ENUMERATION UNDER TWO REPRESENTATIONS OF THE WREATH PRODUCT ${ }^{(1)}$

BY
E. M. PALMER $\left({ }^{2}\right)$ and R. W. ROBINSON $\left({ }^{3}\right)$

Michigan State University, University of Michigan, East Lansing, Mich. 48823, USA

Ann Arbor, Mich. 48104, USA

1. Introduction

Enumeration problems which can be solved by applying Pólya's Theorem [9] or Burnside's Lemma [1] always require a formula for $N(A)$, the number of orbits of group A, or a formula for its cycle index $Z(A)$. For example, Pólya [9] expressed the cycle index of the wreath product $A[B]$ of A around B in terms of the cycle indices $Z(A)$ and $Z(B)$. This result played a key role in the enumeration of k-colored graphs [13] and nonseparable graphs [14].

The exponentiation group $[B]^{A}$ of two permutation groups A and B was defined by Harary in [3]. It is abstractly isomorphic to the wreath product of A around B. But while $A[B]$ has as its object set the cartesian product $X \times Y$ of the object sets of A and $B,[B]^{A}$ acts on Y^{X}, the functions from X into Y. Formulas for $Z\left(\left[S_{n}\right]^{S_{2}}\right)$ and $Z\left(\left[S_{2}\right]^{S_{n}}\right)$ were found by Harary [2] and Slepian [16] respectively. Harrison and High [6] have constructed an algorithm for finding $Z\left([B]^{S_{n}}\right)$ and have used their results to enumerate Post functions. In this paper we verify an explicit general formula for $Z\left([B]^{A}\right)$ in terms of $Z(A)$ and $Z(B)$ for any A and B. The result is easily obtained by substituting certain operators for the variables of $Z(A)$ and then letting them act on $Z(B)$. Several applications will then be sketched, including the enumeration of boolean functions, bicolored graphs, and Post functions.
${ }^{(1)}$ The authors would like to thank Professor Frank Harary for encouraging the research for this paper and for offering many helpful suggestions.
$\left.{ }^{(2}\right)$ Work supported in part by a grant from the National Science Foundation.
$\left.{ }^{(3}\right)$ Work supported in part by a grant (73-2502) from the US Air Force Office of Scientific Research.

The matrix group $[A ; B]$ introduced in [8] is another useful representation of the wreath product. It can be viewed as acting on classes of matrices with A permuting the rows among themselves while the row entires are permuted independently by elements of B. Our formula for the number $N[A ; B]$ of orbits of this group generalizes Redfield's Enumeration Theorem [12] and enables us to enumerate a variety of interesting combinatorial structures. These include multigraphs or multidigraphs with a specified number of points and lines, and superpositions of interchangeable copies of a given graph or digraph.

For definitions and results not given here we refer to the books [4, 5].

2. Permutation groups

Let A be a permutation group with object set $X=\{1,2, \ldots, m\}$. The order of A is denoted by $|A|$ and the degree of A is m. For any permutation α in A, we denote by $j_{k}(\alpha)$ the number of cycles of length k in the disjoint cycle decomposition of α. The cycle type $Z(\alpha)$ is the monomial in the variables $a_{1}, a_{2}, \ldots, a_{m}$ defined by $Z(\alpha)=\prod_{k=1}^{m} a_{k^{k^{(\alpha)}}}$. The cycle index $Z(A)$ is

$$
Z(A)=\frac{1}{|A|} \sum_{\alpha \in A} Z(\alpha)
$$

It is often convenient to use the expression

$$
Z(A)=Z\left(A ; a_{1}, a_{2}, \ldots, a_{m}\right)
$$

to display the variables used.
Let B be another permutation group of order $|B|$ and degree n with object set $Y=$ $\{1,2, \ldots, n\}$. The wreath product of A around B, denoted $A[B]$, is a permutation group with object set $X \times Y$. For each permutation α in A and each function τ from X into B there is a permutation in $A[B]$ denoted (α, τ) such that for every element (x, y) of $X \times Y$

$$
(\alpha, \tau)(x, y)=(\alpha x, \tau(x) y)
$$

It is easily checked that this is a collection of permutations closed under composition and hence forms a group.

For each integer $k \geqslant 1$, let

$$
Z_{k}(B)=Z\left(B ; b_{k}, b_{2 k}, \ldots, b_{n k}\right)
$$

Thus $Z_{k}(B)$ is the polynomial obtained from $Z(B)$ by multiplying each subscript by k. Pólya [9, p. 180] used his enumeration theorem to establish the following formula for $Z(A[B])$.

Theorem 1 (Pólya). The cycle index $Z(A[B])$ is obtained by replacing each variable a_{k} of $Z(A)$ by the polynomial $Z_{k}(B)$; symbolically

$$
Z(A[B])=Z\left(A ; Z_{1}(B), Z_{2}(B), \ldots, Z_{m}(B)\right)
$$

Our formulas for the cycle index of the exponentiation group and the number of orbits of the matrix group are considerably more complicated than that of Theorem 1 but are similar in that they involve the replacement of each variable a_{k} in $Z(A)$ by a suitable transformation of $Z(B)$ which depends on k.

A generalization of the wreath product is possible when A is intransitive. Suppose $X=\bigcup_{i=1}^{t} X_{i}$ and each X_{i} is a union of transitivity sets of A. Let B_{1}, \ldots, B_{t} be permutation groups with disjoint object sets Y_{1}, \ldots, Y_{t} respectively. The generalized wreath product, denoted $A\left[B_{1}, \ldots, B_{t}\right]$, acts on $\bigcup_{i=1}^{t} X_{i} \times Y_{i}$. For each α in A and each sequence $\tau_{1}, \ldots, \tau_{t}$ with each τ_{i} in $B_{i}^{X_{i}}$ there is an element denoted ($\alpha ; \tau_{1}, \tau_{2}, \ldots, \tau_{t}$) in $A\left[B_{1}, \ldots, B_{t}\right]$ defined as follows. For any (x, y) in $X_{i} \times Y_{i}$

$$
\left(\alpha ; \tau_{1}, \ldots, \tau_{t}\right)(x, y)=\left(\alpha x, \tau_{i}(x) y\right) .
$$

To express the cycle index of this group we require the cycle index of A in the generalized form introduced by Pólya [9, p. 174]. For each α in A let

$$
Z_{X_{1}, \ldots, X_{i}}(\alpha)=\prod_{i=1}^{t} \prod_{s} a_{i, s}^{j(t, s)}
$$

where $j(i, s)$ is the number of cycles of length s induced by α in X_{i}. Then let

$$
Z_{X_{1}, \ldots, X_{t}}(A)=\frac{1}{|A|} \sum_{\alpha \in A} Z_{X_{1}, \ldots, X_{t}}(\alpha) .
$$

As asserted in [14, p. 336]

$$
Z\left(A\left[B_{1}, \ldots, B_{t}\right]\right)=Z_{X_{1}, \ldots, X_{t}}(A)\left[a_{i, s} \rightarrow Z_{s}\left(B_{i}\right)\right]
$$

where the arrow indicates substitution.
When $t=1, X=X_{1}$ and $B=B_{1}$, this formula gives the same result as Theorem 1.

3. The exponentiation group

The permutation groups A and B have object sets $X=\{1,2, \ldots, m\}$ and $Y=\{1,2, \ldots, n\}$ respectively. Since the wreath product acts on $X \times Y$, it can be viewed as permuting the subsets of $X \times Y$ which correspond to functions from X into Y. This representation of the wreath product is called the exponentiation of A and B and is denoted by $[B]^{A}$. Thus each element (α, τ) of the wreath product $A[B]$ permutes the functions f in Y^{x} according to the rule

$$
((\alpha, \tau) f) x=\tau(x)\left(f\left(\alpha^{-1} x\right)\right)
$$

for each x in X.
To state the theorem which expresses $Z\left([B]^{A}\right]$ in terms of $Z(A)$ and $Z(B)$ we require the next few definitions. Let $\mathbf{R}=\mathbf{Q}\left[b_{1}, b_{2}, \ldots\right]$ be the ring of polynomials in the commuting variables b_{1}, b_{2}, \ldots over the ring \mathbf{Q} of rational numbers.

