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Abstract. Using shallow water equations on an equatorial beta plane, the nonlinear
dynamics of the equatorial waves is investigated. A general mathematical procedure
to study the nonlinear dynamics of these waves is developed using the asymptotic
method of multiple scales. On faster temporal and spatial scales the equations
describe the equatorial waves viz, the Rossby waves, Rossby gravity waves, the inertia
gravity waves and the Kelvin waves. Assuming that the amplitude of these waves
are functions of slower time and space scales, it is shown that the evolution of the
amplitude of these waves is governed by the nonlinear Schrodinger equation. It is then
shown that for the dispersive waves like Rossby waves and Rossby-gravity waves,
the envelope of the amplitude of the waves bas a 'soliton' structure.

Keywords. Shallow water equations; finite amplitude solutions; multiple time scale
method; envelope solitons.

1. Introduction

In the tropical and mid-latitude atmospheres, large (planetary) scale wave-like
structures of .the atmospheric flows are observed features of the general
circulation and have been the subject of intense study among the theoretical and
observational meteorologists. A large number of theoretical investigations
on the linear stability analysis of atmospheric flows has been made with
flows which are independent of time and longitude. Once the superimposed
perturbations reach a finite amplitude or a fully developed eddy stage by deriving
a substantial amount of energy from the zonal flow via either baroc1inic or
barotropic instability mechanisms or a combination of both, the total flow
pattern becomes nonsteady and zonally non-uniform. Regardless of the energy
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sources of the atmospheric wave-like disturbances, their TInite-amplitude existence
is certain and therefore, nonlinear processes should play an important role in
their dynamics.

For barotropic Rossby wave motion, instability has been established by Lorenz
(1972). By employing linear perturbation analysis Lorenz showed that in the
barotropic atmospheric flow, Rossby's (Rossby et a11939) original solution (repres
enting an east-west propagating planetary wave embedded in a constant westerly
flow) is unstable provided the wave amplitude is sufficiently large or its wave number
is sufficiently high. It is clearly of interest to us to determine how the nature
of the instability is affected by the nonlinear processes which become increasingly
important as the perturbations superimposed upon the basic state teach a finite
amplitude regime. A few questions of fundamental importance arise here:

(i) Given sufficient energy, how will the waves evolve in time and space?
In other words, what is the structure and long time behaviour of the
finite-amplitude waves?;

(ii) What are their propagation characteristics on slower time and space
scales? ;

(iii) How does the finite-amplitude perturbation state affect the basic flow in
the long time?;

(iv) Are the fully developed zonally uniform or non-uniform and non-steady

flows (basic zonal :flow + finite amplitude waves) stable with respect to
further perturbations. The present investigation addresses itself to these

questions (or a few of them) which cannot be answered by a linear
theory. The vast majority of theoretical investigatIOns have been made
to study the linear stability problem of unstable waves in the barotropic
atmosphere on the equatorial and mid-latitude p-planes [Matsuno 1966;
Longuet-Higgins and Gill 1967; Lorenz 1972; Duffy 1974 (to name a

few) and references therein]. It was Phillips (1954) who first took

account of some effects of nonlinearity and computed the second order
changes in the basic current embedded in the unstable waves which
ex.b.ibited exponential growth.

But this theory seems to have an unavoidable defect that each succeeding
term in the amplitude expansion grows more rapidly than the previous term and
therefore severely restricts the time for which the expansion remains valid. In
recent past a number of nonlinear equations describing the evolution of finite
amplitude waves in dispersive media, have been shown to possess exact
analytical solutions whose single most distinctive feature is the existence of
solitary waves (solitons) [an ex.cellent teview on solitary solutions has been given
by Scott et at (1973) ].

Investigations on the nonlinear time evolution of finite-amplitude waves in
the baroclinic atmosphere, have been made by several research workers (Long
1964; Larsen 1965; Benney 1966; Pedlosky 1970, 1971, 1972a, Ib, 1977;
Clarke 1971; Redekopp 1977; Redekopp and Weidmann 1978). But in the
case of barotropic atmosphere with a zero basic zonal flow or a horizontally

sheared zonal flow, only a few investigations have been made to study the
nonlinear behaviour and time evolution of these waves (Gill 1974 ; Dommaracki



Finite amplitude equational waves 307

and Loesch 1977; Loesch 1978 i Boyd 1980). Only a few of these research
workers have shown the existence of "solitary" solution for large scale planetary

waves in both the middle latitude and equatorial atmospheres.

