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for solving such nonsmooth optimization problems by minimizing the corresponding
smooth convex envelope function. In this paper, we present a general envelope func-
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also present a new interpretation of the underlying methods as being majorization–
minimization algorithms applied to their respective envelope functions.
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1 Introduction

Many convex optimization problems can be reformulated into a problem of finding a
fixed-point of a nonexpansive operator. This is the basis for many first-order optimiza-
tion algorithms such as; forward–backward splitting [1], Douglas–Rachford splitting
[2,3], the alternating directionmethod of multipliers (ADMM) [4–6] and its linearized
versions [7], the three operator splitting method [8], and (generalized) alternating pro-
jections [9–14].

In these methods, a fixed-point is found by performing an averaged iteration
of the nonexpansive mapping. This scheme guarantees global convergence, but the
rate of convergence can be slow. A well studied approach for improving practical
convergence—that has proven very successful in practice—is preconditioning of the
problemdata; see, e.g., [15–21] for a limited selection of suchmethods. The underlying
idea is to incorporate static second-order information in the respective algorithms.

The performance of the forward–backward and the Douglas–Rachford meth-
ods can be further improved by exploiting the properties of the recently proposed
forward–backward envelope [22,23] and Douglas–Rachford envelope [24]. As shown
in [22–24], the stationary points of these envelope functions agree with the fixed-
points of the corresponding algorithm operator. Under certain assumptions, they have
favorable properties such as convexity and Lipschitz continuity of the gradient. These
properties enable for nonsmooth problems to be solved by finding a stationary point
of a smooth and convex envelope function. In [22,23], truncated Newton methods
and quasi-Newton methods are applied to the forward–backward envelope function to
improve local convergence.During the submission procedure of this paper, theseworks
have been extended to the nonconvex setting in [25,26] for both forward–backward
splitting and Douglas–Rachford splitting.

A unifying property of forward–backward and Douglas–Rachford splitting (for
convex optimization) is that they are averaged iterations of a nonexpansive mapping.
This mapping is composed of two nonexpansive mappings that are gradients of func-
tions. Based on this observation, we present a general envelope function that has the
forward–backward envelope and the Douglas–Rachford envelope as special cases.
Other special cases include the Moreau envelope and the ADMM envelope [27], since
they are special cases of the forward–backward and Douglas–Rachford envelopes
respectively. We also explicitly characterize the relationship between the ADMM and
Douglas–Rachford envelopes as being essentially the negatives of each other.

The analyses of the envelope functions in [22–24] require, translated to our setting,
that one of the functions that define one of the nonexpansive operators in the com-
position, is twice continuously differentiable. In this paper, we analyze the proposed
general envelope function in the more restrictive setting of the twice continuously
function being quadratic, or equivalently its gradient being affine. We show that if
the Hessian matrix of this function is nonsingular the stationary points of the enve-
lope coincide with the fixed-points of the nonexpansive operator. We provide sharp
quadratic upper and lower bounds to the envelope function that improve corresponding
results for the known special cases in the literature. One implication of these bounds is
that the gradient of the envelope function is Lipschitz continuous with constant two. If,
in addition, the before mentioned Hessian matrix is positive semidefinite the envelope
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function is convex, implying that a fixed-point to the nonexpansive operator can be
found by minimizing a smooth and convex envelope function.

We also provide an interpretation of the basic averaged fixed-point iteration as a
majorization–minimization step on the envelope function.We show that themajorizing
function is a quadratic upper bound, which is slightly more conservative than the
provided sharp quadratic upper bound. We also note that using the sharp quadratic
upper bound as majorizing function would result in computationally more expensive
algorithm iterations.

Our contributions are as follows; (i) we propose a general envelope function that
has several known envelope functions as special cases, (ii) we provide properties of the
general envelope that sharpen (sometimes considerably) and generalize corresponding
known results for the special cases, (iii) we provide an interpretation of the basic
averaged iteration as a suboptimal majorization–minimization step on the envelope
(iv) we provide new insights on the relation between the Douglas–Rachford envelope
and the ADMM envelope.

2 Preliminaries

2.1 Notation

We denote by R the set of real numbers, Rn the set of real n-dimensional vectors, and
R
m×n the set of realm×n-matrices. FurtherR := R∪{∞} denotes the extended real

line. We denote inner-products on R
n by 〈·, ·〉 and their induced norms by ‖ · ‖. We

define the scaled norm ‖x‖P := √〈Px, x〉, where P is a positive definite operator
(defined in Definition 2.2). We will use the same notation for scaled semi-norms,
i.e., ‖x‖P := √〈Px, x〉, where P is a positive semidefinite operator (defined in
Definition 2.1). The identity operator is denoted by Id. The conjugate function is
denoted and defined by f ∗(y) � supx {〈y, x〉 − f (x)}. The adjoint operator to a
linear operator L : R

n → R
m is defined as the unique operator L∗ : R

m → R
n

that satisfies 〈Lx, y〉 = 〈x, L∗y〉. The linear operator L : Rn → R
n is self-adjoint if

L = L∗. The notation argminx f (x) refers to any element that minimizes f . Finally,
ιC denotes the indicator function for the set C that satisfies ιC (x) = 0 if x ∈ C and
ιC (x) = ∞ if x /∈ C .

2.2 Background

In this section, we introduce some standard definitions that can be found, e.g., in
[28,29].

2.2.1 Operator Properties

Definition 2.1 (Positive semidefinite) A linear operator L : R
n → R

n is positive
semidefinite, if it is self-adjoint and all eigenvalues λi (L) ≥ 0.
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Remark 2.1 An equivalent characterization of a positive semidefinite operator is that
〈Lx, x〉 ≥ 0 for all x ∈ R

n .

Definition 2.2 (Positive definite) A linear operator L : Rn → R
n is positive definite,

if it is self-adjoint and if all eigenvalues λi (L) ≥ m with m > 0.

Remark 2.2 An equivalent characterization of a positive definite operator L is that
〈Lx, x〉 ≥ m‖x‖2 for some m > 0 and all x ∈ R

n .

Definition 2.3 (Lipschitz continuous) A mapping T : Rn → R
n is δ-Lipschitz con-

tinuous with δ ≥ 0 if

‖T x − T y‖ ≤ δ‖x − y‖

holds for all x, y ∈ R
n . If δ = 1, then T is nonexpansive and if δ ∈ [0, 1[, then T is

δ-contractive.

Definition 2.4 (Averaged) A mapping T : Rn → R
n is α-averaged if there exists a

nonexpansive mapping S : Rn → R
n and an α ∈]0, 1] such that T = (1−α)Id+αS.

Definition 2.5 (Negatively averaged) A mapping T : R
n → R

n is β-negatively
averaged with β ∈]0, 1] if −T is β-averaged.