Now we recall the cartesian product operation \times on \mathbf{R} introduced by Harary [2]. For two monomials in \mathbf{R} we define

$$
\begin{equation*}
b_{1}^{j_{1}} b_{2}^{j_{2}} \ldots b_{m}^{j_{m}} \times b_{1}^{i_{1}} b_{2}^{i_{2}} \ldots b_{n}^{i_{n}}=\prod_{s=1}^{m} \prod_{t=1}^{n} b_{\left.[s, t]^{(s, t}\right)^{j_{g} i_{t}}} \tag{1}
\end{equation*}
$$

where $[s, t]$ and (s, t) denote the l.c.m. and g.c.d. respectively. It is clear that this operation is associative for monomials. Then \times is the unique \mathbf{Q}-bilinear operation on \mathbf{R} which satisfies (1). We leave it in to the reader to check that \times is associative.

Given any set S, we define scalar multiplication over Q, addition and multiplication for the elements of R^{S} as follows. For every f and g in \mathbf{R}^{S}, λ in \mathbf{Q} and P in $S:$

$$
\begin{gather*}
(\lambda f) P=\lambda(f P) \tag{2}\\
(f+g) P=f P+g P \tag{3}\\
(f g) P=f P \times g P . \tag{4}
\end{gather*}
$$

With these operations $\mathbf{R}^{\boldsymbol{S}}$ becomes a commutative ring over \mathbf{Q}, to be denoted by $S(+, x)$.

For each positive integer r let I_{r} be the unique \mathbf{Q}-linear element of $\mathbf{R}(+, \times)$ which satisfies
where

$$
\begin{equation*}
I_{r}\left(\prod_{k=1}^{n} b_{k}^{j_{k}}\right)=\prod_{v=1}^{n r} b_{v}^{i_{v}} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
i_{v}=\frac{1}{v} \sum_{w \mid v} \mu\left(\frac{v}{w}\right)\left(\sum k j_{k}\right)^{(r, w)} \tag{6}
\end{equation*}
$$

the inside sum to be taken over all divisors k of $w /(r, w)$. From the \mathbf{Q}-linearity of I_{r} we have

$$
I_{r}(Z(B))=\frac{1}{|B|} \sum_{\beta \in B} I_{r}(Z(\beta))
$$

Theorem 2. The cycle index $Z\left([B]^{A}\right)$ is the image of $Z(B)$ under the function obtained by substituting the operator I_{r} for the variables a_{r} in $Z(A)$; symbolically

$$
Z\left([B]^{A}\right)=Z\left(A ; I_{1}, \ldots, I_{m}\right) Z(B)
$$

Before launching the proof of Theorem 2 we illustrate its use by finding the cycle index of a well known exponentiation group. Let $A=S_{3}$ and $B=S_{2}$, the symmetric groups of degree three and two respectively. We seek the cycle index of $\left[S_{2}\right]^{S_{3}}$, which is the group of the cube. First we substitute the operator I_{r} for each variable a_{r} in $Z\left(S_{3}\right)$:

$$
\begin{equation*}
Z\left(S_{3}, I_{1}, I_{2}, I_{3}\right)=\frac{1}{3!}\left(I_{1}^{3}+3 I_{1} I_{2}+2 I_{3}\right) \tag{7}
\end{equation*}
$$

The terms of (7) act on $Z\left(S_{2}\right)$ as follows:

$$
\begin{align*}
I_{1}^{3}\left(Z\left(S_{2}\right)\right) & =I_{1}\left(Z\left(S_{2}\right)\right) \times I_{1}\left(Z\left(S_{2}\right)\right) \times I_{1}\left(Z\left(S_{2}\right)\right) \tag{8}\\
I_{1} I_{2}\left(Z\left(S_{2}\right)\right) & =I_{1}\left(Z\left(S_{2}\right)\right) \times I_{2}\left(Z\left(S_{2}\right)\right)
\end{align*}
$$

It follows from the definitions (5) and (6) that
and

$$
I_{1}\left(Z\left(S_{2}\right)\right)=Z\left(S_{2}\right)=\frac{1}{2}\left(b_{1}^{2}+b_{2}\right)
$$

$$
\begin{aligned}
I_{2}\left(Z\left(S_{2}\right)\right) & =\frac{1}{2}\left(I_{2}\left(b_{1}^{2}\right)+I_{2}\left(b_{2}\right)\right) \\
& =\frac{1}{2}\left(b_{1}^{2} b_{2}+b_{4}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
I_{3}\left(Z\left(S_{2}\right)\right) & =\frac{1}{2}\left(I_{3}\left(b_{1}^{2}\right)+I_{3}\left(b_{2}\right)\right) \\
& =\frac{1}{2}\left(b_{1}^{2} b_{3}^{2}+b_{2} b_{6}\right) .
\end{aligned}
$$

From (8) and the definition of the cartesian product \times for polynomials, we find

$$
\begin{aligned}
& I_{1}^{3}\left(Z\left(Z\left(S_{2}\right)\right)=\frac{1}{2^{3}}\left(b_{1}^{8}+7 b_{2}^{4}\right)\right. \\
& I_{1} I_{2}\left(Z\left(S_{2}\right)\right)=\frac{1}{2^{2}}\left(b_{1}^{4} b_{2}^{2}+b_{2}^{4}+2 b_{4}^{2}\right)
\end{aligned}
$$

Having determined the images of $Z\left(S_{2}\right)$ under $I_{1}^{3}, I_{1} I_{2}$ and I_{3} we have by linearity its image under $Z\left(S_{3} ; I_{1}, I_{2}, I_{3}\right)$:

$$
\begin{equation*}
Z\left(\left[S_{2}\right]^{S_{3}}\right)=\frac{1}{3!2^{3}}\left(b_{1}^{8}+6 b_{1}^{4} b_{2}^{2}+8 b_{1}^{2} b_{3}^{2}+13 b_{2}^{4}+8 b_{2} b_{6}+12 b_{4}^{2}\right) \tag{9}
\end{equation*}
$$

This result agrees pleasantly with the formula for the cycle index of the group of the cube worked out by Pólya [10].

The hardest part of these calculations occurs in the evaluation of $I_{r}\left(\prod_{k=1}^{n} b_{k}^{j_{k}}\right)$ by formulas (5) and (6). But it is helpful to note that if $(r, v)=1$, then $i_{v}=j_{v}$ and if p is prime, then

$$
i_{p}=\left\{\begin{array}{llc}
j_{p} & \text { if } & p \nmid r \\
\left(j_{1}^{p}-j_{1}\right) / p & \text { if } & p \mid r
\end{array}\right.
$$

Furthermore, with the aid of these observations, it can be seen that

$$
I_{2}\left(\prod_{k=1}^{n} b_{k}^{j_{k}}\right)=\left(\prod_{2 \nmid k} b_{k}^{j_{k}}\right)\left(b_{2}^{\left(j_{1}^{2}-j_{1}\right) / 2} b_{4}^{j_{2}\left(f_{1}+j_{2}\right)} b_{6}^{j_{i}^{2}\left(2 f_{1}+3 j_{t}-1\right) / 2} \ldots\right)
$$

and

$$
I_{3}\left(\prod_{k=1}^{n} b_{k}^{j_{k}}\right)=\left(\prod_{3 Y k} b_{k}^{j_{k}}\right)\left(b_{3}^{\left(g_{1}-f_{1}\right) / 3} b_{6}^{\left.\left(j_{1}+2 j_{2}\right)^{3}-2 j_{2}-f_{1}\right) / 8} b_{9}^{\left(j_{1}+3 j_{y^{2}}^{3}-f_{j}\right) / 9} \ldots\right) .
$$

4. Proof of Theorem 2

Let A and B be permutation groups with object sets $X=\{1, \ldots, m\}$ and $Y=\{1, \ldots, n\}$ respectively.

For the first part of the proof assume α in A is the cycle ($12 \ldots m$), fix β in B and consider any τ in B^{x} such that

$$
\begin{equation*}
\tau(m) \tau(m-1) \ldots \tau(2) \tau(1)=\beta . \tag{10}
\end{equation*}
$$

We wish to determine the number of functions in Y^{x} left fixed by $(\alpha, \tau)^{v}$, where (α, τ) is viewed as a number of $[B]^{A}$. Equivalently, we want the number of functional subsets of $X \times Y$ left fixed by $(\alpha, \tau)^{v}$ where (α, τ) is considered as a member of $A[B]$. The latter viewpoint is the one taken in the sequel. For any y in Y we have

$$
\begin{aligned}
&(\alpha, \tau)(1, y)=(\alpha 1, \tau(1) y)=(2, \tau(1) y) \\
&(\alpha, \tau)^{2}(1, y)=(3, \tau(2) \tau(1) y) \\
& \vdots \\
&(\alpha, \tau)^{m}(1, y)=(1, \tau(m) \ldots \tau(1) y)=(1, \beta y) \\
& \vdots \\
&(\alpha, \tau)^{m a}(1, y)=\left(1, \beta^{a} y\right) \\
& \vdots \\
&(\alpha, \tau)^{m k}(1, y)=(1, y)
\end{aligned}
$$

where k is the least number such that $\beta^{k} y=y$. That is, k is the length of the cycle to which y belongs in the disjoint cycle decomposition of β.