The present investigation represents an extension of the linear analyses of

Matsuno (1966) into the nonlinear regime, while the perturbation is finite but

small. Under this assumption, the nonlinear analysis may be carried out
using asymptotic expansions for perturbations and their derivatives and using

the procedure of multiple scales. In this paper we have studied the long time

evolution of finite-amplitude (i. e. weakly nonlinear) and slowly varying wave

train propagating in the atmosphere with a zero basic zonal flow, using the
divergent barotropic model on a ~-plane.

In § 2, we have outlined our model and presented the governing equations

and the formulation of the derivation of a modified nonlinear Schrodinger
equation governing the amplitude modulation of the atmospheric waves.

According to this equation, the waves have steady state "envelope soliton"

solutions under certain conditions. Though dispersive waves in optics and in

plasmas are known to have envelope soliton solutions, to our knowledge, this
is a good theoretical evidence of the existence of 'envelope solitons' in any

geophysical situation. We have also discussed briefly in this section the

propagation characteristics of the linearized solutions [0(1) solutions] for these

waves as the lowest order approximations of the model. In § 3, we have

obtained the envelope solitary wave structures (solitons) as the stationary

solutions of the modified nonlinear Schrodinger equation. In §4, we have

discussed the results obtained. Finally, the results of our analysis are sum
marized in the concluding section.

2. The model and the governing equations

2.1 Formulation

The model we consider here, is the so called divergent barotropic model on a ~

plane. We follow Matsuno's (1966) approach, retaining the nonlinear terms in the

present analysis. The model consists of a single layer of homogeneous inviscid

fluid of mean constant depth H, with a free surface under hydrostatic balance

(figure 1). We take the local cartesian coordinate system shown in figure 1,

where x' is positive in the eastward direction. y' is taken in northward direction
and z' is antiparallel to the gravity vector and is thus vertically upward.

We assume that the free surface deformations 'h' are sufficiently small (h<H) so
that these can be ignored when the effects of horizontal divergence arc incorpo

rated into the model. We make here ~-plane approximation whereby the

important dynamic effects of the earth's rotation and sphericity on large

scale motions are considered by assuming the linear variation with latitude ¢ of
the Coriolis parameter l' (=:: 2Q sin 1)) as :

f' :::: f' 0 + Wy', (1)

where y' :::: a (¢ - ¢o), i.e. the coordinate y' is centred at the latitude <Do , a is the
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Figure 1. The model and the co-ordinate system.

mean earth radius, fa == 2Qo sin ¢o (.0. being the earth's angular velocity and

W [ =: ( a f ' l a , ~ ) f J a l a ] is the Rossby parameter taken as constant.~

The governing equations and the appropriate boundary conditions for the

model subject to the above approximations are

au' ,au' + au'
(fa' + Wy') v'

a(l)'
= 0, (2)

at' + u- v'- - + ax'ax' ay'

av'
+ ,av' + v'

av' + (fa' + P'y') u' + alII' = 0, (3)u-
ay'at ax' ay

a(I)' + ,a<1l' + 0(1)'
_ gH (au' +~) 0, (4)v' ay' -::::

at u lax' alx' ay'

u' v', (I)' -7 0 as y' -7 ± OJ, (5)

where prime denotes the dimensional quantities; u' and v' are the components of
horizontal velocity in zonal and meridional directions respectively; (I)' is the

geopotential of the free surface. Assuming that there is no averaged basic flow,

u', v' and $' here represent the perturbations around this state. EquatIOn (4) is

the integrated continuity equation assuming that u' and v' are independent of the
vertical coordinate.

We now define non-dimensional variables as

(x, y) = (x', y')(L; (u,v) = (u', v') 1U

t = CW L) t'; (I) = (I)' ( (W £lU), (6)

where U is the horizontal characteristic velocity and L is the horizontal

characteristic length defined by £2 = (gH) 1 / 2 / ~ , g being ,acceleration due to

gravity. The set of the governing equations (2) - (4) are transformed, using (6),
into nondimensional form as
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Ut + E (UUX + VUy) - (fa +y) V + I1>x :;:: 0,

Vt + E (UVX + VVy) + (fa + y) U + l1>y = 0,

¢t + E(U¢x + xl1>y) + Ux + Vy =0,

with the boundary conditions

u, V, ¢ -7 0; as y -7 ± OJ ,
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(7)

(8)

(9)

(10)

where fa = fa' /WL is the dimensionless planetary vorticity at the latitude 10 and
is thus a constant parameter. A subscript represents differentiation with respect

to that variable: E == U/WU is the equivalent Rossby number. For typical
values of _U~::- 10 m/sec, H:::::: 10 km and e,-v 0 (10-2) i.e. E is a small

parameter much less than unity.

