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ENUMERATIVE TROPICAL ALGEBRAIC GEOMETRY IN R2

GRIGORY MIKHALKIN

1. Introduction

Recall the basic enumerative problem in the plane. Let g ≥ 0 and d ≥ 1 be two
numbers and let Z = (z1, . . . , z3d−1+g) be a collection of points zj ∈ CP2 in general
position. A holomorphic curve C ⊂ CP2 is parameterized by a Riemann surface
C̃ under a holomorphic map φ : C̃ → CP2 so that C = φ(C̃). Here we choose the
minimal parametrization, i.e. such that no component of C̃ is mapped to a point
by φ. The curve C is irreducible if and only if C̃ is connected. The number N irr

g,d

of irreducible curves of degree d and genus g passing through Z is finite and does
not depend on the choice of zj as long as this choice is generic.

Similarly we can set up the problem of counting all (not necessarily irreducible)
curves. Define the genus of C ⊂ CP2 to be 1

2 (2 − χ(C̃)). Note that the genus can
take negative values for reducible curves. The number Nmult

g,d of curves of degree d
and genus g passing through Z is again finite and does not depend on the choice
of zj as long as this choice is generic. Figure 1 lists some (well-known) first few
numbers N irr

g,d and Nmult
g,d .

g\d 1 2 3 4
0 1 1 12 620
1 0 0 1 225
2 0 0 0 27
3 0 0 0 1

g\d 1 2 3 4
-1 0 3 21 666
0 1 1 12 675
1 0 0 1 225
2 0 0 0 27

Figure 1. Numbers N irr
g,d and Nmult

g,d .

The numbers N irr
g,d are known as the Gromov-Witten invariants of CP2 (see [12])

while the numbers Nmult
g,d are sometimes called the multicomponent Gromov-Witten

invariant. One series of numbers determines another by a simple combinatorial
relation (see e.g. [3]). A recursive relation which allows one to compute the numbers
N irr

0,d (and thus the numbers Nmult
0,d ) was given by Kontsevich. This relation came

from the associativity of the quantum cohomology (see [12]). In the arbitrary genus
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314 GRIGORY MIKHALKIN

case Caporaso and Harris [3] gave an algorithm (bases on a degeneration of CP2)
which allows one to compute the numbers Nmult

g,d (and thus the numbers N irr
g,d).

The main result of this paper gives a new way of computation of these numbers
as well as the R-counterparts of these numbers (that appear in real algebraic ge-
ometry). The number Nmult

g,d turns out to be the number of certain lattice paths
of length 3d− 1 + g in the triangle ∆d ⊂ R2 with vertices (0, 0), (d, 0) and (0, d).
The paths have to be counted with certain non-negative multiplicities. Further-
more, this formula works not only for CP2 but for other toric surfaces as well. For
other toric surfaces we just have to replace the triangle ∆d by other convex lattice
polygons. The polygon should be chosen so that it determines the corresponding
(polarized) toric surface.

The formula comes as an application of the so-called tropical geometry whose
objects are certain piecewise-linear polyhedral complexes in Rn. These objects are
the limits of the amoebas of holomorphic varieties after a certain degeneration of the
complex structure. The idea of using these objects for enumeration of holomorphic
curves is due to Kontsevich.

In [13] Kontsevich and Soibelman proposed a program linking homological mir-
ror symmetry and torus fibrations from the Strominger-Yau-Zaslow conjecture [26].
The relation is provided by passing to the so-called “large complex limit” which de-
forms a complex structure on a manifold to its worst possible degeneration. Similar
deformations appeared in other areas of mathematics under different names. The
patchworking in real algebraic geometry was discovered by Viro [29]. Maslov and
his school studied the so-called dequantization of the semiring of positive real num-
bers (cf. [15]). The limiting semiring is isomorphic to the (max,+)-semiring Rtrop,
the semiring of real numbers equipped with taking the maximum for addition and
addition for multiplication.

The semiring Rtrop is known to computer scientists as one of tropical semirings,
see e.g. [20]. In mathematics this semiring appears from non-Archimedean fields
K under a certain pushing forward to R of the arithmetic operations in K.

In this paper we develop some basic algebraic geometry over Rtrop with a view
towards counting curves. In particular, we rigorously set up some enumerative
problems over Rtrop and prove their equivalence to the relevant problems of complex
and real algebraic geometry. The reader can refer to Chapter 9 of Sturmfels’ recent
book [27] for some first steps in tropical algebraic geometry. See also [24], [23], [25]
for some of more recent development.

We solve the corresponding tropical enumerative problem in R2. As an applica-
tion we get a formula counting the number of curves of given degree and genus in
terms of certain lattice paths of a given length in the relevant Newton polygon. In
particular this gives an interpretation of the Gromov-Witten invariants in P2 and
P1 × P1 via lattice paths in a triangle and a rectangle, respectively. This formula
was announced in [18]. For the proof we use the patchworking side of the story
which is possible to use since the ambient space is 2-dimensional and the curves
there are hypersurfaces. An alternative approach (applicable to higher dimensions
as well) is to use the symplectic field theory of Eliashberg, Givental and Hofer [4].
Generalization of this formula to higher dimensions is a work in progress. In this
paper we only define the enumerative multiplicity for the 2-dimensional case. There
is a similar definition (though no longer localized at the vertices) for multiplicities
of isolated curves in higher-dimensional tropical enumerative problems. However,
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in higher dimensions there might be families of tropical curves (of positive genus)
for enumerative problems with finite expected numbers of solutions (this phenom-
enon already appears for curves in R3 passing through a finite collection of points
in general position) which seem to pose a serious problem (that perhaps asks for
development of tropical virtual classes).

The main theorems are stated in Section 7 and proved in Section 8. In Section
2 we define tropical curves geometrically (in a way similar to webs of Aharony,
Hanany and Kol [1], [2]). In Section 3 we exhibit them as algebraic objects over the
tropical semifield. In Section 4 we define the tropical enumerative problems in R2;
in Section 5 recall those in (C∗)2. Section 6 is auxiliary to Section 8 and deals with
certain piecewise-holomorphic piecewise-Lagrangian objects in (C∗)2 called complex
tropical curves. An outline of the approach taken in this paper can also be found
in [8]. A somewhat different approach can be found in [21].

2. Tropical curves as graphs in Rn

In this section we geometrically define tropical curves in Rn and set up the
corresponding enumerative problem. We postpone the algebraic treatment of the
tropical curves (which explains the term “tropical” among other things) until the
next section.

2.1. Definitions and the first examples. Let Γ̄ be a weighted finite graph. The
weights are natural numbers prescribed to the edges. Clearly, Γ̄ is a compact
topological space. We make it non-compact by removing the set of all 1-valent
vertices V1,

Γ = Γ̄ � V1.

Remark 2.1. Removal of the 1-valent vertices is due to a choice we made in the alge-
braic side of the treatment. In this paper we chose the semifield Rtrop = (R,max,+)
as our “ground semifield” for tropical variety; see the next section. The operation
max plays the rôle of addition and thus we do not have an additive zero. Non-
compactness of Γ is caused by this choice. Should we have chosen Rtrop ∪ {−∞}
instead for our ground semifield, we would not need to remove the 1-valent vertices
but then we would have to consider tropical toric compactification of the ambient
space Rn as well. The approach of this paper is chosen for the sake of simplicity.
The other approach has its own advantages and will be realized in a forthcoming
paper.

Definition 2.2. A proper map h : Γ → Rn is called a parameterized tropical curve
if it satisfies to the following two conditions.

• For every edge E ⊂ Γ the restriction h|E is either an embedding or a
constant map. The image h(E) is contained in a line l ⊂ R2 such that the
slope of l is rational.

• For every vertex V ∈ Γ we have the following property. Let E1, . . . , Em ⊂ Γ
be the edges adjacent to V , let w1, . . . , wm ∈ N be their weights and let
v1, . . . , vm ∈ Zn be the primitive integer vectors at the point h(V ) in the
direction of the edges h(Ej) (we take vj = 0 if h(Ej) is a point). We have

(1)
m∑

j=1

wjvj = 0.
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We say that two parameterized tropical curves h : Γ → Rn and h′ : Γ′ → Rn are
equivalent if there exists a homeomorphism Φ : Γ → Γ′ which respects the weights of
the edges and such that h = h′ ◦Φ. We do not distinguish equivalent parameterized
tropical curves. The image

C = h(Γ) ⊂ Rn

is called the unparameterized tropical curve or just a tropical 1-cycle if no connected
component of Γ gets contracted to a point. The 1-cycle C is a piecewise-linear graph
in Rn with natural weights on its edges induced from the weights on Γ. If E is an
edge of C, then h−1(E) is a union of subintervals of the edges of Γ. The weight of
E is the sum of the weights of these edges.

Remark 2.3. In dimension 2 the notion of tropical curve coincides with the notion
of (p, q)-webs introduced by Aharony, Hanany and Kol in [2] (see also [1]).

Remark 2.4. The map h can be used to induce a certain structure on Γ from the
affine space Rn. It is an instance of the so-called Z-affine structure. For a graph
Γ such a structure is equivalent to a metric for every edge of Γ. Here is a way to
obtain such a metric for the edges that are not contracted to a point.

Let E ⊂ Γ be a compact edge of weight w that is not contracted to a point by
h. Such an edge is mapped to a finite straight interval with a rational slope in Rn.
Let l be the length of a primitive rational vector in the direction of h(E). We set
the length of E to be |h(E)|

lw .
Note that Γ also has non-compact edges (they result from removing 1-valent

vertices from Γ̄). Such edges are mapped to unbounded straight intervals by h.
It is possible to consider abstract tropical curves as graphs equipped with such

Z-affine structures. Then tropical maps (e.g. to Rn) will be maps that respect such
structure. Abstract tropical curves have genus (equal to b1(Γ)) and the number
of punctures (equal to the number of ends of Γ) and form the moduli space in a
manner similar to that of the classical Riemann surfaces. This point of view will
be developed in a forthcoming paper.

Example 2.5. Consider the union of three simple rays

Y = {(x, 0) | x ≤ 0} ∪ {(0, y) | y ≤ 0} ∪ {(x, x) | x ≥ 0} ⊂ R2.

This graph (considered as a tautological embedding in R2) is a tropical curve since
(−1, 0) + (0,−1) + (1, 1) = 0. A parallel translation of Y in any direction in R2 is
clearly also a tropical curve. This gives us a 2-dimensional family of curves in R2.
Such curves are called tropical lines.

Remark 2.6. The term tropical line is justified in the next section dealing with the
underlying algebra. So far we would like to note the following properties of this
family; see Figure 2.

• For any two points in R2 there is a tropical line passing through them.
• Such a line is unique if the choice of these two points is generic.
• Two generic tropical lines intersect in a single point.
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Figure 2. Three distinct tropical lines.

Somewhat more complicated tropical curves (corresponding to projective curves
of degree 3) are pictured on Figure 3.

2.2. The degree of a tropical curve in Rn. Let T = {τ1, . . . , τq} ⊂ Zn be a

set of non-zero integer vectors such that
q∑

j=1

τj = 0. Suppose that in this set we do

not have positive multiples of each other, i.e. if τj = mτk for m ∈ N, then τj = τk.
The degree of a tropical 1-cycle C ⊂ Rn takes values in such sets according to the
following construction.

By our definition a tropical curve h : Γ → Rn has a finite number of ends, i.e.
unbounded edges (rays). Let τ ∈ Zn be a primitive vector. A positive multiple
of τ is included in T if and only if there exists an end of Γ which is mapped in
the direction of τ . In such a case we include mτ into T , where m is the sum of
multiplicities of all such rays.

Definition 2.7. The resulting set T is called the toric degree of C ⊂ Rn. Accord-
ingly, the degree of a parameterized tropical curve h : Γ → Rn is the degree of its
image h(Γ).

Note that the sum of all vectors in T is zero. This follows from adding the
conditions (1) from Definition 2.2 in all vertices of C.

For example the degree of both curves from Figure 5 is {(−1,−1), (2,−1),
(−1, 2)} while the degree of both curves from Figure 3 is {(−3, 0), (0,−3), (3, 3)}.
Definition 2.8. If the toric degree of a tropical 1-cycle C ⊂ Rn is {(−d, 0, . . . , 0),
. . . , (0, . . . , 0,−d), (d, . . . , d)}, then C is called a tropical projective curve of degree
d.

The curves from Figure 3 are examples of planar projective cubics.

2.3. Genus of tropical curves and tropical 1-cycles. We say that a tropical
curve h : Γ → Rn is reducible if Γ is disconnected. We say that a tropical 1-cycle
C ⊂ Rn is reducible if it can be presented as a union of two distinct tropical 1-
cycles. Clearly, every reducible 1-cycle can be presented as an image of a reducible
parameterized curve.

Definition 2.9. The genus of a parameterized tropical curve Γ → Rn is dimH1(Γ)−
dimH0(Γ) + 1. In particular, for irreducible parameterized curves the genus is the
first Betti number of Γ. The genus of a tropical 1-cycle C ⊂ Rn is the minimum
genus among all parameterizations of C.
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Note that according to this definition the genus can be negative. E.g. the union
of the three lines from Figure 2 has genus −2.

If C ⊂ Rn is an embedded 3-valent graph, then the parameterization is unique.
However, in general, there might be several parameterizations of different genus
and taking the minimal value is essential.

Example 2.10. The tropical 1-cycle on the right-hand side of Figure 3 can be
parameterized by a tree once we “resolve” its 4-valent vertex to make the parame-
terization domain into a tree. Therefore, its genus is 0.

Figure 3. A smooth projective tropical cubic and a rational
(genus 0) projective tropical cubic.

2.4. Deformations of tropical curves within their combinatorial type. As
in the classical complex geometry case the deformation space of a tropical curve
h : Γ → Rn is subject to the constraint coming from the Riemann-Roch formula.
Let x be the number of ends of Γ.

Remark 2.11. The number −x is a tropical counterpart of the value of the canonical
class of the ambient complex variety on the curve h(Γ). The ambient space Rn

corresponds to the torus (C∗)n classically. Let V ⊂ (C∗)n be a holomorphic curve
with a finite number of ends. The space (C∗)n is not compact, but one can always
choose a toric compactification CT ⊃ (C∗)n such that every point of the closure
V̄ ⊃ V in CT intersects not more than one boundary divisor (i.e. a component of
CT � (C∗)n). Then every end of V can be prescribed a multiplicity equal to the
intersection number of the point of V̄ and the corresponding boundary divisor. The
value of the canonical class of CT on V̄ equals the sum of these multiplicities.

Definition 2.12. The curves h : Γ → Rn and h′ : Γ → Rn (parameterized by the
same graph Γ) are said to be of the same combinatorial type if for any edge E ⊂ Γ
the segments h(E) and h′(E) are parallel.

Note that if two tropical curves Γ → Rn are isotopic in the class of tropical
curves (with the same domain Γ), then they are of the same combinatorial type.

The valence of a vertex of Γ is the number of adjacent edges regardless of their
weights. The graph Γ is called 3-valent if every vertex is 3-valent. The parameter-
ized tropical curve h : Γ → Rn is called 3-valent if Γ is 3-valent.

Proposition 2.13. Let Γ be a 3-valent graph. The space of all tropical curves
Γ → Rn in the same combinatorial type (up to their equivalence from Definition
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2.2) is an open convex polyhedral domain in a real affine k-dimensional space, where

k ≥ x+ (n− 3)(1 − g).

Proof. It suffices to prove this for a connected graph Γ since different components
of Γ vary independently, and, furthermore, both sides of the inequality are additive
with respect to taking the union of components (note that 1− g = b0(Γ)− b1(Γ) =
χ(Γ)). Let Γ′ ⊂ Γ be a finite tree containing all the vertices of Γ. Note that the
number of finite edges in Γ � Γ′ is g. By an Euler characteristic computation we
get that the number of finite edges of Γ′ is equal to x− 3 + 2g.

Maps Γ′ → Rn vary in a linear (x− 3 + 2g + n)-dimensional family if we do not
change the slopes of the edges. The (x−3+2g)-dimensional part comes from varying
the lengths of the edges while the n-dimensional part comes from translations in
Rn. Such a map is extendable to a tropical map Γ → Rn if the pairs of vertices
corresponding to the g remaining edges define the lines with the correct slope.
Each of the g edges imposes a linear condition of codimension at most n− 1. Thus
tropical perturbations of Γ → Rn are contained in a linear family of dimension at
least x − 3 + 2g + n − (n − 1)g = x + (n − 3)(1 − g). They form an open convex
polyhedral domain there defined by the condition that the lengths of all the edges
are positive. �

Consider the general case now and suppose that Γ has vertices of valence higher
than 3. How much Γ differs from a 3-valent graph is measured by the following
characteristic. Let the overvalence ov(Γ) be the sum of the valences of all vertices
of valence higher than 3 minus the number of such vertices. Thus ov(Γ) = 0 if and
only if no vertex of Γ has valence higher than 3.

Proposition 2.14. The space of all tropical curves Γ → Rn in the same combina-
torial type (up to their equivalence from Definition 2.2) is an open convex polyhedral
domain in a real affine k-dimensional space, where

k ≥ x+ (n− 3)(1 − g) − ov(Γ) − c,

where c is the number of edges of Γ that are mapped to a point.

Proof. The proof is similar to that of Proposition 2.13. If the image of an edge is a
point in Rn, then we cannot vary its length. Similarly we are lacking some degrees
of freedom (with respect to the set-up of Proposition 2.13) if ov > 0. �

Note that ov +c can be interpreted as the overvalence of the image h(Γ).

2.5. Changing the combinatorial type of Γ. Sometimes we can deform Γ and
h : Γ → Rn by the following procedure reducing ov. If we have n > 3 edges adjacent
to the same vertex, then we can separate them into two groups so that each group
contains at least 2 edges. Let us insert a new edge E′ separating these groups as
shown in Figure 4. This replaces the initial n-valent vertex with 2 vertices (the
endpoints of E′) of smaller valence. There is a “virtual slope” of E′ determined
by the slopes of the edges in each group. This is the slope to appear in local
perturbation of the tropical map h : Γ → Rn (if such a perturbation exists). Note
that the weight of the new edge does not have to be equal to 1.

There is another modification of a tropical curve near its vertex by changing the
combinatorial type of Γ which works even for some 3-valent vertices.
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Figure 4. Smoothing a vertex of higher valence.

Example 2.15. Let Γ be the union of three rays in R2 in the direction (−2, 1),
(1,−2) and (1, 1) emanating from the origin (pictured on the left-hand side of Figure
5). This curve is a simple tropical curve of genus 0.

It can be obtained as a t→ 0 limit of the family of genus 1 curves given by the
union of three rays in R2 in the direction (−2, 1), (1,−2) and (1, 1) emanating from
(−2t, t), (t,−2t) and (t, t), respectively, and the three intervals [(−2t, t), (t,−2t)],
[(−2t, t), (t, t)] and [(t, t), (t,−2t)] as pictured in Figure 5.

Figure 5. Perturbation at a non-smooth 3-valent vertex.

Let V be a 3-valent vertex of Γ. As in Definition 2.2 let w1, w2, w3 be the weights
of the edges adjacent to V and let v1, v2, v3 be the primitive integer vectors in the
direction of the edges.

Definition 2.16. The multiplicity of C at its 3-valent vertex V is w1w2|v1 ∧ v2|.
Here |v1 ∧ v2| is the area of the parallelogram spanned by v1 and v2. Note that

w1w2|v1 ∧ v2| = w2w3|v2 ∧ v3| = w3w1|v3 ∧ v1|
since v1w1 + v2w2 + v3w3 = 0 by Definition 2.2.

Note that the multiplicity of a vertex is always divisible by the product of the
weights of any two out of the three adjacent edges.

Definition 2.17. We say that h′ : Γ′ → Rn is a perturbation of h : Γ → Rn if
there exists a family h′t : Γ′ → Rn, t > 0, in the same combinatorial type as h′ and
the pointwise limit h′0 = lim

t→0
h′t such that h′0(Γ

′) coincides with h(Γ) (as tropical

1-cycles).

Definition 2.18. A tropical curve h : Γ → Rn is called smooth if Γ is 3-valent, h
is an embedding and the multiplicity of every vertex of C is 1.

Proposition 2.19. A smooth curve does not admit perturbations of different com-
binatorial types.
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Proof. Suppose that h′t : Γ′ → Rn is a perturbation of a smooth curve h : Γ → Rn.
Since h is an embedding and h(Γ) = h′0(Γ′), we have a map

ψ : Γ′ → Γ.

Note that the weight of every edge from Γ is 1 since otherwise the endpoints of
multiple edges would have multiplicity greater than 1. Thus the inverse image of
every open edge of Γ under ψ is a single edge of Γ′.

Thus ψ must be a homeomorphism near the inner points of the edges of Γ′. Let
a ∈ Γ be a vertex and let U � a be its small neighborhood in Γ. Note that ψ−1(U)
is connected since a is 3-valent (otherwise we can divide the adjacent edges to a
into two groups with zero sums of the primitive integer vectors).

Suppose that ψ−1(a) is not a point. Then ψ−1(a) is a graph which has three
distinguished vertices that are adjacent to the edges of ψ−1(U)�ψ−1(a). The graph
A = ψ′

t(ψ
−1(U)) must be contained in the affine 2-plane in Rn containing the ends

A. This follows from the balancing condition for A.
The 3-valent vertices of A have multiplicities from Definition 2.16. Since A is

planar, we can extend the definition of the multiplicity to higher-valent vertices as
follows. Let V ∈ A be a k-valent vertex, v1, . . . , vk be the primitive integer vectors
in the directions of the adjacent edges to A numbered consistently with the cyclic
order in the ambient 2-plane and let w1, . . . , wk be the corresponding weights. We
set the multiplicity of V to be

k−1∏
l=2

∣∣vl ∧
l∑

j=1

vj

∣∣.
It is easy to see that the multiplicity of a in Γ is equal to the sum of multiplicities
of all the vertices of A. The multiplicities of all vertices are positive integers.
Therefore, the multiplicity of a is greater than 1 unless ψ−1(a) is a point. �

Proposition 2.13 can be generalized in the following way to incorporate possible
perturbations.

Proposition 2.20. The space of deformations of a parameterized tropical curve
h : Γ → Rn is locally a cone

C =
⋃
j

Cj,

where Cj is a polyhedral convex cone corresponding to tropical curves parameterized
by perturbations Γj → Rn of h : Γ → Rn of a given combinatorial type. The union
is taken over all possible combinatorial types of perturbations. We have

dim Cj ≥ x+ (n− 3)(1 − g) − ov(Γj) − c,

where c is the number of the edges of Γj that are mapped to a point.

Proof. This proposition follows from Proposition 2.14 applied to all possible per-
turbation of Γ. �

Remark 2.21. Not all conceivable perturbations of h : Γ → Rn are realized as the
following example shows. Let C1 ⊂ R2 ×{0} ⊂ R3 be a tropical 1-cycle of genus 1.
Let C2 = {y} × R ⊂ R3 be a vertical line such that y is a point on C1 such that
C1 � {y} is contractible. The curve

C = C1 ∪ C2
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has a 4-valent vertex that cannot be perturbed (since any such perturbation would
force C1 out of the plane R2 × {0}). Thus any 3-valent perturbation of the tauto-
logical embedding C1 ∪C2 ⊂ R3 has to have an edge mapping to a point.

This phenomenon is related to the so-called superabundancy phenomenon.

2.6. Superabundancy and regularity. Some curves vary in a family strictly
larger than “the prescribed dimension” x+ (n− 3)(1 − g) − ov−c.
Definition 2.22. A parameterized tropical curve h : Γ → Rn is called regular if
the space of the curves of this combinatorial type (which is a polyhedral domain
in an affine space by Proposition 2.14) has dimensions x+ (n− 3)(1 − g) − ov−c.
Otherwise it is called superabundant.