Remark 2.3 For notational convenience, we have included α = 1 and β = 1 in the
definitions of (negative) averagedness, which both are equivalent to nonexpansive-
ness. For values of α ∈]0, 1[ and β ∈]0, 1[ averagedness is a stronger property than
nonexpansiveness. For more on negatively averaged operators, see [21] where they
were introduced.

If a gradient operator ∇ f is α-averaged and β-negatively averaged, then it must
hold that α + β ≥ 1. This follows immediately from Lemma 3.1.

Definition 2.6 (Cocoerciveness)Amapping T : Rn → R
n is δ-cocoercivewith δ > 0

if δT is 1
2 -averaged.

Remark 2.4 This definition implies that cocoercive mappings T can be expressed as

T = 1
2δ (Id + S), (1)

where S is a nonexpansive operator. Therefore, 1-cocoercivity is equivalent to 1
2 -

averagedness (which is also called firm nonexpansiveness).

2.2.2 Function Properties

Definition 2.7 (Strongly convex) Let P : Rn → R
n be positive definite. A proper

and closed function f : Rn → R is σ -strongly convex w.r.t. ‖ · ‖P with σ > 0 if
f − σ

2 ‖ · ‖2P is convex.
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Remark 2.5 If f is differentiable, σ -strong convexity w.r.t. ‖ · ‖P can equivalently be
defined as that

σ
2 ‖x − y‖2P ≤ f (x) − f (y) − 〈∇ f (y), x − y〉 (2)

holds for all x, y ∈ R
n . If P = Id, i.e., if the norm is the induced norm, we merely

say that f is σ -strongly convex. If σ = 0, the function is convex.

There are many smoothness definitions for functions in the literature. We will use
the following, which describes the existence of majorizing and minimizing quadratic
functions.

Definition 2.8 (Smooth) Let P : R
n → R

n be positive semidefinite. A function
f : Rn → R is β-smooth w.r.t. ‖ · ‖P with β ≥ 0 if it is differentiable and

−β
2 ‖x − y‖2P ≤ f (x) − f (y) − 〈∇ f (y), x − y〉 ≤ β

2 ‖x − y‖2P (3)

holds for all x, y ∈ R
n .

2.2.3 Connections

Our main result (see Theorem 3.1) is that the envelope function satisfies upper and
lower bounds of the form

1
2 〈M(x − y), x − y〉 ≤ f (x) − f (y) − 〈∇ f (y), x − y〉 ≤ 1

2 〈L(x − y), x − y〉
(4)

for all x, y ∈ R
n and for different linear operators M, L : Rn → R

n . Depending on
M and L , we get different properties of f and its gradient ∇ f . Some of these are
stated below. The results follow immediately from Lemma D.2 in Appendix D and the
definitions of smoothness and strong convexity in Definitions 2.7 and 2.8, respectively.

Proposition 2.1 Assume that L = −M = β I withβ ≥ 0 in (4). Then, (4) is equivalent
to that ∇ f is β-Lipschitz continuous.

Proposition 2.2 Assume that M = σ I and L = β I with 0 ≤ σ ≤ β in (4). Then, (4)
is equivalent to that ∇ f is β-Lipschitz continuous and f is σ -strongly convex.

Proposition 2.3 Assume that L = −M and that L is positive definite. Then, (4) is
equivalent to that f is 1-smooth w.r.t. ‖ · ‖L .

Proposition 2.4 Assume that M and L are positive definite. Then, (4) is equivalent
to that f is 1-smooth w.r.t. ‖ · ‖L and 1-strongly convex w.r.t. ‖ · ‖M.
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3 Envelope Function

In [22,24], the forward–backward and Douglas–Rachford envelope functions are
proposed. Under certain problem data assumptions, these envelope functions have
favorable properties; they are convex, they have Lipschitz continuous gradients, and
their minimizers are fixed-points of the nonexpansive operator S that defines the
respective algorithms. In this section, we will present a general envelope function
that has the forward–backward and Douglas–Rachford envelopes as special cases. We
will also provide properties of the general envelope that are sharper thanwhat is known
for the special cases.

We assume that the nonexpansive operator S that defines the algorithm is a com-
position of S1 and S2, i.e., S = S2S1, where S1 and S2 satisfy the following basic
assumptions (that sometimes will be sharpened or relaxed).

Assumption 3.1 Suppose that:

(i) S1 : Rn → R
n and S2 : Rn → R

n are nonexpansive.
(ii) S1 = ∇ f1 and S2 = ∇ f2 for some differentiable functions f1 : Rn → R and

f2 : Rn → R.
(iii) f1 : Rn → R is twice continuously differentiable.

These assumptions are met for our algorithms of interest, see Sect. 4 for details. In
this general framework, we propose the following envelope function:

F(x) := 〈∇ f1(x), x〉 − f1(x) − f2(∇ f1(x)), (5)

which has gradient

∇F(x) = ∇2 f1(x)x + ∇ f1(x) − ∇ f1(x) − ∇2 f1(x)∇ f2(∇ f1(x))

= ∇2 f1(x)(x − ∇ f2(∇ f1(x)))

= ∇2 f1(x)(x − S2S1x). (6)

If the Hessian ∇2 f1(x) is nonsingular for all x , then the set of stationary points of the
envelope coincides with the fixed-points of S2S1.

Proposition 3.1 Suppose that Assumption 3.1 holds and that ∇2 f (x) is nonsingular
for all x ∈ R

n. Let

X� := {x ∈ R
n : ∇F(x) = 0}, fix(S2S1) = {x ∈ R

n : S2S1x = x}.

Then, X� = fix(S2S1).

Proof The statement follows trivially from (6). ��
In Sect. 4, we show that the forward–backward and Douglas–Rachford envelopes are
special cases of (5). In this section, we will provide properties of the general envelope
under the following restriction to Assumption 3.1.
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Assumption 3.2 Suppose that Assumption 3.1 holds and that, in addition, S1 : Rn →
R
n is affine, i.e., S1x = Px + q and f1(x) = 1

2 〈Px, x〉 + 〈q, x〉, where P ∈ R
n×n is

a self-adjoint nonexpansive linear operator and q ∈ R
n .

Remark 3.1 That P a self-adjoint nonexpansive linear operator means that it is sym-
metric with eigenvalues in the interval [−1, 1].

When S1 = ∇ f1 = P(·) + q is affine, the first two terms in the envelope function
definition in (5) satisfy

〈∇ f1(x), x〉 − f1(x) = 〈Px + q, x〉 − ( 1
2 〈Px, x〉 + 〈q, x〉) = 1

2 〈Px, x〉.

Therefore, the general envelope function in (5) reduces to

F(x) = 1
2 〈Px, x〉 − f2(∇ f1(x)) (7)

and its gradient (6) becomes

∇F(x) = P(x − S2S1x). (8)

The remainder of this section is devoted to providing smoothness and convexity prop-
erties of the envelope function under Assumption 3.2.