The equations (7) - (9) are nonlinear in nature, with E as a f'nondimensional

smallness parameter representing a measure of the magnitude of the nonlinear

products. We thus choose E as an expansion parameter in the analysis

developed here.

The derivative-expansion method suggests us to extend the independent variables
x and t to the sets of independent variables

(11)

where long time and space scales (independent variables x and t) are defined as

(12)

which are incorporated in (7) - (9) through the expansion of the derivative

a 0
operators _ 'and - as

ax- at

a a a a
-. -7 - + E - + e2-T + .. -at aTo aTl a 2

o a a a--7-+ E-_+2 E-+ ...
ax aXo aX! aX2 (13)

Accordingly, any dependent variable, a function of (x, y, t), is now regarded as a

function of (Xi> y, Til i = 0, 1, 2, ... ). We assume further that the dependent
variables, u, V, ¢ (perturbations from a uniform basic state under consideration)

have the asymptotic expansions in E of the following form:

(u, V, 11» =(u IO), viOl, <!lID») + e (u0l, vOl, <1>(1») + e2 (u(2), V(2\ <!l(2») +.... (14)

Substituting (13) and (14) into the governing equations (7) to (9) and equating

coefficients of like powers of E, we obtain a set of perturbation equations to the

different orders in E. These will then determine successively the perturbation
quantities (uii), vOl, 11>1 i) ; i =0, 1, 2 ... to the different orders in e as defined in

(14). These dependent quantities are to be determined so as to be bounded

'non-secular) at each stage of perturbations.



310 R K Jain et al

2,2 0(1; problem: linear analysis

To the 0(1), the perturbation equations determining viOl, uCo) and c{lCO) and obtained
by equating the coefficients of EO equal to zero are

where

Lv(O) =0,

PUlO) -Qv(O) "" 0,

p S OTOTO - oxoxo; Q == yaTO+ayxo

(15)

(16)

(17)

This set of equations (15) - (17) constitutes the linear problem for 0(1)

solutions as nonlinear terms are absent.

As we are concerned with the problem of amplitude modulation, we assume
the linearized problem to have a dispersive wave solution of the form
exp [i (kXO-WTO)], propagating in west-east direction, k being the wave number
and W the frequency. Let the solution to (15) be

V(Ol = }.;[AjOl (XIoTl, ... )Vj(o) (y)ei(kiXO-wjTo) + C,C + (¥j (Xl, TI, ..... ) (18)
J

where j=O,1,2, ... and AjO) are the complex wave amplitudes (constant with
respect to Xo, To, y) which are assumed to be smooth slowly varying functions
of slow time and spa<:e scales and satisfy A(O) (Xt,TI, . .)=A(ol* (-X),-Tl, ..), 'l:j

J .1

are real constants, functions of higher order scales and can thus be termed as slow
modes arising due to nonlinear interactions on slower time and space scales.
Since we are concerned with the nonlinear modulation of the wave train
represented by (18) and the nonlinear terms are absent in (15), we assume that
o (1) perturbation has the wave from which is devoid of the slower modes'l:j.
Therefore, O::j=O is assumed here. If we take (18) as the 0 (1) perturbation,
we may treat interactions between the wave trains as slow modes. This case,
however, is not treated in the present analysis.

Equations (15) to (17) are same as obtained by Matsuno (1966) who treated
the 0(1) problem in detail and showed that the 0(1) problem is an eigen value
problem. Following his approach, the orthogonal 0(1) eigen solutions belonging

to eigenvalues Wj can be obtained as (writing 6j =kjXo-wjTo)

v(o) =~ [- i ( w? -k?) tnj + c.c] (19)
• J.1

.1

U(O) = ~ a(Wj -rkj)t ll i+ 1+ nj(uJj-kj ) 'it nj _ 1 + c.c] (20)
J

cp(O) = }.: [t (UJj +kj ) tnj + 1 - n
i

(Wj - kj) t nj-l T c.c] (21)
j
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and Hnl is the Hermite polynomial of degree llj provided that the following
dispersion relation is satisfied

(22)