In contrast to the classical case tropical superabundancy can be easily seen ge-
ometrically. By the proof of Proposition 2.13 the superabundancy appears if the
cycles of the graph Γ do not provide transversal conditions for the length of the
bounded edges of the subtree Γ′. This is the case if some of the cycles of C ⊂ Rn

are contained in smaller-dimensional affine-linear subspaces of Rn, e.g. if a non-
trivial cycle of Γ gets contracted or if a spatial curve develops a planar cycle. More
generally, this is the case if several non-degenerate “spatial” cycles combine to a
degenerate “flat” cycle.

Clearly, no irreducible tropical curve of genus 0 can be superabundant since it
has no cycles. Furthermore, tropical immersions of 3-valent graphs to the plane R2

are never superabundant as the following proposition shows.

Proposition 2.23. Every tropical immersion h : Γ → R2 is regular if Γ is 3-valent.
If Γ has vertices of valence higher than 3, then h : Γ → R2 varies in at most the
(x+ g − 2)-dimensional family.

Proof. Recall the proof of Propositions 2.13 and 2.14. Once again we may assume
that Γ is connected. Let V ∈ Γ be any vertex.

We may choose an order on the vertices of Γ so that it is consistent with the
distance from V , i.e. so that the order of a vertex V ′ is greater than the order
of a vertex V ′′ whenever V ′ is strictly further from V than V ′′. The balancing
condition for h(Γ) implies the following maximum principle for Γ: any vertex of Γ
is either adjacent to an unbounded edge of Γ or is connected with a bounded edge
to a higher order vertex. Inductively one may choose a maximal tree Γ′ ⊂ Γ so
that this maximum principle also holds for Γ′. Note that the set of vertices of Γ′

coincides with the set of vertices of Γ. Note also that our choice of order on this
set gives the orientation on the edges of Γ: every edge is directed from a smaller to
a larger vertex.

The space of deformation of h within the same combinatorial type is open in a
k-dimensional real affine space that is cut by g hyperplanes in Rl+n where l is the
number of bounded edges of Γ′. Each of these g hyperplanes is non-trivial if h is
an immersion and Γ is 3-valent, since then there can be no parallel edges adjacent
to the same vertex.

We have regularity if these hyperplanes intersect transversely. The hyperplanes
are given by a g×(l+2)-matrix with real values. The rows of this matrix correspond
to the edges of Γ � Γ′ while the first l columns correspond to the edges of Γ′ (the
remaining two columns correspond to translations in R2). To show that the rank
of this matrix is g in the 3-valent case, we exhibit an upper-triangular g × g-minor
with non-zero elements on its diagonal.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ENUMERATIVE TROPICAL ALGEBRAIC GEOMETRY IN R
2 323

For each edge E of Γ�Γ′ we include the column corresponding to the (bounded)
edge of Γ′ directed toward the highest endpoint of E. If Γ is 3-valent, different
edges of Γ − Γ′ correspond under this construction to different edges of Γ′. This
produces the required g × g-minor.

If Γ is not 3-valent, then the number of bounded edges of Γ′ is x−3+2g−ov. This
number is the same as the number of vertices of Γ′ other than V . We can do the
construction of the minor as above but only using one edge of Γ�Γ′ at every vertex
of Γ other than V . In such a way we can get a non-degenerate (g − ov)× (g − ov)-
minor and thus the dimension is at most x− 3 + 2g− ov−(g− ov) + 2 = x− 1 + g
(2 comes from translations in R2). If there exists a vertex of valence higher than
3, then we may choose such a vertex for the root V of the tree Γ′ and this gives a
non-degenerate minor of size strictly larger than (g − ov). �

Corollary 2.24. An immersed 3-valent tropical curve h : Γ → Rn locally varies in
a (real) linear k-dimensional space, where

k = x+ (n− 3)(1 − g)

if either n = 2 or g = 0.

Remark 2.25. There exist superabundant tropical immersions Γ → R2 if Γ is not
3-valent. A nice example is given by the Pappus theorem configuration that is a
union of 9 lines; see Figure 6. Assume that the nine Pappus lines have rational

Figure 6. Pappus configuration is superabundant.

slopes and take Γ to be their union in R2 so that our tropical curve Γ → R2 is
a tautological embedding. We have x = 18, g = 22, ov = 39, c = 0. Therefore
x+g−1−ov−c = 0, yet our configuration varies at least in a 3-dimensional family
(since we can apply any translation and homothety in R2 without changing the
slopes of our lines).

Clearly, there also exist superabundant immersed 3-valent tropical curves in Rn,
n > 2. E.g. if h : Γ → R2 is a (regular) tropical immersion of a 3-valent graph Γ,
then its composition with the embedding R2 ⊂ Rn, n > 2, is superabundant.

3. Underlying tropical algebra

In this section we exhibit the tropical curves as algebraic varieties with respect
to a certain algebra and also define some higher-dimensional tropical algebraic
varieties in Rn.
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3.1. The tropical semifield Rtrop. Consider the semiring Rtrop of real numbers
equipped with the following arithmetic operations called tropical in computer sci-
ence:

“x+ y” = max{x, y}, “xy” = x+ y,

x, y ∈ Rtrop. We use the quotation marks to distinguish the tropical operations
from the classical ones. Note that addition is idempotent, “x+x = x”. This makes
Rtrop a semiring without the additive zero (the role of such a zero would be played
by −∞).

Remark 3.1. According to [20] the term “tropical” appeared in computer science
in honor of Brazil and, more specifically, after Imre Simon (who is a Brazilian
computer scientist) by Dominique Perrin. In computer science the term is usually
applied to (min,+)-semirings. Our semiring Rtrop is (max,+) by our definition but
isomorphic to the (min,+)-semiring; the isomorphism is given by x �→ −x.

As usual, a (Laurent) polynomial in n variables over Rtrop is defined by

f(x) = “
∑
j∈A

ajx
j” = max

j∈A
(〈j, x〉 + aj),

where x = (x1, . . . , xn) ∈ Rn, j = (j1, . . . , jn), xj = xj1
1 . . . xjn

n , 〈j, x〉 = j1x1 + · · ·+
jnxn and A ⊂ Zn is a finite set. Note that f : Rn → R is a convex piecewise-linear
function. It coincides with the Legendre transform of a function j �→ −aj defined
on the finite set A.

Definition 3.2. The polyhedron ∆ = ConvexHull(A) is called the Newton polyhe-
dron of f . It can be treated as a refined version of the degree of the polynomial f
in toric geometry.

3.2. Tropical hypersurfaces: The variety of a tropical polynomial. For a
tropical polynomial f in n variables we define its variety Vf ⊂ Rn as the set of
points where the piecewise-linear function f is not smooth; cf. [10], [18] and [27].
In other words, Vf is the corner locus of f .

Proposition 3.3. Vf is the set of points in Rn where more than one monomial of
f reaches its maximal value.

Proof. If exactly one monomial of f(x) = “
∑
j∈A

ajx
j” = max

j∈A
(〈j, x〉+aj) is maximal

at x ∈ Rn, then f locally coincides with this monomial and, therefore, is linear and
smooth. Otherwise f has a corner at x. �
Remark 3.4. At first glance this definition might appear to be unrelated to the
classical definition of the variety as the zero locus of a polynomial. To see the
connection, recall that there is no additive zero in Rtrop, but its rôle is played by
−∞.

Consider the graph Γf ⊂ Rn × R of a tropical polynomial f : Rn → R. The
graph Γf itself is not a tropical variety in Rn+1 but it can be completed to the
tropical variety

Γ̄f = Γf ∪ {(x, y) | x ∈ Vf , y ≤ f(x)};
see Figure 7.

Proposition 3.5. Γ̄f coincides with the variety of the polynomial in (n+ 1) vari-
ables “y + f(x)” (where y ∈ R, x ∈ Rn).
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Proof. If (x, y) ∈ Γf , then we have y and one of the monomials of f both reaching
the maximal values in “y + f(x)” = max{y, f(x)}. If x ∈ Vf and y < f(x), then
two monomials of f(x) reach the maximal value at the expression “y + f(x)”. �

Note that we have Vf = Γ̄f ∩ {y = t} for t sufficiently close to −∞. This is the
sense in which Vf can be thought of as a zero locus.

One may argue that Γf itself is a subtropical variety (as in subanalytic vs.
analytic sets) while Γ̄f is its tropical closure. Figure 7 sketches the graph y =
“ax2 + bx+ c” and its tropical closure.

x

y

Figure 7. The graph y = “ax2 + bx + c” and its closure, the
tropical parabola.

Definition 3.6. Varieties Vf ⊂ Rn are called tropical hypersurfaces associated to
f .

Remark 3.7. Different tropical polynomials may define the same varieties. To see
this, let us first extend the notion of concavity to those R-valued functions which
are only defined on a finite set A ⊂ Rn. We call a function φ : A → R concave
if for any (possibly non-distinct) b0, . . . , bn ∈ A ⊂ Rn and any t0, . . . , tn ≥ 0 with

n∑
k=0

tk = 1 and
n∑

k=0

tkbk ∈ A we have

φ
( n∑

k=0

tkbk

)
≥

n∑
k=0

tkφ(bk).

We have three types of ambiguities when f �= g but Vf = Vg.
• g = “xjf”, where xj is a coordinate in Rn

trop. Note that in this case the
Newton polyhedron of g is a translate of the Newton polyhedron of f .

• g = “cf”, where c ∈ Rtrop is a constant.
• The function ∆ ∩ Zn � j �→ aj is not concave, where f = “

∑
j∈A

ajx
j” and

we set aj �→ −∞ if j /∈ A. Then the variety of f coincides with the variety
of g where g is the smallest concave function such that g ≥ f (in other
words g is a concave hull of f).

Thus to define tropical hypersurfaces, it suffices to consider only tropical polyno-
mials whose coefficients satisfy the concavity condition above.

Proposition 3.8 ([17]). The space of all tropical hypersurfaces with a given Newton
polyhedron ∆ is a closed convex polyhedral cone M∆ ⊂ Rm, m = #(∆ ∩ Zn) − 1.
The cone M∆ ⊂ Rm is well-defined up to the natural action of SLm(Z).
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Proof. All concave functions ∆ ∩ Zn → R, j �→ aj form a closed convex polyhedral
cone M̃∆ ⊂ Rm+1. But the function j �→ aj + c defines the same curve as the
function j �→ aj . To get rid of this ambiguity, we choose j′ ∈ ∆ ∩ Zn and define
M∆ as the image of M̃∆ under the linear projection Rm+1 → Rm, aj �→ aj−aj′ . �

3.3. Compactness of the space of tropical hypersurfaces. Clearly, the cone
M∆ is not compact. Nevertheless it gets compactified by the cones M∆′ for all non-
empty lattice subpolyhedra ∆′ ⊂ ∆ (including polygons with the empty interior).
Indeed, we have the following proposition.

Proposition 3.9. Let Ck ⊂ Rn, k ∈ N, be a sequence of tropical hypersurfaces
whose Newton polyhedron is ∆. There exists a subsequence which converges to a
tropical hypersurface C whose Newton polyhedron ∆C is contained in ∆ (note that
C is empty if ∆C is a point). The convergence is in the Hausdorff metric when
restricted to any compact subset in Rn. Furthermore, if the Newton polyhedron of
C coincides with ∆, then the convergence is in the Hausdorff metric in the whole
of Rn.

Proof. Each Ck is defined by a tropical polynomial fCk(x) = “
∑
j

aCk

j xj”. We

may assume that the coefficients aCk

j are chosen so that they satisfy the concavity
condition and so that max

j
aCk

j = 0. This takes care of the ambiguity in the choice

of fCk (since the Newton polyhedron is already fixed).
Passing to a subsequence, we may assume that aCk

j converge (to a finite number
or −∞) when k → ∞ for all j ∈ ∆ ∩ Zn. By our assumption one of these limits is
0. Define C to be the variety of “

∑
a∞j x

j”, where we take only finite coefficients
a∞j = lim

k→∞
aCk

j > −∞. �

3.4. Lattice subdivision of ∆ associated to a tropical hypersurface. A
tropical polynomial f defines a lattice subdivision of its Newton polyhedron ∆ in
the following way (cf. [6]). Define the (unbounded) extended polyhedral domain

∆̃ = ConvexHull{(j, t) | j ∈ A, t ≤ aj} ⊂ Rn × R.

The projection Rn×R → Rn induces a homeomorphism from the union of all closed
bounded faces of ∆̃ to ∆.

Definition 3.10. The resulting lattice subdivision Subdivf of ∆ is called the sub-
division associated to f .

Proposition 3.11. The lattice subdivision Subdivf is dual to the tropical hyper-
surface Vf . Namely, for every k-dimensional polyhedron ∆′ ∈ Subdivf there is a
convex closed (perhaps unbounded) polyhedron V ∆′

f ⊂ Vf ⊂ Rn. This correspon-
dence has the following properties.

• V ∆′
f is contained in an (n − k)-dimensional affine-linear subspace L∆′

of
Rn orthogonal to ∆′.

• The relative interior U∆′
f of V ∆′

f in L∆′
is not empty.

• Vf =
⋃
U∆′

f .
• U∆′

f ∩ U∆′′
f = ∅ if ∆′ �= ∆′′.

• V ∆′
f is compact if and only if ∆′ ⊂ ∆.
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Proof. For every ∆′ ∈ Subdivf , consider the truncated polynomial

f∆′
(x) =

∑
j∈∆′

ajx
j

(recall that f(x) =
∑

j∈∆

ajx
j). Define

(2) V ∆′
f = Vf ∩

⋂
∆′′⊂∆′

Vf∆′′ .

Note that for any face ∆′′ ⊂ ∆′ we have the variety Vf∆′′ orthogonal to ∆′′

(since moving in the direction orthogonal to ∆′′ does not change the value of
∆′′-monomials) and therefore to ∆′. To verify the last item of the proposition,
we restate the defining equation (2) algebraically: V ∆′

f is the set of points where
all monomials of f indexed by ∆′ have equal values while the value of any other
monomial of f could only be smaller. �

Example 3.12. Figure 8 shows the subdivisions dual to the curves from Figures
3 and 5.

Figure 8. Lattice subdivisions associated to the curves from Fig-
ure 3 and Figure 5.

It was observed in [10], [18] and [27] that Vf is an (n−1)-dimensional polyhedral
complex dual to the subdivision Subdivf . The complex Vf ⊂ Rn is a union of
convex (not necessarily bounded) polyhedra or cells of Vf . Each k-cell (even if it is
unbounded) of Vf is dual to a bounded (n−k−1)-face of ∆̃, i.e. to an (n−k−1)-cell
of Subdivf . In particular, the slope of each cell of Vf is rational.

In particular, an (n − 1)-dimensional cell is dual to an interval I ⊂ Rn both of
whose ends are lattice points. We define the lattice length of I as #(I ∩ Zn) − 1.
(Such a length is invariant with respect to SLn(Z).) We can treat Vf as a weighted
piecewise-linear polyhedral complex in Rn; the weights are natural numbers asso-
ciated to the (n− 1)-cells. They are the lattice lengths of the dual intervals.

Definition 3.13. The combinatorial type of a tropical hypersurface Vf ⊂ Rn is the
equivalence class of all Vg such that Subdivg = Subdivf .

Let S be such a combinatorial type.

Lemma 3.14. All tropical hypersurfaces of the same combinatorial type S form a
convex polyhedral domain MS ⊂ M∆ that is open in its affine-linear span.

Proof. The condition Subdivf = S can be written in the following way in terms of
the coefficients of f(x) = “

∑
j

ajx
j”. For every ∆′ ∈ S the function j �→ −aj for

j ∈ ∆′ should coincide with some linear function α : Zn → R such that −aj > α(j)
for every j ∈ ∆ � ∆′. �
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It turns out that the weighted piecewise-linear complex Vf satisfies the balancing
property at each (n − 2)-cell; see Definition 3 of [18]. Namely, let F1, . . . , Fk be
the (n − 1)-cells adjacent to a (n − 2)-cell G of Vf . Each Fj has a rational slope
and is assigned a weight wj . Choose a direction of rotation around G and let
cFj : Zn → Z be linear maps whose kernels are planes parallel to Fj and such that
they are primitive (non-divisible) and agree with the chosen direction of rotation.
The balancing condition states that

(3)
k∑

j=1

wjcFj = 0.

As was shown in [18], this balancing condition at every (n − 2)-cell of a rational
piecewise-linear (n − 1)-dimensional polyhedral complex in Rn suffices for such a
polyhedral complex to be the variety of some tropical polynomial.

Theorem 3.15 ([17]). A weighted (n− 1)-dimensional polyhedral complex Π ⊂ Rn

is the variety of a tropical polynomial if and only if each k-cell of Π is a convex
polyhedron sitting in a k-dimensional affine subspace of Rn with a rational slope
and Π satisfies the balancing condition (3) at each (n− 2)-cell.

This theorem implies that the definitions of tropical curves and tropical hyper-
surfaces agree if n = 2.

Corollary 3.16. Any tropical curve C ⊂ R2 is a tropical hypersurface for some
polynomial f . Conversely, any tropical hypersurface in R2 can be parameterized by
a tropical curve.

Remark 3.17. Furthermore, the degree of C is determined by the Newton polygon
∆ of f according to the following recipe. For each side ∆′ ⊂ ∂∆ we take the
primitive integer outward normal vector and multiply it by the lattice length of ∆′

to get the degree of C.

3.5. Tropical varieties and non-Archimedean amoebas. Polyhedral com-
plexes resulting from tropical varieties appeared in [10] in the following context.
Let K be a complete algebraically closed non-Archimedean field. This means that
K is an algebraically closed field and there is a valuation val : K∗ → R defined on
K∗ = K�{0} such that eval defines a complete metric onK. Recall that a valuation
val is a map such that val(xy) = val(x)+val(y) and val(x+y) ≤ max{val(x), val(y)}.

Our principal example of such a K is a field of Puiseux series with real powers.
To construct K, we take the algebraic closure C((t)) of the field of Laurent series
C((t)). The elements of C((t)) are formal power series in t a(t) =

∑
k∈A

akt
k, where

ak ∈ C and A ⊂ Q is a subset bounded from below and contained in an arithmetic
progression. We set val(a(t)) = −minA. We define K to be the completion of
C((t)) as the metric space with respect to the norm eval.

Let V ⊂ (K∗)n be an algebraic variety over K. The image of V under the
map Val : (K∗)n → Rn, (z1, . . . , zn) �→ (val(z1), . . . , val(zn)) is called the amoeba
of V (cf. [6]). Kapranov [10] has shown that the amoeba of a non-Archimedean
hypersurface is the variety of a tropical polynomial. Namely, if

∑
j∈A

ajz
j = 0,

0 �= aj ∈ K is a hypersurface in (K∗)n, then its amoeba is the variety of the
tropical polynomial

∑
j∈A

val(aj)xj .
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More generally, if F is a field with a real-valued norm, then the amoeba of an
algebraic variety V ⊂ (F ∗) is Log(V ) ⊂ Rn, where Log(z1, . . . , zn) = (log ||z1||, . . . ,
log ||zn||). Note that Val is such a map with respect to the non-Archimedean norm
eval in K.

Another particularly interesting case is if F = C with the standard norm ||z|| =√
zz̄ (see [6], [16], [19], etc.). The non-Archimedean hypersurface amoebas appear

as limits in the Hausdorff metric of Rn from the complex hypersurfaces amoebas
(see e.g. [17]).

It was noted in [23] that the non-Archimedean approach can be used to de-
fine tropical varieties of arbitrary codimension in Rn. Namely, one can define the
tropical varieties in Rn to be the images Val(V ) of arbitrary algebraic varieties
V ∈ (K∗)n. This definition allows one to avoid dealing with the intersections of
tropical hypersurfaces in non-general position. We refer to [23] for relevant discus-
sions.

4. Enumeration of tropical curves in R2

4.1. Simple curves and their lattice subdivisions. Corollary 3.16 states that
any tropical 1-cycle in R2 is a tropical hypersurface, i.e. it is the variety of a tropical
polynomial f : R2 → R. By Remark 3.7 the Newton polygon ∆ of such f is well
defined up to a translation.

Definition 4.1. We call ∆ the degree of a tropical curve in R2.

By Remark 3.17 this degree supplies the same amount of information as the
toric degree from Definition 2.7. We extract two numerical characteristics from the
polygon ∆ ⊂ R2:

(4) s = #(∂∆ ∩ Z2), l = #(Int ∆ ∩ Z2).

The number s is the number of unbounded edges of the curve if counted with
multiplicities (recall that we denoted the number of unbounded edges “counted
simply” with x ≤ s). The number l is the genus of a smooth tropical curve of
degree ∆. To see this, let us note that every lattice point of ∆ is a vertex of the
associated subdivision for a smooth curve C. Therefore, the homotopy type of C
coincides with Int∆ � Z2. Note also that smooth curves are dense in M∆.

There is a larger class of tropical curves in R2 whose behavior is as simple as
that of smooth curves.

Definition 4.2. A parameterized tropical curve h : Γ → R2 is called simple if it
satisfies all of the following conditions.

• The graph Γ is 3-valent.
• The map h is an immersion.
• For any y ∈ Rn the inverse image h−1(y) consists of at most two points.
• If a, b ∈ Γ, a �= b, are such that h(a) = h(b), then neither a nor b can be a

vertex of Γ.
A tropical 1-cycle C ⊂ R2 is called simple if it admits a simple parameterization.

Proposition 4.3. A simple tropical 1-cycle C ⊂ R2 admits a unique simple tropical
parameterization. The genus of a simple 1-cycle coincides with the genus of its
simple parameterization. Furthermore, any of its non-simple parameterizations has
a strictly larger genus.
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Proof. By Definition 4.2, C has only 3- and 4-valent vertices, where 4-valent vertices
are the double points of a simple immersion. Any other parametrization would have
to have a 4-valent vertex in the parameterizing graph. �

Proposition 4.3 allows us to switch back and forth between parameterized trop-
ical curves and tropical 1-cycles in the case of simple curves in R2. Thus we refer
to them just as simple tropical curves. In a sense they are a tropical counterpart of
nodal planar curves in classical complex geometry.

Remark 4.4. More generally, every tropical 1-cycle C ⊂ R2 admits a parameteri-
zation by an immersion of genus not greater than g(C). Start from an arbitrary
parameterization h : Γ → R2. To eliminate an edge E ⊂ Γ such that h(E) is
contracted to a point, we take the quotient of Γ by E for a new domain of param-
eterization. This procedure does not change the genus of Γ.

Therefore, we may assume that h : Γ → R2 does not have contracting edges.
This is an immersion away from such vertices of Γ for which there exist two distinct
adjacent edges E1, E2 with h(E1)∩h(E2) �= ∅. Changing the graph Γ by identifying
the points on E1 and E2 with the same image can only decreases the genus of Γ (if
E1 and E2 were distinct edges connecting the same pair of vertices). Inductively
we get an immersion.

Lemma 4.5. A tropical curve C ⊂ R2 is simple (see Definition 4.2) if and only
if it is the variety of a tropical polynomial such that Subdivf is a subdivision into
triangles and parallelograms.

Proof. The lemma follows from Proposition 3.11. The 3-valent vertices of C are
dual to the triangles of Subdivf while the intersection of edges is dual to the par-
allelograms (see e.g. the right-hand side of Figure 3 and the corresponding lattice
subdivision in Figure 8). �

We have the following formula which expresses the genus of a simple tropical
curve Vf in terms of the number r of triangles in Subdivf .

Lemma 4.6 (Cf. [8]). If a curve Vf ⊂ R2 is simple, then g(Vf ) = r−x
2 + 1.

