of cycles of ~, and have  cardinali t ies ml, m 2 respect ively  wi th  ml, m 2 ~> 1. Then  with  

al, ~2 as before note  t h a t  each has fewer cycles t h a n  ~, and  in fact  

Z(0~) = Z(0~l)Z(0~2).  

Also I BI m' I B lm '=  I B[ m. B y  the  induct ion hypothesis  we assume (30) for ~i, ~2 in place of 

~. Wi th  these relat ions and  (29) we obta in  
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1 
]B['* ~ ~ Z((~, T); F) 

reBX FeO(~,v) 

= (Z(~l;  Jx .. . . .  J,,)Z(B))92 (Z(~s; J1 .... .  J,,)Z(B)) 

= Z(~; J1 ... . .  Jm)Z(B)). 

Here it is important  to recall tha t  J1, ..., Jm are members of R( + ,  ~ ) for algebraic purposes. 

Thus (30) is proved by induction. 

Finally, the theorem follows from (21) and the result of summing (30) over all ~EA 

and dividing by  I A I" This concludes the proof of Theorem 3. 

At the end of section 2 a generalized wreath product A [ B  1 . . . . .  Bt] acting on [J ~=1 X~ • 

Y~ was introduced. This induces a generalization of the matr ix  group which is denoted 

[A; B 1 . . . . .  Bt]. The object set of [A; B 1 ... . .  Bt] is the set of partitions F of [J~=l Xi • Y~ 

into subsets S which have the property tha t  for each x6X~ there is exactly one y6  Y~ 

such tha t  (x, y) is in S. For any such partition F we denote by  Z(F)  the cycle index of the 

subgroup of [A; B 1 . . . . .  Bt] which leaves F fixed, with F itself as the object set. I f  Fk 

ranges over some selection of distinct representatives of the orbits of [A; B1, ..., Bt] then 

an expression for ~s Z(Fk) can be found which is a generalization of Theorem 3. For each 

1 <.i<.t, all s~>l, and a n y P  1 ... . .  P t  in t t  let 

J~.~(P, ... . .  Pt) = J~(P ~). 

The operators J~.~ are to be viewed as members of the ring Rt( + ,  ~ ). Then 

Z(Fk) = Z x  ...... xt (A)  [a,.8 -~ J~.s] (Z(B1) . . . . .  Z(Bt)). 
k 

(31) 

In  case t = 1 and B 1 = B this gives the same result as Theorem 3. In  case A is the identi ty 

group Et and X~=( i }  for l<~i<~t this gives Redfield's Decomposition Theorem [12, 

p. 445]. I t  should be noted tha t  the object set of [A; B 1 ... . .  Bt] is empty  if any of the 

object sets Y~ of B~ have different eardinalities. I t  follows from the definition of l? tha t  

in this case (31) gives the value 0 for 7. k Z(Fk). 

8.  A p p l i c a t i o n s  of  T h e o r e m  3 

The superposition of a set of graphs G1, . . . ,  G m all on the same set of n points is the 

union of their sets of lines, multiplicity included. Furthermore,  in this union the lines of 

Gi are assumed to have color c~ different from color cj for ] =~i. All eight superpositions of 

two paths / )4  of order 4 are shown in Figure 4. 
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Figure 4. All eight superpositions of two paths of order 4. 

Read [11] and Redfield [12] were able to calculate the total  number  of superpositions 

of G 1 . . . .  ,Gm as a function of the cycle indices of the groups F(G~) of these m graphs. In  

fact Redfield showed tha t  this number  is the coefficient sum of 

Z(V((71))~.~ ... ~Z(r((Tm)). (32) 

Now suppose all the graphs (71 .... .  (Tin are isomorphic to (7 with point set Y = (1, ..., m} 

and let Em be the identi ty group on X = (1, ..., m}. Then it can be seen tha t  each functional 

parti t ion of X • Y corresponds to a superposition of m copies of (7, and furthermore the 

number  of superpositions is the number  of orbits of the matr ix  group [Era; r((7)]. From 

Theorem 3 it quickly follows tha t  this number  is the coefficient sum of 

z ( r ( ( 7 ) ) ~  ... ~ z ( r ( G ) )  

which agrees with Redfield's result (32). For example, if (7 is the pa th  of order 4, its cycle 

index is 4 2 �89 +b~) and hence the number  of superpositions of 2 copies of (7 is the coefficient 

sum of �89 2 4 2 -}- b2) ~ ~(bl Jr b2) wh ich  is 8 ( compare  F i g u r e  4). 

When dealing with superpositions of m copies of a given graph G, however, we can ask 

for the number  obtained when specified copies are allowed to be permuted among them- 

selves. Thus if we allow the 2 paths of order 4 to be interchangeable, then the last 2 graphs 

in Figure 4 are to be identified. This simply amounts to using the matr ix  group [$2; 1"(/)4) ] 

instead of [E~; F(P4) ]. In  general we have the following result. 

The number  of superpositions of m interchangeable copies of the graph G is 

N[Sm; P(G)]. Redfield used his enumeration theorem to calculate superpositions of cycles of 

order n, whose group is the dihedral group Dn. We have used Theorem 3 to compute 

the corresponding number  of superpositions of interchangeable copies of cycles. The results 

are summarized in Table 2. 

We can also apply Theorem 3 to enumerate multigraphs with a given number  m of 

lines and n points. Let  (7 be the graph of order n with exactly one line. Then the cycle index 

of its group Z(F(G)) is Z(S2)Z(Sn_2). Each superposition of m interchangeable copies of (7 
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Table  2. The number o] superposition8 o] cycles o] order n ~ 6 
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n N[E2; Dn] N[S2; Dn] N[Es; D n] N[,.S'3; D n] 

3 1 1 1 1 

4 2 2 5 3 

5 4 4 24 9 

6 12 10 391 89 

7 39 28 9 549 1 705 

8 208 130 401 691 67 774 

cons t i tu tes  a mu l t i g r aph  of order  n wi th  m lines. Hence  the  t o t a l  n u m b e r  is N[Sm; F(G)], 

a n d  the  on ly  cycle indices  invo lved  are  those  of the  symmet r i c  groups  S~, Sn-2 a n d  Sin. 
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