Here llj can be indentified as meridional mode of solutions. This is the cubic
dispersion relation whose roots define the characteristic wave types of this
model. This gives a relationship between the frequency and the longitudinal
wave number for some definite meridional mode llj. For llj;;;.l and using a trigo
nometric method of solution for cubic equation, the approximate values of
three roots for "j are given as

Wlj c::: (lq+21lj +1)1/2 +Mel (kf + 2nj ~ 1)-1- ~ k f ( k f +21lj + 1)-512, (23a)

"'2j:::::: - (k j +211i + 1)1/~ +- tkj (kJ +211j +1)-1 'Hkf(kf + 2nj+ 1)-5/2 (23b)

(23c)

The upper two frequencies (,J II and (,)2j correspond to respectively
the frequencies of east and west propagating inertial-gravity waves, while (,'3.

corresponds to the frequency of a westward propagating Rossby wave. The
dispersion curves for these three frequencies for a few meridional modes llj are
shown in figure 2. Fo llj;;'l, these are completely separated from each other
oyer the whole range of kj .

6

4

2

65

l-----l-.__L-.-.l..-.--L_--'--_-l.-..J
234

k
J

Figure 2. Frequencies as functions of wave number (dispersion curves).



312 R K Jain et al

For the lowest mode nJ=O. The three roots of the dispersion relation (22) are

Wlj == -/Cj

W2j == ikj+(tkr +1)1/2

W3j = ~kj-(ikr +1)1/2

(24a)

(24b)

(24c)

The first root W Ij gives a trivial solution, l/O) = v(O) :::: cIllO) =0 and hence,

cannot be adopted as an eigenvalue of the 0 (1) equations (15) - (17). Thus

in the case of the lowest mode Ilj = 0, we have only two waves, the frequency of
one of which (W2j) corresponds to an eastward propagating inertial-gravity

wave and that of other (l"3j) corresponds to a westwal'd propagating mixed

Rossby-gravity wave or Yanai wave. These are also shown in figure 2. As

is obvious from figure 2, this mixed Rossby-gravity wave connects the two
families of waves and its frequency ranges from a value which compared to the

frequency of ,the inertial-gravity wave, to a value which is close to that of the

Rossby wave.

2,3 O(E) problem: the finite-amplitude (noll-linear stability analysis)

To the O(e), the solutions v(l), u(ll and <!l(l) can be found out from the G(E)

perturbation equations which are obtained by equating the coefficient of E equal

to zero_and are

PU(l)-QV(l)=-(p\U(O)-Ql v ( O » ) - ( u ( O ) u ~ W + v(O)u~O)ho - (u(O)lIi~~)+y(O)lIl~O))~o (26)

1Il(l) +U(I) + y(l)::: - <1I(O)-u(O) _1/(0)<1>(0) -y(o)<1l(O) (27)
TO xO y T I xl xO y ,

It is obvious that the solutions v(l), u(i) and <fl(l) of (25) - (27) will be the linear

combinations of the two solutions, namely (a) one solution of the homogeneous

parts of (25) - (27) ; (b) another solution arising due to the inhomogeneity present
on the r.h.s. of (25) - (27). As is clear from the above equations, knowing y(I)

from (25) will enable us to solve for u(l) from (26) and finally cIl(l) from (27).

Since the operators appearing in l.h.s. of (25) - (27) are the same as those
appearing in (15) - (17) which determine y(O), u(O) and ~(O), the solutions of

the homogeneous parts of (25) - (27) (obtained by putting their r.h.s. = 0) will be
similar to the 0(1) solutions described by (19)-(21) with the dispersion relation (22)

being satisfied, in their (xo, To, y) functional structures. Though the operators

in l.h.s. of (26) and (27) are the same as those in .l.h.s. of 0(1) equations (16)

and (17). the solutions of the homogeneous parts of these equations may be

slightly different from 0(1) solutions because these operators now operate on y(l~
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and u( I) as welL It can be noticed from the linear inhomogeneous terms of (25)

- (27) that for every component of v(l)l1l(l) and u(l) there exists a con-esponding

resonant forcing arising from the introduction of multiple scales (Tt, XI! which

are involved in the operators LI, PI and QI. Nonlinear inhomogeneous terms

may also give rise to resonant interactions under special conditions. Both

linear and inhomogeneous resonant forcings will produce higher harmonics in the

fundamental wave on O(E) space and time scales, XI and TI. Thus, considering

that on these scales the second harmonics are produced dllC to resonant forcings,

we assume the O(E) solutions of the following forms:

v(Jl=: ~ [-i( wf -kn t ~ , I / + B ( P (Xj,TI' .' .) exp 2iEljVW (YHc.c+cu] (28)
I