Proof. Let ∆0 be the number of vertices of Subdivf while ∆1 and ∆2 are the
numbers of its edges and (2-dimensional) polygons. Out of the ∆2 2-dimensional
polygons r are triangles and (∆2 − r) are parallelograms.

We have
χ(Vf ) = −2∆2 + ∆1.

Note that 3r + 4(∆2 − r) = 2∆1 − x. Thus, ∆1 = 3
2r + 2(∆2 − r) + x

2 and

g(Vf ) = 1 − χ(Vf ) = 1 +
r − x

2
. �

4.2. Tropical general positions of points in R2.

Definition 4.7. Points p1, . . . , pk ∈ R2 are said to be in general position tropically
if for any tropical curve h : Γ → R2 of genus g and with x ends such that k ≥ g+x−1
and p1, . . . , pk ∈ h(Γ) we have the following conditions.

• The curve h : Γ → R2 is simple (see Definition 4.2).
• Inverse images h−1(p1), . . . , h−1(pk) are disjoint from the vertices of C.
• k = g + x− 1.
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Example 4.8. Two distinct points p1, p2 ∈ R2 are in general position tropically if
and only if the slope of the line in R2 passing through p1 and p2 is irrational.

Remark 4.9. Note that we can always find a curve with g + x − 1 = k passing
through p1, . . . , pk. For such a curve we can take a reducible curve consisting of k
affine (i.e. classical) lines in R2 with rational slope each passing through its own
point pj . This curve has 2k ends while its genus is 1 − k.

Proposition 4.10. Any subset of a set of points in tropically general position is
itself in tropically general position.

Proof. Suppose the points p1, . . . , pj are not in general position. Then there is a
curve C with x ends of genus j+2−x passing through p1, . . . , pj or of genus j+1−x
but with a non-generic behavior with respect to p1, . . . , pj . By Remark 4.9 there is
a curve C′ passing through pj+1, . . . , pk of genus k − j + 1 − x′. The curve C ∪ C′

supplies a contradiction. �
Proposition 4.11. For each ∆ ⊂ R2 the set of configurations P = {p1, . . . , pk} ⊂
R2 such that there exists a curve C of degree ∆ such that the conditions of Definition
4.7 are violated by C is closed and nowhere dense.

Proof. By Remark 4.4 it suffices to consider only immersed tropical curves h : Γ →
R2. We have only finitely many combinatorial types of tropical curves of genus g
with the Newton polygon ∆ since there are only finitely many lattice subdivisions
of ∆. By Proposition 2.23 for each such combinatorial type we have an (x+ g− 1)-
dimensional family of simple curves or a smaller-dimensional family of non-simple
curves. For a fixed C each of the k points pj can vary in a 1-dimensional family
on C or in a 0-dimensional family if pj is a vertex of C. Thus the dimension of the
space of “bad” configurations P ∈ Symk(R2) is at most 2k − 1. �
Corollary 4.12. The configurations P = {p1, . . . , pk} in general position tropically
form a dense set which can be obtained as an intersection of countably many open
dense sets in Symk(R2).

4.3. Tropical enumerative problem in R2. To set up an enumerative problem,
we fix the degree, i.e. a polygon ∆ ⊂ R2 with s = #(∂∆ ∩ Z2), and the genus,
i.e. an integer number g. Consider a configuration P = {p1, . . . , ps+g−1} ⊂ R2 of
s + g − 1 points in tropical general position. Our goal is to count tropical curves
h : Γ → R2 of genus g such that h(Γ) ⊃ P and has degree ∆.

Proposition 4.13. There exist only finitely many such curves h : Γ → R2. Fur-
thermore, each end of C = h(Γ) is of weight 1 in this case, so Γ has s ends.

Finiteness follows from Lemma 4.22 proved in the next subsection. If C has
ends whose weight is greater than 1, then the number of ends is smaller than s and
the existence of C contradicts the general position of P . Recall that since P is in
general position, any such C is also simple and the vertices of C are disjoint from
P .

Example 4.14. Let g = 0 and let ∆ be the quadrilateral whose vertices are (0, 0),
(1, 0), (0, 1) and (2, 2) (so that the number s of the lattice points on the perimeter
∂∆ is 4). For a configuration P of three points in R2 pictured in Figure 9 we have
three tropical curves passing. In Figure 10 the corresponding number is two.
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Figure 9. Tropical curves through a configuration of three points,
N irr

trop(g,∆) = 5.

Definition 4.15. The multiplicity mult(C) of a tropical curve C ⊂ R2 of degree ∆
and genus g passing via P equals the product of the multiplicities of all the 3-valent
vertices of C (see Definition 2.16).

Figure 10. Tropical curves through another configuration of
three points. Note that the bounded edge in the right-hand curve
has weight 2, N irr

trop(g,∆) = 5.

Definition 4.16. We define the numberN irr
trop(g,∆) to be the number of irreducible

tropical curves of genus g and degree ∆ passing via P where each such curve is
counted with the multiplicity mult from Definition 4.15. Similarly we define the
number Ntrop(g,∆) to be the number of all tropical curves of genus g and degree
∆ passing via P . Again each curve is counted with the multiplicity mult from
Definition 4.15.

The following proposition is a corollary of Theorem 1 formulated below in Section
7.

Proposition 4.17. The numbers Ntrop(g,∆) and N irr
trop(g,∆) are finite and do not

depend on the choice of P.
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E.g. the 3-point configurations from Figures 9 and 10 have the same number
N irr

trop(g,∆).

4.4. Forests in the polygon ∆. Recall that every vertex of a tropical curve
C ⊂ R2 corresponds to a polygon in the dual lattice subdivision of the Newton
polygon ∆ while every edge of C corresponds to an edge of the dual subdivision
SubdivC (see Proposition 3.11). If C ⊂ R2 is a tropical curve passing through P ,
then we can mark the k edges of SubdivC dual to p1, . . . , pk. Let Ξ ⊂ ∆ be the
union of the marked k edges.

Definition 4.18. The combinatorial type of the pair (C,P) passing via the config-
uration P is the lattice subdivision SubdivC together with the graph Ξ ⊂ ∆ formed
by the k marked edges of this subdivision.

The marked combinatorial type of a parameterized tropical curve h : Γ → R2

passing via P is the combinatorial type of h together with the marking of the edges
containing h−1(pj).

Note that these two notions are equivalent in the case of simple curves.

Proposition 4.19. The graph Ξ ⊂ ∆ is a forest (i.e. a disjoint union of trees) if
P is in general position.

Proof. To the contrary, suppose that Ξ contains a cycle Z ⊂ Ξ formed by q edges.
Since P is in general position, our curve C is simple. Suppose that p1, . . . , pq are
the marked points on the edges of C dual to Z. We claim that p1, . . . , pq are not in
tropical general position which leads to a contradiction with Proposition 4.10. To
show this, we exhibit a curve of non-positive genus with q ends at infinity passing
through p1, . . . , pq.

Consider the union D of the (closed) polyhedra from SubdivC that are enclosed
by Z. Let

CD =
⋃

∆′⊂D

U∆′
,

where U∆′
is the stratum of C dual to ∆′ (see Proposition 3.11). The set CD can

be extended to a tropical curve C̃D by extending all non-closed bounded edges of
CD to infinity. These extensions can intersect each other if D is not convex so the
Newton polygon of C̃D is a convex polyhedron ∆̃. In other words, C̃D is given by
a tropical polynomial f̃D(x) =

∑
j∈∆̃

bjx
j with some choice of bj ∈ Rtrop (note that

bj = aj if j ∈ D). The corresponding subdivision Subdivf̃D of ∆̃ is the subdivision
Subdivf |D union with some parallelograms.

Consider the polynomial

f̃Z(x) =
∑

j∈∆̃�Int(ConvexHull(D))

bjx
j .

We have Vf̃Z � p1, . . . , pq since Vf̃D � p1, . . . , pq and the edges corresponding to
p1, . . . , pq are on the boundary of D. On the other hand the genus of Vf̃Z is non-
positive since no vertex of Subdivf̃Z is in the interior of D (cf. Lemma 4.6). �
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Figure 11. Forests corresponding to the curves passing through
the marked points from Figures 9 and 10.

4.5. The tropical curve minus the marked points. The following lemma
strengthens Proposition 4.19 but is stated in a dual language, in terms of the graph
parameterizing the tropical curve.

Lemma 4.20. Let C be a simple curve of genus g and degree ∆. Suppose that C
is parameterized by h : Γ → R2.

• Suppose that C passes through a configuration P of s + g − 1 points in
general position. Then each component K of Γ � h−1(P) is a tree and the
closure of h(K) ⊂ R2 has exactly one end of weight one at infinity.

• Conversely, suppose that P ⊂ C is a finite set disjoint from the vertices of
C and such that each component K of Γ�h−1(P) is a tree while the closure
of h(K) ⊂ R2 has exactly one end at infinity. Then the combinatorial type
of (C,P) is realized by (C′,P ′), where C′ is a curve of genus g and P ′ is
a configuration of points in tropical general position which is a result of a
small perturbation of P. Furthermore, the number of points in P is x+g−1,
where x is the number of ends of C.

Proof. Each component K of C � P in the first part of the statement has to be a
tree. Otherwise we can reduce the genus of C by the same trick as in Proposition
4.19 keeping the number of ends of C the same. This leads to a contradiction with
the assumption that P is in general position. Also similarly to Proposition 4.19 we
get a contradiction if h(K) is bounded. If h(K) has more than one end, then by
Proposition 2.13 it can be deformed keeping the marked points from h(K)�h(K) ⊂
P fixed. This supplies a contradiction with Proposition 4.13.

For the second part let us slightly deform P to bring it to a tropical general
position. We can deform h : Γ → R2 at each component K individually to ensure
C′ ⊃ P ′. �

Figure 12. A component of Γ � h−1(P) and its orientation.
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Lemma 4.20 allows one to extend the forest Ξ from Proposition 4.19 to a tree
X ⊂ ∆ that spans all the vertices of SubdivC in the case when the number of points
in the configuration P is s+ g − 1.

Each parallelogram ∆′ corresponds to an intersection of two edges E and E′ of
Γ. Lemma 4.20 allows one to orient the edges of each component of Γ � h−1(P)
consistently toward the end at infinity (see Figure 12). Let U ′ ⊂ R2 be a small disk
with a center at E ∩E′. Each component of U ′ � (E ∪E′) corresponds to a vertex
of ∆′. Two of these components are distinguished by the orientations of E and E′.
One is adjacent to the sources of the edges while the other is adjacent to the sinks.
We connect the corresponding vertices of ∆′ with an edge.

We form the graph X ⊂ ∆ by taking the union of Ξ with such edges for all the
parallelograms from SubdivC ; see Figure 13.

Figure 13. Trees obtained from the forests in Figure 11.

Proposition 4.21. The graph X is a tree that contains all the vertices of SubdivC .

Proof. Suppose that SubdivC does not contain parallelograms. Then X = Ξ. Let
K ⊂ X be a component of X . If there exists a vertex v ∈ SubdivC not contained
in K, then we can form a 1-parametric family of curves of genus g and degree ∆
passing via P . Indeed, let f(x) = “

∑
βjx

j be the tropical polynomial that defines
C. To get rid of the ambiguity in the choice of f , we assume that j runs only over
the vertices of SubdivC and that βj0 = 0 for a choice of the base index j0 ∈ K.
Let us deform the coefficient βv. If v belongs to component K ′ of Ξ different from
K, then we also inductively deform coefficients at the other vertices of SubdivC

that belong to K ′ to make sure that the curve C′ corresponding to the result of
deformation still contains P . Clearly the genus of C′ is still g. Thus we get a
contradiction to the assumption that P is in tropically general position.

We can reduce the general case to this special case by the following procedure.
For each parallelogram ∆′ ∈ SubdivC consider a point p′ and its small neighborhood
U ′ ⊂ R2 that is obtained by a small shift of the intersection E ∩ E′ to the target
component of U ′ � (E ∪ E′) where U ′ ⊂ R2 is a small neighborhood of p′. Let
P ′ ⊃ P be the resulting configuration. The curve C can be deformed to a curve
C′ ⊃ P ′ with the corresponding forest Ξ′ equal to X . �

4.6. Uniqueness in a combinatorial type. Enumeration of tropical curves is
easier than that of complex or real curves thanks to the following lemma.

Lemma 4.22. In each combinatorial type of marked tropical curves of genus g with
x ends there is either one or no curve passing through P ∈ R2 as long as P is a
configuration of x+ g − 1 points in general position.

Proof. The tropical immersions h : Γ → R2 of a given combinatorial type form a
convex polyhedral domain P ⊂ Rx+g−1 by Propositions 2.13 and 2.23. Since P is in

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



336 GRIGORY MIKHALKIN

general position, h is a simple curve. The condition that the image of a particular
edge of Γ contains pj is a hyperplane in Rx+g−1.

Suppose that these conditions cut a positive-dimensional polyhedral domainQ ⊂
P . A point from Q ∩ ∂P (the boundary is taken in Rx+g−1) is a non-simple curve
with perhaps even smaller g and x and thus cannot pass through P . If Q∩ ∂P = ∅
but Q ⊂ P is positive-dimensional, then it contains a line. Since the edge lengths
cannot be negative, this means that this line corresponds to a family obtained from
a single curve by translations. This supplies a contradiction.

Note that even if the combinatorial type is generic, we still may have no curves
passing through P since this linear system of equations is defined not in the whole
of Rn but in an open polyhedral domain there. �

5. Algebraic curves in (C∗)2 and a classical enumerative problem

5.1. Enumerative problem in (C∗)2. As in Subsection 4.3 we fix a number g ∈
Z and a convex lattice polygon ∆ ⊂ R2. As before let s = #(∂∆ ∩ Z2). Let
Q = {q1, . . . , qs+g−1} ∈ (C∗)2 be a configuration of points in general position. A
complex algebraic curve C ⊂ (C∗)2 is defined by a polynomial f : (C∗)2 → C with
complex coefficients. As in the tropical set-up we refer to the Newton polygon ∆
of f as the degree of C.

Definition 5.1. We define the number N irr(g,∆) to be the number of irreducible
complex curves of genus g and degree ∆ passing via Q. Similarly we define the
number N(g,∆) to be the number of all complex curves of genus g and degree ∆
passing via Q.

Note that here we count every relevant complex curve simply, i.e. with multi-
plicity 1.

Proposition 5.2. For a generic choice of Q the numbers N irr(g,∆) and N(g,∆)
are finite and do not depend on Q.

This proposition is well known; cf. e.g. [3] (also later in this section the invariance
of N irr(g,∆) and N(g,∆) is reduced to the invariance of certain Gromov-Witten
numbers).

In modern mathematics there are two ways to interpret the numbers N irr(g,∆)
and N(g,∆). A historically older interpretation is via the degree of Severi vari-
eties. A more recent interpretation (introduced in [12]) is via the Gromov-Witten
invariants. In both interpretations it is convenient to consider the compactification
of the problem with the help of the toric surface associated to the polygon ∆.

5.2. Toric surfaces and Severi varieties. Recall that a convex polygon ∆ de-
fines a compact toric surface CT∆ ⊃ (C∗)2; see e.g. [6]. (Some readers may be more
familiar with the definition of toric surfaces by fans. In our case the fan is formed
by the dual cones at the vertices of ∆; see Figure 14.) The sides of the polygon ∆
correspond to the divisors in CT∆ � (C∗)2. These divisors intersect at the points
corresponding to the vertices of ∆. This surface is non-singular if every vertex of
∆ is simple, i.e. its neighborhood in ∆ is mapped to a neighborhood of the origin
in the positive quadrant angle under a composition of an element of SL2(Z) and a
translation in R2. Non-simple vertices of ∆ correspond to singularities of CT∆.

Example 5.3. Let ∆d be the convex hull of (d, 0), (0, d) and (0, 0). We have
CT∆d

= CP2 no matter what d is. If ∆ = [0, r] × [0, s], r, s ∈ N, then CT∆ =
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Figure 14. A polygon and its normal fan.

CP1 × CP1 no matter what r and s are. All the vertices of such polygons are
simple.

If ∆
3
2 = ConvexHull{(0, 0), (2, 1), (1, 2)}, then CT∆ = CP2/Z3, where the gen-

erator of Z3 acts on CP2 by [x : y : z] �→ [x : e
2πi
3 y : e

4πi
3 z]. This action has

three fixed points which give the singularities of CT
∆

3
2

corresponding to the three
(non-simple) vertices of ∆.

In addition to a complex structure (which depends only on the dual fan) the
polygon ∆ defines a holomorphic linear bundle H over CT∆. Let L∆ = Γ(H) be
the vector space of sections of H. The projective space PL∆ is our system of the
curves. Note that it can also be considered as the space of all holomorphic curves
in CT∆ such that their homology class is Poincaré dual to c1(H).

Returning to Example 5.3, we note that ∆d gives us the projective curves of
degree d. The polygon [0, r] × [0, s] gives us the curves of bidegree (r, s) in the
hyperboloid CP1×CP1. The polygon ∆

3
2 gives us the images in CT

∆
3
2

of the cubic
curves in CP2 that are invariant with respect to the Z3-action.

Any curve in L∆ is the closure in CT∆ of the zero set of a polynomial whose
Newton polygon is contained in ∆. Thus dimL∆ = #(∆ ∩ Z2) = s + l (see (4))
and dim PL∆ = s+ l − 1. A general curve C ⊂ CT∆ from PL∆ is a smooth curve
that is transverse to CT∆ � (C∗)2 (this means that it is transverse to all divisors
corresponding to the sides of ∂∆ and does not pass through their intersection
points).

By the genus formula we have g(C) = l = #(Int ∆ ∩ Z2) for a smooth curve C
in PL∆. However singular curves have smaller geometric genus. More precisely let
C ⊂ CT∆ be the curve from PL∆ and let C̃ → C be its normalization. We define
the geometric genus as g(C) = 1

2 (2− χ(C̃)). Note that if C is not irreducible, then
C̃ is disconnected and then g(C) may take a negative value.

Fix a number g ∈ Z. The curves of genus not greater than g form in the
projective space PL∆ an algebraic variety known as the Severi variety of CT∆.
This variety may have several components. E.g. if CT∆ has an exceptional divisor
E corresponding to a side ∆E ⊂ ∆, then reducible curves E ⊂ C′ where C′

corresponds to the polygon ∆′ = ConvexHull((∆ � ∆E) ∩ Z2) form a component
(or a union of components) of the Severi variety. Such components correspond
to smaller polygons ∆′ ⊂ ∆. We are interested only in those components that
correspond to the polygon ∆ itself.
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Definition 5.4. The irreducible Severi variety Σirr
g ⊂ PL∆ corresponding to ∆ of

genus g is the closure of the set formed by all irreducible curves whose Newton
polygon is ∆ and whose genus is not more then g. The Severi variety Σg ⊂ PL∆

corresponding to ∆ of genus g is the closure of the set formed by all curves whose
Newton polygon is ∆ and whose genus is not more then g. Clearly, Σg ⊃ Σirr

g .

Note that Σg is empty unless g ≤ l. If g = l, we have Σg = PL. If g = l−1, then
Σg is the (generalized) ∆-discriminant variety. It is sometimes convenient to set
δ = l− g. Similarly to [3] it can be shown that Σg is the closure in PL of immersed
nodal curves with δ ordinary nodes. In the same way, Σirr

g is the closure in PL of
irreducible immersed nodal curves with δ ordinary nodes.

It follows from the Riemann-Roch formula that Σg and Σirr
g have pure dimension

s + g − 1. The Severi numbers N irr(g,∆) and N(g,∆) can be interpreted as the
degrees of Σirr

g and Σg in PL.

Example 5.5. Suppose ∆ = ∆d so that CT∆ = CP2. We have s = 3d and
l = (d−1)(d−2)

2 . The number N irr(g,∆) is the number of genus g, degree d (not
necessarily irreducible) curves passing through 3d+ g − 1 generic points in CP2.

The formula N(l − 1,∆d) = 3(d − 1)2 is well known as the degree of the
discriminant (cf. [6]). (More generally, if CT∆ is smooth, then N(l − 1,∆) =
6 Area(∆) − 2 Length(∂∆) + # Vert∆, where Length(∂∆) = s is the lattice length
of ∂∆ and # Vert∆ is the number of vertices; see [6].)

An elegant recursive formula for N irr(0,∆d) was found by Kontsevich [12]. Ca-
poraso and Harris [3] discovered an algorithm for computing N(g,∆d) for arbitrary
g. See [28] for computations for some other rational surfaces, in particular, the
Hirzebruch surfaces (this corresponds to the case when ∆ is a trapezoid).

5.3. Gromov-Witten invariants. If ∆ is a polygon with simple vertices, then
CT∆ is a smooth 4-manifold. This manifold is equipped with a symplectic form
ω∆ defined by ∆. The linear system L∆ gives an embedding CT∆ ⊂ PL∆ ≈ CPm.
This embedding induces ω∆. As we have already seen, ∆ also defines a homology
class β∆ ∈ H2(CT∆). It is the homology class of the curves from PL∆.

To define the Gromov-Witten invariants of genus g, one takes a generic almost-
complex structure on CT∆ that is compatible with ω∆ and counts the number of
pseudo-holomorphic curves of genus g via generic s+g−1 points in CT∆ in the fol-
lowing sense (see [12] for a precise definition).1 Consider the space Mg,s+g−1(CT∆)
of all stable (i.e. those with finite automorphism group) parameterized pseudo-
holomorphic curves with s+ g−1 marked points. Evaluation at each marked point
produces a map Mg,s+g−1(CT∆) → CT∆. With the help of this map we can pull
back to Mg,s+g−1(CT∆) any cohomology class in CT∆, in particular the cohomology
class of a point. Doing so for each of the s+g−1 point and taking the cup-product
of the resulting classes, we get the Gromov-Witten invariant ICT∆

g,s+g−1,β∆
〈pt⊗s+g−1〉.

The result is invariant with respect to deformations of the almost-complex struc-
ture. In many cases it is useful to pass to a generic almost-complex structure to
make sure that for any stable curve C → CT∆ passing through our points we have
H1(C,NC/CT∆) = 0. But we have this condition automatically if CT∆ is a smooth
Fano surface (or, equivalently, all exceptional divisors have self-intersection −1); cf.

1These are the Gromov-Witten invariants evaluated on the cohomology classes dual to a point;
this is the only non-trivial case for surfaces. In this discussion we completely ignore the gravita-
tional descendants.
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e.g. [28] for details. (However, if CT∆ has exceptional divisors of self-intersection
−2 and less, we need either to perturb the almost-complex structure or to consider
a virtual fundamental class.)

The Gromov-Witten invariant ICT∆
g,s+g−1,β∆

〈pt⊗s+g−1〉 coincides with the number
N irr(g,∆) if CT∆ is a toric Fano surface (cf. e.g. [28]). In particular this is the case
for CP2 or CP1×CP1 (these are the only smooth toric surfaces without exceptional
divisors, in other words minimal Fano).

The Gromov-Witten invariants corresponding to disconnected curves are some-
times called multicomponent Gromov-Witten invariants.

6. Complex tropical curves in (C∗)2 and the connection

between classical and tropical geometries

6.1. Degeneration of complex structure on (C∗)2. Let t > 1 be a real number.
We have the following self-diffeomorphism (C∗)2 → (C∗)2:

(5) Ht : (z, w) �→ (|z| 1
log t

z

|z| , |w|
1

log t
w

|w| ).

For each t this map induces a new complex structure on (C∗)2.
Here is a description of the complex structure induced by Ht in logarithmic polar

coordinates (C∗)2 ≈ R2 × iT 2. (This identification is induced by the holomorphic
logarithm Log from the identification C2 ≈ R2 × iR2.) If v is a vector tangent to
iT 2, we set Jtv = 1

log(t) iv. Note that Jtv is tangent to R2.
Clearly, a curve Vt is holomorphic with respect to Jt if and only if Vt = Ht(V ),

where V is a holomorphic curve with respect to the standard complex structure,
i.e. Je-holomorphic. Let Log : (C∗)2 → R2 be the map defined by Log(z, w) =
(log |z|, log |w|). We have

Log ◦Ht = Logt .