Thus $(1, y)$ falls in a cycle of length $m k$ in the cycle decomposition of (α, τ). Call this cycle C. The cycle into which $(1, y)$ falls in the cycle decomposition of $(\alpha, \tau)^{v}$ is found by taking every v 'th member of C, starting with $(1, y)$. Call this cycle C_{v}. The situation is illustrated in Figure 1 for the case $m=10, k=3$, and $v=12$.

Let s be the length of C_{v}. The v 'th power of any cycle of length $m k$ consists of ($v, m k$) cycles of length $m k /(v, m k)$. Hence $s=m k /(v, m k)$. Now a necessary condition for a function f containing $(1, y)$ to be fixed by $(\alpha, \tau)^{v}$ is that f also contain all the other pairs in C_{v}. In

Figure 1. Diagram of C and C_{v} with $k=3, m=10, v=12$.
particular, C_{v} must not contain any pair of the form ($1, y^{\prime}$) with $y^{\prime} \neq y$. This means that for $1 \leqslant p<s, v p$ must $n o t$ be a multiple of m. Therefore $s \leqslant m /(m, v)$. But $s v$ is a multiple of m and hence we also have $s=m /(m, v)$. But $m /(m, v)=m k(m k, v)$ just if $k \mid(v /(v, m))$.

Conversely, it is easily seen that if y is in a cycle of length k in the cycle decomposition of β and $k \mid\left(v /(v, m)\right.$), then $(1, y)$ is in a cycle C_{v} of length $m /(m, v)$ induced by $(\alpha, \tau)^{v}$. Moreover C_{v} is functional when viewed as a set of pairs, since there is nothing special about 1 in the preceding analysis. The domain of C_{v} contains j for $1 \leqslant j \leqslant m$ just if

$$
j+m q=1+r v
$$

for some integers q, r. This implies that $j \equiv 1$ modulo (m, v), a condition satisfied by exactly $m /(m, v)$ integers between 1 and m. Since $m /(m, v)$ is the length of C_{v} and C_{v} is functional, the domain of C_{v} must contain all of these numbers. That is, the domain of C_{v} is exactly

$$
\{i \mid 1 \leqslant i \leqslant m \quad \text { and } i \equiv 1 \text { modulo }(m, v)\} .
$$

The pairs in C_{v} are determined by $(1, y)$ and $(\alpha, \tau)^{v}$, and if $f(1)=y$ and $(\alpha, \tau)^{v} f=f$ they must all appear in f. This determines f on the domain of C_{v}. All that is needed to determine any f left fixed by $(\alpha, \tau)^{v}$, then, are the values $f(1), f(2), \ldots, f((m, v))$ since there is nothing special about 1 in the above analysis.

Recall that the cycle type $Z(\beta)$ of β is $b_{1}^{j_{1}} b_{2}^{j_{2}} \ldots b_{n}^{j_{n}}$. For any integer i between 1 and (m, v) the number of choices available for $f(i)$ where $(\alpha, \tau)^{v} f=f$ is $\sum_{k=1}^{* n} k j_{k}$; the asterisk 9-732906 Acta mathematica 131, Imprimé le 22 Octobre 1973
represents the restriction of the summation index k to divisors of $v /(m, v)$. Since the (m, v) choices for $f(1), \ldots, f((m, v))$ are independent, there are a total of

$$
\left(\sum_{k=1}^{n} k j_{k}\right)^{(m, v)}
$$

functions left fixed by $(\alpha, \tau)^{v}$.
Now let i_{w} be the number of cycles of length w in the cycle decomposition of (α, τ) viewed now as acting on Y^{X}. Then

$$
\sum_{w \mid v} w i_{w}=\left(\sum^{*} k j_{k}\right)^{(v, m)}
$$

An explicit formula for i_{v} is obtained by an application of möbius inversion, giving the formula (6) for the definition of I_{m}. Consequently the cycle type $Z(\alpha, \tau)$ of (α, τ) acting on Y^{X} is just $I_{m}(Z(\beta))$. There are $|B|^{m-1}$ functions τ in B^{X} which satisfy (10) since $\tau(m), \ldots, \tau(2)$ may be chosen from B arbitrarily, and then $\tau(1)$ is uniquely determined. Summing over all τ satisfying (10) we have

$$
\frac{1}{|B|^{m}} \sum_{\tau} Z(\alpha, \tau)=\frac{1}{|B|^{m}}|B|^{m-1} I_{m}(Z(\beta))=\frac{1}{|B|} I^{m}(Z(\beta))
$$

Summing over all β in B, which allows τ to run through all of B^{x}, and applying the linearity of I_{m}, we find

$$
\begin{equation*}
\frac{1}{|B|^{m}} \sum_{\tau \in B^{X}} Z(\alpha, \tau)=I_{m}(Z(B)) . \tag{11}
\end{equation*}
$$

Now consider the case when α is a product of disjoint cycles α_{1} and α_{2} of lengths m_{1} and m_{2} respectively. We can view (α, τ) for τ in B^{x} as the product of (α_{1}, τ_{1}) and (α_{2}, τ_{2}) where τ_{1} and τ_{2} are the restrictions of τ to the elements permuted by α_{1} and α_{2}. If f_{1} and f_{2} are the restrictions to α_{1} and α_{2} of a function f in Y^{x}, then we have $f=f_{1} \cup f_{2}$ and $(\alpha, \tau) f=$ $\left(\alpha_{1}, \tau_{1}\right) f_{1} \cup\left(\alpha_{1}, \tau_{2}\right) f_{2}$, the unions being disjoint. Thus if f_{1} is in a cycle C_{1} of length p induced by (α_{1}, τ_{2}) and f_{2} is in a cycle C_{2} of length q induced by (α_{2}, τ_{2}), then f is in a cycle of length [$p, q]$ induced by (α, τ). The total $p q$ of functions obtained by pairing one from C_{1} with one from C_{2} must be divided into (p, q) cycles of length $[p, q]$. This corresponds to taking a factor b_{p} from $Z\left(\alpha_{1}, \tau_{1}\right)$ and b_{q} from $Z\left(\alpha_{2}, \tau_{2}\right)$ and finding $b_{p} \times b_{q}=b_{[p, q]}^{(p, q)}$ in $Z(\alpha, \tau)$. These factors may be chosen independently, and so using the associativity of the cartesian product operation \times we find that

$$
Z(\alpha, \tau)=Z\left(\alpha_{1}, \tau_{1}\right) \times Z\left(\alpha_{2}, \tau_{2}\right)
$$

Applying (11) to the cycles α_{1} and α_{2} we have for $i=1,2$

$$
\frac{1}{|B|^{m_{i}}} \sum_{\tau_{i}} Z\left(\alpha_{i^{\prime} \tau_{i}}\right)=I_{m_{i}}(Z(B))
$$

where the sum is over all τ_{i} from the set of elements permuted by α_{i} into B. Consequently

$$
\frac{1}{|B|^{m}} \sum_{\tau \in B X} Z(\alpha, \tau)=I_{m_{\mathbf{2}}}(Z(B)) \times I_{m_{\mathrm{A}}}(Z(B))=I_{m_{\mathbf{1}}} I_{m_{\mathrm{s}}}(Z(B))
$$

the second step in view of the fact that $I_{m_{1}}$ and $I_{m_{2}}$ belong to the ring $\mathbf{R}(+, \times)$ for all algebraic purposes.

This line of reasoning works as well when α is any product of disjoint cycles and so in general

$$
\begin{equation*}
\frac{1}{|B|^{m}} \sum_{\tau \in B X} Z(\alpha, \tau)=I_{1}^{u_{1}} I_{2}^{u_{z}} \ldots I_{m}^{u_{m}}(Z(B)) \tag{12}
\end{equation*}
$$

where $Z(\alpha)=\prod_{k=1}^{m} a_{k}^{u_{k}}$. The proof is concluded by summing (12) over all α in A, and dividing by $|A|$.