(29)

(1)(I)=~[AW (X1,T), .. ,) exp iSj 2\\1 (y) + BW (XI,T), ' .. )
j

exp (liSj)ZW (y) + c.c+ c3d (30)

where t~li) AjlJ(X1,TI ,.... ) exp Ue i ) exp (y2/2)H~i (1'), Since we are interested in the

nonlinear modulation of the amplitude A\0) ofthe wave train (described by the 0 (I)

solutions), we assume that A(l), A(()1)2" and Bill)o 3') are functions of A(O) and A(O)*
J l JJ I-I l 1]

( asterisk denoting the complex conjugate) and thus are complex

constants with respect to Xo,To and y. C(I,2,3)i are real constants with respect
to Xo, To and y and assumed to be functions of A(O), A(O)*. These constants

1 1

al'e to be determined from the secularity removal conditions for higher order

terms in E. V(I), W((I))2)"' Z(ll)~), are functions of y, yet to be determined.
11J l J (, .. ]

Substitution of (28) into (25) will give us an equation which will determine

the solution V(I) completely. The structure of v(l) so obtained would contain

resonant secular terms (proportional to exp (± iSi) unless the coefficients of

exp (±iSj) vanish. Equating the coefficients of exp (2iSj) in both sides of this

equation will determine B(lll and V(l). In order that the solution for v(l) be
J TJ.l

non-secular, we must have

A(o) + V A(O) - 0
'''1iTI g jxl - , (31)

which is the condition for non-secularity and thus removes the seculnr behaviour of

V(l). By considering the complex conjugate terms, we shall get an exactly similar

non-secular condition for AjO)*. Here Vg is the group velocity of the waves

defined by

Vg =- Dkj I DU'j = (1 + 2 (,Ij kj)(3 lL f- kf -. 2n -1)-1 (32)

D being the dispersion function defined by (22). Under these non-secular

conditions (31) and equating the coefficients of exp (±2iej), we obtain the secular

free solution v(l) as

v(J) == ~[-i (~)? - k2) ~(i) + _1_' .1,(1) + e.c + c" ]
I J T 'n) 2 'f nJ I)'

j' ll.lj

(33)
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where t(~/ =: KAjOi2 exp (liGj) V~i/ (y), K being the constant of proportionality <lnd

V(I) is determined by solving the following differential equation
nJ

d 2 V ~ + (4",2- 4k2 _ /('/"" _ ),2) V\!) = K-l F (", 'k' )J)

d
"I J J J J 11J J..II'

y- ,

where we have replaced the partial derivative a"j ay" by the total derivation (f2Jdy".

The function F ("j, lej, .1') appearing in (34) is given by

where F(l,2,3)j are all functions of I j, kj and y and are given by

Fli (Wj, kj , .1') = 2 [.1'3 (Wj - kjF (lwy - ky) + 2.1'2 kt h - kJ)2 - Y (Wj-kj )

{2WJ'('U~-k?) (1~2_k2+ t) + (Wj + kj)(4nj w
2 + 4kJwj-k~)

J l J j J J

+ 4nj '0' j kr} ] ,

F2j (Wj, k j , .1') := 2 [y2 (Wj - kj) { (ulj - k j )3 - Co!j kj (luI - SkJ)} U -

)!{k2 (Cr.I? +k2)-2wjkj}-2("'?-H)2(w~-1)-±(wj+kj)
J J J J J J '

(36a)

{(Wj-kj ) (6 u1 j + Ski wj}+2kj (WI - kJ) } +1211j { 2 (u'I - kf)2

+kr} ] , (36b)

F3i (Wj, ki> Y)=YWj {2(wI - ky) + ICj (3 UJ I+ kt} - 2wj kI' (36c)

The secularity removal condition (31) essentially means that to the D(E), the

amplitude A(O) is constant in a frame of reference moving with the group
J

velocity Vg • In other words, AJO) depends on Xl and T] only through

e= Xl - Vg TI ,

The .1'-structure of the D( E) perturbation in v is governed by (34) which is an
inhomogeneous, second-order ordinary differential equation. Using power series
and green's function methods (Margenau and Murphy 1966) the solution of