Note that Ht corresponds to a log(t)-contraction (x, y) �→ ( x
log(t) ,

y
log(t) ) under Log.

6.2. Complex tropical curves in (C∗)2. There is no limit (at least in the usual
sense) for the complex structures Jt, t → ∞. Nevertheless, as in Section 6.4 of
[17] we can define the J∞-holomorphic curves which happen to be the limits of
Jt-holomorphic curves, t→ ∞.

There are several ways to define them. An algebraic definition is the shortest
and involves varieties over a non-Archimedean field. Let K be the field of the
(real-power) Puiseux series

a =
∑
j∈Ia

ξjt
j , ξj ∈ C,

where Ia ⊂ R is a well-ordered set (cf. [10]). The field K is algebraically closed and
of characteristic 0. The field K has a non-Archimedean valuation val(a) = −min Ia,

val(a+ b) ≤ max{val(a), val(b)}.

As usual, we set K∗ = K�{0}. The multiplicative homomorphism val : K∗ → R

can be “complexified” to

(6) w : K∗ → C∗ ≈ R × S1
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by setting w(a) = eval(a)+i arg(aval(a)). Applying this map coordinatewise, we get the
map

W : (K∗)2 → R2 × (S1)2 ≈ (C∗)2.
Applying the map val coordinatewise, we get the map

Val : (K∗)2 → R2,

Val = Log ◦W . The image of an algebraic curve VK under W turns out to be a
J∞-holomorphic curve (cf. Proposition 6.1).

Note the following special case. Let

VK =


z ∈ (C∗)2

∣∣∣ ∑
j∈Vert∆

ajz
j = 0


 ,

where z ∈ (K∗)2, j runs over all vertices of ∆ and aj is such that val(aj) = 0. By
Kapranov’s theorem [10] Val(VK) = Log(W (VK)) is the tropical curve Cf defined
by f(x) = “

∑
j∈Vert∆

xj”, x ∈ R2. Thus Cf is a union of rays starting from the origin

and orthogonal to the sides of ∆, in other words it is the 1-skeleton of the normal
fan to ∆. However, W (VK) ⊂ (C∗)2 depends on the argument of the leading term
of aj ∈ K∗. Thus different choices of W (VK) give different phases for the lifts of
Cf . We may translate Cf in R2 so that it has a vertex in a point x ∈ R2 instead of
the origin. Corresponding translations of W (VK) give a set of possible lifts.

This allows one to give a more geometric description of J∞-curves. They are
certain 2-dimensional objects in (C∗)2 which project to tropical curves under Log.
Namely, let C ⊂ R2 be a tropical curve, x ∈ C be a point and U � x ∈ R2 be a
convex neighborhood such that U ∩C is a cone over x (i.e. for every y ∈ C ∩U we
have [x, y] ⊂ C). Note that if x is a point on an open edge, then it is dual (in the
sense of Subsection 3.4) to a segment in ∆. If x is a vertex of C, then it is dual
to a 2-dimensional polygon in ∆. In both cases we denote the dual polygon with
∆′. We say that a 2-dimensional polyhedron V∞ ⊂ (C∗)2 is (C ∩ U)-compatible
if Log−1(U) ∩ V∞ = Log−1(U) ∩ W , where W is a translation of W (VK) while
VK = {z ∈ (C∗)2 |

∑
j

ajz
j}, j runs over some lattice points of ∆′ and val(aj) = 0.

Proposition 6.1. Let V∞ ⊂ (C∗)2. The following conditions are equivalent.
(1) V∞ = W (VK), where VK ⊂ (K∗)2 is an algebraic curve.
(2) C = Log(V∞) ⊂ R2 is a graph such that there exists a choice of natural

weights on its edges turning it to a tropical curve such that for every x ∈
C there exists a small open convex neighborhood x ∈ U ⊂ R2 such that
Log−1(U) ∩ V∞ is (C ∩ U)-compatible.

(3) V∞ is the limit when k → ∞ in the Hausdorff metric of a sequence of
Jtk

-holomorphic curves Vtk
with lim

k→∞
tk = ∞.

We precede the proof of Proposition 6.1 with some definitions and remarks.

Definition 6.2. Curves satisfying any of the equivalent conditions of Proposition
6.1 are called (unparameterized) complex tropical curves or complex tropical 1-cycles
in (C∗)2.

Proposition 6.1 allows us to think of complex tropical curves both as tropical
curves equipped with a phase, i.e. a lifting to (C∗)2, and as J∞-holomorphic curves,
i.e. as limits of Jt-holomorphic curves when t→ ∞.
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Proposition 6.3. Let V∞ = W (VK), where VK ⊂ (K∗)2 is an algebraic curve with
the Newton polygon ∆. Then Log(V∞) ⊂ R2 is a graph. Furthermore, it is possible
to equip the edges of Log(V∞) with natural weight so that the result is a tropical
curve of degree ∆ in R2.

Proof. The proposition follows from Kapranov’s theorem [10]; cf. Subsection 3.5
since log ◦W = val : K∗ → R. The edge weights come from the lattice lengths of
the edges of the corresponding lattice subdivision of ∆. �
Definition 6.4. We say that a complex tropical curve V∞ with a choice of natural
weights for the edges of C = Log(V∞) has degree ∆ if these weights turn C to a
tropical curve of degree ∆.

Proof of Proposition 6.1. (1) =⇒ (2). Let f : (K∗)2 → K be the polynomial
defining VK . The image C = Log(V∞) is a tropical curve by Proposition 6.3. Let
x ∈ C ⊂ R2. The lowest t-powers of f(x) come only from the polygon ∆′ ⊂ ∆ dual
to the stratum containing x. The compatibility curve is given by the sum of the
∆′-monomials of f .

(2) =⇒ (1). Consider the subdivision of ∆ dual to the tropical curve C. The
compatibility condition gives us a choice of monomials for each polygon ∆′ ⊂ ∆
in the subdivision dual to C. However, the choice is not unique, due to the higher
t-power contributions. On the other hand, a monomial corresponds to a lattice
point of ∆ which may belong to several subpolygons in the subdivision.

We have to choose the coefficients for the monomials so that they would work for
all subpolygons of the subdivision. Let j ∈ ∆ ∩ Z2. The coefficient aj is a Puiseux
series in t. The lowest power val(aj) is determined from the tropical curve C as the
coefficient of the corresponding tropical monomial. We set aj = αjt

val(aj), where
αj ∈ C∗, i.e. our coefficient Puiseux series are actually monomials.

Namely, let ∆′ be a polygon in the subdivision of ∆ dual to C. A point x on
the corresponding stratum of C is compatible with W ({f∆′

= 0}) for a polynomial
f∆′

over K with the Newton polygon ∆′. The curve W ({f∆′
= 0}) coincides with

the curve W ({f∆′
min = 0}), where the polynomial f∆′

min is obtained by replacing each
coefficient series aj = aj(t) of f∆′

with its lower t-power monomial αjt
val(aj). The

polynomial f∆′
min is well defined up to multiplication by a complex number c∆j . To

finish the proof, we need to make the equations for different ∆′ ∈ SubdivC(∆) agree
on common monomials. For that we order the polygons ∆j ∈ SubdivC(∆) so that

∆j+1 ∩
j⋃

l=1

∆l is connected and we choose c∆j+1 inductively so that the monomials

of the same multidegree have the same coefficient.
(1) =⇒ (3). This implication is a version of the so-called Viro patchworking [29]

in real algebraic geometry. If f : (K∗)2 → K is the polynomial defining VK , then
we can construct the sequence Vtk

⊂ (C∗)2 in the following way; cf. [17].
First we truncate the polynomial f by replacing each coefficient a =

∑
j∈Ia

ξjt
j , ξj

∈ C, at a monomial of f with amin = ξ− val(a)t
− val(a). Denote the result with fmin

and its zero set with V min
K . As in the proof of the implication (2) =⇒ (1) we have

W (V min
K ) = W (VK).

Let f tk : (C∗)2 → C be the complex polynomial obtained from fmin by plugging
t = tk into the coefficients of f . We set Vk to be the image of the zero set of f tk by
the self-diffeomorphism Htk

defined in (5).
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(3) =⇒ (1). Propositions 3.9 and 8.2 imply that Log(V∞) is a tropical curve.
Let “

∑
j

αjx
j”, j ∈ ∆∩Z2, αj ∈ Rtrop, be a tropical polynomial defining Log(V∞).

To find a presentation V∞ = W (VK), we take the polynomial with coefficients
βjt

αj ∈ K for some βj ∈ S1.
To find βj , we note that if Vk is a Jtk

-holomorphic curve, then H−1
tk

(Vk) is
(honestly) holomorphic and is given by a complex polynomial fk =

∑
j

aVk
j zj. To

get rid of the ambiguity resulting from multiplication by a constant, we may assume
that aVk

j′ = 1 for a given j′ ∈ ∆ ∩ Z2 and for all sufficiently large k.
Let Arg : (C∗)2 → S1 × S1 be defined by Arg(z1, z2) = (arg(z1), arg(z2)). We

take for βj an accumulation point of Arg(aVk
j ), k → ∞. Note that this accumulation

point is unique and thus equal to lim
k→∞

Arg(aVk
j ) since V∞ is the limit of Vtk

. �

Proposition 6.5. Suppose that V∞ ⊂ (C∗)2 is a complex tropical curve, C =
Log(V∞) ⊂ R2 is the corresponding “absolute value” tropical curve and x ∈ C is
either a vertex dual to a polygon ∆′ ⊂ ∆ or a point on an open edge dual to an edge
∆′ ⊂ ∆. We have Arg(Log−1(x) ∩ V∞) = Arg(V ′) for some holomorphic curve
V ′ ⊂ (C∗)2 with the Newton polygon ∆′.

This proposition follows from the second characterization of J∞-holomorphic
curves in Proposition 6.1.

The third equivalent description of Proposition 6.1 allows one to define the genus
and the number of ends for a complex tropical curve.

Definition 6.6. A complex tropical curve V∞ ⊂ (C∗)2 is said to have genus g if
V∞ is the limit (in the sense of the Hausdorff metric in (C∗)2) of a sequence of
Jtk

-holomorphic curves in (C∗)2 with tk → +∞ of genus g and cannot be presented
as a limit of a sequence of Jtk

-holomorphic curves of smaller genus.
Similarly, V∞ ⊂ (C∗)2 is said to have x ends at infinity if V∞ is the limit of a

sequence of Jtk
-holomorphic curves in (C∗)2 with tk → +∞ with x ends at infinity

and cannot be presented as a limit of a sequence of Jtk
-holomorphic curves with

smaller number of ends.

Since both the genus and the number of ends are upper-semicontinuous, this
definition makes sense.

Proposition 6.7. Let V∞ ⊂ (C∗)2 be a complex tropical curve and let C =
Log(V∞) ⊂ R2 be the corresponding tropical curve. We have g(C) ≤ g(V∞) and
x(C) ≤ x(V∞).

Proof. The inequality on the number of ends follows from properness of the map
Log. To get the genus inequality, it suffices to exhibit a parameterization of C of
genus not more than g = g(V∞).

We use a sequence of Jtk
-holomorphic curves Vk ⊂ (C∗)2, tk → ∞, k ∈ N, of

genus g approximating V∞ from Definition 6.6 to find such a parameterization. Let
νk : Ṽk → Vk be the normalization of the Jtk

-holomorphic curve Vk (induced by the
normalization of the (honestly) holomorphic curve H−1

tk
(Vk)).

Let {Uα}, Uα ⊂ R2, be a collection of small disks in R2 centered at the vertices
of C ⊂ R2. Consider a component of the inverse image (Log ◦νk)−1(Uα). For a
sufficiently large k such a component has at least two ends (this follows from the
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maximum principle since the image Log(Log−1(Uα) ∩ Vk) approximates C ∩ Uα)
while each end corresponds to an end of C ∩ Uα. Thus each such component gives
a subgraph of C ∩ Uα that is a locally tropical 1-cycle (i.e. can be presented as an
intersection of a tropical 1-cycle in R2 with Uα). Together these components give
(locally) a parameterization of C that can be extended to the edges of C to get a
parameterized tropical curve h : Γ → C ⊂ R2. Clearly, the number of components
κ of Γ coincides with the number of components of Ṽk. The same holds for the
number of ends, x(Γ) = x(Ṽk) = x(Vk). Denote this number with x.

Note that
χ(Ṽk) = −v(Γ) − ov(Γ),

where v(Γ) is the number of vertices of Γ. Computing the Euler characteristic of
Ṽk, we get χ(Ṽk) = 2κ− 2g − x and therefore

(7) 2κ− 2g − x = −v(Γ) − ov(Γ).

Also we have 2e(Γ) = 3v(Γ) + ov(Γ) + x, where e(Γ) is the number (of both
bounded and unbounded) edges of Γ, since all vertices of Γ are at least 3-valent.
On the other hand χ(Γ) = x+v(Γ)−e(Γ) and thus χ(Γ) = x−v(Γ)−ov(Γ)

2 . Therefore
−v(Γ) − ov(Γ) = 2χ(Γ) − x.

Recall that χ(Γ) = κ− g(Γ) by definition of the genus of the graph Γ. Thus

−v(Γ) − ov(Γ) = 2κ− 2g(Γ) − x.

Combining this with (7), we get the genus inequality. �

Remark 6.8. It can happen that g(C) < g(V∞). For example take V a
∞ to be the

limiting curve for the family 1+z1 +z2 +at−1z1z2, where a ∈ C, |a| = 1, and t > 0,
t → ∞. The image C = Log(V a

∞) does not depend on the choice of a. We have
g(C) = −1. The curve V a

∞ is a union of the lines given by equations z1 = −1 and
z2 = −1 if a = 1. However for all other values of a the curve V a∞ is irreducible and
g(V a

∞) = 0.

6.3. Simple complex tropical curves and their parameterizations. A basic
example of a complex tropical curve is a complex tropical line Λ ⊂ (C∗)2 that is a
complex tropical curve of degree ∆1 = ConvexHull((0, 0), (1, 0), (0, 1)). It is easy
to see that any two complex tropical lines differ by a (multiplicative) translation in
(C∗)2.

One can generalize this example. Let ∆ be a triangle and C ⊂ R2 be a tropical
curve of degree ∆ with no bounded edges. Such a curve has genus 0 and three
unbounded edges. (Note that if #(∂∆ ∩ Z2) > 3, then some of the unbounded
edges have weight greater than 1.)

Since ∆ ⊂ R2 is a lattice triangle there exists an affine-linear surjection ∆1 → ∆.
Let

(8) L∆ : R2 → R2

be the linear part of this map. Note that det(L∆) = 2 Area(∆). The matrix of L∆

written multiplicatively defines a map

(9) M∆ : (C∗)2 → (C∗)2.

Alternatively we can define M∆ as the map covered by L∆ ⊗ C : C2 → C2 under
exp : C2 → (C∗)2. We have deg(M∆) = det(L∆) = 2 Area(∆).
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Note that M∆ extends to a holomorphic map

(10) M̄∆ : CP2 → CT∆.

If ∆′ ⊂ ∂∆ is a side of ∆, then (M̄∆)−1(∆′) consists of 2 Area(∆)/|∆′| components,
where |∆′| = #(∆′ ∩ Z2) − 1 is the lattice length of ∆′.

Proposition 6.9. The image M∆(Λ) is a complex tropical curve of degree ∆.

Proof. The lemma follows from the first description of complex tropical curves in
Proposition 6.1 since the map L∆ also defines a linear endomorphism (K∗)2 →
(K∗)2. �
Definition 6.10. A curve C ⊂ (C∗)2 is called a holomorphic cylinder in (C∗)2 if
C = M∆(C̃), where C̃ = {(z, w) ∈ (C∗)2 | w = c}, for some lattice triangle ∆ and
c ∈ C. The mapM∆|C̃ : C̃ → C is called a d-fold covering of a holomorphic cylinder
C if the upper left element of the matrix L∆ is d. A subset A of a holomorphic
cylinder C is called a holomorphic annulus in (C∗)2 if A = Log−1(U) ∩ C for a
convex set U ⊂ R2. Then

M∆|Ã : Ã→ A

is called a d-fold covering of a holomorphic annulus A, Ã = M−1
∆ (A) ∩ C̃.

Note that holomorphic cylinders in (C∗)2 are complex tropical curves and at the
same time complex tropical subvarieties of (C∗)2.

Proposition 6.11. A complex tropical line Λ ⊂ (C∗)2 is homeomorphic to a sphere
punctured in three points. There exists a point p ∈ R2 such that Λ � Log−1(p) is a
union of three holomorphic annuli while Λ∩ Log−1(p) is homeomorphic to a union
of two triangles whose vertices are pairwise identified.

Proof. Since all complex tropical lines are multiplicative translates of each other in
(C∗)2, it suffices to check the proposition for the Λ = W ({(z, w) ∈ (K∗)2 | z+w+1 =
0}. For this case the holomorphic annuli are subsets of the cylinders {(z, w) | z =
−1}, {(z, w) | w = −1} and {(z, w) | z = −w} while Λ∩Log−1(p) = Arg({(z, w) ∈
(C∗)2 | z + w + 1 = 0} consists of all points (eiα, eiβ) ∈ (S1)2, α, β ∈ R, with
|α|, |β| ≤ π, αβ ≥ 0 and |α| + |β| ≥ π. Clearly, the union of this figure with three
holomorphic annuli along {(eiα, eiβ) ∈ (S1)2 | α = π}, {(eiα, eiβ) ∈ (S1)2 | β = π}
and {(eiα, eiβ) ∈ (S1)2 | α+ β = π} is a sphere punctured three times. �

Definition 6.12. A proper map h : Ṽ∞ → (C∗)2 is called a parameterized simple
complex tropical curve if the following conditions hold.

• Log(h(Ṽ∞)) ⊂ R2 is a simple tropical curve.
• Ṽ∞ is homeomorphic to a (smooth) orientable surface.
• If p ∈ C = Log(h(Ṽ∞)) is a point different from a double point or a 3-valent

vertex of the simple tropical curve C ⊂ R2, then there exists a neighborhood
U � p in R2 such that κ = (Log ◦h)−1(U) is homeomorphic to an annulus
and h|κ is a d-fold covering of a holomorphic annulus in (C∗)2, where d is
the weight of the edge of C containing p.

• If p ∈ C = Log(h(Ṽ∞)) is a double point of C, then there exists a neighbor-
hood U � p in R2 such that (Log ◦h)−1(U) is homeomorphic to a disjoint
union of two annuli κ1 and κ2 while h|κj is a dj -fold covering a holomorphic
annulus in (C∗)2, j = 1, 2, where d1 and d2 are the weights of the two edges
of C containing p.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ENUMERATIVE TROPICAL ALGEBRAIC GEOMETRY IN R
2 345

• If p ∈ C = Log(h(Ṽ∞)) is a 3-valent vertex of C dual to a triangle ∆′ ∈
SubdivC , then there exists a neighborhood U � p in R2 such that κ =
(Log ◦h)−1(U) is connected and the map

h|κ : κ→ (C∗)2

coincides with the map

M∆′ |(Log ◦M∆′ )−1(U) : Λ ∩ (Log ◦M∆′)−1(U) → (C∗)2

for some complex tropical line Λ ⊂ (C∗)2.

As usual we consider simple parameterized tropical curves up to the reparameteri-
zation equivalence. Two simple parameterized tropical curves h : Ṽ∞ → (C∗)2 and
h′ : Ṽ ′

∞ → (C∗)2 are equivalent if there exists a homeomorphism Φ : Ṽ∞ → Ṽ ′
∞

such that h = h′ ◦ Φ.

Remark 6.13. Note that if a ∈ R2 is a 3-valent vertex of the simple tropical
curve Log(h(Ṽ∞)), then (Log ◦h)−1(a) is topologically a union of two triangles
whose vertices are pairwise identified. Indeed, by Definition 6.12 the inverse image
(Log ◦h)−1(a) is homeomorphic to the closure of the image of the argument map
of a complex tropical line in (C∗)2.

By their definition the simple complex tropical curves are those maps which
locally coincide with the maps of complex tropical lines Λ ⊂ (C∗)2 by M∆. Enu-
merative geometry of lines is straightforward: there is a single line via a pair of
generic points. Interestingly, this allows one to make enumerative geometry of
simple complex tropical curves straightforward as well.

Definition 6.14. The genus of a simple parameterized complex tropical curve
h : Ṽ∞ → (C∗)2 is the genus of the surface Ṽ . The number of ends of h is the
number of ends of the surface Ṽ .

In Section 8 we shall see that this definition agrees with Definition 6.6. So far
we note that these definitions agree with the definition of genus and the number of
ends for the tropical 1-cycle Log(h(Ṽ∞)) ⊂ R2.

Proposition 6.15. The genus and the number of ends of a simple parameterized
complex tropical curve h : Ṽ∞ → (C∗)2 coincide with the genus and the number of
ends of the tropical 1-cycle C = Log(h(Ṽ∞)).

Proof. Since the map Log ◦h is proper, the number of ends of Ṽ∞ is not less than
the number of ends of C. On the other hand each end of C is a ray of weight w
going to infinity. Over this ray the surface Ṽ has a holomorphic annulus wrapped
w times and, therefore, it has exactly one end.

Let Γ → C ⊂ R2 be a simple parameterization of C. To prove the equality of
genera now, it suffices to show the following relation for the Euler characteristic

χ(Ṽ∞) = 2χ(Γ),

where Ṽ∞ and Γ are results of 1-point compactifications of each end of Ṽ∞ and Γ,
respectively. (Note that Ṽ∞ is homeomorphic to the closure of h(Ṽ∞) ⊂ (C∗)2 in
CT∆ ⊃ (C∗)2.)
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We have χ(Γ) = x+ v − e, where x is the number of ends of the simple tropical
curve C, v is the number of its 3-valent vertices and e is the number of the edges
of Γ. From combinatorics of Γ we have 2e = 3v + x and therefore

χ(Γ) =
x− v

2
.

On the other hand the Euler characteristic of (h ◦ Log)−1(p) is −1 if p ∈ C is a
3-valent vertex and zero otherwise. Therefore

χ(Ṽ∞) = x− v. �

6.4. Passing through a configuration of points in (C∗)2. We start from an
elementary enumerative observation. Suppose that we have two points q1, q2 ∈
(C∗)2 such that Log(q1),Log(q2) ∈ R2 are in tropical general position.

Lemma 6.16. There exists a unique complex tropical line Λ ⊂ (C∗)2 such that
Λ � q1, q2.

Proof. We have a unique tropical line C ⊂ R2 such that Log(q1),Log(q2) ∈ C.
Acting on (C∗)2 by an element of SL2(Z) if needed, we may assume that q1 sits
on the horizontal edge of C while q2 sits on the vertical edge of C. Recall that all
complex tropical lines differ by a multiplicative translation in (C∗)2. We have (S1)2

distinct complex tropical lines projecting to C; S1 × {α0} of them pass through q2
while {β0} × S1 pass through q1 for some α0, β0 ∈ S1 (cf. Proposition 6.11). Thus
we have a unique tropical line through q1 and q2. �

Suppose that C ⊂ R2 is an image of a tropical line in R2 under a map L∆ :
R2 → R2 (see (8)) corresponding to a lattice triangle ∆ ⊂ R2. Note that we have a
natural way to equip the edges of C with weights so that C ⊂ R2 is a tropical curve
with the help of Proposition 6.9. Indeed, a tropical line is the image of a complex
tropical line Λ ⊂ (C∗)2 under the map Log. The image M∆(Λ) is a tropical curve
and thus C = Log(M∆) ⊂ R2 is a tropical curve by Proposition 6.3.