3.1 Basic Properties of the Envelope Function

The following two results are special cases and direct corollaries of a more general
result in Theorem 3.1, to be presented later. Proofs are therefore omitted.

Proposition 3.2 Suppose that Assumption 3.2 holds. Then, the gradient of F is 2-
Lipschitz continuous. That is, ∇F satisfies

‖∇F(x) − ∇F(y)‖ ≤ 2‖x − y‖

for all x, y ∈ R
n.

Proposition 3.3 Suppose that Assumption 3.2 holds and that P, that defines the linear
part of S1, is positive semidefinite. Then, F is convex.

If P is positive semidefinite, then the envelope function F is convex and differentiable
with a Lipschitz continuous gradient. This implies, e.g., that all stationary points are
minimizers. If P is positive definite we know from Proposition 3.1 that the set of
stationary points coincides with the fixed-point set of S = S2S1. Therefore, a fixed-
point to S2S1 can be found by minimizing the smooth convex envelope function F .
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3.2 Finer Properties of the Envelope Function

In this section, we establish sharp upper and lower bounds for the envelope function
(7). These results use stronger assumptions on S2 than nonexpansiveness, namely that
S2 is α-averaged and β-negatively averaged:

Assumption 3.3 The operator S2 is α-averaged and β-negatively averaged with α ∈
]0, 1] and β ∈]0, 1].
Before we proceed, we state a result on how averaged and negatively averaged gradient
operators can equivalently be characterized. The result is proven in Appendix A.

Lemma 3.1 Assume that f is differentiable. Then, ∇ f is α-averaged with α ∈]0, 1]
and β-negatively averaged with β ∈]0, 1] if and only if

− 2α−1
2 ‖x − y‖2 ≤ f (x) − f (y) − 〈∇ f (y), x − y〉 ≤ 2β−1

2 ‖x − y‖2 (9)

holds for all x, y ∈ R
n, which holds if and only if

− (2α − 1)‖x − y‖2 ≤ 〈∇ f (x) − ∇ f (y), x − y〉 ≤ (2β − 1)‖x − y‖2 (10)

holds for all x, y ∈ R
n.

These properties relate to smoothness and strong convexity properties of f . More
precisely, they imply that f is max((2α − 1), (2β − 1))-smooth and, if α > 1

2 ,
(2α−1)-strongly convex. With this interpretation in mind, we state the main theorem.

Theorem 3.1 Suppose that Assumptions 3.2 and 3.3 hold. Further, let δα = 2α − 1
and δβ = 2β − 1. Then, the envelope function F in (7) satisfies

F(x) − F(y) − 〈∇F(y), x − y〉 ≥ 1
2

〈(
P − δβ P

2
)

(x − y), x − y
〉

and

F(x) − F(y) − 〈∇F(y), x − y〉 ≤ 1
2

〈(
P + δαP

2
)

(x − y), x − y
〉

for all x, y ∈ R
n. Furthermore, the bounds are tight.

A proof to this result is found in “Appendix B”.
Utilizing connections established in Sect. 2.2.3, we next derive different properties

of the envelope function. Especially, we provide conditions under which the envelope
function is convex and strongly convex.

Corollary 3.1 Suppose that the assumptions of Theorem3.1 hold and that P is positive
semidefinite. Then,

1
2‖x − y‖2P−δβ P2 ≤ F(x) − F(y) − 〈∇F(y), x − y〉 ≤ 1

2‖x − y‖2P+δα P2
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and F is convex and 1-smooth w.r.t. ‖ · ‖P+δα P2 . If in addition P is positive definite
and either of the following holds:

(i) P is contractive,
(ii) β ∈]0, 1[, i.e., δβ ∈] − 1, 1[,
then F is 1-strongly convex w.r.t. ‖ · ‖P−δβ P2 and 1-smooth w.r.t. ‖ · ‖P+δα P2 .

Proof The results follow from Theorem 3.1, the definition of (strong) convexity, and
by utilizing Lemma D.3 in “Appendix D” to show that the smallest eigenvalue of
P − δβ P2 is nonnegative and positive, respectively. ��
Less sharp, but unscaled, versions of these bounds can easily be obtained from Theo-
rem 3.1.

Corollary 3.2 Suppose that the assumptions of Theorem 3.1 hold. Then,

βl
2 ‖x − y‖2 ≤ F(x) − F(y) − 〈∇F(y), x − y〉 ≤ βu

2 ‖x − y‖2,

where βl = λmin(P − δβ P2) and βu = λmax(P + δαP2).

Values of βl and βu for different assumptions on P , δα and δβ can be obtained from
Lemma D.3 in “Appendix D”.

The results in Theorem 3.1 and its corollaries are stated for α-averaged and β-
negatively averaged operators S2 = ∇ f2. Using Lemmas 3.1 and D.2, we conclude
that δ-contractive operators are α-averaged and β-negatively averaged with α and β

satisfying δ = δα = δβ . This gives the following result.

Proposition 3.4 Suppose that Assumption 3.2 holds and that S2 is δ-Lipschitz con-
tinuous with δ ∈ [0, 1]. Then, all results in this section hold with δβ and δα replaced
by δ.

If instead S2 = ∇ f2 is 1
δ
-cocoercive, it can be shown (see [28, Definition 4.4] and

[30, Theorem 2.1.5]) that

0 ≤ f2(x) − f2(y) − 〈∇ f2(y), x − y〉 ≤ δ
2‖x − y‖2.

In view of Lemma 3.1, we can state the following result.

Proposition 3.5 Suppose that Assumption 3.2 holds and that S2 is
1
δ
-cocoercive with

δ ∈]0, 1]. Then, all results in this section hold with δβ = δ and δα = 0.

3.3 Majorization–Minimization Interpretation of Averaged Iteration

As noted in [22,24], the forward–backward and Douglas–Rachford splitting methods
are variable metric gradient methods applied to their respective envelope functions.
In our setting, with S1 being affine, they reduce to being fixed-metric scaled gradient
methods. In this section, we provide a different interpretation. We show that a step
in the basic iteration is obtained by performing majorization–minimization on the

123



682 J Optim Theory Appl (2018) 178:673–698

envelope. The majorizing function is a closely related to the upper bound provided in
Corollary 3.1.