The generalized wreath product $A\left[B_{1}, \ldots, B_{t}\right]$ acting on $\bigcup_{i=1}^{t} X_{i} \times Y_{i}$ induces a group $\left[B_{1}, \ldots, B_{t}\right]^{A}$ which acts on $Y_{1}^{X_{1}} \times \ldots \times Y_{t}^{X_{1}}$. This induced group is a generalized exponentiation group whose cycle index we shall now express.

For any t-tuple $\left(P_{1}, \ldots, P_{t}\right)$ in \mathbf{R}^{t}, any $i=1$ to t and any positive integer s, let

$$
I_{i, s}\left(P_{1}, \ldots, P_{t}\right)=I_{s}\left(P_{i}\right)
$$

On viewing the operators $I_{i, s}$ as belonging to the ring $\mathbf{R}^{t}(+, \times)$, the cycle index formula is given by

$$
\begin{equation*}
Z\left(\left[B_{1}, \ldots, B_{t}\right]^{A}\right)=Z_{X_{1}, \ldots . x_{t}}(A)\left[a_{i, s} \rightarrow I_{i, s}\right]\left(Z\left(B_{1}\right), \ldots, Z\left(B_{t}\right)\right) \tag{13}
\end{equation*}
$$

The proof of (13) requires only straightforward modification of the proof of Theorem 2.

5. Applications of Theorem 2

We shall now outline a few of the results which require the cycle index of an exponentiation group.

A boolean function of n variables can be regarded as a mapping from the set of all n-sequences of zeros and ones into $\{0,1\}$. Hence it corresponds to a subset of the points of the n-cube Q_{n}. Pólya [10] regarded two such subsets as equivalent if an automorphism of Q_{n} takes one to the other. Denoting the group of the n-cube by $\Gamma\left(Q_{n}\right)$, he used his enumeration theorem to obtain the following result: the number $N(n, r)$ of boolean functions of n variables which have exactly r nonzero values is the coefficient of x^{r} in $Z\left(\Gamma\left(Q_{n}\right), 1+x\right)$.

As observed in [2], $\Gamma\left(Q_{n}\right)$ and $\left[S_{2}\right]^{S_{n}}$ are identical and hence Theorem 2 can be used to complete this enumeration problem.

On substituting $1+x$ in $Z\left(\left[S_{2}\right]^{S_{3}}\right)$, given by formula (9), we have

$$
1+x+3 x^{2}+3 x^{3}+6 x^{4}+3 x^{5}+3 x^{6}+x^{7}+x^{8}
$$

Then, for example, there are 6 boolean functions with 4 nonzero values. The 6 cubes which correspond to these functions are shown in Figure 2 where dark points represent the nonzero values.

Figure 2. The 6 cubes with 4 points of each value.

Pólya calculated $Z\left(\Gamma\left(Q_{n}\right)\right)$ for $n \leqslant 4$ and Slepian [16] found a general method for calculating this cycle index and applied it for $n=5$ and 6.

A Post function of n variables can be defined as a mapping from the set of all n-sequences of the numbers $0,1,2, \ldots, m-1$ into the set $\{0,1, \ldots, m-1\}$. When $m=2$, these are just boolean functions and their total number, when equivalence is determined by the group $\left[S_{2}\right]^{S_{n}}$ of the n-cube, is $Z\left(\left[S_{2}\right]^{S_{n}}, 2\right)$. When m variables are present, the number of Post functions is $Z\left(\left[S_{m}\right]^{S_{n}}, m\right)$ as mentioned in [6]. Harrison and High used their method for deriving the cycle index of the exponentiation group to calculate some of the values of $Z\left(\left[S_{m}\right]^{S_{n}}, m\right)$. They also found the number of Post functions under different equivalences determined when S_{m} is replaced by the cyclic or dihedral groups of degree m.

The exponentiation group was also used by Harary [2] to count bicolored graphs: the number of bicolored graphs with r lines and n points of each color is the coefficient of x^{r} in $Z\left(\left[S_{n}\right]^{S_{2}}, 1+x\right)$.

An explicit formula for $Z\left(\left[S_{n}\right]^{S_{2}}\right)$ was found in [2] but our general formula also applies. For example, Theorem 2 can be used to find that

$$
Z\left(\left[S_{3}\right]^{S_{3}}\right)=\frac{1}{72}\left(b_{1}^{9}+12 b_{1}^{3} b_{2}^{3}+8 b_{3}^{3}+9 b_{1} b_{2}^{4}+18 b_{1} b_{4}^{2}+24 b_{3} b_{6}\right)
$$

Then the polynomial which counts bicolored graphs with 3 points of each color is

$$
1+x+2 x^{2}+4 x^{3}+5 x^{4}+5 x^{5}+4 x^{6}+2 x^{7}+x^{8}+x^{9}
$$

The coefficient of x^{3} is illustrated in Figure 3.
We conclude by mentioning some results from [7] concerned with determining the cycle index of the group of a graph.

Figure 3. The 4 bicolored graphs with 3 lines and 3 points of each color.
Sabidussi [15] introduced a binary operation \times on graphs and showed that with respect to \times every nontrivial connected graph has a unique factorization into prime graphs. From his results it also follows that if G is a connected prime graph then the group of the cartesian product of n copies of G is precisely the exponentiation group $[\Gamma(G)]^{S_{n}}$ where $\Gamma(G)$ is the group of G. Thus Theorem 2 can be used to calculate $Z(\Gamma(G \times \ldots \times G))$ when $Z(\Gamma(G))$ is known. This in turn provides a basis for applying Polya's counting theorem to problems involving $G \times \ldots \times G$, for instance to find the number of ways to color the points of this graph with a given number of colors.

6. The matrix group

As before the permutation groups A and B have object sets $X=\{1, \ldots, m\}$ and $Y=$ $\{1, \ldots, n\}$ respectively, so that the wreath product $A[B]$ acts on $X \times Y$. A partition of $X \times Y$ is called functional if each subset of $X \times Y$ in the partition is a function from X to Y. We have viewed the wreath product as acting on functions from X to Y and next shall regard it as permuting the $(n!)^{m-1}$ functional partitions of $X \times Y$. Thus any element (α, τ) of $A[B]$ sends the functional partition $F=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ to the set of functions which are the images of the f_{i} under (α, τ) viewed as a member of $[B]^{A}$. It is obvious that this new set of functions is again a functional partition of $X \times Y$, and we denote this new representation of the wreath product by $[A ; B]$.

This representation was called the matrix group in [8] because each functional partition F corresponds in a natural fashion to an equivalence class of $m \times n$ matrices. For this purpose two $m \times n$ matrices are equivalent if they have the same set of columns. Then if $F=\left\{f_{1}, \ldots, f_{n}\right\}$, a correspondent to F is the matrix M for which the i, j entry is $f_{j}(i)$. Thus the images of the j th function determine the entries in the j th column of M.

The action of $[A ; B]$ on the $(n!)^{m-1}$ functional partitions is equivalent to its action on these $(n!)^{m-1}$ classes of matrices. Specifically, (α, τ) can be regarded as sending the class of matrices to which M belongs to the class to which M^{\prime} belongs, where M^{\prime} has as its i, j entry $\tau\left(\alpha^{-1} i\right) f_{j}\left(\alpha^{-1} i\right)$. Thus $\tau(k)$ permutes each entry in the k th row of M and then the rows are permuted by α to get M^{\prime}. This interpretation of the object set of $[A ; B]$ will be useful to us later.

Each functional partition $F=\left\{f_{1}, \ldots, f_{n}\right\}$ has associated with it a permutation group
whose object set is F. Suppose (α, τ) in the exponentiation group $[B]^{A}$ fixes F setwise. Then the restriction of (α, τ) to F is regarded as an automorphism of F and the totality of different restrictions make up the group of F. We denote the cycle index of this group by $Z(F)$.

We now illustrate some of these concepts with $A=S_{2}$ and $B=\{(1)(2)(3)(4),(13)(24)\}$. We shall soon see that the matrix group $\left[S_{2} ; B\right]$ has 7 orbits. Each of the seven 2×4 matrices in Table 1 corresponds to a functional partition, one from each of these orbits. Next to each matrix is the cycle index of the corresponding functional partition.