(34) can be formally written as

Ly

V(ll =: l-J G (0 .Ii) F (,,), lej 0) do (37)
nJ k ' J" ,

-Ly

satisfying the boundary conditions. 0 is a point which divides the range of )'

from - Ly to L y into two parts (i) - Ly <y(o and (ii) 0 (.1' <4. G(o, y) is
the Green's function for the homogeneous differential equation (34), with

boundary conditions same as those for V~p The integrals in (37) can be

evaluated analytically or numerically so that V(\) is known. The structure of
nJ

V ~ j ! for a special case corresponding to nj = 1 is shown in figure 3. Once

V~) is known v(l) described by (33) is determined.
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Figure 3. Vnj(l) as functions of Y(=fo+Y) for tile meridional mode Ilj=l.
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Now substituting v(l) and u(l) represented by (29) into (26) which governs ufl),

subsequently removing the secular terms (i.e., equating the coefficients of

exp (± iSj) to zero) which will detennine AW, WlP (and its c. c. equivalent) and

equating the coeffi.ciel1ts~of expl(:t:2iSj) which will determine B~l) W,\P (and its C.c.
-J. -J

equivalent), we get the secular-free solution u(l) in terms of V ( ~ ) asnj

u(l) = :s [y (wj-kj) t~? + kj t(~l+ 1 - i (Wf - kp-l { [y (wf -kP tnj
j

-2 1U j k j tni+ 1] AW1!A(~)-[y (lo'f-kP tnj + (Wf- kp tnj+ I] X

Ai~lIA(~) } + i ('uf - kp-l {y ' t ~ 1 + (kj!Wj) t WV~lll V~P }

-!{[y2«Wf-kpWj +(Wf-knJ 't~j-ywf tnjtni+l}

+ c. C + C2j] •

Sin1ilarly, the solution of (27) which governs 11>(1) can be obtained as

<1>(1) = $ [-y (wj-kj) tW + ,"Jjt~?tl + i{y(1-2kjjwj)tni
j

- (,"J~- 3k2 ) (",f_k2 )-l (tnj't I) ( A ( O T ) l I A ( ~ ) - (y(I-2kjh)tni
J J J j J J

- 2kI 'uj l (wf- kp-I tnjtl) ( A i ~ U A \ O ) } + t (wr- kp-J

(y kj!"Jj + V~P'jV~\) t~y + t {(y2 Wj (wj-kj) - (W] - kp

(1 +2kj!wj + 2nj) t~j + y kj (Wj + 2) tnj tnj + 1 + kf t~J + 1

+ c. c. + Cgil ,

(38)

(39)
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where primes in (38) and (39) denote derivative with respec1 to y. The first two

terms on the r. h. s. of (38) and (39) are equivalent to the first two terms in the

expressions for uln ) and 11>(0) ((20) and (21) respectively) when the recurrence relations

for the Hermite polynomial are made use of. We observe here that for knowing

v(l!, [(il) and <!>(I) in terms of known quantities, we have to still determine the

complex constant A(:l and real constants Cj, i = 1,2, 3, . . .. We shall

show in the next section that these constants can be determined from the

secularity removal conditions for the equations conesponding to higher

order in E. [Following Bogoliubov and Mitropolsky (1961), we may set

A(!J and A(l)* equal to zero. However, as will be seen later, it is not necessary
J J

to do so within the order of approximations considered here].

2.4 D( E2) prohlem: Derivation of non-Iinear S c h r ~ d i l 1 g e r equation

The D(E2) solutions v ( ~ l , l l ( ~ ) and <])(2) can be found out from the D(E2) perturbatioll

equations which are obtained by equating the coefficient of E2 equal to zero and

are given by

+u(o),}(O\ +v(O)n.(I)+v(l)rl,IO») _ p (u(IJ)V(I) + v«(J)v(O) -M (u(O)u(O)
t'" I 't'y t' y I xO Y 1 xO

(40)

(41)

(42)

-0,,2 - 20 "OTOx2-0 TOx I xl ;
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As is obvious from the above equations, the solutions Vf2 " ll"l and ¢'21 will

now contain additional linear resonant forcings arising from the introduction of

higher space and time scales (X2T2)' giving rise to higher harmonics in the

fundamental wave. The nonlinear resonant forcings dIle to the inhomogeneous

terms containing the nonlinear products of 0(1) and O(E) quantities, will also

produce further higher harmonics produced by the nonlinear terms involving

the products of 0(1) quantities. Considering the fact that these forcings might

give rise to the second and third harmonics in the fundamental wave, we assume

the solutions V(2" u(2) and ¢(21 of the following forms (as was done in the case of
v(1), Ull) and (pC1l):