The interpretation is valid under the assumption that P is positive definite, besides
being nonexpansive. This implies that the envelope is convex, see Corollary 3.1. It is
straightforward to verify that P + δαP2 � (1+ δα)P . Therefore, we can construct the
following more conservative upper bound to the envelope, compared to Corollary 3.1:

F(x) ≤ F(y) + 〈∇F(y), x − y〉 + 1+δα

2 ‖x − y‖2P . (11)

Minimizing this majorizer, evaluated at y = xk , in every iteration k gives

xk+1 = argmin
x

{F(xk) + 〈∇F(xk), x − xk〉 + 1 + δα

2
‖x − xk‖2P }

= xk − 1

1 + δα

P−1∇F(xk)

= xk − 1

1 + δα

P−1P(S2S1x
k − xk)

= xk − 1

1 + δα

(S2S1x
k − xk)

=
(
1 − 1

1 + δα

)
xk + 1

1 + δα

S2S1x
k,

which is the basic method with 1
1+δα

-averaging. It is well known that the gradient

method converges with step-length α ∈]0, 2
L [, where L is a Lipschitz constant. In this

case, the upper bound (11) guarantees a Lipschitz constant to∇F of L = 1+δα in the
‖ · ‖P -norm, see Lemma D.2. Selecting a step-length within the allowed range yields
an averaged iteration with 1

1+δα
replaced by α ∈]0, 2

1+δα
[.

The upper bound (11) used to arrive at the averaged iteration is not sharp. Using
instead the sharp majorizer from Corollary 3.1, yields the following algorithm:

xk+1 = argmin
x

{
F(xk) + 〈∇F(xk), x − xk〉 + 1

2‖x − xk‖2P+δα P2

}

= xk − (Id + δαP)−1P−1∇F(xk)

= xk − (Id + δαP)−1P−1P(S2S1x
k − xk)

= xk − (Id + δαP)−1(S2S1x
k − xk)

= (Id − (Id + δαP)−1)xk + (Id + δαP)−1S2S1x
k .

This differs from the basic averaged iteration in that (1+ δα)−1Id in the basic method
is replaced by (Id + δαP)−1. The drawback of using this tighter majorizer is that the
iterations become more expensive.

None of these methods is probably the most efficient way to find a stationary point
of the envelope function (or equivalently a fixed-point to S2S1). At least in the convex
setting (for the envelope), there are numerous alternative methods that can minimize
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smooth functions such as truncated Newton methods, quasi-Newton methods, and
nonlinear conjugate gradient methods. See [31] for an overview of such methods
and [22,23] for some of these methods applied to the forward–backward envelope.
Evaluating which ones that are most efficient and devising new methods to improve
performance is outside the scope of this paper.

4 Special Cases

In this section, we show that our envelope in (5) has four known special cases, namely
the Moreau envelope [32], the forward–backward envelope [22,23], the Douglas–
Rachford envelope [24], and the ADMM envelope [27] (which is a special case of the
Douglas–Rachford envelope).

We also show that our envelope bounds for S1 = ∇ f1 being affine coincide with
or sharpen corresponding results in the literature for the special cases.

4.1 Algorithm Building Blocks

Before we present the special cases, we introduce some functions, whose gradients
are operators that are used in the respective underlying methods. Most importantly,
we will introduce a function whose gradient is the proximal operator:

proxγ f (z) := argmin
x

{ f (x) + 1
2γ ‖x − z‖2},

where γ > 0 is a parameter.

Proposition 4.1 Suppose that f : Rn → R ∪ {∞} is proper, closed, and convex and
that γ > 0. The proximal operator proxγ f then satisfies

proxγ f = ∇r∗
γ f ,

where r∗
γ f is the conjugate of

rγ f (x) := γ f (x) + 1
2‖x‖2. (12)

The reflected proximal operator

Rγ f := 2proxγ f − Id (13)

satisfies Rγ f = ∇ pγ f , where

pγ f := 2r∗
γ f − 1

2‖ · ‖2. (14)

This proximal map interpretation is from [33, Theorems 31.5, 16.4] and implies that
the proximal operator is the gradient of a convex function. The reflected proximal
operator interpretation follows trivially from the prox interpretation.
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The other algorithm building block that is used in the considered algorithms is the
gradient step. The gradient step operator is the gradient of the function 1

2‖x‖2−γ f (x),
i.e.,:

(x − γ∇ f (x)) = ∇
(
1
2‖x‖2 − γ f (x)

)
.

4.2 The Proximal Point Algorithm

The proximal point algorithm solves problems of the form

minimize f (x),

where f : Rn → R ∪ {∞} is proper, closed, and convex.
The algorithm repeatedly applies the proximal operator of f and is given by

xk+1 = proxγ f (x
k), (15)

where γ > 0 is a parameter. This algorithm is mostly of conceptual interest since it is
often as computationally demanding to evaluate the prox as to minimize the function
f itself.
Its envelope function, which is called the Moreau envelope [32], is a scaled version

of the envelope F in (7). The scaling factor is γ −1 and the Moreau envelope f γ is
obtained by letting S1x = ∇ f1(x) = x , i.e., P = Id and q = 0, and f2 = r∗

γ f in (7),
where rγ f is defined in (12):

f γ (x) = γ −1F(x) = γ −1
(
1
2‖x‖2 − r∗

γ f (x)
)

. (16)

Its gradient satisfies

∇ f γ (x) = γ −1 (
x − proxγ f (x)

)
.

The following properties of the Moreau envelope follow directly from Corollary 3.2
and Proposition 3.5 since the proximal operator is 1-cocoercive (see Remark 2.4 and
[28, Proposition 12.27]).

Proposition 4.2 The Moreau envelope f γ in (16) is differentiable and convex and
∇ f γ is γ −1-Lipschitz continuous.

This coincides with previously known properties of the Moreau envelope, see [28,
Chapter 12].

4.3 Forward–Backward Splitting

Forward–backward splitting solves problems of the form

minimize f (x) + g(x), (17)
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where f : Rn → R is convex with an L-Lipschitz (or equivalently 1
L -cocoercive)

gradient, and g : Rn → R ∪ {∞} is proper, closed, and convex.
The algorithm performs a forward step followed by a backward step, and is given

by

xk+1 = proxγ g(Id − γ∇ f )xk, (18)

where γ ∈]0, 2
L [ is a parameter.

The envelope function, which is called the forward–backward envelope [22,23], is
a scaled version of the envelope F in (5) and applies when f is twice continuously dif-
ferentiable. The scaling factor is γ −1 and the forward–backward envelope is obtained
by letting f1 = 1

2‖ · ‖2 − γ f and f2 = r∗
γ g in (5), where rγ g is defined in (12). The

resulting forward–backward envelope function is

FFB
γ (x) = γ −1

(
〈x − γ∇ f (x), x〉 −

(
1
2‖x‖2 − γ f (x)

)
− r∗

γ g(x − γ∇ f (x))
)

.

The gradient of this function is

∇FFB
γ (x) = γ −1((Id − γ∇2 f (x))x + (x − γ∇ f (x)) − (x − γ∇ f (x))

− (Id − γ∇2 f (x))proxγ g(x − γ∇ f (x))
)

= γ −1(Id − γ∇2 f (x))
(
x − proxγ g(x − γ∇ f (x))

)
,

which coincides with the gradient in [22,23]. As described in [22,23], the stationary
points of the envelope coincide with the fixed-points of the mapping proxγ g(x −
γ∇ f (x)) if (Id − γ∇2 f (x)) is nonsingular.