Table 1. Cycle indices of 7 functional partitions

$$
\begin{array}{ll}
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right) & \frac{1}{2}\left(b_{1}^{4}+b_{2}^{2}\right) \\
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) & \frac{1}{4}\left(b_{1}^{4}+3 b_{2}^{2}\right) \\
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right) & \frac{1}{4}\left(b_{1}^{4}+b_{2}^{2}+2 b_{4}\right) \\
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 4 & 2
\end{array}\right) & \frac{1}{2}\left(b_{1}^{4}+b_{1}^{2} b_{2}\right) \\
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{array}\right) & \frac{1}{2}\left(b_{1}^{4}+b_{1}^{2} b_{2}\right) \\
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right) & \frac{1}{4}\left(b_{1}^{4}+2 b_{1}^{2} b_{2}+b_{2}^{2}\right) \\
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 2 & 3
\end{array}\right) & b_{1}^{4} .
\end{array}
$$

The next theorem provides a formula for the sum of the cycle indices of the groups of any set of distinct representatives of the orbits of $[A ; B]$. This formula depends only on $Z(A)$ and $Z(B)$. To state the result we require a few preliminary definitions.

The operation \mathcal{O} introduced by Redfield [12] is defined for monomials in \mathbf{R} as follows:

$$
\begin{equation*}
\left(b_{1}^{i_{1}} b_{2}^{i_{2}} \ldots b_{n}^{i_{n}}\right) \mho\left(b_{1}^{j_{1}} b_{2}^{j_{k}} \ldots b_{n}^{b_{n}}\right)=\prod_{k}\left(k b_{k}\right)^{i_{k}} j_{k}! \tag{14}
\end{equation*}
$$

if $i_{k}=j_{k}$ for all k and is zero otherwise. ${ }^{(1)}$ Then \mathcal{V} is the unique \mathbf{Q}-bilinear operation on \mathbf{R} which satisfies (14). Clearly \mathcal{V} is associative.

[^0]For any set S let $S(+, \mathcal{S})$ be the ring with elements from \mathbf{R}^{S}, and operations defined as for $S(+, \times)$ except to replace \times by \mathcal{V} in equation (4).

For each positive integer r, let J_{r} be the unique \mathbf{Q}-linear operation in $\mathbf{R}(+, \mho)$ which satisfies the two following equations.

$$
\begin{align*}
& J_{r}\left(b_{k}^{j}\right)=j!k^{j} Z\left(S_{j} ; d_{1}, d_{2}, \ldots, d_{j}\right) \tag{15}\\
& J_{r}\left(\prod_{k=1}^{n} b_{k}^{j_{k}}\right)=\prod_{k=1}^{n} J_{r}\left(b_{k}^{j_{k} k}\right) \tag{16}
\end{align*}
$$

Here for each i between 1 and j we let

$$
d_{i}=\left\{\begin{array}{l}
b_{k i} / k \text { if } i \mid r \text { and }(r / i, k)=1 \\
0 \text { otherwise. }
\end{array}\right.
$$

Since J_{r} is linear we have

$$
J_{r}(Z(B))=\frac{1}{|B|} \sum_{\beta \in B} J_{r}(Z(\beta))
$$

Theorem 3. Let F_{k} be a functional partition in the k 'th orbit of the matrix group $[A ; B]$ for $k=1,2, \ldots, N[A ; B]$. The sum of the cycle indices of the F_{k} is the image of $Z(B)$ under the function obtained by substituting the operators J_{r} for the variables a_{r} in $Z(A)$; symbolically

$$
\sum_{k} Z\left(F_{k}\right)=Z\left(A: J_{1}, \ldots, J_{m}\right) Z(B)
$$

To illustrate the theorem we again take $A=S_{2}$ and $B=\{(1)(2)(3)(4),(13)(24)\}$ so that
and

$$
\begin{gathered}
Z\left(A ; J_{1}, J_{2}\right)=\frac{1}{2}\left(J_{1}^{2}+J_{2}\right), \\
Z(B)=\frac{1}{2}\left(b_{1}^{4}+b_{2}^{2}\right) .
\end{gathered}
$$

We seek

$$
\begin{equation*}
\frac{1}{2}\left(J_{1}^{2}+J_{2}\right)(Z(B))=\frac{1}{2}\left\{J_{1}^{2}(Z(B))+J_{2}(Z(B))\right\} . \tag{17}
\end{equation*}
$$

Since J_{1} is by definition the identity operator

$$
J_{1}^{2}(Z(B))=J_{1}(Z(B)) \mho J_{1}(Z(B))=Z(B) \mho Z(B)
$$

By the definition of \mathcal{V}.

$$
\begin{equation*}
Z(B) \vartheta Z(B)=\frac{1}{4}\left(b_{1}^{4} \mho b_{1}^{4}+b_{2}^{2} \vartheta b_{2}^{2}\right)=\frac{1}{4}\left(4!b_{1}^{4}+2^{2} 2 b_{2}^{2}\right)=6 b_{1}^{4}+2 b_{2}^{2} \tag{18}
\end{equation*}
$$

At this point it is helpful to observe that for any prime p, formula (15) for $J_{p}\left(b_{k}^{\prime}\right)$ can be written:

$$
J_{p}\left(b_{k}^{j}\right)=\left\{\begin{array}{l}
0, \text { if } p \mid k \text { but } p \nmid j \\
\left(j!k^{j(p-1) / p} b_{p k}^{j / p}\right) /\left((j / p)!p^{j / p}\right), \quad \text { if } p \mid k \text { and } p \mid j \\
\sum_{s=0}^{(j / p]]}\left(j!k^{(p-1) s} b_{k p}^{s} b_{k}^{j-s p}\right) /\left((j-s p)!s!p^{s}\right) \text { if } p \nmid k .
\end{array}\right.
$$

The linearity of J_{2} and the previous formula imply

$$
\begin{equation*}
J_{2}(Z(B))=\frac{1}{2}\left(J_{2}\left(b_{1}^{4}\right)+J_{2}\left(b_{2}^{2}\right)\right)=\frac{1}{2}\left(\left(b_{1}^{4}+6 b_{1}^{2} b_{2}+3 b_{2}^{2}\right)+2 b_{4}\right) \tag{19}
\end{equation*}
$$

Substituting (18) and (19) in the right side of (17) yields

$$
\begin{equation*}
\frac{1}{2}\left(J_{1}^{2}+J_{2}\right)(Z(B))=\frac{1}{2}\left\{6 b_{1}^{4}+2 b_{2}^{2}+\frac{1}{2}\left(b_{1}^{4}+6 b_{1}^{2} b_{2}+3 b_{2}^{2}+2 b_{4}\right)\right\} \tag{20}
\end{equation*}
$$

The reader can verify that the right side of (20) is indeed the cycle index sum for the 7 functional partitions listed in Table 1.

If only $N\left[S_{2} ; B\right]$ is desired, it can be found by summing the coefficients of the right side of (20). This follows from the fact that the coefficient sum of any cycle index is 1 .

Corollary. The number of orbits $N[A ; B]$ of the matrix group $[A ; B]$ is the coefficient sum of $Z\left(A ; J_{1}, \ldots, J_{m}\right) Z(B)$.

7. Proof of Theorem 3

For each functional partition F of $X \times Y$ let T_{F} be the subgroup of $[A ; B]$ consisting of all elements which leave F fixed. For each (α, τ) in $[A ; B]$ let

If $\boldsymbol{F} \in O(\alpha, \tau)$ let

$$
O(\alpha, \tau)=\left\{F \mid(\alpha, \tau) \in T_{F}\right\}
$$

$$
Z((\alpha, \tau) ; F)=\prod_{v=1}^{n} a_{v}^{i_{v}}
$$

where i_{v} is the number of cycles of functions in F of length v induced by (α, τ), viewed as being in $[B]^{A}$. Thus

$$
Z(F)=\frac{1}{\left|T_{F}\right|} \sum_{(\alpha, \tau) \in T_{F}} Z((\alpha, \tau) ; F) .
$$

Let R be a set of distinct representatives for the equivalence classes induced by $[A ; B]$ on all the functional partitions of $X \times Y$. By an extension of Burnside's lemma due to one of the authors [14, equation (2) on p. 329]

$$
\begin{equation*}
\sum_{F \in R} Z(F)=\frac{1}{|A||B|^{m}} \sum_{(\alpha, \tau) \in A \times B^{X}} \sum_{F \in O(\alpha, \tau)} Z((\alpha, \tau) ; F) . \tag{21}
\end{equation*}
$$

Direct evaluation of the sum on the right will be the basic task of this proof.