It is easy to see that the weights of the three edges of C are the lattice lengths of
the three sides of the triangle ∆ (recall that a lattice length of a segment [a, b] ⊂ Z2,
a, b ∈ Z2, equals the number of Z2-points on [a, b] minus 1). At the same time
these weights are degrees of the covering Ã→ A of the holomorphic annuli in (C∗)2

obtained as the corresponding restrictions of the map M∆|Λ : Λ → (C∗)2. Let w1

and w2 be the weights of the edges of C containing q1 and q2, respectively.

Proposition 6.17. There exist 2 Area(∆)
w1w2

distinct simple complex tropical curves
N ⊂ (C∗)2 of degree ∆ and genus 0 with three ends at infinity such that N � q1, q2.

Proof. Recall that M∆ : (C∗)2 → (C∗)2 is a 2 Area(∆)-fold covering. We have
(2 Area(∆))2 distinct pairs of a point from M−1

∆ (q1) and a point from M−1
∆ (q2).

By Lemma 6.16 this makes (2 Area(∆))2 complex tropical lines in (C∗)2 connecting
such pairs. However, not all of these lines are distinct.

Indeed, each complex tropical line passing through such a pair contains w1 points
fromM−1

∆ (q1) and w2 points fromM−1
∆ (q2) so we only have (2Area(∆))2

w1w2
. In addition,

the 2 Area(∆)-fold covering M∆ identifies 2 Area(∆)-tuples of such lines (those
that differ by the deck transformations). Thus we have 2Area(∆)

w1w2
distinct simple

parameterized complex tropical curves passing through q1 and q2 of the formM∆|Λ :
Λ → (C∗)2 for some complex tropical lines Λ ⊂ (C∗)2.
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To finish the proof, we need to show that any simple parameterized complex
tropical curve h : Ṽ∞ → (C∗)2 of genus 0 with 3 ends and passing via q1 and q2
is equivalent to M∆|Λ : Λ → (C∗)2 for a complex tropical line Λ. Clearly, we have
Log(h(Ṽ∞)) = C since C is the only tropical curve of genus 0 with three ends
passing via Log(q1) and Log(q2).

Let us note that h : Ṽ∞ → (C∗)2 lifts under a covering M∆ : (C∗)2 → (C∗)2.
To establish this, it is convenient to consider the compactification map (10). The
fundamental group of the three times punctured sphere Ṽ∞ is generated by two
elements, (Log ◦h)−1(q1) and (Log ◦h)−1(q2), since the three punctures correspond
to the three sides of the lattice triangle ∆. Both of these elements are in the image
of the induced homomorphism M∆∗ : π1((C∗)2) → π1((C∗)2) since they wrap the
holomorphic annuli of h(Ṽ∞) w1 and w2 times, respectively. The lift of Ṽ∞ is a
complex tropical curve of degree ∆1 and therefore is a complex tropical line. �

In the general case consider a configuration Q ⊂ (C∗)2 of n points such that
Log(Q) ⊂ R2 is in tropically general position. Let C ⊃ Log(Q) be a tropical curve
in R2 of genus g and degree ∆. Let mult be the multiplicity of C (see Definition
4.15) and let x ≤ s be the number of ends of C. Suppose that n = x+ g − 1.

Let V∞ be a simple complex tropical curve such that

Q ⊂ V∞ and Log(V∞) = C ⊂ R2.

We define the edge multiplicity µedge(C,P) of a simple tropical curve C ⊃ P =
Log(Q) to be the product of the weights of all the edges of the parameterizing
graph Γ → C ⊂ R2 that are disjoint from P times the product of the squares of the
weights of all the edges of Γ that are not disjoint from P . Note that the unbounded
edges of Γ are all of weight 1 by Proposition 4.13 so they do not contribute to the
edge multiplicity.

Proposition 6.18. There are mult(C)/µedge(C,P) simple complex tropical curves
in (C∗)2 of genus g and degree ∆ such that they project to C and pass via Q.

Proof. Recall that P = Log(Q) is a set of x+ g− 1 points in general position As in
Lemma 4.20 let K be a component of the complement in Γ of the inverse image of
Log(Q) under the parameterization Γ → C. By Lemma 4.20 the component K is
a tree which contains one end at infinity. Let A,B ∈ Q be two points that are the
endpoints of the edges of weights wA and wB adjacent to the same 3-valent vertex
ν in K (as in Figure 20). Let ∆′ ⊂ ∆ be the subpolygon dual to this 3-valent vertex
of C. By Proposition 6.17 we have 2Area(∆′)

wAwB
simple parameterized complex tropical

curves that are locally distinct in Log−1(U), where U ⊂ R2 is a small neighborhood
of the vertex ν. We proceed inductively for each component K and then take the
product over all such components. �

6.5. Polynomials to define complex tropical curves. Let VK ⊂ (K∗)2 be a
curve given by a non-Archimedean polynomial

fK(z) =
∑

j

αjz
j,

z ∈ (K∗)2, j ∈ ∆, αj ∈ K∗. Let V∞ = W (VK) ⊂ (C∗)2 be the corresponding
complex tropical curve. By Kapranov’s theorem [10] (cf. Proposition 6.3) f(y) =
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“
∑
j

val(αj)yj” is a tropical polynomial defining the tropical 1-cycleC = Log(V∞) =

Val(VK).

Proposition 6.19. If j and j′ are vertices of Subdivf , then the ratio w(αj)
w(αj′ )

(where
w is defined by (6)) depends only on V∞ and does not depend on the choice of VK

as long as W (VK) = V∞.

Proof. Since ∆ is connected, we need to prove the proposition only in the case when
j and j′ are connected with an edge ∆′ ∈ Subdivf . The complex tropical curve
V∞ is ∆′-compatible; therefore the proposition follows from the special case when
∆ = ∆′ is 1-dimensional.

After an automorphism in (C∗)2 we may assume that ∆ = ∆′ = [0, l]×{0} ⊂ R2,
l ∈ N. Then V∞ is a collection of the holomorphic cylinders {(ζ, η) ∈ (C∗)2 | ζ =
zk}, zk ∈ C, of weight dk. (Note that we have |zk| the same for all k since all
these cylinders must project to the same edge of C. Every cylinder is given by
the equation ζdk = zdk

k . This equation incorporates the weight of the cylinder
and is well defined up to multiplication by a constant or a monomial. Proceeding
inductively, we get w(αj)

w(αj′ )
=

∏
zdk

k . �

Thus if j �→ − val(αj) is strictly convex, then to recover a complex tropical curve
w(VK), it suffices to know only aj = w(αj).

Proposition 6.20. Let f(z) =
∑

j∈∆

ajz
j be a formal sum of monomials, aj ∈ C∗,

where j runs over all lattice points of ∆. Suppose that j �→ − log |aj | is strictly
convex. Then f defines a complex tropical curve V∞ ⊂ (C∗)2 of degree ∆. We have
the following properties.

• If two polynomials define the same complex tropical curve, then they differ
by multiplication by a constant.

• Complex tropical curves defined in this way form an open and dense set in
the space of all complex tropical curves of degree ∆.

Proof. Form a polynomial

fK(z) =
∑

j∈∆∩Z2

ajt
log |aj |zj,

and treat it as a polynomial over K, i.e. z ∈ (K∗)2. Define V∞ = W ({z ∈
(K∗)2 | fK(z) = 0}. To see that different polynomials define different curves, it
suffices to note that for the corresponding tropical polynomial

ftrop(y) = “
∑
j∈∆

log |aj |yj”

the subdivision Subdivftrop contains all lattice points of ∆ as its vertices. In par-
ticular, no lattice point of ∆ is contained in the interior of an edge of Subdivftrop .
For different polynomials we have different ∆′-compatible elements for some edge
∆′ ∈ Subdivftrop .

On the other hand, any complex tropical curve can be obtained from a non-
Archimedean curve VK ⊂ (K∗)2 given by a polynomial fK(z) =

∑
j

αjz
j such

that the function j �→ − val(αj) is convex. The polynomials with strictly convex
functions j �→ − val(αj) are open and dense among all such polynomials. �
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Remark 6.21. If VK ⊂ (K∗)2 is given by a polynomial fK(z) =
∑
j

αjz
j such that

the function j �→ − val(αj) is not strictly convex (even if it is convex non-strictly),
then the collection of complex numbers aj = w(αj) does not necessarily determine
the complex tropical curve w(VK).

E.g. the polynomials fK(ζ, η) = ζ2 +3ζ+2 and f ′
K(ζ, η) = ζ2 + ζ+1 (treated as

polynomials overK) produce the same collection of three complex numbers, namely
a(0,0) = a(1,0) = a(2,0) = 1. However we have W (VK) = {(ζ, η) ∈ (C∗)2 | ζ = −1}
and W (V ′

K) = {(ζ, η) ∈ (C∗)2 | ζ = − 1
2 ±

√
3

2 }.

7. Statement of the main theorems

7.1. Enumeration of complex curves. Recall that the numbers N irr
trop(g,∆) and

Ntrop(g,∆) were introduced in Definition 4.16 and a priori they depend on a choice
of a configuration P ⊂ R2 of s+ g − 1 points in general position.

Theorem 1. For any generic choice P we have N irr
trop(g,∆) = N irr(g,∆) and

Ntrop(g,∆) = N(g,∆).
Furthermore, there exists a configuration Q ⊂ (C∗)2 of s+g−1 points in general

position such that for every tropical curve C of genus g and degree ∆ passing through
P we have mult(C) (see Definition 4.15) distinct complex curves of genus g and
degree ∆ passing through Q. These curves are distinct for distinct C and are
irreducible if C is irreducible.

The following is an efficient way to compute Ntrop(g,∆) (and therefore also
N(g,∆)). Let us choose a configuration P to be contained in an affine line L ⊂ R2.
Furthermore, we make sure that the order of P coincides with the order on L and
that the distance between pj+1 and pj is much greater than the distance between
pj and pj−1 inductively for each j. These conditions ensure that P is in tropically
general position as long as the slope of L is irrational. Furthermore, these conditions
specify the combinatorial types of the tropical curves of genus g and degree ∆
passing via P (see Definition 4.18). We shall see that for this choice of P the
forests corresponding to such combinatorial types are paths connecting a pair of
vertices of ∆. This observation can be used to compute N(g,∆) once an irrational
slope of L is chosen.

7.2. Counting of complex curves by lattice paths.

Definition 7.1. A path γ : [0, n] → R2, n ∈ N, is called a lattice path if γ|[j−1,j],
j = 1, . . . , n, is an affine-linear map and γ(j) ∈ Z2, j ∈ 0, . . . , n.

Clearly, a lattice path is determined by its values at the integer points. Let us
choose an auxiliary linear map

λ : R2 → R

that is irrational, i.e. such that λ|Z2 is injective. Note that an affine line L ⊂ R2

with an irrational slope determines a choice of λ since we can take λ to be the
orthogonal projection onto L ⊂ R2. Let p, q ∈ ∆ be the vertices where α|∆ reaches
its minimum and maximum, respectively. A lattice path is called λ-increasing if
λ ◦ γ is increasing.
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Figure 15. All λ-increasing paths for a triangle with vertices
(0, 0), (2, 0) and (0, 2) where λ(x, y) = x − εy for a small ε > 0
and δ = 1.

The points p and q divide the boundary ∂∆ into two increasing lattice paths

α+ : [0, n+] → ∂∆ and α− : [0, n−] → ∂∆.

We have α+(0) = α−(0) = p, α+(n+) = α−(n−) = q, n+ + n− = m − l + 3.
To fix a convention, we assume that α+ goes clockwise around ∂∆ while α− goes
counterclockwise.

Let γ : [0, n] → ∆ ⊂ R2 be an increasing lattice path such that γ(0) = p and
γ(n) = q. The path γ divides ∆ into two closed regions: ∆+ enclosed by γ and α+

and ∆− enclosed by γ and α−. Note that the interiors of ∆+ and ∆− do not have
to be connected.

We define the positive (resp. negative) multiplicity µ±(γ) of the path γ induc-
tively. We set µ±(α±) = 1. If γ �= α±, then we take 1 ≤ k ≤ n − 1 to be the
smallest number such that γ(k) is a vertex of ∆± with the angle less than π (so
that ∆± is locally convex at γ(k)).

If such k does not exist, we set µ±(γ) = 0. If k exists, we consider two other
increasing lattice paths connecting p and q, γ′ : [0, n−1] → ∆ and γ′′ : [0, n] → R2.
We define γ′ by γ′(j) = γ(j) if j < k and γ′(j) = γ(j + 1) if j ≥ k. We define γ′′

by γ′′(j) = γ(j) if j �= k and γ′′(k) = γ(k − 1) + γ(k + 1) − γ(k) ∈ Z2. We set

(11) µ±(γ) = 2 Area(T )µ±(γ′) + µ±(γ′′),

where T is the triangle with the vertices γ(k−1), γ(k) and γ(k+1). The multiplicity
is always integer since the area of a lattice triangle is half-integer.

Note that it may happen that γ′′(k) /∈ ∆. In such a case we use a convention
µ±(γ′′) = 0. We may assume that µ±(γ′) and µ±(γ′′) are already defined since the
area of ∆± is smaller for the new paths. Note that µ± = 0 if n < n± since the
paths γ′ and γ′′ are not longer than γ.

We define the multiplicity µ(γ) of the path γ as the product µ+(γ)µ−(γ). Note
that the multiplicity of a path connecting two vertices of ∆ does not depend on λ.
We only need λ to determine whether a path is increasing.

Example 7.2. Consider the path γ : [0, 8] → ∆3 depicted on the extreme left of
Figure 16. This path is increasing with respect to λ(x, y) = x − εy, where ε > 0 is
very small.

Let us compute µ+(γ). We have k = 2 since γ(2) = (0, 1) is a locally convex
vertex of ∆+. We have γ′′(2) = (1, 3) /∈ ∆3 and thus µ+(γ) = µ+(γ′), since
Area(T ) = 1

2 . Proceeding further, we get µ+(γ) = µ+(γ′) = · · · = µ+(α+) = 1.
Let us compute µ−(γ). We have k = 3 since γ(3) = (1, 2) is a locally convex

vertex of ∆−. We have γ′′(3) = (0, 0) and µ−(γ′′) = 1. To compute µ−(γ′) = 1,
we note that µ−((γ′)′) = 0 and µ−((γ′)′′) = 1. Thus the full multiplicity of γ is 2.
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Figure 16. A path γ with µ+(γ) = 1 and µ−(γ) = 2.

Recall that we fixed an (irrational) linear function λ : R2 → R and this choice
gives us a pair of extremal vertices p, q ∈ ∆.

Theorem 2. The number Ntrop(g,∆) is equal to the number (counted with multi-
plicities) of λ-increasing lattice paths [0, s+ g − 1] → ∆ connecting p and q.

Furthermore, there exists a configuration P ∈ R2 of s+ g − 1 points in tropical
general position such that each λ-increasing lattice path encodes a number of tropical
curves of genus g and degree ∆ passing via P of total multiplicity µ(γ). These curves
are distinct for distinct paths.

Example 7.3. Let us compute N(0,∆) = 5 for the polygon ∆ depicted on Figure
17 in two different ways. Using λ(x, y) = −x + εy for a small ε > 0, we get the
left two paths depicted on Figure 17. Using λ(x, y) = x + εy, we get the three
right paths. The corresponding multiplicities are shown under the path. All other
λ-increasing paths have zero multiplicity.

Figure 17. Computing N(0,∆) = 5 in two different ways.

In the next two examples we use λ(x, y) = x−εy as the auxiliary linear function.

Example 7.4. Figure 18 shows a computation of the well-known number
N(0,∆3). This is the number of rational cubic curves through eight generic points
in CP2.

Figure 18. Computing N(0,∆3) = 12.

Example 7.5. Figure 19 shows a computation of a less well-known numberN(1,∆4).
This is the number of genus 1 quartic curves through twelve generic points in CP2.
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Figure 19. Computing N(1,∆4) = 225.

7.3. Enumeration of real curves. Let Q = {q1, . . . , qs+g−1} ⊂ (R∗)2 be a con-
figuration of points in general position. We have a total of N(g,∆) complex curves
of genus d and degree ∆ in (C∗)2 passing through Q. Some of these curves are
defined over R while others come in complex conjugated pairs.

Definition 7.6. We define the numberN irr
R

(g,∆,Q) to be the number of irreducible
real curves of genus g and degree ∆ passing via Q. Similarly we define the number
NR(g,∆,Q) to be the number of all real curves of genus g and degree ∆ passing
via Q.

Unlike the complex case the numbers N irr
R

(g,∆,Q) and NR(g,∆,Q) do depend
on the choice of Q. We have

0 ≤ NR(g,∆,Q) ≤ N(g,∆)

whileNR(g,∆,Q) ≡ N(g,∆) (mod 2) and, similarly, 0 ≤ N irr
R

(g,∆,Q) ≤ N irr(g,∆)
and N irr

R
(g,∆,Q) ≡ N irr(g,∆) (mod 2).

Tropical geometry allows one to compute NR(g,∆,Q) and NR(g,∆,Q) for some
configurations Q. Note that one can extract a sign sequence {Sign(qj)}s−g+1

j=1 ⊂ Z2
2

from Q = {qj}s−g+1
j=1 by taking the coordinatewise sign. Accordingly we can enhance

the tropical configuration data by adding a choice of signs that take values in Z2
2.

Definition 7.7. A signed tropical configuration of points

R = {(r1, σ1), . . . , (rs+g−1, σs+g−1)}
is a collection of s− g + 1 points rj in the tropical plane R2 together with a choice
of signs σj ∈ Z2

2.
We denote by |R| = {r1, . . . , rs+g−1} ⊂ R2 the resulting configuration after

forgetting the signs.

Suppose that C is a simple tropical curve and is given by an immersion h : Γ →
R2 where Γ is 3-valent. Let E be an edge of Γ of weight wE . Suppose that (xE , yE)
is a primitive integer vector parallel to E. We define the set SE as the quotient of
Z2

2 by the equivalence relation (X,Y ) ∼ (X +wExE , Y +wEyE), X,Y ∈ Z2. Thus
if the weight wE is even, then SE = Z2

2 but if wE is odd, then SE is a 2-element
set.

An element σE ∈ SE is called the phase of E. Every vertex of Γ is adjacent
to three edges E1, E2, E3. Their phases σE1 , σE2 , σE3 are called compatible if there
exist representatives ρj

k ∈ Z2
2, j, k = 1, 2, 3, j �= k, such that
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• ρj
k ∈ σEk

,
• ρj

k �= ρj′
k if j �= j′ and the equivalence class σEk

contains more than one
element,

• ρk
j = ρj

k.

In other words, once we associate to every phase σEk
its two possible representatives

in Z2
2 (which we choose to be distinct if there are two elements in σEk

and coinciding
if σEk

is a one-point set), the six resulting elements of Z2
2 should divide into three

pairs of coinciding elements from distinct edges.

Definition 7.8. A simple real tropical curve (or signed tropical curve) (C, {σE}) is
a simple tropical curve C parameterized by h : Γ → R2 with a choice of the phase
σE ∈ SE for every edge E ⊂ Γ that is compatible at every vertex of Γ. We say that
(C, {σE}) passes through a signed configuration R if for every rj ∈ |R| there exists
a (closed) edge E ⊂ C such that rj ∈ E and σj ∈ σE .

Remark 7.9. Signed tropical configurations and real tropical curves can be viewed
as 0- and 1-dimensional real tropical varieties in R2, respectively.

Suppose that R is such that |R| ⊂ R2 is a configuration of n points in general
position. Let (C, {σE}) be a real tropical curve passing through a signed configu-
ration R. Suppose that x + g − 1 = n, where x is the number of ends of C and g
is the genus of C.

Definition 7.10. The multiplicity µ(C, {σE},R) is 2Neven
, where N even is twice

the number of edges of Γ of even weight that contain points from |R| plus the
number of the remaining edges of Γ of even weight.

A real tropical curve (C, {σE}) is called irreducible if the tropical curve C is
irreducible. Otherwise, it is called reducible.

Definition 7.11. We define the number N irr
trop,R(g,∆,R) to be the number of real

irreducible tropical curves (C, {σE}) of genus g and degree ∆ passing via R counted
with multiplicities µ(C, {σE},R). Similarly we define the number Ntrop,R(g,∆,R)
to be the number of all real tropical curves of genus g and degree ∆ passing via R
(again, counted with multiplicities µ(C, {σE},R)).

Theorem 3. Suppose that R is a signed configuration of s+g−1 points in tropically
general position. Then there exists a configuration Q ⊂ (R∗)2 of s+g−1 real points
in general position such that N irr

R
(g,∆,Q) = N irr

trop,R(g,∆,R) and NR(g,∆,Q) =
Ntrop,R(g,∆,R).

Furthermore, for every real tropical curve (C, {σE}) of genus g and degree ∆
passing through R we have µ(C, {σE},R) distinct real curves of genus g and degree
∆ passing through Q. These curves are distinct for distinct C and are irreducible
if C is irreducible.

Our next goal is to define the real multiplicity µR(C,R) of a tropical curve C
passing through a signed configuration R in a way to include all signed tropical
curves (C, {σE}) with the same C with corresponding multiplicities. The multi-
plicity µR(C,R) depends only on C, |R| and the equivalence class σE ∈ SE of the
sign σj for every point rj ∈ R contained in the edge E. (Recall that since |R| ⊂ R2

is tropically in general position, the points rj are disjoint from the vertices of C.)
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Let h : Γ → R2 be a tropical curve of genus g and degree ∆ passing through |R|.
Recall that by Lemma 4.20 each component of Γ � h−1(|R|) is a tree with a single
end at infinity (see Figure 12).

We define the real tropical multiplicity µR(T,R) of each component T of Γ �

h−1(|R|) inductively. Let A and B be two 1-valent vertices of T corresponding to
marked points ra and rb such that the edges adjacent to A and B meet at a 3-valent
vertex C (see Figure 20).

Figure 20. Inductive reduction of the components of Γ\h−1(|R|)
in the definition of real multiplicity.

Form a new tree T ′ by removing the edges [A,C] and [B,C] from T . The number
of 1-valent vertices of T ′ is less by one (C becomes a new 1-valent vertex while A
andB disappear). By the induction assumption the real multiplicity of T ′ is already
defined for any choice of signs. All the finite 1-valent vertices of T ′ except for C
have their signs induced from the signs of T . To completely equip T ′ with the signs,
we have to define the sign σd at the edge [C,D].

Suppose that (xa, ya) and (xb, yb) are primitive integer vectors parallel to [A,C]
and [B,C], respectively. Suppose that the signs of [A,C] and [B,C] are σa and
σb. Suppose that [C,D] is the third edge adjacent to C. Let Sa, Sb, Sd be the
set of equivalence classes of signs corresponding to [A,C], [B,C] and [C,D]. Let
wa, wb, wd be their weights.

Definition 7.12. The sign at C and the real multiplicity of T are defined according
to the following inductive rules. If T does not have a 3-valent vertex (i.e. T is
homeomorphic to R), then µR(T ) = 1.

• Suppose that wa ≡ wb ≡ 1 (mod 2) and (xa, ya) ≡ (xb, yb) (mod 2). In
this case we have Sa = Sb so the signs σa and σb take values in the same
set. Note that wd ≡ 0 (mod 2) in this case. The sign σd on such edge
takes values in Sd = Z2

2. If σa = σb, then this sign can be presented by
two distinct equivalent elements σ+

d , σ
−
d ∈ Z2

2. Let T ′
+ and T ′

− be the trees
equipped with the corresponding signs. We set

(12) µR(T ) = µR(T ′
+) + µR(T ′

−).