4.3.1 S1 Affine

Weprovide properties of the forward–backward envelope in themore restrictive setting
of S1 = ∇ f1 = (Id − γ∇ f ) being affine. This applies when f is a convex quadratic,
f (x) = 1

2 〈Hx, x〉 + 〈h, x〉 with H ∈ R
n×n positive semidefinite and h ∈ R

n . Then,
S1x = Px + q with P = (Id − γ H) and q = −γ h.

In this setting, the following result follows immediately from Corollary 3.1 and
Proposition 3.5 (where Proposition 3.5 is invoked since S2 = proxγ g is 1-cocoercive,
see Remark 2.4 and [28, Proposition 12.27]).

Proposition 4.3 Assume that f (x) = 1
2 〈Hx, x〉 + 〈h, x〉 and γ ∈]0, 1

L [, where L =
λmax(H). Then, the forward–backward envelope FFB

γ satisfies

1
2γ ‖x − y‖2P−P2 ≤ FFB

γ (x) − FFB
γ (y) − 〈∇FFB

γ (y), x − y〉 ≤ 1
2γ ‖x − y‖2P

for all x, y ∈ R
n, where P = (Id− γ H) is positive definite. If in addition λmin(H) =

m > 0, then P−P2 is positive definite and FFB
γ is γ −1-strongly convex w.r.t. ‖·‖P−P2 .

123



686 J Optim Theory Appl (2018) 178:673–698

Less tight bounds for the forward–backward envelope are provided next. These follow
immediately from the above and Lemma D.3.

Proposition 4.4 Assume that f (x) = 1
2 〈Hx, x〉 + 〈h, x〉, that γ ∈]0, 1

L [ where L =
λmax(H), and that m = λmin(H) ≥ 0. Then, the forward–backward envelope FFB

γ is

γ −1(1− γm)-smooth andmin ((1 − γm)m, (1 − γ L)L)-strongly convex (both w.r.t.
to the induced norm ‖ · ‖).
This result is a less tight version of Proposition 4.3, but is a slight improvement of the
corresponding result in [22, Theorem 2.3]. The strong convexity moduli are the same,
but our smoothness constant is a factor two smaller.

4.4 Douglas–Rachford Splitting

Douglas–Rachford splitting solves problems of the form

minimize f (x) + g(x), (19)

where f : Rn → R ∪ {∞} and g : Rn → R ∪ {∞} are proper, closed, and convex
functions.

The algorithm performs two reflection steps (13), then an averaging:

zk+1 = (1 − α)zk + αRγ g Rγ f z
k, (20)

where γ > 0 and α ∈]0, 1[ are parameters. The objective is to find a fixed-point z̄
to Rγ g Rγ f , from which a solution to (19) can be computed as proxγ f (z̄), see [28,
Proposition 25.1].

The envelope function in [24], which is called the Douglas–Rachford envelope,
is a scaled version of the basic envelope function F in (5) and applies when f is
twice continuously differentiable and ∇ f is Lipschitz continuous. The scaling factor
is (2γ )−1 and the Douglas–Rachford envelope is obtained by, in (5), letting f1 = pγ f

with gradient ∇ f1 = S1 = Rγ f and f2 = pγ g , where pγ g is defined in (14). The
Douglas–Rachford envelope function becomes

FDR
γ (z) = (2γ )−1 (〈Rγ f (z), z〉 − pγ f (z) − pγ g(Rγ f z)

)
. (21)

The gradient of this function is

∇FDR
γ (z) = (2γ )−1(∇Rγ f (z)z + Rγ f − Rγ f − ∇Rγ f (z)Rγ g(Rγ f (z))

)

= (2γ )−1∇Rγ f (z)(z − Rγ g Rγ f (z)),

which coincides with the gradient in [24] since ∇Rγ f = 2∇proxγ f − Id and

z − Rγ g Rγ f z = z − 2proxγ g(2proxγ f (z) − z) + 2proxγ f (z) − z

= 2(proxγ f (z) − proxγ g(2proxγ f (z) − z)).
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As described in [24], the stationary points of the envelope coincide with the fixed-
points of Rγ g Rγ f if ∇Rγ f is nonsingular.

4.4.1 S1 Affine

We state properties of the Douglas–Rachford envelope in the more restrictive setting
of S1 = Rγ f being affine. This is obtained for convex quadratic f :

f (x) = 1
2 〈Hx, x〉 + 〈h, x〉,

where H is positive semidefinite. The operator S1 becomes

S1(z) = Rγ f (z) = 2(Id + γ H)−1(z − γ h) − z,

which confirms that it is affine.We implicitly define P and q through the relation S1 =
Rγ f = P(·)+q, and note that they are given by the expressions P = 2(Id+γ H)−1−Id
and q = −2γ (Id + γ H)−1h, respectively.

In this setting, the following result follows immediately from Corollary 3.1 since
S2 = Rγ g is nonexpansive (1-averaged and 1-negatively averaged).

Proposition 4.5 Assume that f (x) = 1
2 〈Hx, x〉 + 〈h, x〉 and γ ∈]0, 1

L [, where L =
λmax(H). Then, the Douglas–Rachford envelope FDR

γ satisfies

1
4γ ‖z − y‖2P−P2 ≤ FDR

γ (z) − FDR
γ (z) − 〈∇FDR

γ (y), z − y〉 ≤ 1
4γ ‖z − y‖2P+P2

for all y, z ∈ R
n, where P = 2(Id + γ H)−1 − Id is positive definite. If in addition

λmin(H) = m > 0, then P − P2 is positive definite and FDR
γ is (2γ )−1-strongly

convex w.r.t. ‖ · ‖P−P2 .

The following less tight characterization of theDouglas–Rachford envelope follows
from the above and Lemma D.3.

Proposition 4.6 Assume that f (x) = 1
2 〈Hx, x〉 + 〈h, x〉, that γ ∈]0, 1

L [, where
L = λmax(H), and that m = λmin(H) ≥ 0. Then, the Douglas–Rachford envelope

FDR
γ is 1−γm

(1+γm)2
γ −1-smooth and min

(
(1−γm)m
(1+γm)2

,
(1−γ L)L
(1+γ L)2

)
-strongly convex.

This result is more conservative than the one in Proposition 4.5, but improves on
[24, Theorem 2]. The strong convexity modulus coincides with the corresponding one
in [24, Theorem 2]. The smoothness constant is 1

1+γm times that in [24, Theorem 2],
i.e., it is slightly smaller.