The use of this extension of Burnside's lemma is not justified unless

$$
Z\left((\gamma, \sigma)^{-1}(\alpha, \tau)(\gamma, \sigma) ;(\gamma, \sigma)^{-1} F\right)=Z((\alpha, \tau) ; F)
$$

for all (α, τ) in T_{F} and (γ, σ) in $[A ; B]$. To see this, view (α, τ) and (γ, σ) as being in $[B]^{A}$ and note that $\left(f_{1} f_{2} \ldots f_{k}\right)$ is a cycle of (α, τ) in F just if $\left((\gamma, \sigma)^{-1} f_{1} \ldots(\gamma, \sigma)^{-1} f_{k}\right)$ is a cycle of $(\gamma, \sigma)^{-1}(\alpha, \tau)(\gamma, \sigma)$ in $(\gamma, \sigma)^{-1} F$.

First suppose that $\alpha=(12 \ldots m)$, fix any $\tau \in B^{x}$ and let $\beta=\tau(m) \tau(m-1) \ldots \tau(2) \tau(1)$. As shall be seen,

$$
\sum_{F \in O(\alpha, \tau)} Z((\alpha, \tau) ; F)
$$

depends only on m and $Z(\beta)$.
Take any y in Y and let k be the length of the cycle in β to which y belongs. We are going to make use of the following two observations from the proof of Theorem 2.

We have seen that $(1, y)$ is taken through a cycle C of length $m k$ by (α, τ). As before let C_{v} be the cycle in which $(1, y)$ is permuted by $(\alpha, \tau)^{v}$. Then
(i) C_{v} is functional if and only if $k \mid(v /(m, v))$,
and
(ii) when $k \mid(v /(m, v))$ the domain of C_{v} is

$$
\{s \mid 1 \leqslant s \leqslant m \quad \text { and } s \equiv 1 \quad(\operatorname{modulo}(m, v))\} .
$$

Suppose F is some functional partition of $X \times Y$ left fixed by (α, τ). Let f be the element of F such that $f(1)=y$. Let $v \geqslant 1$ be minimal so that $(\alpha, \tau)^{v} f=f$. Let $i=(m, v)$. By fact (i) we can write $v=r i k$ for some r. Now ($m, i k$) $=i$ since ($m, r i k$) $=i$. Clearly $C_{r i k}$ is contained in $C_{i k}$. But $k \mid(i k /(m, i k))$ and, so by fact (ii) $C_{r i k}$ and $C_{i k}$ have the same domain. Thus they are equal. Thus $(\alpha, \tau)^{i k}(1, y)$ is in $C_{r i k}$, hence is in f since $(\alpha, \tau)^{r i k} f=f$. But also $(\alpha, \tau)^{i k}(1, y)$ is in $(\alpha, \tau)^{i k} f$. Since f and $(\alpha, \tau)^{i k} f$ are members of a partition, they must be equal. So the minimality of v requires $r=1$.

To summarize our findings: if (α, τ) maps $f \in F$ into a cycle of length v then $v=i k$ where $i \mid m$ and $(k, m / i)=1$. Now it follows that k is the length of the cycle which β induces on any element of the range of f. For if $i^{\prime} k^{\prime}=i k, i^{\prime} \mid m$ and $\left(k^{\prime}, m / i^{\prime}\right)=1$ then it is easy to see that $i=i^{\prime}$ and $k=k^{\prime}$. For each $k \geqslant 1$ let

$$
D_{k}=\{y \mid 1 \leqslant y \leqslant n \text { and } y \text { is in a cycle of length } k \text { in } \beta\} .
$$

What we have seen is that if $\left(f_{1} \ldots f_{v}\right)$ is a cycle of functions induced on F by (α, τ) then the ranges of f_{1}, \ldots, f_{v} all lie in a single set D_{k}, and $v=i k$ where $i \mid m$ and $(k, m / i)=1$.

Now consider the problem of how many functional partitions F are left fixed by (α, τ) and have a particular cycle type induced by (α, τ). Pick $y \in D_{k}$ and a function f containing
$(1, y)$. Then f must lie in a cycle of length $i k$ for some i as above in order for f to be in a functional partition fixed by (α, τ). So fix such an i, and consider how many ways there are to form such a cycle of functions. Since f is fixed by $(\alpha, \tau)^{i k}$ (viewed as a member of $\left.[B]^{A}\right), f$ must contain all of the pairs $(\alpha, \tau)^{r i k}(1, y)$ (viewing $(\alpha, \tau)^{r i k}$ as a member of $A[B]$) for $r=1,2, \ldots$. By fact (ii) this means that f is determined for those arguments $s \equiv 1$ modulo i. Moreover f cannot contain any pair $(\alpha, \tau)^{w}(1, y)$ if $\left.i k\right\rangle w$. For then as before if f is to be contained in some partition left fixed by (α, τ) we would have $(\alpha, \tau)^{w} f=f$. This contradicts our assumption that f is to be permuted in a cycle of length $i k$ by (α, τ), which implies that $(\alpha, \tau)^{v} f=f$ just if $i k \mid v$. Now $(\alpha, \tau)^{w}(1, y)$ for $w=0,1,2, \ldots$ runs through all the pairs $\left(s, y^{\prime}\right)$ for $1 \leqslant s \leqslant m$ and y^{\prime} in the same cycle of β as y. Thus, the different equivalence classes modulo i of $\{1, \ldots, m\}$ must be sent into distinct cycles of β, each of length k. Thus we must choose $f(1), \ldots, f(i)$ to be in distinct cycles of D_{k}. Then by our facts (i) and (ii) f is completely determined, and is permuted in a cycle of length $i k$ which is a functional partition of $X \times D$, where D is the union of the cycles of D_{k} which contain $f(1), \ldots, f(i)$. Fixing D, there are exactly $k^{i} i$! ways to choose such an f. For there are i cycles to choose $f(1)$ from and k elements in each, $i-1$ cycles left to choose $f(2)$ from and k elements in each, etc.

In all there are $\left(k^{i} i!\right) /(k i)$ ways to obtain a cycle of length $k i$ induced on a functional partition of $X \times D$ by (α, τ), since it makes no difference which of the $k i$ members of the cycle is considered to be the first one.

Suppose now that D_{k} contains exactly j cycles. There will be a functional partition of $X \times D_{k}$ fixed by (α, τ) with cycle type $\prod_{i} b_{k i}^{\sigma_{i}}$ just if
(a) $q_{i}=0$ unless $i \mid m$ and $(k, m / i)=1$,
and
(b) $\sum_{i} i q_{i}=j$.

In that case we claim that there are exactly

$$
\begin{equation*}
\frac{j!}{\prod q_{i}!(i!)^{q_{i}}} \prod_{i}\left(\frac{k^{i} i!}{k i}\right)^{q_{i}} \tag{22}
\end{equation*}
$$

ways to choose a functional partition. The left factor is the number of ways to arrange the j cycles into disjoint groups, q_{i} groups of size i for each i. Now each group of size i must be the range of a cycle of functions of length $i k$ induced by (α, τ), the choice of function cycle being independent for each group. So the right factor gives the total number of ways to complete the functional partition.