If σa �= σb, we set µR(T ) = 0.
• Suppose that wa ≡ wb ≡ 1 (mod 2) and (xa, ya) �≡ (xb, yb) (mod 2). In

this case wd ≡ 1 (mod 2) and the three sets Sa, Sb, Sd are all distinct. The
sign σd ∈ Sd is uniquely determined by the condition that its equivalence
class has common elements both with the equivalence class σa and with the
equivalence class σb. Let T ′ be the tree equipped with this sign. We set

(13) µR(T ) = µR(T ′).
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• Suppose that one of the weights wa and wb is odd and the other is even.
We may suppose without the loss of generality that wa ≡ 1 (mod 2) and
wb ≡ 0 (mod 2). In this case we have wd ≡ 1 (mod 2) and Sa = Sd while
Sb = Z2

2. If the equivalence class σa contains σb, we set σd = σa and

(14) µR(T ) = 2µR(T ′),

where T ′ is equipped with the sign σd at [C,D]. If the equivalence class σa

does not contain σb, we set µR(T ) = 0.
• Suppose that wa ≡ wb ≡ 0 (mod 2). Then wd is even and Sa = Sb = Sd =

Z2
2. If σa = σb, we set σd = σa and

(15) µR(T ) = 4µR(T ′),

where T ′ is equipped with the sign σd at [C,D]. If σa �= σb, we set µR(T ) =
0.

Let R be a signed configuration of s+ g− 1 points and let h : Γ → R2 be a tropical
curve C = h(Γ) of genus g and degree ∆ passing via |R|. The real multiplicity of
a tropical curve passing through the signed configuration R is the product

µR(C,R) =
∏
T

µR(T ),

where T runs over all the components of Γ � h−1(|R|).

Proposition 7.13. The real multiplicity µR(C,R) is never greater than and has
the same parity as the multiplicity of C from Definition 4.15.

Proof. The proposition follows directly from Definition 7.12 by induction. The
multiplicity of a 3-valent vertex is odd if and only if all three adjacent edges have odd
weights. This multiplicity is at least 2 if one of the adjacent edges has even weight.
This multiplicity is at least 4 if all three adjacent edges have even weights. �

Proposition 7.14. The multiplicity µR(C,R) equals the sum of multiplicities
µ(C, {σE},R) for all real tropical curves (C, {σE}) with the same C.

Proof. The proposition follows from induction. In all except the first case of Defi-
nition 7.12 we have a unique choice for the phase of [C,D] compatible at C. In the
first case we have two choices that are accounted in (12). �

Corollary 7.15. The number N irr
trop,R(g,∆,R) is equal to the sum of µR(C,R) over

all irreducible tropical curves C passing through |R|.
The number Ntrop,R(g,∆,R) is equal to the sum of µR(C,R) over all tropical

curves C passing through |R|.

Example 7.16. Let us choose the signs of R so that every σj contains (+,+) ∈ Z2
2

in its equivalence class. Let g = 0 and let ∆ be the quadrilateral whose vertices are
(0, 0), (1, 0), (0, 1) and (2, 2) as in Example 4.14. Then we haveNtrop,R(g,∆,R) = 3
for the configuration of three points from Figure 9 and Ntrop,R(g,∆,R) = 5 for the
configuration of three points from Figure 10.

For other choices of signs of R we can get Ntrop,R(g,∆,R) = 1 for Figure 10
while Ntrop,R(g,∆,R) = 3 for Figure 9 for any sign choices.
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7.4. Counting of real curves by lattice paths. Theorem 2 can be modified to
give the relevant count of real curves. In order to do this, we need to define the real
multiplicity of a lattice path γ : [0, n] → ∆ connecting the vertices p and q once γ
is equipped with signs.

Suppose γ(j) − γ(j − 1) = (yj , xj) ∈ Z2, j = 1, . . . , n. Let wj ∈ N be the
GCD of yj and xj . Similarly to the previous subsection we define Sj to be the set
obtained from Z2

2 by taking the quotient under the equivalence relation (X,Y ) ∼
(X + xj , Y + yj), X,Y ∈ Z2. Let

σ = {σj}n
j=1, σj ∈ Sj,

be any choice of signs.
We set

(16) µR

±(γ, σ) = a(T )µR

±(γ′, σ′) + µR

±(γ′′, σ′′).

The definition of the new paths γ′, γ′′ and the triangle T is the same as in Subsection
7.2. The sign sequence for γ′′ is σ′′

j = σj , j �= k, k + 1, σ′′
k = σk+1, σ′′

k+1 = σk. The
sign sequence for γ′ is σ′

j = σj , j < k, σ′
j = σj+1, j > k. We define the sign σ′

k and
the function a(T ) (in a way similar to Definition 7.12) as follows.

• If all sides of T are odd, we set a(T ) = 1 and define the sign σ′
k (up to the

equivalence) by the condition that the three equivalence classes of σk, σk+1

and σ′
k do not share a common element.

• If all sides of T are even, we set a(T ) = 0 if σk−1 �= σk. In this case we can
ignore γ′ (and its sequence of signs). We set a(T ) = 4 if σk = σk+1. In this
case we define σ′

k = σk = σk+1.
• Otherwise we set a(T ) = 0 if the equivalence classes of σk and σk+1 do not

have a common element. We set a(T ) = 2 if they do. In the latter case
we define the equivalence class of σ′

k by the condition that σk, σk+1 and σ′
k

have a common element. There is one exception to this rule. If the even
side is γ(k + 1) − γ(k − 1), then there are two choices for σ′

k satisfying the
above condition. In this case we replace a(T )µR

±(γ′) in (16) by the sum of
the two multiplicities of γ′ equipped with the two allowable choices for σ′

k

(note that this agrees with a(T ) = 2 in this case).
Similar to Subsection 7.2 we define µR±(α±) = 1 and µR(γ, σ) = µR

+(γ, σ)µR−(γ, σ).
As before λ : R2 → R is a linear map injective on Z2 and p and q are the extrema
of λ|∆.

Theorem 4. For any choice of σj ∈ Z2
2, j = 1, . . . , s + g − 1, there exists a

configuration of s + g − 1 of generic points in the respective quadrants such that
the number of real curves among the N(g,∆) relevant complex curves is equal to
the number of λ-increasing lattice paths γ : [0, s+ g − 1] → ∆ connecting p and q
counted with multiplicities µR.

Furthermore, each λ-increasing lattice path encodes a number of tropical curves
of genus g and degree ∆ passing via R of total real multiplicity µR(γ, σ). These
curves are distinct for distinct paths.

Example 7.17. Here we use the choice σj = (+,+) so all the points zj are in the
positive quadrant (R>0)2 ⊂ (R∗)2. The first count of the number N(0,∆) from
Example 7.3 gives a configuration of three real points with five real curves. The
second count gives a configuration with three real curves since the real multiplicity
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of the last path is 1. Note also that the second path on Figure 17 changes its real
multiplicity if we reverse its direction.

Example 7.4 gives a configuration of nine generic points in RP2 with all twelve
nodal cubics through them real. Example 7.5 gives a configuration of twelve generic
points in RP2 with 217 out of the 225 quartics of genus 1 real. The path in the
middle of Figure 19 has multiplicity 9 but real multiplicity 1. A similar computation
shows that there exists a configuration of eleven generic points in RP2 such that
564 out of the 620 irreducible quartics through them are real.

7.5. Different types of real nodes and the Welschinger invariant. Let V ⊂
(C∗)2 be a curve defined over R. In other words it is a curve invariant with respect to
the involution of complex conjugation. Suppose that V is nodal, i.e. all singularities
of V are ordinary double points (nodes).

There are three types of nodes of V :
• Hyperbolic. These are the real nodes that locally are intersections of a pair

of real branches. Such nodes are given by equation z2−w2 = 0 for a choice
of local real coordinates (z, w).

• Elliptic. These are the real nodes that locally are intersections of a pair of
imaginary branches. Such nodes are given by equation z2 + w2 = 0 for a
choice of local real coordinates (z, w).

• Imaginary. These are nodes at non-real points of V . Such nodes come in
complex conjugate pairs.

This distinction was used in [30] in order to get a real curve counting invariant
with respect to the initial configuration P ⊂ (R∗)2. Indeed, let us modify the real
enumerative problem from Definition 7.6 in the following way. Let V ⊂ (C∗)2 be a
real nodal curve. Let e(V ) be the number of real elliptic nodes of V . We prescribe
to V the sign equal to (−1)e(V ). As usual we fix a genus g, a degree ∆ and a
configuration P ∈ (R∗)2 of s+ g − 1 points in general position.

Definition 7.18 (see [30]). We define the number N irr
R,W (g,∆,P) to be the number

of irreducible real curves of genus g and degree ∆ passing via P counted with signs.
Similarly we define the number NR,W (g,∆,P) to be the number of all real curves
of genus g and degree ∆ passing via P counted with signs.

Theorem 5 (Welschinger [30]). If g = 0 and CT∆ is smooth, then the number
N irr

R,W (g,∆,P) does not depend on the choice of P.

Theorem 3 can be modified to compute N irr
R,W (g,∆,P) and NR,W (g,∆,P) for an

arbitrary g, in particular, in the invariant situation g = 0.
Let C ⊂ R2 be a simple tropical curve. Recall that Definition 2.16 assigns a

multiplicity multV (C) to every 3-valent vertex V ∈ C.

Definition 7.19. We define

multR,W
V (C) = (−1)

multV (C)−1
2

if multV (C) is odd and multR,W
V (C) = 0 if multV (C) is even.

The tropical Welschinger sign multR,W (C) is the product of multR,W
V (C) over all

3-valent vertices of C.

As usual let us fix a genus g, a degree ∆ and a configuration R ⊂ R2 of s+ g− 1
points in tropically general position. Define N irr

trop,R,W (g,∆,R) to be the number of
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irreducible tropical curves of genus g and degree ∆ passing via R counted with the
Welschinger sign. In a similar way define Ntrop,R,W (g,∆,R) to be the number of all
tropical curves of genus g and degree ∆ passing via R counted with the Welschinger
sign.

Theorem 6. Suppose that R ⊂ R2 is a configuration of s+g−1 points in tropically
general position. Then there exists a configuration P ⊂ (R∗)2 of s+g−1 real points
in general position such that

N irr
R,W (g,∆,P) = N irr

trop,R,W (g,∆,R)

and
NR,W (g,∆,P) = Ntrop,R,W (g,∆,R).

Furthermore, for every tropical curve C of genus g and degree ∆ passing through
R we have a number of distinct real curves of genus g and degree ∆ passing through
P with the total sum equal to the Welschinger sign of C. These curves are distinct
for distinct C and are irreducible if C is irreducible.

Example 7.20. Let g = 0 and let ∆ be the quadrilateral with vertices (0, 0), (1, 0),
(0, 1) and (2, 2). In Figure 9 we have three real curves; two of them have the sign
+1 and one has the sign −1. In Figure 10 we have two real curves; one of them has
the sign +1 and one has the sign 0. In both cases we have Ntrop,R,W (g,∆,R) = 1.

Theorem 2 can be adjusted to compute Ntrop,R,W (g,∆,R) by lattice paths. Let
γ : [0, n] → ∆ be a lattice path connecting the vertices p and q of ∆. Let us
introduce the multiplicity νR inductively, in a manner similar to our definition of
the multiplicity µ(γ). Namely we set νR(γ) = νR

+(γ)νR
−(γ). To define νR

±(γ), we
repeat the definition of µ±(γ) but replace (11) with

νR

±(γ) = b(T )νR

±(γ′) + νR

±(γ′′).

Here we define b(T ) = 0 if at least one side of T is even and b(T ) = (−1)#(IntT∩Z
2)

otherwise. The paths γ′, γ′′ and the triangle T are the same as in the inductive
definition of µ±.

Theorem 7. For any choice of an irrational linear map λ : R2 → R there exists
a configuration P of s + g − 1 generic points in (R∗)2 such that the number of
(not necessarily irreducible) real curves of genus g and degree ∆ passing through P
counted with the tropical Welschinger sign is equal to the number of λ-increasing
lattice paths γ : [0, s + g − 1] → ∆ connecting p and q counted with multiplicities
νR.

Furthermore, there exists a configuration R ∈ R2 of s+ g − 1 points in tropical
general position such that each λ-increasing lattice path encodes a number of tropical
curves of genus g and degree ∆ passing via R with the sum of signs equal to νR(γ).
These curves are distinct for distinct paths.

Example 7.21. In Example 7.3 we have NR,W (0,∆,P) = 1 for some choice of P .
In Example 7.4 we have NR,W (0,∆3,P) = 8 for some choice of P . In Example 7.5
we have NR,W (1,∆4,P) = 93 for some choice of P . In all these examples we have
N irr

R,W = NR,W since there are no reducible curves of these genera and degree. Note
that by Theorem 5 the number N irr

R,W (0,∆3,P) = 8 does not depend on the choice
of P .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ENUMERATIVE TROPICAL ALGEBRAIC GEOMETRY IN R
2 359

The following observation is due to Itenberg, Kharlamov and Shustin [9]. If
λ(x, y) = x − εy and ∆ = ∆d or ∆ = [0, d1] × [0, d2], then νR(γ) ≥ 0 for any
λ-increasing path γ and, furthermore, any tropical curve encoded by γ by Theo-
rem 7 has a non-negative tropical Welschinger sign. It is easy to show that there
exist λ-increasing paths that encode irreducible tropical curves of non-zero tropical
Welschinger signs. We get the following corollary for any d, d1, d2 ∈ N.

Corollary 8. For any generic configuration P ⊂ RP2 of 3d− 1 points there exists
an irreducible rational curve V ⊂ RP2 of degree d passing through P.

For any generic configuration P ⊂ RP1×RP1 of 2d1 +2d2−1 points there exists
an irreducible rational curve V ⊂ RP1×RP1 of bidegree (d1, d2) passing through P.

With the help of Theorem 7 Itenberg, Kharlamov and Shustin in [9] have ob-
tained a non-trivial lower bound for the number of such rational curves. In partic-
ular, they have shown that for any generic configuration P of 3d− 1 points in RP2

there exists at least d!
2 rational curves of degree d passing via P .

8. Proof of the main theorems

8.1. Complex amoebas in R2 and the key lemma. Let Q = {q1, . . . , qn} ⊂
(C∗)2 be generic points in the sense of Proposition 5.2 (i.e. generic classically).
Suppose in addition that the points

p1 = Log(q1), . . . , pn = Log(qn) ∈ R2

are in general position tropically. Denote P = {p1, . . . , pn} ⊂ R2. Recall that we
fix a Newton polygon ∆ ⊂ R2 and a genus g ∈ N. There are N(g,∆) holomorphic
curves passing through Q as long as n = s + g − 1. By Proposition 4.13 there are
finitely many tropical curves

(17) C1, . . . , Cm ⊂ R2

of genus g with the Newton polygon ∆ and passing through P . Note thatm depends
on the choice of the points xj (unlike the number Ntrop(g,∆) ≥ m for which we are
proving invariance).

Proposition 8.1. For generic t we have N(g,∆) Jt-holomorphic curves passing
through Q.

Proof. Indeed, this number equals the number of holomorphic (i.e. Je-holomorphic)
curves through the points Ht(p1), . . . , Ht(pn). (These points are in general position
for generic t since they are for t = e.) �

Let Nε(Cj) be the ε-neighborhood (in the sense of the standard Euclidean metric
on R2) of Cj for ε > 0. Recall (see [6]) that the amoeba of a curve V ⊂ (C∗)2 is its
image

A = Log(V ) ⊂ R2.

Note that if V is a Jt-holomorphic curve, then Log(V ) can be obtained from the
amoeba of some holomorphic curve by the log(t)-contraction. This allows us to
speak of the Newton polygons of Jt-holomorphic curves.

Proposition 8.2. If V is a Jt-holomorphic curve whose Newton polygon is ∆, then
its amoeba A = Log(V ) contains a tropical curve C with the same Newton polygon
∆.
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Proof. If t = e, i.e. C is holomorphic with respect to the standard holomorphic
structure, then the statement follows from the theorem of Passare and Rullg̊ard [19].
Recall (see [19]) that if V is a complex curve defined by a polynomial f(z, w) =∑
j,k

aj,kz
jwk, then the spine of its amoeba A is a tropical curve defined by a tropical

polynomial N∞
f (x, y) = “

∑
j,k

bj,kx
jyk”, where

bj,k =
1

(2πi)2

∫

Log−1(r)

log |f(z, w)|dz
z

dw

w

and r ∈ R2 � A is any point such that its index is (j, k). If there are no points in
R2 � A of index (j, k), then the monomial xjyk is omitted from N∞

f .
It is shown in [19] that the tropical hypersurface defined by N∞

f is contained in
A. Clearly, the Newton polygon of N∞

f is ∆. To finish the proof, we note that
the image of a tropical curve under a homothety is tropical with the same Newton
polygon. �

With the help of Proposition 8.1, Theorem 1 follows from the following two
lemmas.

Lemma 8.3. For any ε > 0 there exists T > 1 such that if t > T and V is a
Jt-holomorphic curve of genus g, degree ∆ and passing through Q, then its amoeba
Log(V ) is contained in the ε-neighborhood Nε(Cj) of Cj for some j = 1, . . . ,m.

Lemma 8.4. For a sufficiently small ε > 0 and a sufficiently large t > 0 the
multiplicity mult(Cj) of each Cj from (17) (see Definition 4.15) is equal to the
number of the Jt-holomorphic curves V of genus g and degree ∆ passing through
Q and such that Log(V ) is contained in Nε(Cj). Furthermore, if Cj is irreducible,
then any Jt-holomorphic curve V of genus g and degree ∆ passing through Q with
Log(V ) ⊂ Nε(Cj) is irreducible while if Cj is reducible, then any such curve V is
reducible.

8.2. Proof of Lemma 8.3. A holomorphic curve V ⊂ (C∗)2 is given by a poly-
nomial

F (z1, z2) =
∑

(j,k)∈∆

aj,kz
j
1z

k
2 .

To a curve V ⊂ (C∗)2 we associate its tropicalization V trop ⊂ R2 given by the
tropical polynomial

F trop(y1, y2) = max
(j,k)∈∆

(jy1 + ky2 + log |aj,k|).

Lemma 8.5. The amoeba Log(V ) is contained in the δ-neighborhood of V trop (with
respect to the Euclidean metric in R2), where

δ = log(#(∆ ∩ Z2) − 1).

Proof. Suppose that (y1, y2) is not contained in the δ-neighborhood of V trop. Then
there exists (j′, k′) such that

(18) j′y1 + k′y2 + log |aj′,k′ | > jy1 + ky2 + log |aj,k| + δ

for any (j, k) �= (j′, k′). Indeed, the distance from (y1, y2) to the line j′y1 + k′y2 +
log |aj′,k′ | = jy1 + ky2 + log |aj,k| is greater than δ by the hypothesis and the norm
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of the gradient of the function (j − j′)y1 + (k − k′)y2 is at least 1 (since j, j′, k, k′

are all integers).
Suppose that (z1, z2) ∈ V ⊂ (C∗)2 is such that Log(z1, z2) = (y1, y2). Since∑

(j,k)∈∆

aj,kz
j
1z

k
2 = 0, the triangle inequality implies that

|aj′,k′zj′
1 z

k′
2 | ≤

∑
(j,k) �=(j′,k′)

|aj,kz
j
1z

k
2 |.

Let us apply log to both sides of this inequality:

j′y1 + k′y2 + log |aj′,k′ | = log |aj′,k′zj′
1 z

k′
2 |

≤ log
∑

(j,k) �=(j′,k′)

|aj,kz
j
1z

k
2 |

≤ log
(
(#(∆ ∩ Z2) − 1) × max

(j,k) �=(j′,k′)
|aj,kz

j
1z

k
2 |

)

= δ + max
(j,k) �=(j′,k′)

(jy1 + ky2 + log |aj,k|).

Thus a point from the amoeba has to be in the δ-neighborhood of V trop. �
Corollary 8.6. The amoeba Log(Vt) of a Jt-holomorphic curve Vt = Ht(V ) is
contained in the δ-neighborhood of some tropical curve in R2, where δ = logt(#(∆∩
Z2)).

Proof. The corollary is obtained by applying the log t-contraction to Lemma 8.5
since Log(Vt) = Logt(V ) = Log(V )

log t . Clearly, V trop

log t ⊂ R2 is a tropical curve. �

Let Vk ⊂ (C∗)2, k ∈ N, be a sequence of curves passing through Q and such that
Vk is a Jtk

-holomorphic curve for some tk > 0, where tk → ∞, k → ∞. As in the
previous subsection we assume that the holomorphic curve H−1

tk
(Vk) is of genus g

and has the Newton polygon ∆ for each k. Denote by Ak = Log(Vk) the amoeba of
Vk. Proposition 8.2 ensures (after applying the log tk-contraction) that there exists
a tropical curve Ck ⊂ Ak.

Proposition 8.7. There is a subsequence Vkα , α ∈ N, such that the sets Akα ⊂ R2

converge in the Hausdorff metric in R2 to some tropical curve Cj from (17).

Proof. By Proposition 3.9 we can extract a subsequence from Ck which converges to
a tropical curve C. To prove the proposition, it suffices to show that C is a tropical
curve passing through P of genus g whose Newton polygon is ∆. Proposition 3.9
and Corollary 8.6 ensure convergence in the Hausdorff metric in R2.

We have C ⊃ P since Vk ⊃ Q and thus Ak ⊃ P . The degree of C is a subpolygon
∆′ ⊂ ∆ since C is the limit of curves of degree ∆. We want to prove that ∆′ = ∆.

Choose a disk DR ⊂ R2 of radius R so large that DR contains all vertices of C.
Furthermore, making R larger if needed, we may assume that the extension of the
exterior edges of C ∩DR beyond DR do not intersect.

The Newton polygon of Ck is ∆. Therefore, it has s ends. By Proposition 3.9
the intersection Ck ∩DR is an approximation of C ∩DR. Therefore, for a large k
we have Ck ⊃ P ′ where P ′ is a configuration of s+ g−1 points in tropically general
position obtained by a small deformation of P . We have ∆′ = ∆ if and only if
Ctrop

k � DR is a disjoint union of rays (each going to ∞). If not, Ck � DR has a
bounded edge connecting a point of Ck ∩∂DR with a vertex of Ck outside of DR. A
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change of the length of this edge produces a deformation of Ck such that all curves
in the family pass via P ′. This contradicts the tropical general position of P ′.

Note that the genus of C cannot be smaller than g; otherwise the configuration
P is not in general position. The genus of curves Ck may be larger than g even
though the genus of Ck is g. However, the genus of their limit C cannot be larger
than g by Proposition 6.7 since C can be presented as the image under Log of the
limit of a subsequence of Vk. Therefore, the genus of C is g. Thus C has to be one
of Ck from (17). �

Since Proposition 8.7 can be applied to any infinite subsequence of Vk, we have
the following corollary.

Corollary 8.8. The sequence Ak ⊂ R2, k ∈ N, can be presented as a union of m
subsequences Aj

k ⊂ R2 such that either the number of terms in Aj
k is finite or Aj

k

converges in the Hausdorff metric in R2 with lim
k→+∞

Aj
k = Cj, j = 1, . . . ,m.

Proof. By Proposition 8.7 for any δ > 0 the number of indices k ∈ N such that
the Hausdorff distance from Ak to Cj is greater than δ for every j = 1, . . . ,m is
finite. �

To deduce Lemma 8.3 from Corollary 8.8, suppose that the amoebas Ak of Jtk
-

holomorphic curves Vk converge to a tropical curve C = Cj , j = 1, . . . ,m, for
k → ∞. Then the spines Ck ⊂ Ak also converge to C.