4.5 ADMM

The alternating direction method of multipliers (ADMM) solves problems of the form
(19). It is well known [34] that ADMM can be interpreted as Douglas–Rachford
applied to the dual of (19), namely to
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minimize f ∗(μ) + g∗(−μ). (22)

So the algorithm is given by

vk+1 = (1 − α)vk + αRρ(g∗◦−Id)Rρ f v
k, (23)

where ρ > 0 is a parameter, Rρ f is the reflected proximal operator (13), and (g∗◦−Id)
is the composition that satisfies (g∗ ◦ −Id)(μ) = g∗(−μ).

In accordance with the Douglas–Rachford envelope (21), the ADMM envelope is

FADMM
ρ (v) = (2ρ)−1

(
〈Rρ f ∗(v), v〉 − p2ρ f ∗(v) − p2ρ(g∗◦−Id)(Rρ f ∗v)

)
(24)

and its gradient becomes

∇FADMM
ρ (v) = (2ρ)−1∇Rρ f ∗(v)(v − Rρ(g∗◦−Id)Rρ f ∗(v)).

This envelope function has been utilized in [27] to accelerate performance of
ADMM. In this section, we will augment the analysis in [27] by relating the ADMM
algorithm and its envelope function to the Douglas–Rachford counterparts. To do so,
we need the following result which is proven in “Appendix C”.

Lemma 4.1 Let g : Rn → R ∪ {∞} be proper, closed, and convex and let ρ > 0.
Then,

Rρg∗(x) = −ρRρ−1g(ρ
−1x),

Rρ(g∗◦−Id)(x) = ρRρ−1g(−ρ−1x),

pρ(g∗◦−Id)(y) = −ρ2 pρ−1g(−ρ−1y),

where Rρg is defined in (13) and pρg is defined in (14).

Before we state the result, we show that the zk sequence in (primal) Douglas–
Rachford (20) and the vk sequence in ADMM (i.e., dual Douglas–Rachford) in (23)
differ by a factor only. This is well known [35], but the relation is stated next with a
simple proof.

Proposition 4.7 Assume thatρ > 0 andγ > 0 satisfyρ−1 = γ , and that z0 = ρ−1v0.
Then zk = ρ−1vk for all k ≥ 1, where {zk} is the primal Douglas–Rachford sequence
defined in (20) and the {vk} is the ADMM sequence is defined in (23).

Proof Lemma 4.1 implies that

vk+1 = (1 − α)vk + αRρ(g∗◦−Id)Rρ f ∗vk

= (1 − α)vk + αρRρ−1g(−ρ−1(−ρRρ−1 f (ρ
−1vk)))

= (1 − α)vk + αρRρ−1g(Rρ−1 f (ρ
−1vk))).
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Multiply by ρ−1, let zk = ρ−1vk , and identify γ = ρ−1 to get

zk+1 = (1 − α)zk + αRγ g(Rγ f (z
k))).

This concludes the proof. ��
There is also a tight relationship between the ADMM and Douglas–Rachford

envelopes. Essentially, they have opposite signs.

Proposition 4.8 Assume that ρ > 0 and γ > 0 satisfy ρ = γ −1 and that z = ρ−1v =
γ v. Then,

FADMM
ρ (v) = −FDR

γ (z).

Proof Using Lemma 4.1 several times, γ = ρ−1, and z = ρ−1v, we conclude that

FADMM
ρ (v) = (2ρ)−1 (〈Rρ f ∗(v), v〉 − pρ f ∗(v) − pρ(g∗◦−Id)(Rρ f ∗(v))

)

= (2ρ)−1
(

− ρ〈Rρ−1 f (ρ
−1v), v〉 + ρ2 pρ−1( f ◦−Id)(−ρ−1v)

+ ρ2 pρ−1g(−ρ−1(−ρRρ−1 f (ρ
−1v)))

)

= −ρ
2

(
〈Rρ−1 f (ρ

−1v), ρ−1v〉 − pρ−1 f (ρ
−1v) + pρ−1g(Rρ−1 f (ρ

−1v))
)

= −(2γ )−1 (〈Rγ f (z), z〉 − pγ f (z) + pγ g(Rγ f (z))
)

= −FDR
γ (z).

This concludes the proof. ��
This result implies that the ADMM envelope is concave when the DR envelope is

convex, and vice versa. We know from Sect. 4.4 that the operator S1 = Rρ f ∗ is affine
when the conjugate f ∗ is quadratic. This holds true if

f (x) =
{

1
2 〈Hx, x〉 + 〈h, x〉, if Ax = b,

∞, else,

and H is positive definite on the nullspace of A. From Propositions 4.5 and 4.6, we
conclude that, for an appropriate choice of ρ, the ADMM envelope is convex, which
implies that the Douglas–Rachford envelope is concave.

Remark 4.1 The standard ADMM formulation is applied to solve problems of the
form

minimize f̂ (x) + ĝ(z)
subject to Ax + Bz = c.

Using infimal post-compositions, also called image functions, the dual of this is on the
form (22), see, e.g., [36, Appendix B], which is a longer version of [37], for details.
Therefore also this setting is implicitly considered.
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5 Conclusions

Wehave presented an envelope function that unifies theMoreau envelope, the forward–
backward envelope, the Douglas–Rachford envelope, and the ADMM envelope. We
have provided quadratic upper and lower bounds for the envelope that coincide with or
improve on corresponding results in the literature for the special cases. We have also
provided a novel interpretation of the underlying algorithms as being majorization–
minimization algorithms applied to their respective envelopes. Finally, we have shown
how the ADMM and DR envelopes relate to each other.
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Appendices

Appendix A: Proof to Lemma 3.1

The operator ∇ f is α-averaged if and only if ∇ f = (1 − α)Id + αR for some
nonexpansive operator R. Therefore, ∇ f is α-averaged if and only if ∇ f − (1−α)Id
is α-Lipschitz continuous, since ∇ f − (1− α)Id = αR. Letting g := f − 1−α

2 ‖ · ‖2,
we get ∇g = αR. Therefore ∇g is α-Lipschitz. According to Lemma D.2 this is
equivalent to that

|g(x) − g(y) − 〈∇g(y), x − y〉| ≤ α
2 ‖x − y‖2

or equivalently

| f (x) − f (y) − 〈∇ f (y), x − y〉 − 1−α
2 ‖x − y‖2| ≤ α

2 ‖x − y‖2,

which is equivalent to

− 2α−1
2 ‖x − y‖2 ≤ f (x) − f (y) − 〈∇ f (y), x − y〉 ≤ 1

2‖x − y‖2. (25)

The β-negative averagedness is defined as that −∇ f is β-averaged. Similar argu-
ments as the above give that ∇ f is β-negatively averaged if and only if

− 1
2‖x − y‖2 ≤ f (x) − f (y) − 〈∇ f (y), x − y〉 ≤ 2β−1

2 ‖x − y‖2. (26)
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Now, the upper bound in (25) and the lower bound in (26) are redundant and we arrive
at

− 2α−1
2 ‖x − y‖2 ≤ f (x) − f (y) − 〈∇ f (y), x − y〉 ≤ 2β−1

2 ‖x − y‖2

to prove the first equivalence. The second equivalence follows from Lemma D.1.