The term in $j!k^{j} Z\left(S_{j}\right)$ corresponding to the sequence q_{1}, q_{2}, \ldots where $\Sigma_{1} i q_{t}=j$ is just

$$
\frac{k^{j} j!}{\prod_{i} q_{i}!i^{q_{i}}} \prod_{i} b_{i}^{q_{i}}
$$

Observe that (22) times $\Pi_{i} b_{i k}^{a_{i}}$ is obtained by substituting $b_{i k} / k$ for b_{i} in this term. Refering to the definition (15) of J_{m}, we have shown that if $Y=D_{k}$ then

$$
\begin{equation*}
\sum_{F \in O(\alpha, \tau)} Z((\alpha, \tau) ; F)=j!k^{j} Z\left(S_{j} ; d_{1}, d_{2}, \ldots, d_{j}\right)=J_{m}\left(b_{k}^{j}\right) \tag{23}
\end{equation*}
$$

It was seen earlier that if $F \in O(\alpha, \tau)$ then F is the union of functional partitions of $X \times D_{k}$, $k=1,2, \ldots, n$, each left fixed by (α, τ). Since the choices for these partitions are independent for different k, we can apply (23) repeatedly, obtaining

$$
\begin{equation*}
\sum_{F \in O(\alpha, \tau)} Z((\alpha, \tau) ; F)=J_{m}\left(b_{1}^{j_{1}}\right) J_{m}\left(b_{2}^{j_{z_{2}}}\right) \ldots J_{m}\left(b_{n}^{j_{n}}\right)=J_{m}\left(b_{1}^{b_{1}} b_{2}^{j_{2}} \ldots b_{n}^{j_{n}}\right) \tag{24}
\end{equation*}
$$

if $Z(\beta)=b_{1}^{j_{1}} b_{2}^{j_{9}} \ldots b_{n}^{j_{n}}$. This is under the original hypothesis that α is a single cycle of length m and

$$
\begin{equation*}
\beta=\tau(m) \tau(m-1) \ldots \tau(1) . \tag{25}
\end{equation*}
$$

Now, as seen in the proof of Theorem 2 there are just $|B|^{m-1}$ functions τ in B^{x} which satisfy (25). Summing (24) over this set of functions gives

$$
\begin{equation*}
\frac{1}{|B|^{m}} \sum_{\tau} \sum_{F \in O(\alpha, \tau)} Z((\alpha, \tau) ; F)=\frac{1}{|B|^{m}}|B|^{m-1} J_{m}(Z(\beta))=\frac{1}{|B|} J_{m}(Z(\beta)) \tag{26}
\end{equation*}
$$

Summing (24) over all $\tau \in B^{x}$ corresponds to summing (26) over all $\beta \in B$, which gives

$$
\begin{equation*}
\frac{1}{|B|^{m}} \sum_{\tau \in B X} \sum_{F \in O(\alpha, \tau)} Z((\alpha, \tau) ; F)=J_{m}(Z(B)) \tag{27}
\end{equation*}
$$

since J_{m} is \mathbf{Q}-linear.
The assumption that α is a single cycle is now dropped. Instead, let α be any element of A and suppose that X is the disjoint union of X_{1}, X_{2} where each is a union of cycles of α. Then $\alpha\left(X_{1}\right)=X_{1}$ and $\alpha\left(X_{2}\right)=X_{2}$. Let $\alpha_{1}=\left.\alpha\right|_{X_{1}}$ and $\alpha_{2}=\left.\alpha\right|_{X_{2}}$. Similarly for any f in Y^{x} or τ in B^{x}, we can split these into disjoint parts f_{1} and f_{2} or τ_{1} and τ_{2}, by considering the restrictions to X_{1} and X_{2}. Functional partitions of $X \times Y$ correspond in a natural way to triples $\left\langle F_{1}, F_{2}, \varphi\right\rangle$ where F_{1} is a functional partition of $X_{1} \times Y, F_{2}$ is a functional partition of $X_{2} \times Y$, and φ is a $1-1$ map from F_{1} onto F_{2}. With the triple $\left\langle F_{1}, F_{2}, \varphi\right\rangle$ corresponds the partition

$$
\left\{f \cup \varphi(f) \mid f \in F_{1}\right\}
$$

This correspndence is easily seen to be $1-1$ and onto. A necessary and sufficient set of conditions for $\left\langle F_{1}, F_{2}, \varphi\right\rangle$ to correspond to a partition in $O(\alpha, \tau)$ is:

1. $F_{1} \in O\left(\alpha_{1}, \tau_{1}\right)$
2. $F_{2} \in O\left(\alpha_{2}, \tau_{2}\right)$
3. If $\left(f_{1} \ldots f_{k}\right)$ is a cycle induced on F by $\left(\alpha_{1}, \tau_{1}\right)$ then $\left(\varphi\left(f_{1}\right) \ldots \varphi\left(f_{k}\right)\right.$) is a cycle induced on F_{2} by $\left(\alpha_{2}, \tau_{2}\right)$.
Condition 3 implies
4. $Z\left(\left(\alpha_{1}, \tau_{1}\right) ; F_{1}\right)=Z\left(\left(\alpha_{2}, \tau_{2}\right) ; F_{2}\right)$.

Given F_{1}, F_{2} satisfying 1,2 , and 4 where the common cycle type is $\prod_{i=1}^{m} b_{i}^{j_{i}}$, there are exactly

$$
\prod_{i=1}^{m} i^{j^{k}} j_{i}!
$$

ways to choose a $1-1$ correspondence φ satisfying 3 . To see this note that for each i there are j_{i} ! ways to match up the i cycles of length i in F_{1} with the j_{i} cycles of length i in F_{2}. For any two particular cycles of length i there are just i different ways to match them up.

Refering to the definition of \mathcal{V} (14) we have shown that

$$
\begin{equation*}
Z\left(\left(\alpha_{1}, \tau_{1}\right) ; F_{1}\right) \mho Z\left(\left(\alpha_{2}, \tau_{2}\right) ; F_{2}\right)=\sum_{F} Z((\alpha, \tau) ; F) \tag{28}
\end{equation*}
$$

for any F_{1} and F_{2} satisfying 1 and 2 , the sum on the right to be taken over all $F \in O(\alpha, \tau)$ corresponding to $\left\langle F_{1}, F_{2}, \varphi\right\rangle$ for some φ. Summing (28) over all τ_{1} in $B^{X_{1}}$, all F_{1} in $O\left(\alpha_{1}, \tau_{1}\right)$, all τ_{2} in $B^{X_{2}}$ and all F_{2} in $O\left(\alpha_{2}, \tau_{2}\right)$ gives

$$
\begin{equation*}
\left(\sum_{\tau_{1} \in B X_{1}} \sum_{F_{1} \in O\left(\alpha_{1}, \tau_{1}\right)} Z\left(\left(\alpha_{1}, \tau_{1}\right) ; F_{1}\right)\right) \mho\left(\sum_{\tau_{2} \in B X_{3}} \sum_{F_{2} \in O\left(\alpha_{3}, \tau_{2}\right)} Z\left(\left(\alpha_{2}, \tau_{2}\right) ; F_{2}\right)\right)=\sum_{\tau \in B X} \sum_{\tau \in O(\alpha, \tau)} Z((\alpha, \tau) ; F) \tag{29}
\end{equation*}
$$

in light of the \mathbf{Q}-linearity of \mathcal{V}.
Now we claim that in general

$$
\begin{equation*}
\frac{1}{|B|^{m}} \sum_{\tau \in B} \sum_{F \in O(\alpha, \tau)} Z((\alpha, \tau) ; F)=Z\left(\alpha ; J_{1}, \ldots, J_{m}\right) Z(B), \tag{30}
\end{equation*}
$$

and proceed by induction on the number of cycles of α. If α is a single cycle this reduces to (27). If α has more than one cycle then X is the disjoint union of sets X_{1}, X_{2} which are unions of cycles of α, and have cardinalities m_{1}, m_{2} respectively with $m_{1}, m_{2} \geqslant 1$. Then with α_{1}, α_{2} as before note that each has fewer cycles than α, and in fact

$$
Z(\alpha)=Z\left(\alpha_{1}\right) Z\left(\alpha_{2}\right)
$$

Also $|B|^{m_{1}}|B|^{m_{2}}=|B|^{m}$. By the induction hypothesis we assume (30) for α_{1}, α_{2} in place of α. With these relations and (29) we obtain

$$
\begin{aligned}
& \quad \frac{1}{|B|^{m}} \sum_{\tau \in B^{X}} \sum_{F \in O(\alpha, \tau)} Z((\alpha, \tau) ; F) \\
& =\left(Z\left(\alpha_{1} ; J_{1}, \ldots, J_{m}\right) Z(B)\right) \mho\left(Z\left(\alpha_{2} ; J_{1}, \ldots, J_{m}\right) Z(B)\right) \\
& \left.=Z\left(\alpha ; J_{1}, \ldots, J_{m}\right) Z(B)\right) .
\end{aligned}
$$

Here it is important to recall that J_{1}, \ldots, J_{m} are members of $\mathbf{R}(+, \mho)$ for algebraic purposes. Thus (30) is proved by induction.

Finally, the theorem follows from (21) and the result of summing (30) over all $\alpha \in A$ and dividing by $|A|$. This concludes the proof of Theorem 3.