V(2):::: '<' [- i ( ,,,2 - k~ ) ,I. (2) +B(~) exp (2i9') V ( ~ ) + C(2) exp (3i9') V(2)+ c c+d,·]
"" ) J - Y nJ 1.1 .I 1) IJ J 2j • J

j (43)

1/ (2) "" [ A ( ~ ) exp (is-) W(2~ t B(2) exp (2i9 J') W ( 2 ) + C ( ~ ) exp (3i0') W(~)+c c+d,·]
"" Ij J Ij 2j 21 2j - J 3'; . -J. ,

j (44)

<//2) - Z [A(2J exp (i9)') Z(2)+BI2) exp (2ie J') Z(2)+02) exp (3iO) 2(2) + c c + d3']
- ~j Ij 3i 2j 3j J 8j • . J ,

j (45)

I I (,I) - A(2) (.. "j?)H ( ) . A(") A(") B(2) C(2)wlere 'f nj - j exp 10) - y- - njl Y , (, (i,2)j' (1,2,3)i, (I.2.3)j

are functions of A(rJ) and A(O)* and are thus complex constants with respect to
J J

Xo, To, and y. dij , i=I, 2, 3 are real constants with respect to Xo, To, y and
functions of A(O) and A(O)*. These constants are to be determined from the

l J

non-secular conditions in higher order in E. The functions Vii:z)j,' Wii\.3)j
and Zii:2,3)j are functions of y.

The solutions v(2) , U(21 and <])\2\ in terms of known quantities can be found out

in the same manner as the solutions v l1), u(1) and 111,1) were obtained. In order

to have the O( E2) perturbations completely known, we must determine all the

constants and functions just defined above. We are, however, not proposing
\

to do so in this paper. We shall only assume that these O( E2) solutions are

well-behaved. This means that all the secular terms appearing in tbe equations

governing these solutions, should vanish. The equations governing these

solutions wi1lnow contain two types of secular terms, (a) secular constant terms

and (b) secular resonant terms proportional to exp (±iej). Therefore, we will
now have two sec!.11ar-free conditiolls in order that the 0 (e2) solutions are

bounded (well-behaved), one for constant terms and another for resonant terms.

Substitutions of (43), (33), (38), (19), (20) and (21) into (40) which governs the

evolution of vIZ), yields

2iw· (4w2 - 4k~ - k·jw J·-y2a ) B(~) V(~) exp (iZ6J') + 3iwj (9w~ -9k2
J J J J YY 1) lJ ) J

=(y2Vg+l) aClj/axl-(Wr-kP (DwjHnj) {exp (-y2/2)} [ i ( A \ ~ 2 + VgA\~~)

+i (AWl + VgAj~n-llliD;:;j (3AI~1Tl-Aj~L + 2kjlvjl Al~ln)
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tterms proportiolHll to exp (2iej) and exp (3iej) +C.c (46)

where DWj = d D jdW j ::: 3 w~ -kz - 2/1j - 1 and Vg is the group velocity
) .I

defined by (32) and

!i=(flj-!2j-!S) H ~ J exp (+y2j2); h ' ) j ~ h J j H ~ J exp (y2j2;

exp (y2/2)

h'z,=h o' fl- l
J .J nJ

(47)

with J(I,2,S)j and 11(1.2)1 being functions of Wj, lej , y, which are given in the appendix L

Equating the coefficients of exp (±2iej) and exp (±3iej) in both sides of (46), we

will get the expressions for Blr, VW and C\1)' VHl while the constant (d
1j

] can
be determined from the higher order equations in E. This will determine the
solution V(2) completely. Btlt, as discussed earlier, we are interested only in
knowing under what conditions the solution V(2) remains well behaved (bounded)
and this can be done by removing the secular constant and resonant terms
appearing in (46). Therefore, we have not presented here the terms proportional
to exp (±2iej) and exp (±3iElj) in (46).