Appendix B: Proof to Theorem 3.1

First, we establish that

−δα‖x − y‖2P2 ≤ 〈P∇ f2(Px + q) − P∇ f2(Py + q), x − y〉 ≤ δβ‖x − y‖2P2 .

(27)

We have

〈P∇ f2(Px + q) − P∇ f2(Py + q), x − y〉
= 〈∇ f2(Px + q) − ∇ f2(Py + q), P(x − y)〉
= 〈∇ f2(Px + q) − ∇ f2(Py + q), (Px + q) − (Py + q))〉.

This implies that

− (2α − 1)‖x − y‖2P2 = −(2α − 1)‖(Px + q) − (Py − q)‖2
≤ 〈P∇ f2(Px + q) − P∇ f2(Py + q), x − y〉
≤ (2β − 1)‖(Px + q) − (Py − q)‖2
= (2β − 1)‖x − y‖2P2 ,

where Lemma 3.1 is used in the inequalities. Recalling that δα = 2α − 1 and δβ =
2β − 1, this shows that (27) holds. In addition, for any δ ∈ R, we have

〈∇F(x) − ∇F(y), x − y〉 = 〈P(x − ∇ f2∇ f1(x)) − P(x − ∇ f2∇ f1(y)), x − y〉
= 〈P(x − y), x − y〉

− 〈P∇ f2(Px + q) − P∇ f2(Py + q), x − y〉
= 〈(P − δP2)(x − y), x − y〉 + δ‖x − y‖2P2

− 〈P∇ f2(Px + q) − P∇ f2(Py + q), x − y〉. (28)

Let δ = −δα , then (28) and (27) imply

〈∇F(x) − ∇F(y), x − y〉 ≤ 〈(P + δαP
2)(x − y), x − y〉.

Let δ = δβ , then (28) and (27) imply

〈∇F(x) − ∇F(y), x − y〉 ≥ 〈(P − δβ P
2)(x − y), x − y〉.
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Applying Lemma D.1 in “Appendix D” gives the result.
Next, we show that the bounds are sharp. The obtained inequality implies through

Lemmas D.1 and D.2 that ∇F is Lipschitz continuous. Hence, by Rademacher’s
Theorem, it is differentiable almost everywhere, i.e., ∂2F is unique almost everywhere.
Using [38, Proposition 2.6.2d], we can conclude from the upper and lower bounds,
Lemmas D.1, and D.2 that P − δβ P2 � ∂2F(x) � P + δαP2. Now, let us select a
point where ∂2F(x) = {∇2F(x)}. The Hessian satisfies

∇2F(x) = ∇(Px − P∇ f2(Px + q)) = P − P2∇2 f2(Px + q).

Now, select a function f2 withβ-negatively averagedgradient∇ f2 such that itsHessian
at Px + q satisfies ∇2 f2(Px + q) = −δβ Id (e.g., by letting ∇ f2(x) = −δβx , which
is β-negatively averaged). Then, ∇2F(x) = P + δβ P2, which shows that the lower
bound is tight. Similar arguments show that the upper bound can be attained.

Appendix C: Proof to Lemma 4.1

Using the Moreau decomposition [28, Theorem 14.3]

proxρg∗(x) = x − ρproxρ−1g(ρ
−1x),

we conclude that

Rρg∗(x) = 2proxρg∗(x) − x

= 2(x − ρproxρ−1g(ρ
−1x)) − x

= −ρ
(
2(proxρ−1g(ρ

−1x)) − (ρ−1x)
)

= −ρRρ−1g(ρ
−1x)

and

Rρ(g∗◦−Id)(x) = 2proxρ(g∗◦−Id)(x) − x

= −2proxρg∗(−x) − x

= −2(−x − ρproxρ−1g(−ρ−1x)) − x

= 2ρproxρ−1g(−ρ−1x)) + x

= ρ(2proxρ−1g(−ρ−1x) − (−ρ−1x))

= ρRρ−1g(−ρ−1x).

To show the third claim, we first derive an expression for r∗
ρ(g∗◦−Id). We have

r∗
ρ(g∗◦−Id)(y) = (ρ(g∗ ◦ −Id) + 1

2‖ · ‖2)∗(y)
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= sup
z

{〈y, z〉 − ρ sup
x

{〈z, x〉 − g(−x)} − 1
2‖z‖2}

= sup
z

{〈y, z〉 + ρ inf
x

{〈z,−x〉 + g(−x)} − 1
2‖z‖2}

= sup
z

{〈y, z〉 + ρ inf
v

{〈z, v〉 + g(v)} − 1
2‖z‖2}

= sup
z

inf
v

{〈y, z〉 + ρ〈z, v〉 + ρg(v) − 1
2‖z‖2}

= inf
v
sup
z

{〈y + ρv, z〉 + ρg(v) − 1
2‖z‖2}

= inf
v

{ 12‖y + ρv‖2 + ρg(v)}
= inf

v
{〈y, ρv〉 + 1

2‖ρv‖2 + ρg(v)} + 1
2‖y‖2

= − sup
v

{〈−y, ρv〉 − 1
2‖ρv‖2 − ρg(v)} + 1

2‖y‖2

= −ρ2 sup
v

{〈−ρ−1y, v〉 − 1
2‖v‖2 − ρ−1g(v)} + 1

2‖y‖2

= −ρ2r∗
ρ−1g(−ρ−1y) + 1

2‖y‖2,

where the sup-inf swap is valid by theminimax theorem in [39], since we can construct
a compact set for the z variable due to strong convexity of ‖ · ‖2. This implies that

pρ(g∗◦−Id)(y) = 2r∗
ρ(g∗◦−Id)(y) − 1

2‖y‖2
= −2ρ2r∗

ρ−1g(−ρ−1y) + 1
2‖y‖2

= −ρ2(2r∗
ρ−1g(−ρ−1y) − 1

2‖ − ρ−1y‖2)
= −ρ2 pρ−1g(−ρ−1y).

This concludes the proof.

Appendix D: Technical Lemmas

Lemma D.1 Assume that f : Rn → R is differentiable and that M : Rn → R
n and

L : Rn → R
n are linear operators. Then,

− 1
2 〈M(x − y), x − y〉 ≤ f (x) − f (y) − 〈∇ f (y), x − y〉 ≤ 1

2 〈L(x − y), x − y〉
(29)

if and only if

−〈M(x − y), x − y〉 ≤ 〈∇ f (x) − ∇ f (y), x − y〉 ≤ 〈L(x − y), x − y〉. (30)

Proof Adding two copies of (29) with x and y interchanged gives

−〈M(x − y), x − y〉 ≤ 〈∇ f (x) − f (y), x − y〉 ≤ 〈L(x − y), x − y〉. (31)
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This shows that (29) implies (30). To show the other direction, we use integration. Let
h(τ ) = f (x + τ(y − x)), then

∇h(τ ) = 〈y − x,∇ f (x + τ(y − x))〉.