At the end of section 2 a generalized wreath product $A\left[B_{1}, \ldots, B_{t}\right]$ acting on $\bigcup_{i=1}^{t} X_{i} \times$ Y_{i} was introduced. This induces a generalization of the matrix group which is denoted $\left[A ; B_{1}, \ldots, B_{t}\right]$. The object set of $\left[A ; B_{1}, \ldots, B_{t}\right]$ is the set of partitions F of $\bigcup_{i=1}^{t} X_{i} \times Y_{i}$ into subsets S which have the property that for each $x \in X_{i}$ there is exactly one $y \in Y_{i}$ such that (x, y) is in S. For any such partition F we denote by $Z(F)$ the cycle index of the subgroup of $\left[A ; B_{1}, \ldots, B_{t}\right]$ which leaves F fixed, with F itself as the object set. If F_{k} ranges over some selection of distinct representatives of the orbits of $\left[A ; B_{1}, \ldots, B_{t}\right]$ then an expression for $\Sigma_{k} Z\left(F_{k}\right)$ can be found which is a generalization of Theorem 3. For each $1 \leqslant i \leqslant t$, all $s \geqslant 1$, and any P_{1}, \ldots, P_{t} in \mathbf{R} let

$$
J_{i, s}\left(P_{1}, \ldots, P_{t}\right)=J_{s}\left(P_{i}\right) .
$$

The operators $J_{i, s}$ are to be viewed as members of the ring $\mathbf{R}^{\boldsymbol{t}}(+, \mathcal{V})$. Then

$$
\begin{equation*}
\sum_{k} Z\left(F_{k}\right)=Z_{X_{1}, \ldots, X_{t}}(A)\left[a_{i, s} \rightarrow J_{i, s}\right]\left(Z\left(B_{1}\right), \ldots, Z\left(B_{t}\right)\right) \tag{31}
\end{equation*}
$$

In case $t=1$ and $B_{1}=B$ this gives the same result as Theorem 3. In case A is the identity group E_{t} and $X_{i}=\{i\}$ for $1 \leqslant i \leqslant t$ this gives Redfield's Decomposition Theorem [12, p. 445]. It should be noted that the object set of $\left[A ; B_{1}, \ldots, B_{t}\right]$ is empty if any of the object sets Y_{i} of B_{i} have different cardinalities. It follows from the definition of \mathcal{O} that in this case (31) gives the value 0 for $\Sigma_{k} Z\left(F_{k}\right)$.

8. Applications of Theorem 3

The superposition of a set of graphs G_{1}, \ldots, G_{m} all on the same set of n points is the union of their sets of lines, multiplicity included. Furthermore, in this union the lines of G_{i} are assumed to have color c_{i} different from color c_{j} for $j \neq i$. All eight superpositions of two paths P_{4} of order 4 are shown in Figure 4.

Figure 4. All eight superpositions of two paths of order 4.

Read [11] and Redfield [12] were able to calculate the total number of superpositions of G_{1}, \ldots, G_{m} as a function of the cycle indices of the groups $\Gamma\left(G_{i}\right)$ of these m graphs. In fact Redfield showed that this number is the coefficient sum of

$$
\begin{equation*}
Z\left(\Gamma\left(G_{1}\right)\right) \vartheta \ldots \mho Z\left(\Gamma\left(G_{m}\right)\right) . \tag{32}
\end{equation*}
$$

Now suppose all the graphs G_{1}, \ldots, G_{m} are isomorphic to G with point set $Y=\{1, \ldots, m\}$ and let E_{m} be the identity group on $X=\{1, \ldots, m\}$. Then it can be seen that each functional partition of $X \times Y$ corresponds to a superposition of m copies of G, and furthermore the number of superpositions is the number of orbits of the matrix group $\left[E_{m} ; \Gamma(G)\right]$. From Theorem 3 it quickly follows that this number is the coefficient sum of

$$
Z(\Gamma(G)) \vartheta \ldots \vartheta Z(\Gamma(G))
$$

which agrees with Redfield's result (32). For example, if G is the path of order 4, its cycle index is $\frac{1}{2}\left(b_{1}^{4}+b_{2}^{2}\right)$ and hence the number of superpositions of 2 copies of G is the coefficient sum of $\frac{1}{2}\left(b_{1}^{4}+b_{2}^{2}\right) \mho \frac{1}{2}\left(b_{1}^{4}+b_{2}^{2}\right)$ which is 8 (compare Figure 4).

When dealing with superpositions of m copies of a given graph G, however, we can ask for the number obtained when specified copies are allowed to be permuted among themselves. Thus if we allow the 2 paths of order 4 to be interchangeable, then the last 2 graphs in Figure 4 are to be identified. This simply amounts to using the matrix group $\left[S_{2} ; \Gamma\left(P_{4}\right)\right]$ instead of $\left[E_{2} ; \Gamma\left(P_{4}\right)\right]$. In general we have the following result.

The number of superpositions of m interchangeable copies of the graph G is $N\left[S_{m} ; \Gamma(G)\right]$. Redfield used his enumeration theorem to calculate superpositions of cycles of order n, whose group is the dihedral group D_{n}. We have used Theorem 3 to compute the corresponding number of superpositions of interchangeable copies of cycles. The results are summarized in Table 2.

We can also apply Theorem 3 to enumerate multigraphs with a given number m of lines and n points. Let G be the graph of order n with exactly one line. Then the cycle index of its group $Z(\Gamma(G))$ is $Z\left(S_{2}\right) Z\left(S_{n-2}\right)$. Each superposition of m interchangeable copies of G

Table 2. The number of superpositions of cycles of order $n \leqslant 6$

n	$N\left[E_{2} ; D_{n}\right]$	$N\left[S_{2} ; D_{n}\right]$	$N\left[E_{3} ; D_{n}\right]$	$N\left[S_{3} ; D_{n}\right]$
3	1	1		
4	2	2	1	1
5	4	4	5	3
6	12	10	391	9
7	39	28	9549	1705
8	208	130	401691	67774

constitutes a multigraph of order n with m lines. Hence the total number is $N\left[S_{m} ; \Gamma(G)\right]$, and the only cycle indices involved are those of the symmetric groups S_{2}, S_{n-2} and S_{m}.

References

[1]. Burnside, W., Theory of Groups of Finite Order. Second edition, Cambridge, 1911; reprinted New York, 1955; p. 191.
[2]. Harary, F., On the number of bi-colored graphs. Pacific J. Math. 8 (1958), 743-755.
[3]. - Exponentiation of permutation groups. Amer. Math. Monthly, 66 (1959), 572-575.
[4]. - Graph Theory, Addison-Wesley, Reading, 1969.
[5]. Harary, F. \& Palmer, E. M., Graphical Enumeration. Academic Press, New York, 1973.
[6]. Harrison, M. A. \& High, R. G., On the cycle index of a product of permutation groups. J. Combinatorial Theory, 3 (1968), 1-23.
[7]. Palmer, E. M., The exponentiation group as the automorphism group of a graph. Proof Techniques in Graph Theory (F. Harary, ed.) Academic Press, New York (1969), 125-131.
[8]. Palmer, E. M. \& Robinson, R. W., The matrix group of two permutation groups. Bull. Amer. Math. Soc., 73 (1967), 204-207.
[9] Pó́yya, G., Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Math., 68 (1937), 145-253.
[10]. - Sur les types des propositions composées, J. Symbolic Logic, 5 (1940), 98-103.
[11]. Read, R. C., The enumeration of locally restricted graphs I, and II. J. London Math. Soc., 34 (1959), 417-436, and 35 (1960), 344-351.
[12]. Redfield, J. H., The theory of group-reduced distributions. Amer. J. Math., 49 (1927), 433-455.
[13]. Robinson, R. W., Enumeration of colored graphs, J. Combinatorial Theory, 4 (1968), 181-190.
[14]. - Enumeration of non-separable graphs. J. Combinatorial Theory, 9 (1970), 327-356.
[15]. Sabidussi, G., Graph multiplication. Math. Z., 72 (1960), 446-457.
[16]. Slepian, D., On the number of symmetry types of boolean functions of n variables. Canad. J. Math., 5 (1953), 185-193.

Received October 23, 1972

[^0]: ${ }^{(1)}$ The figure \mathcal{V} used by Redfield is the astronomical symbol for the "descending node of the moon or a planet" (cf. Webster's unabridged dictionary).