Note that the number of edges of C is not greater than that of Ck. Some edges
of the 1-cycle Ck tend to the “corresponding” edges of C. The remaining edges of
Ck vanish: their length tends to zero when k → ∞. Lemma 8.3 follows from the
following proposition.

Proposition 8.9. There exist T > 0 and a function δ̃ : [T,+∞) → R such that for
every edge Ek of Ck whose length is higher than δ̃(tk) there exists an edge E of C
parallel to Ek and within δ̃(tk)-distance (in the Hausdorff metric in R2) from E.

Proof. Since ∆ is a bounded polygon, we have a finite number of possibilities for
the slopes of the edges of Ck. Thus each edge of C gets approximated by a parallel
edge Ek of Ck when tk → ∞.

Suppose that E ⊂ C is an edge containing a point p ∈ P . The distance between
the parallel lines containing E and Ek cannot be more than δk = logtk

(#(∆∩Z2))
by Corollary 8.6 (assuming that tk is so large that d(p, C � E) > δk).

Recall that C�P is a disjoint union of trees with only one end at infinity. Since
the number of edges of Ck is bounded from above, it suffices to prove that the length
of vanishing edges of Ck is uniformly bounded from above by a quantity tending
to zero when k → ∞. Every vanishing edge is contained in a small neighborhood
U ⊂ R2 of a vertex v of the 1-cycle C for large tk. Recall that since P is in general
position, the 1-cycle C is simple.

Suppose v ∈ C is a 3-valent vertex and U � v is a small open disk around v. As
in the proof of Proposition 6.7 it is easy to see that Log−1(U)∩Vk is connected and
homeomorphic to a pair-of-pants, i.e. a sphere punctured three times. Indeed, every
component of Log−1(U) ∩ Vk has at least three ends by the maximum principle.
Thus the Euler characteristic of each such component is at most −1 and strictly
less than −1 unless Log−1(U) ∩ Vk is a pair-of-pants. Our claim follows since the
genus of Vk is g (which coincides with the genus of C).
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Unless U ∩Ck is a union of three rays emanating from v, it must contain a cycle.
Since Ck is a deformational retract of Ak, the intersection U ∩Ak then also contains
a cycle. Let w ∈ U �Ak be a point inside of this cycle and let w′ ∈ U �Ak be any
other point such that [w,w′] ∩ Ak is non-empty and connected. Note that the line
L ⊂ R2 containing [w,w′] also must intersect U ∩Ak outside the interval [w,w′] for
topological reasons. The pull-back Log−1(U � [w,w′])∩Vk cannot be disconnected.
Otherwise this would contradict the maximum principle for the harmonic function
πL ◦Log |Vk

, where πL : R2 → R is the linear projection in the direction of L (recall
that Vk ∩ Log−1(U) has three ends and Ak is contained in the δk-neighborhood of
Ck). But if Log−1(U � [w,w′]) ∩ Vk is connected, then the genus of Vk ∩ Log−1(U)
is positive which is also a contradiction. Thus Ck cannot have vanishing edges near
3-valent vertices of C.

Suppose now that v ∈ C is a 4-valent vertex of the 1-cycle C. Let U � v is a small
open disk around v. The pull-back Vk∩Log−1(U) is a union of two components V U

1

and V U
2 . As in the 3-valent case the intersection Ck ∩U cannot have cycles since it

would lead to a contradiction with the maximum principle. Therefore, U ∩ Ck is a
tree with four ends and thus may contain not more than one vanishing edge Ek.

Suppose that the length of Ek is greater that 2δk/s, where s is the minimal
value of the sine of the angle between two distinct slopes of the edges of Ck. Let
L ⊂ R2 be the line passing through the midpoint of Ek and parallel to one of the
two edges of C passing through V . Corollary 8.6 combined with our assumption on
the length of Ek implies that L ∩Ak is compact and therefore Log(V U

1 ) cannot be
locally concave which contradicts the maximum principle for π ◦ Log |V U

1
for some

linear projection π : R2 → R (cf. Lemma 1 from [16]). �

8.3. Proof of Lemma 8.4. Let C ⊂ R2 be one of the tropical curves Cj from (17)
and let mult(C) be its multiplicity from Definition 4.15. Denote by SubdivC the
lattice subdivision of ∆ dual to C. Let

(19) ftrop(y) =
∑

j∈∆∩Z2

βjy
j

be a tropical polynomial that defines C and such that ftrop includes all monomials
of indices j ∈ ∆∩Z2 so that j �→ −βj is a (non-strictly) convex function defined on
∆ ∩ Z2. To get rid of the ambiguity in the choice of ftrop, we choose a “reference”
index j0 ∈ ∆ ∩ Z2 among the vertices of ∆ and assume that βj0 = 0.

By Proposition 6.18 there are mult(C)/µedge(C,Log(Q)) simple complex tropical
curves projecting to C and passing via Q. We shall see that each of them gives
rise to µedge(C,Log(Q)) distinct nearby Jtk

-holomorphic curves of degree ∆, genus
g and passing via Q for large tk > 1 and this exhausts all Jtk

-holomorphic curves
with this property in a small neighborhood of Log−1(C) ⊂ (C∗)2.

Let V∞ be any complex tropical curve passing via Q and such that Log(V∞) = C.
By Proposition 6.19 the curve V∞ defines the coefficients aj ∈ C for the vertices j
of SubdivC once we set aj0 = 1. Note that since C ⊃ R and since R is in tropically
general position, the number of ends of C is s and therefore

∂∆ ∩ Z2 ⊂ Vert(SubdivC).

We have log |aj| = βj . It turns out that these coefficients aj, j ∈ Vert(SubdivC),
depend only on C and Q as the next proposition shows. Note that unlike the
situation in Proposition 6.20 not all points of ∆ ∩ Z2 are vertices of SubdivC and
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thus we may have distinct complex tropical curves with a given set of the coefficients
aj, j ∈ Vert(SubdivC).

Proposition 8.10. The coefficients aj, j ∈ Vert(SubdivC), do not depend on the
choice of V∞ as long as we set aj0 = 1. Thus these coefficients depend only on C
and Q.

Proof. By Lemma 4.20 each component K of Γ � h−1(Q) is a tree which contains
one end at infinity. As in the proof of Proposition 6.18 we proceed inductively
cutting the branches of the tree K.

Let A,B ∈ Q be two points that connect to the same 3-valent vertex in K
as in Figure 20. Then the points A,B are contained in the edges of C dual to
the edges [j, j′], [j′, j′′] such that the triangle with the vertices j, j′, j′′ belongs to
SubdivC . The ratios aj

aj′
and aj′

aj′′
are determined since the points A and B have to

be contained in the curve. Therefore, we know the ratio aj

aj′′
and we can proceed

further by induction. �

Consider the polynomial

ft(z) =
∑

j∈Vert(SubdivC)

arg(aj)tlog |aj |zj ,

z ∈ (C∗)2. The sum here is taken only over the vertices j of SubdivC . Define
Vt ⊂ (C∗)2 by

Vt = Ht({z ∈ (C∗)2 | ft(z) = 0}).
For each t > 1 the curve Vt is Jt-holomorphic. For large values of t we have
Log(Vt) ⊂ Nε(C).

For large values of t we may consider the curve Vt as an approximate solution to
the problem of finding the Jt-holomorphic curves of genus g and degree ∆ via Q.
Indeed, generically we expect Vt to be smooth (and therefore of a “wrong” genus
#(∆ ∩ Z2) ≥ g) and not to contain Q. However it is close to a (singular) curve of
genus g and is very close to the configuration Q. We need to find a genuine solution
near this approximate one for large values t >> 1.

Recall that the amoebas of the (Jt-holomorphic) curves we are looking for have
to be contained in a small neighborhood of C while the curves themselves have to
contain Q. For large t >> 1 this implies that such a curve can be presented in the
form V ζ

t = Ht({f ζ
t (z) = 0}), where

f ζ
t (z) =

∑
j∈∆∩Z2

arg(ζj)tlog |ζj |zj

and ζ ∈ Cn, n = #(∆ ∩Z2)− 1, are such that |ζj − aj | < ε′j for j ∈ Vert(SubdivC)
while log |ζj | − βj < ε′j for j /∈ Vert(SubdivC). Here ε′j > 0 is some collection of
small numbers. All ζ that comply with these conditions form a polydisc D ⊂ Cn.

Proposition 8.11. If t is sufficiently large and Vt ⊂ (C∗)2 is a Jt-holomorphic
curve of genus g such that Vt ⊃ Q and Logt(Vt) ⊂ Nε(C), then there exists ζ ∈ D
such that Vt = Ht(V

ζ
t ).

Recall that by Lemma 8.3 the image Logt(Vt) has to be contained in the ε-
neighborhood of one of Cj from (17).
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Proof. Suppose that log |ζj | − βj ≥ ε′j for some j /∈ Vert(SubdivC) and that this
holds for a sequence of values of t going to +∞. Then there exists a subsequential
limit of Logt(Vt) of genus higher than g (since the limiting tropical curve has an
extra complement component corresponding to j). By Proposition 6.7 the genus of
Vt is also higher than g.

Suppose that |ζj − aj | ≥ ε′j for some j. Tracing back the proof of Proposition
8.10, we see that then there exists an edge [j′, j′′] ∈ Ξ corresponding to a point
q ∈ Q such that | aj′

aj′′
− ζj′

ζj′′
| is bounded from below by a positive constant not

depending on t. But then the curve Vt is disjoint from q for sufficiently large t. �

We cover R2 with open sets U(∆′) corresponding to the polygons ∆′ from the
subdivision SubdivC in the following way.

• If ∆′ ∈ SubdivC is a 2-polygon, then it is dual to a vertex p∆′ ∈ C. We
choose U(∆′) to be a small open disk centered at p∆′ .

• If ∆′ is an edge of SubdivC , then it is dual to an edge e∆′ ⊂ C connecting
two vertices p∆1 , p∆2 ∈ C, where ∆1,∆2 ∈ SubdivC are the two 2-polygons
adjacent to the edge e∆′ . We choose U(∆′) to be a small regular open
neighborhood of e∆′ � (U(∆1) ∪ U(∆2)).

• According to our previous choice of U(∆′) the curve C is a deformational
retract of the union U =

⋃
∆′
U(∆′) where ∆′ runs over positive-dimensional

polygons from SubdivC . Therefore there is a natural bijection between
the components of R2 � U and Vert(SubdivC). We choose U(∆′) to be a
small open neighborhood of the component of R2 � U corresponding to ∆′

if ∆′ ∈ Vert(SubdivC).
The following patchworking principle (due to Viro [29]) can be used to localize

the problem, i.e. to reduce it to an individual problem in every U(∆′): deformation
of ζj with j /∈ ∆′ has little effect on V ζ

t ∩ Log−1
t (U(∆′)) for large t. To state this

principle formally in this tropical set-up, let us consider for every 2-dimensional
∆′ ∈ SubdivC a translation

φ∆′ : R2 → R,

φ∆′(y1, y2) = (y1 + b1, y2 + b2), b1, b2 ∈ R, such that φ∆′(p∆′) = 0 ∈ R2. Similarly,
if ∆′ ∈ SubdivC is 1-dimensional, we choose a translation φ∆′ : R2 → R2 so that
there exists p∆′ ∈ C ∩ U(∆′) with φ∆′(p∆′) = 0. If ∆′ is a vertex of SubdivC , we
choose the translation φ∆′ : R2 → R2 so that φ−1

∆′ ∈ U(∆′). Consider the lifting

Φ∆′,t : (C∗)2 → (C∗)2

defined by Φ∆′,t(z1, z2) = (tb1z1, tb2z2), t > 1. We have

φ∆′ ◦ Log = Logt ◦Φ∆′,t.

Note that (since j �→ − log |aj | is convex on Vert(SubdivC)) we have

f ζ
t ◦ Φ−1

∆′,t(z) = tc
∑

j

arg(ζj)tηjzj ,

where ηj < δ∆′ if j /∈ ∆′ and ζ ∈ D for some constant δ∆′ < 0 while ηj for j ∈ ∆′

is sufficiently close to zero (since D is small). Here c ∈ R is the constant term of
the affine-linear map j �→ −βj on ∆′ ∩ Z2.

If j /∈ ∆′ and Logt(z) ∈ φ∆′(U(∆′)), we have | arg(ζj)tηj zj| ≤ tδ
′(∆′), for some

constant δ′(∆′) > 0 since U(∆′) is chosen so that the tropical monomials in f trop
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corresponding to lattice points of ∆′ dominate the monomials corresponding to
lattice points of ∆ � ∆′ by some definite amount. Therefore we have a uniform
upper bound for |

∑
j∈∆�∆′

arg(ζj)tηj zj| independent of ζ ∈ D which tends to zero

when t→ +∞. Let
V ζ

∆′,∞ ⊂ (C∗)2

be the image under Φ∆′,t of the complex tropical curve (with the Newton polygon
∆′) given by complex tropical coefficients ζj , where j ∈ ∆′ is a vertex of the
subdivision of ∆′ defined by j �→ − log |ζj |, as in Proposition 6.20. Then

Φ∆′,t(V
ζ

t ∩ Log−1
t (U(∆′))) ⊂ (C∗)2

tends (as a sequence of subsets of (C∗)2 with respect to the Hausdorff metric) to
V ζ

∆′,∞ ∩ Log−1
t (U(∆′)). Furthermore, we have the following proposition.

Proposition 8.12. For any ε′ > 0 there exists T > 1 such that for every t ≥ T

and ∆′ ∈ SubdivC the image Φ∆′,t(V
ζ
t ∩ Log−1

t (U(∆′))) is contained in the ε′-
neighborhood (with respect to the product metric in (C∗)2 ≈ R2 × (S1)2) of the
complex tropical curve V ζ

∆′,∞ ⊂ (C∗)2.

Proof. Suppose that z ∈ (C∗)2 is outside of the ε-neighborhood of V ζ
∆′,∞. Then for

sufficiently large t the absolute value of the sum |
∑

j∈∆′
arg(ζj)tηj zj| is larger than

zero by a definite amount that can be made larger than |
∑

j∈∆�∆′
arg(ζj)tηjzj| so

such a point cannot be contained in Φ∆′,t(V
ζ
t ∩ Log−1(U(∆′))). �

This proposition can be considered as a tropical manifestation of the patchwork-
ing principle mentioned above since it states that the geometry of V ζ

t ∩Log−1
t (U(∆′))

is close to the geometry of Φ−1
∆′,t(V

ζ
∆′,∞) no matter what the values of ζj for j /∈ ∆′

are (as long as ζ ∈ D).

Corollary 8.13. Suppose that ∆′ ∈ SubdivC is a 2-dimensional polygon and
V ζ

∆′,∞ ⊂ (C∗)2 is a complex tropical curve of genus g′. If t is sufficiently large,
then V ζ

t ∩ U(∆′) is of genus not less than g′.
Suppose that ∆′ ∈ SubdivC is a 1-dimensional polygon and V ζ

∆′,∞ ⊂ (C∗)2 has
k′ connected components. If t is sufficiently large, then V ζ

t ∩ U(∆′) has at least k′

connected components.

Proof. The first statement follows from Proposition 8.12 since by Definition 6.6 a
complex tropical curve cannot be approximated by curves of smaller genus. The
second statement follows from uppersemicontinuity of the number of connected
components. �

The problem of passing from an approximate solution to the exact solution for
large t is ready to be localized. We need to find the number of choices for ζ such that
V ζ

t ⊃ Q and V ζ
t has genus g. Recall that the amoeba Logt(Vt) ⊂ R2 is contained

in a small neighborhood Nε(C) ⊃ C and thus, by Lemma 8.3, we have

Logt(V
ζ
t ) ⊂

⋃
∆′ : dim(∆′)>0

U(∆′)
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for large t. The curve C ⊂ R2 is simple and thus (if considered as a subspace of
R2) is a graph with 3- and 4-valent vertices. Every edge or vertex of C corresponds
to a subpolygon ∆′ ∈ SubdivC . This subpolygon is a triangle, parallelogram or an
edge for a 3-valent vertex, a 4-valent vertex or an edge (respectively).

Proposition 8.14. Suppose that ζ ∈ D, V ζ
t ⊃ Q and t is large. The curve V ζ

t is
a curve of genus g if and only if all the following conditions hold.

• If ∆′ is a parallelogram with vertices k0, k1, k2, k3 ∈ Z2, k3 − k2 = k1 − k0,
then V ζ

t ∩ Log−1
t (U(∆′)) is a union of two (not necessarily connected)

curves, one in a small neighborhood of a complex tropical curve with the
Newton polygon [k0, k1] and one in a small neighborhood of a complex trop-
ical curve with the Newton polygon [k2, k3].

• If ∆′ is an edge, then V ζ
t ∩Log−1

t (U(∆′)) is homeomorphic to an immersed
annulus (and, therefore, connected).

• If ∆′ is a triangle, then V ζ
t ∩ Log−1

t (U(∆′)) has genus 0.

Proof. Recall that each point of ∂∆ ∩ Z2 is a vertex of SubdivC . If V ζ
t satisfies

the conditions of Proposition 8.14, then no component of V ζ
t ∩ Log−1

t (U(∆′)) has
positive genus. The last condition (when ∆′ is an edge) guarantees that the genus
of V ζ

t coincides with the genus of C. Any other choice gives a higher genus. �

The following corollary takes care of the last statement of Lemma 8.4.

Corollary 8.15. If a curve C = Cj from (17) is irreducible, then any Jt-holo-
morphic curve V of genus g and degree ∆ with large t passing through Q with
Log(V ) ⊂ Nε(Cj) is irreducible while if Cj is reducible, then any such curve V is
reducible.

Proof. For large t the Jt-holomorphic curve V must appear as a curve V ζ
t for some

ζ ∈ D since Logt(V ) ⊂ Nε(Cj). Recall that C ⊂ R2 is a simple tropical curve
and therefore admits a unique simple parameterization by a 3-valent graph which
is connected if and only if C is irreducible. By Proposition 8.14 each component of
the parameterizing 3-valent graph corresponds to a component of V ζ

t . �

Recall that C ⊃ P ∈ R2. Let X ⊂ ∆ be the tree given by Proposition 4.21.
Without loss of generality we may assume that j0 ∈ Ξ. The number ζj0 = 1 is
already determined. Let us orient X so that j0 is its only source.

We partite the points of (∆ ⊂ Z2) � {j0} into sets G∆′ ⊂ ∆∩Z2, ∆′ ∈ SubdivC

using the following rules.
• Suppose that ∆′ ⊂ SubdivC is a parallelogram. Then one of its diagonals,

say [j′, j], is contained in the tree X . Suppose that [j′, j] is oriented pos-
itively with respect to the chosen orientation of X . Let k1 and k2 be the
other two vertices of the parallelograms ∆′. We let

G∆′ = (∆′ ∩ Z2) � ([j′, k1] ∪ [j′, k2]).

• Suppose that {j}, j �= j0, is a vertex of SubdivC that is not contained in
G∆′ for any parallelogram ∆′. We let

G{j} = {j}.
If j is contained in G∆′ for some parallelogram ∆′, then we let G{j} = ∅.
We also let G{j0} = ∅.
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• Suppose that [j1, j2] ∈ SubdivC is an edge such that [j1, j2] � {j1, j2} is
disjoint from G∆′ for every parallelograms ∆′ ⊂ SubdivC . We let

G[j1,j2] = ([j1, j2] ∩ Z2) � {j1, j2}.

If [j1, j2]�{j1, j2} is not disjoint from G∆′ for some parallelogram ∆′, then
we let G[j1,j2] = ∅.

• Suppose that ∆′ ∈ SubdivC is a triangle with vertices k0, k1, k2. We let

G∆′ = (Int(∆′) ∩ Z2).

Clearly, the sets G∆′ are disjoint. Furthermore, since X contains all vertices of
SubdivC , we have ⋃

∆′∈SubdivC

G∆′ = (∆ ⊂ Z2) � {j0}.

For a given large t we say that ζ ∈ D is ∆′-compatible in the following cases.
• Suppose that ∆′ ∈ SubdivC is a positive-dimensional polygon with G∆′ �=
∅. We say that ζ ∈ D is ∆′-compatible if the condition of Proposition 8.14
corresponding to ∆′ holds for V ζ

t .
• Suppose that ∆′ = {j} is a vertex of SubdivC with G∆′ �= ∅. Then j is the

endpoint of a unique oriented edge from Ξ and thus corresponds to a point
p ∈ P . We say that ζ ∈ D is ∆′-compatible if V ζ

t � q, where q ∈ Q and
Log(q) = p.

• If G∆′ = ∅, then any ζ ∈ D is by default ∆′-compatible.

By Proposition 8.14 the curve V ζ
t ⊂ (C∗)2 with ζ ∈ D contains Q and has genus g

if and only if ζ is ∆′-compatible for every ∆′ ∈ SubdivC .
Lemmas 8.16, 8.17 and 8.21 compute the number of ∆′-compatible choices for

individual polygons ∆′.

Lemma 8.16. Let [k′, k′′] be the edge of Ξ and let q ∈ (C∗)2 be any point. For any
choice of bj ∈ C, j ∈ [k′, k′′] � {k′′}, there exists a unique choice of bk′′ such that q
is a point of {

z ∈ (C∗)2
∣∣∣ ∑

j∈[k′,k′′]

bjz
j = 0

}
.

Proof. The equation
∑

j∈[k′,k′′]
bjz

j is linear on bk′′ and thus has a unique solution. �

Lemma 8.17. Let ∆′ ⊂ R2 be a parallelogram with vertices k0, k1, k2, k3 ∈ Z2,
k1 − k0 = k3 − k2. For any choice bj ∈ C∗, j ∈ [k0, k1] ∪ [k0, k2], there exists a
unique choice of coefficients {bj}, j ∈ (∆′ ∩ Z2) � ([k0, k1] ∪ [k0, k2]), such that the
curve {

z ∈ (C∗)2
∣∣∣ ∑

j∈∆′∩Z2

bjz
j = 0

}

is a union of two curves with Newton polygons [k0, k1] and [k0, k2], respectively.

Proof. The coefficients bj should be such that the corresponding curve is the union
of two curves {z ∈ (C∗)2 |

∑
j∈[k0,k1]

bjz
j = 0} and {z ∈ (C∗)2 |

∑
j∈[k0,k2]

bjz
j = 0}. �

Our next task is to deal with curves corresponding to the triangles in SubdivC .
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Remark 8.18. If V ⊂ (C∗)2 is an algebraic curve of degree ∆ and if ∆ ⊂ R2 is a
lattice polygon with j sides, then V has at least j ends and at most #(∂∆ ∩ Z2)
ends. Indeed, any such end corresponds to an intersection of the closure of V in
the toric surface CT∆ with one of the boundary divisors of CT∆ (which in turn
corresponds to a side of ∆).

Lemma 8.19. Let V ⊂ (C∗)2 be an algebraic curve in (C∗)2 homeomorphic to a
sphere punctured three times. Then there exists a (multiplicative) group endomor-
phism M : (C∗)2 → (C∗)2 and a complex line

CΛ = {(z1, z2) ∈ (C∗)2 | b1z1 + b2z2 + b0 = 0},

b0, b1, b2 ∈ C∗, such that V = M(CΛ).

Proof. By Remark 8.18 the Newton polygon ∆′ ⊂ R2 of V is a triangle. Let
M = M∆′ , where M∆′ is defined by (9). Its compactification is M̄∆′ : CP2 → CT∆′

defined by (10). Any side ∆′′ ⊂ ∂∆′ corresponds to a boundary divisor CT∆′′ and
near a general point of CT∆′′ (away from intersection points of boundary divisors)
the map M̄∆′ is a branched covering with branching locus over CT∆′′ and branching
index #(∆′′ ∩ Z2) − 1.