Since f (y) = h(1) and f (x) = h(0), we get

f (y) − f (x) = h(1) − h(0) =
∫ 1

0
∇h(τ )dτ =

∫ 1

0
〈y − x,∇ f (x + τ(y − x))〉dτ.

Therefore

f (y) − f (x) − 〈∇ f (x), y − x〉 =
∫ 1

0
〈∇ f (x + τ(y − x)), y − x〉dτ

− 〈∇ f (x), y − x〉

=
∫ 1

0
〈∇ f (x + τ(y − x)) − ∇ f (x), y − x〉dτ

=
∫ 1

0
τ−1〈∇ f (x + τ(y − x))

− ∇ f (x), τ (y − x)〉dτ

=
∫ 1

0
τ−1〈∇ f (x + τ(y − x))

− ∇ f (x), (x + τ(y − x)) − x〉dτ.

Using the upper bound in (30), we get

∫ 1

0
τ−1〈∇ f (x + τ(y − x)) − ∇ f (x), (x + τ(y − x)) − x〉dτ

≤
∫ 1

0
τ−1〈Lτ(x − y), τ (x − y)〉dτ

= 〈L(x − y), x − y〉
∫ 1

0
τdτ

= 1
2 〈L(x − y), x − y〉.

Similarly, using the lower bound in (30), we get

∫ 1

0
τ−1〈∇ f (x + τ(y − x)) − ∇ f (x), (x + τ(y − x)) − x〉dτ

≥ −
∫ 1

0
τ−1〈Mτ(x − y), τ (x − y)〉dτ
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= −〈M(x − y), x − y〉
∫ 1

0
τdτ

= − 1
2 〈M(x − y), x − y〉.

This concludes the proof. ��
Lemma D.2 Assume that f : Rn → R is differentiable and that L is positive definite.
Then, that f is L-smooth, i.e., that f satisfies

| f (x) − f (y) − 〈∇ f (y), x − y〉| ≤ β
2 ‖x − y‖2L (32)

for all x, y ∈ R
n, is equivalent to that ∇ f is β-Lipschitz continuous w.r.t. ‖ · ‖L , i.e.,

that

‖∇ f (x) − ∇ f (y)‖L−1 ≤ β‖x − y‖L (33)

holds for all x, y ∈ R
n.

Proof We start by proving the result in the induced norm ‖ · ‖, i.e., with L = Id. For
this, we introduce the functions h := 1

β
f and r := 1

2 (h + 1
2‖ · ‖2).

Since L = Id, the condition (33) is β-Lipschitz continuity of ∇ f (w.r.t. ‖ · ‖). This
is equivalent to that ∇h = 1

β
∇ f is nonexpansive, which by [28, Proposition 4.2] is

equivalent to that 1
2 (∇h+ Id) = ∇ ( 1

2 (h + 1
2‖ · ‖2)) = ∇r is firmly nonexpansive (or

equivalently 1-cocoercive). This, in turn, is equivalent to (see [30, Theorem 2.1.5] and
[28, Definition 4.4]):

0 ≤ r(x) − r(y) − 〈∇r(y), x − y〉 ≤ 1
2‖x − y‖2

for all x, y ∈ R
n . Multiplying by 2 and using 2r = h + 1

2‖ · ‖2, gives

0 ≤ h(x) − h(y) − 〈∇h(y), x − y〉 + 1
2

(
‖x‖2 − ‖y‖2 − 2〈y, x − y〉

)

= h(x) − h(y) − 〈∇h(y), x − y〉 + 1
2‖x − y‖2 ≤ ‖x − y‖2.

Multiplying by β and using f = βh, we obtain

−β
2 ‖x − y‖ ≤ f (x) − f (y) − 〈∇ f (y), x − y〉 ≤ β

2 ‖x − y‖2.

This chain of equivalences show that the conditions are equivalent when L = Id.
It remains to show that the scaled version holds. For this, we introduce the function

g = f ◦ L−1/2. Letting u = L−1/2x and v = L−1/2y, we get g(x) = f (u), g(y) =
f (v), and∇g(y) = L−1/2∇ f (v). Inserting these into the inequality (32) with L = Id
applied to g shows (with some simple algebra) that it reduces to the stated inequality
(32) in f and L . Similarly, the inequality (33) with L = Id applied to g reduces to the
stated inequality (32) in f and L . This concludes the proof. ��
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Lemma D.3 Suppose that P is a linear self-adjoint and nonexpansive operator with
largest eigenvalue λmax(P) = L and smallest eigenvalue λmin(P) = m, satisfying
−1 ≤ m ≤ L ≤ 1, and suppose that δ ∈ [−1, 1] and let j be the index that minimizes
| 1
2δ − λi (P)|. The smallest eigenvalue of P − δP2 satisfies the following:

(i) if δ ∈ [0, 1], then λmin(P − δP2) = min(m − δm2, L − δL2).
(ii) if δ ∈ [−0.5, 0], then λmin(P − δP2) = m − δm2.
(iii) if δ ∈ [−1,−0.5], then λmin(P − δP2) = λ j (P) − δλ j (P)2, where

j = argmin
i

(| 1
2δ − λi (P)|).

The largest eigenvalue of P + δP2 satisfies the following:

(li) if δ ∈ [−0.5, 1], then λmax(P + δP2) = L + δL2.
(lii) if δ ∈ [−1,−0.5], then λmax(P + δP2) = λ j (P) + δλ j (P)2, where

j = argmin
i

(| 1
2δ + λi (P)|).

Proof The spectral theorem implies that λi (P−δP2) = λi (P)−δλi (P)2. Therefore,
we need to find the eigenvalues λi (P) that minimizes the function ψ(λ) = λ − δλ2,
where λi (P) ∈ [−1, 1] for different δ ∈ [−1, 1].
(i) For δ ∈ [0, 1], the function ψ is concave, and the minimum is found in either of

the end points, so λmin(P − δP2) = min(m − δm2, L − δL2).

For δ ∈ [−1, 0[ the function ψ is convex. The unconstrained minimum is at 1
2δ . The

level sets of ψ are symmetric around 1
2δ . Therefore, the constrained minimum is the

eigenvalue λi (P) closest to 1
2δ :

(i) For δ ∈ [−0.5, 0[, λmin(P) = m
(ii) For δ ∈ [−1,−0.5], λmin(P) = λ j (P).

To show the largest eigenvalues of P + δP2, we proceed analogously to the above.
Details are omitted. ��
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