We claim that V lifts under the covering M∆. Topologically our curve V is
a sphere with punctures and thus its fundamental group is generated by loops
going around the punctures. Each loop goes around a boundary divisor CT∆′′

#(∆′′∩Z2)−1 times since this is the intersection number of CT∆′′ and the closure of
V in CT∆′ . Thus the closure of V lifts to a closed surface in CP2 that is holomorphic
and intersects each boundary divisor of CP2 (that is, CP1 ⊂ CP2) once. Thus the
lift is a line disjoint from the intersection of the coordinate axes. �

Corollary 8.20. Suppose that V ⊂ (C∗)2 is a rational curve of degree ∆′, where
∆′ ⊂ R2 is a lattice triangle with no lattice points on its boundary except its vertices
(i.e. such that #(∆′ ∩ Z2) = 3). Then V = M∆′(CΛ) for a complex line

CΛ = {(z1, z2) ∈ (C∗)2 | b1z1 + b2z2 + b0 = 0},

b0, b1, b2 ∈ C∗.

By the asymptotic direction of V ⊂ (C∗)2 corresponding to a side ∆′ ⊂ ∂∆ we
mean the intersection point of the closure V̄ ⊂ CT∆ with the divisor CT∆′ assuming
there is only one such point (perhaps not transverse).

Lemma 8.21. Let ∆′ ⊂ R2 be a triangle with vertices k0, k1, k2 ∈ Z2. For any
choice bk0 , bk1 , bk2 ∈ C∗ there exist 2 Area(∆′) distinct choices of coefficients {bj},
j ∈ (∆ ∩ Z2) � Vert(∆′), such that the curve

(20) V b =
{
z ∈ (C∗)2

∣∣∣ ∑
j∈∆′∩Z2

bjz
j = 0

}

is a rational (i.e. genus 0) curve of degree ∆′ with three ends at infinity.
Furthermore, for any choice of the asymptotic directions of V b corresponding to

the sides [k0, k1] and [k0, k2] we have 2 Area(∆′)
l1l2

choices of coefficients {bj}, j ∈ (∆′∩
Z2), such that the curve V b defined by (20) is a rational curve of degree ∆′ with three
ends at infinity and with the given choice of the asymptotic directions corresponding
to [k0, k1] and [k0, k2]. Here l1 = #([k0, k1]∩ Z2)− 1 and l2 = #([k0, k2]∩ Z2)− 1.
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Proof. Consider the (singular) covering M̄∆′ : CP2 → CT∆′ of degree 2 Area(∆′)
defined in (10). By Lemma 8.19 any rational curve V of degree ∆′ with three ends
is an image of a line in (C∗)2.

Consider the closure V̄ of V in CT∆′. Since bk0 , bk1 , bk2 are fixed, we have l1
possibilities for the (unique) intersection point p1 = V̄ ∩CT[k0,k1] and l2 possibilities
for the point p2 = V̄ ∩CT[k0,k2]. The points p1 and p2 have 2Area(∆′)

l1
and 2Area(∆′)

l2

inverse images under the map M̄∆′ . Connecting different liftings for different choices
of p1 and p2, we get (2 Area(∆′))2 different lines in CP2 that project to 2 Area(∆′)
different rational curves in CT∆′. �

Lemma 8.22. There exists an order on the polygons ∆′ ∈ SubdivC such that if
∆′ is greater than ∆′′, then G∆′ is disjoint from ∆′′ ∩ Z2.

Proof. Clearly we can ignore the polygons ∆′ ∈ SubdivC with G∆′ = ∅ by assigning
to them the highest possible weight. We can do the same for the triangles since if
∆′ ∈ SubdivC is a triangle, then G∆′ is disjoint from any other polygon in SubdivC .

To sort out the remaining ∆′ ∈ SubdivC , we choose an order for the vertices
and edges of the tree X so that it agrees with the already chosen orientation of X
(recall that this is the orientation such that the only sink is j0). This means that
∆′ must have a higher order than ∆′′ if we have to pass through ∆′′ to connect ∆′

to j0.
Recall that each edge E of X is either an edge ∆′ of Ξ or a diagonal of a

parallelogram ∆′ ∈ SubdivC . Thus the order on vertices and edges of X yields the
required order on SubdivC . �

Let ∆′
1, . . . ,∆

′
N be the polygons from SubdivC enumerated according to an order

given by Lemma 8.22.
Recall that V∞ ⊂ (C∗)2 is one of the mult(C)/µedge(C,P) complex tropical

curves of genus g passing via the configuration Q (by Proposition 6.18). Let N (V∞)
be the ε-neighborhood of V∞ in (C∗)2 (recall that ε > 0 is chosen to be small). Let
µ′(∆′

k) = #(∆′
k ∩ Z2) − 1 if ∆′

k is an edge disjoint from P = Log(Q), µ′(∆′
k) =

(#(∆′
k ∩ Z2) − 1)2 if ∆′

k is an edge not disjoint from P = Log(Q), and µ′(∆′
k) = 1

otherwise. Lemma 8.4 and Theorem 1 inductively follow from the next proposition.

Proposition 8.23. Suppose that t is large and ζ ∈ D is chosen compatible with

∆′
1, . . . ,∆′

k−1. There exist
k∏

u=1
µ′(∆′

u) choices of ζ′ ∈ D with the following proper-

ties.

• The parameter ζ′ is compatible with ∆′
1, . . . ,∆

′
k.

• We have ζ′j = ζj if j ∈ G∆′
u
, u > k.

• V ζ′
t ⊂ N (V∞).

Proof. We have the coefficient ζ′j = ζj already chosen for j ∈ G∆′
u
, u > k. Suppose

that j ∈ G∆′
k
. Let us vary the corresponding coefficients ζ′j within D, i.e. within

the disk |ζ′j − aj | < ε′j for j ∈ Vert(SubdivC) ∩ G∆′
k

while log |ζ′j | − βj < εj for
j /∈ Vert(SubdivC)∩G∆′

k
. Denote the corresponding #(G∆′

k
)-dimensional polydisc

by Dk.
We have a map

Φk : Dk → M(∆),
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where M(∆) is the space of all curves in (C∗)2 given by polynomials whose Newton
polygon is contained in ∆. Consider also the map Ψk : Dk → M(∆), Ψk(ζ) = V ζ

∆′,t,

where V ζ
∆′,t is the zero locus of f ζ

∆′,t =
∑

j∈∆′
arg(ζj)t|ζj |.

The polydisc D is a product of disks in C. Recall that the rim δDk of Dk

is the product of the boundaries of the disks from this product. By Corollary
8.13 if t is large, then both Φk(δDk) and Ψk(δDk) consist of non-singular curves.
Furthermore, by Proposition 8.12 and Corollary 8.13 the curves from Φk(δDk) and
Ψk(δDk) are close to the corresponding complex tropical curves that are “non-
singular” in Log−1

t (U(∆′
k)), i.e. have the highest possible genus or the number

of connected components for the given Newton polygon ∆′, so that Φk and Ψk

can be connected by a homotopy whose restriction to δDk stays within the curves
that have non-singular intersection with Log−1

t (U(∆′
k)). Therefore, the intersection

number of Φk(Dk) and Ψk(Dk) with the locus of ∆′
k-compatible curves is the same.

Similarly, Φu and Ψu can also be connected by a homotopy whose restriction to
δDu stays within the curves that have non-singular intersection with Log−1

t (U(∆′
u))

because of Proposition 8.12 and since the order of ∆′
u is taken as in Lemma 8.22.

Suppose that SubdivC does not have multiple edges, i.e. edges E with GE �= ∅.
The map Ψk : Dk → M(∆) intersects the stratum of ∆′

k-compatible curves in
µ′(∆′

k) points by Lemmas 8.16, 8.17 and 8.21. Thus we have the same for the map
Φk and this gives us the values ζ′j for j ∈ ∆′

k such that the collection ζ′j , j ∈ ∆′
k, and

ζj , j /∈ ∆′
k, is ∆′

k-compatible. Note that even though this collection no longer has to
be ∆′

u-compatible for u < k, it is close to a compatible configuration by Proposition
8.12 since G∆′

k
∩ ∆′

u = ∅. Thus, modifying this construction inductively at earlier
steps with the new choice of ζ′j , j ∈ ∆′

k, we can find the values ζ′j , j ∈ ∆u, u ≤ k,
such that together with ζj , j ∈ ∆u, u > k, they are ∆′

u-compatible for any u ≤ k.
This finishes the proof of the proposition (and thus the proof of Lemma 8.4 and

Theorem 1) in the case when SubdivC does not have multiple edges. If there are
such edges in SubdivC , then the proposition follows from Lemma 8.24 below. �

Lemma 8.24. Let ∆′ = [k′, k′′] ∈ SubdivC be an edge, k′, k′′ ∈ Z2, such that
∆′ �⊂ ∂∆.

If ∆′ �⊂ Ξ and t is sufficiently large, then there exist l′ different choices of
coefficients ζ′ ∈ D such that ζ′j = ζj if j = k′, k′′ or j ∈ ∆ � ∆′, V ζ′

t ⊂ N (V∞),
and the intersection

V ζ′
t ∩ Log−1

t (U(∆′))

is an immersed cylinder. Here l′ = #(∆′ ∩ Z2) − 1 is the integer length of ∆′.
If ∆′ ⊂ Ξ, then there exist (l′)2 different choices of coefficients ζ′ ∈ D such that

ζ′j = ζj if j = k′ or j ∈ ∆ � ∆′, V ζ′
t ⊂ N (V∞) and the intersection

V ζ′
t ∩ Log−1

t (U(∆′))

is an immersed cylinder which contains a point from Q. (Note that in the second
case we also vary the coefficient corresponding to one of the endpoints of the interval
∆′.)

Proof. First we note that it suffices to check this lemma for a particular model
of ∆ and SubdivC ∆ as long as ∆′ ∈ Subdiv∆ is an edge not contained in the
boundary of ∆. This can be deduced from the patchworking principle, Proposition
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8.12. Indeed, suppose that

f (1)(z) =
∑

j∈∆1∩Z2

a
(1)
j zj and f (2)(z) =

∑
j∈∆2∩Z2

a
(2)
j zj,

a
(1)
j , a

(2)
j ∈ C∗, are polynomials with Newton polygons ∆1 and ∆2 such that ∆′ ∈

Subdivf(1) , Subdivf(2) , ∆′ �⊂ ∂∆1, ∂∆2 and a
(1)
j = a

(2)
j if j ∈ ∆′. Embedding ∆1

and ∆2 into a larger polygon and applying Proposition 8.12 in the same fashion as
in the proof of Proposition 8.23, we may assume that ∆1 = ∆2. The polynomials
f (1) and f (2) can be deformed to each other by f (s), 1 ≤ s ≤ 2, with a(s)

j = a
(1)
j for

j ∈ ∆′.
Let

D′ = {ζ ∈ C#(∆′∩Z
2)−2 | log |ζ(s)

j | − log |a(s)
j | < ε′j, j ∈ ∆′ � {k′, k′′}}

be the polydisc, where ε′j > 0 are some small numbers. For each ζ ∈ C#(∆′∩Z
2)−2

we form
f ζ(s)

t (z) =
∑

j∈∆∩Z2

arg(ζ(s)
j )tlog |ζ(s)

j |zj,

where ζ(s)
j = a

(s)
j , if j = k′, k′′ or if j ∈ ∆ � ∆′. Denote the zero set of f ζ(s)

t in

(C∗)2 with V ζ(s)

t .
Since ζ runs over the rim δD′, the curve V ζ(s)

t never develops a singularity
within Log−1

t (U(∆′)) by Corollary 8.13. Furthermore, the intersection V ζ(s)

t ∩
Log−1

t (U(∆′)) is a union of #(∆′∩Z2)−1 disjoint cylinders whose mutual position
changes when ζ changes within D′ so any ζ ∈ δD′ is “maximally ∆′-incompatible”
for any 1 ≤ s ≤ 2. Note that the locus of ∆′-compatible values of ζ is locally
given as an intersection of hypersurfaces and for every ζ from those hypersurfaces
we have V ζ(s)

t ∩ Log−1
t (U(∆′)) consisting of at most #(∆′ ∩ Z2) − 2 components,

so they miss the rim δD′. Thus the number of ∆′-compatible values of ζ ∈ D′ does
not depend on s and we can use any model for ∆ ⊃ ∆′ and SubdivC � ∆′ as long
as ∆′ �⊂ ∂∆.

First we treat the case when ∆′ �⊂ Ξ. Let ∆′ = [(0, 0), (l′, 0)]. Suppose that
l′ is odd. In this case we take ∆ to be the parallelogram with vertices (0,−1),
(0, 0), (l′, 0) and (l′, 1). Let g = 0 and j0 = (0, 0). We have s + g − 1 = 3.
We may choose Q = {q1, q2, q3} so that the only tropical curve C passing via
Log(Q) has SubdivC � [(0, 0), (l′, 0)] or so that SubdivC � [(0,−1), (l′, 1)]. Both
choices can be made so that the forest Ξ from Proposition 4.19 consists of the
edges [(0,−1), (0, 0)], [(0,−1), (l′, 0)] and [(l′, 0), (l′, 1)]. The points Q determine
the coefficients ζ(0,0), ζ(0,−1), ζ(l′,0), ζ(l′,1) since ∂∆∩Z2 consists only of the vertices
of ∆. We need to determine the number of compatible choices for coefficients at
the points j ∈ Int(∆). Note that there are no lattice points inside [(0,−1), (l′, 1)].

To compute N irr(0,∆), we may use both configurations. For the first choice of
Q we have N irr(g,∆) = N , where N is the sum of the numbers of choices of ζ′ we
need to find for all possible tropical curves V (j)

∞ of degree ∆ and genus zero passing
via Q. All of them are mapped by Log to the same tropical curve C, since C is
the only tropical curve of degree ∆ and genus zero passing via Log(Q). There are
l′ of them by Proposition 6.18. Thus, we have N/l′ choices for ζ′ so that V ζ′

t is
contained in the neighborhood of any individual curve by symmetry.
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For the second choice of Q we do not have multiple edges in SubdivC . Thus
Lemma 8.4 and Theorem 1 are already established for this choice of configuration.
We have N irr(0,∆) = (l′)2 from the two triangles of SubdivC and, therefore, N =
(l′)2 and N/l′ = l′.

If l′ is even, we choose ∆ to be the quadrilateral with vertices (0,−1), (0, 0),
(l′, 0) and (l′ − 1, 1). The rest of the proof is the same.

If ∆′ ∈ Ξ, we make the same choices for our model of the ambient polygon ∆
(depending on the parity of l′). However, we choose Q so that Ξ consists of the
edges [(0,−1), (0, 0)], [(0, 0), (l′, 0)] and [(l′, 0), (l′, 1)] if l′ is odd or [(0,−1), (0, 0)],
[(0, 0), (l′, 0)] and [(l′, 0), (l′−1, 1)] if l′ is even. By Proposition 6.18 there is a unique
complex tropical curve of degree ∆ and genus 0 passing via Q, so it must coincide
with V∞ and the number of compatible choices for ζ′ ∈ D is N(0,∆) = (l′)2 (since
this number was already computed above). �

This finishes the proof of Lemma 8.4 and Theorem 1 in the general case.

Remark 8.25. Let E be the edge of C dual to ∆′ in Lemma 8.24. Let A,B ∈ C be
the endpoints of the corresponding edge of Γ (recall that C is a simple tropical curve
parameterized by h : Γ → R2). Both A and B are 3-valent vertices corresponding
to triangles ∆A,∆B ⊂ ∆. By the patchworking principle (cf. Proposition 8.12) the
intersection V ζ

t ∩ Log−1
t (U(∆A)) approximates a curve

V ζ
∆A

=
{
z ∈ (C∗)2

∣∣∣ ∑
j∈∆a

arg(ζj)tlog |ζj |zj
}

which, in turn, approximates a curve VA in CT∆A with the Newton polygon ∆A

that has tangency of order l′ = #(∆′ ∩Z2)− 1 with the toric divisor corresponding
to ∆′. Let bA ≈ S1 be the link of this tangency, bA ⊂ V ζ

t ∩ Log−1
t (U(∆A)). The

map arg |bA : bA → S1 × S1 approximates the Zl′ -covering

βA : bA → S1,

where the base S1 is the geodesic circle in S1 × S1 corresponding to the phase of
the holomorphic annulus of V∞ over the edge E. Similarly, we get the Zl′ -covering

βB : bB → S1

for the other endpoint B. There are l′ ways to match the arguments of bA and bB
in the corresponding curves VA ⊂ CT∆A and VB ⊂ CT∆B . By the Zl′ -symmetry (in
either CT∆A or CT∆B ) we have an equal number of choices for ζ′ in Lemma 8.24
for any of this phase matching. Thus we have a unique choice of ζ′ if ∆′ �⊂ Ξ and
l′ choices otherwise. Similarly, the l′ choices in the second case are distinguished
by the l′ points of β−1

A (α), where α is the argument of the point qj ∈ Q with
Log(qj) ∈ E.

8.4. Real curves: Proof of Theorems 3 and 6. Remark 8.25 is useful for
detecting real curves. Suppose that VA and VB are real, i.e. invariant with respect
to conj. In that case we can choose the circles bA and bB conj-invariant as well. Let
p+

A, p
−
A ∈ bA and p+

B, p
−
B ∈ bB be the points fixed by conj. To get a real curve V ζ′

t ,
we have to match the real points of bA with the real points of bB with the same
value of argument.

If l′ is odd, then the intersection number of VA with the toric divisor in CT∆A

corresponding to ∆′ is odd as well and p+
A and p−A belong to distinct quadrants in
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(R∗)2 and, similarly, p+
B and p−B also must have distinct arguments. Thus, only one

out of l′ ways of matching the phase can give a real curve V ζ′
t . On the other hand,

if Q is real, then such V ζ′
t must be real: if not, then conj(V ζ′

t ) is another curve
of the same genus and degree passing through Q with the same pattern of phase
matching at ∆′. If ∆′ ∈ Ξ, then we must match qj to either p+

A or p−A (according
to its quadrant) and, again, the real curve is unique.

If l′ is even, then p+
A and p−A are both from the same quadrant. Also, p+

B and
p−B are both from the same quadrants. If the quadrants of these two pairs do
not coincide, then no real matching is possible and not a single curve in Lemma
8.24 is real. If these two quadrants coincide, then we can match p+

A to p+
B or p−B.

Each of these two patterns gives a real curve; otherwise we would have two distinct
(conjugate) curves with the same matching pattern. If ∆′ ∈ Ξ, then there are two
ways of matching qj : to p+

A and p−A. Again, each of these two ways has to give
a real curve, so we have a total of four out of (l′)2 curves real in this case. This
finishes the proof of Theorem 3.

To prove Theorem 6 we note that if SubdivC contains an edge of an even integer
length, then C contributes zero to the Welschinger invariant. Indeed, for each such
edge E we have two real branches of V ζ′

t ∩ Log−1(U(∆′)) in the same quadrant,
where ∆′ ⊂ ∆ is the edge dual to E. We have two ways of matching the real
points of bA and bB both leading to real nodal curves as in Remark 8.25. For
topological reasons these two choices must have different parity of the number of
hyperbolic nodes in that quadrant. Therefore, the total contribution of such C to
the Welschinger invariant is zero.

If all edges of SubdivC have odd integer length, then elliptic nodes can appear
only from V ζ′

t ∩Log−1(U(∆′)) where ∆′ is a triangle. This part of V ζ′
t has a total of

#(∆′ ∩ Z2) nodes. None of these nodes can be real hyperbolic since the restriction
M∆′|(R∗)2 : (R∗)2 → (R∗)2 (see (9)) is injective if all sides of ∆′ have odd integer
length. Therefore the multiplicity multR,W

V (C) from Definition 7.19 agrees with
Welschinger’s signs and gives the right count for Theorem 6.

8.5. Counting by lattice paths: Proof of Theorems 2, 4 and 7. Recall that
we have a linear map λ : R2 → R injective on Z2. Let L ⊂ R2 be an affine line (in
the classical sense) orthogonal to λ.

We choose a configuration P = {p1, . . . , ps+g−1} ⊂ L so that the order of pk

agrees with a linear order on L. Furthermore, we choose each pk so that the
distance from pk to pk−1 is much larger than the distance from pk−1 to pk−2. Such
a configuration can be chosen in a tropically general position since the slope of L
is irrational (and therefore intersects any tropical curve in R2 in a finite number of
points).

Let C ⊂ R2 be a tropical curve of genus g and degree ∆ passing via P . Let Ξ
be the forest Ξ from Proposition 4.19.

Lemma 8.26. We have C ∩ L = P.

Proof. Let K be a component of Γ � h−1(P). Suppose that h(K) intersects L at a
point not from P . One of the components of K � h−1(L) would yield a bounded
graph with edges at L contained in a half-plane. Clearly such a graph cannot be
balanced. �
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Corollary 8.27. The forest Ξ ⊂ ∆ is a λ-increasing path that connects vertices p
and q as in Theorem 2.

Proof. By Lemma 8.26 the vertices of Ξ correspond to the components of L � P .
Therefore, the forest Ξ is a path that connects vertices of ∆. Note that the path is
λ-increasing since the linear order on L is consistent with λ. �

This corollary allows one to enumerate all tropical curves of genus g and degree
∆ passing via Q by the corresponding paths. Suppose that such a path γ is chosen.

The path γ determines the slopes of the edges that contain points from P for
any tropical curve with Ξ = γ([0, s+ g−1]). Let Line(pj) ⊂ R2 be the line through
pj in the corresponding direction. We need to find all tropical curves of genus g
and degree ∆ that pass through P along Line(pj). The sum of multiplicities of
such curves should coincide with the multiplicity of γ. We need to compute µ(γ),
µR(γ, σ) or νR(γ) for Theorems 2, 4 or 7, respectively.

Let H+ and H− be the two half-planes bounded by L. Lemmas 4.20 and 8.26
imply that for any tropical curve C of genus g and degree ∆ that pass through P , Γ∩
h−1(H±) is a tree with one end at infinity, where h : Γ → R2 is a parameterization
of C.

Recall that our definition of the multiplicities µ±(γ), µR
±(γ, σ) and νR

±(γ) was
inductive. If k is such that ∆± is locally strictly convex at γ(k), then the intersection
point pk,k+1 of Line(pk) and Line(pk+1) is contained in H±. If k is the smallest
number with this property, then pk,k+1 is the closest to L intersection point of the
lines Line(pj) in H±.

Let L̂ be the line parallel to L and such that the strip A(L, L̂) between L and L̂
contains pk,k+1 and does not contain any other intersection point of lines Line(pj).
We have two possible cases for C ∩A(L, L̂).

In the first case we have a 3-valent vertex at pk,k+1. Then C ∩ A(L, L̂) has
a new interval emanating at pk,k+1 and intersecting L̂ at a point p′k. This case
corresponds to the path γ′ from (11). We set {p′j} = Line(pj) ∩ L̂ if j < k, {p′j} =
Line(pj+1) ∩ L̂ if j > k and we proceed inductively by incorporating possibilities
for C ∩ (H± �A(L, L̂)).

In the second case pk,k+1 is a point of self-intersection of h : Γ → R2. This case
corresponds to the path γ′′ from (11). We set {p′′j } = Line(pj) ∩ L̂ if j �= k, k + 1,
{p′′k} = Line(pk+1) ∩ L̂ and {p′′k+1} = Line(pk) ∩ L̂. Again, we proceed inductively
with the new, smaller half-plane H± �A(L, L̂).

All multiplicities mult(C), µ(C, {σE},R) and multR,W (C) are multiplicative and
therefore we can compute them by taking the products of the corresponding num-
bers in every annulus A(L, L̂) from the induction. Theorems 2, 4 and 7 follow from
Theorems 1, 3 and 6, respectively.
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