The condition that the constant terms appearing in (46) be non-secular so as to
get secl\lar~free solution V(Z), requires that

(48)

(49)

As (y2Vg +l) =0 gives dependence of Vg ony which IS not permitted, we have

y2 Vp, + 1 =1= O. Therefore we must have

delj 0 (1 acl ,)
~ = or - ) - 0
ax) , Vc aT! - ,

[by virtue of (31)]

which means that Clj are constant with respect to Xl and T l • However, Clj,

could be variable in higher order time and space scales. Nevertheless, as far
as time scale T] and space scale Xl are concerned, Cll is a constant which means
that to this order the meridional velocity has a constant ~ c o m p o n e n t . Physically,
this is unrealistic because it will mean constant piling up of momentum and
vorticity at high latitudes. Therefore, from physical consideration we shall

put eli = 0
Similarly, the condition that the resonant terms proportional to exp (±ieD,

should be non-secular, requires that

'(A(O) + V A(O» + 1 dVg A (0)
l)1'2 g jx2 2 dk. jxlxl

J

= - (w2 - k~ )-1 D-)Wi [ A ( ~ ) 2 A ( ~ ) * j j J ' + (ih'))' elj - h'Zi C2j) A(Q)] , (50)
J) )) J

together with its complex conjugate relation. In deriving (50) we have made use

of the following relations
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(51 )

(52)

(53)

(56)

and the fact that A j ~ , \ + VgA\~)l = 0, Equation (43) and its complex conjugate
relation have been made use of,

Note that the equation (50) does not contain the arbitrary constants (with

respect to Xo, To, Y) A(l) and A(l)* so that we ned not determine them so far

as (50) for the time evolution of the wave amplitude A(O) is concerned. It

does contain as yet undeterminedlconstants C2j. It can be shown that the substi

tution of (43)-(45) into (41) and (42) and then imposition of the condition that the

constant terms be secular-free, still leave the constants C2j undeteooined. However,

these constants can be determined from the next higher order equations in e, i. e.

o (e2) set of equations.

Proceeding exactly in a manner described in this section, it can be shown that

by having the requirement that the constant tenns appearing in the set of O(e3)

perturbation equations be secular free, one gets the following non-secular

conditions for constant teoos :

and

y2 Va ddtj + y (10 -1) d
2

C2j = (Vg ll:2 - Q;J ) ~(A(9JAl9)*) . (55)
dXt a dX1 2 (lX

l
- J )

The functions (t2, Q;J and (t4 appearing in (54) and (55) are functions of wj, !cj and

y and are defined in appendix 2. Eliminating dtj between (54) and (55), we get

(V
g
2-1) ( l : C ~ j =g ~ a ~ (IA(0)12) ,

aX t aXl

where

g -= [Vg ll:2 - ll:3 - 2y2 Vg (l¥3 + 0':4 Vi - a,4) ]/[y (yl Va + 1) ] ,

Integrating (56) twice with respect to Xl. we get

C2j ~ g I A(O) 12/(Vg2 - 1) + OJ (X2, h ...) Xl + ~j (X2, T2, ... ) , (57)

where OJ and f3 j are two constants of integation and functions of X2, T2, •• , •

Using the relation (31) and its complex conjugate in (56) the second term

.on r.h.s. of (57) will be replaced by OJ Tl, As these terms give rise to the

secularity in C2j with respect to Xl (or Tl ) we assume that for secular·free
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C
Z
" Jj =O. The function pj has to be evaluated on physical grounds from

th~ appropriate initial or boundary conditions. For example, if we assume that

CZj-+O at g = Xl - Vg h-'> 1. m which means that there is no steady part at

infinity, we get

pr=-g I AjQO I 2/(V~-1) (58)

(59)

we note that this solution is valid only for V~:f. J. This may always be the

case for dispersive waves under consideration for which the group velocity is

different from the phase velocity.

Substituting for C
Zj

in (50), we get a nonlinear equation for the evolution of

complex amplitude AiO), that is,

(

aA(Ol aA(O)) a2A(O)
i _L+ Vg_J_ + Mj __J.) =: Hj I AlO) 1 2 A(Ol+R

J
• A\O),

an aXz aX I J I J

together with its complex conjugate relation, where AjO) now depends upon

~, X2,T2, ... , while Rj (through Bj) depends upon X 2 , T2, X3, Tg, ••• and

is constant with respect to ~ (::-:: Xl - Vg TI) and

(60)

The second term in (59) is the dispersion term and the third term is the

non linear term. This equation shows that, in a f1'ame of reference moving with
the group velocity of the waves, the modulation amplitude AjO) is determined by

the nonlinear interaction (Nj term), the dispersive term (Mj term) and the linear

interaction term Rj.

Now, introducing a coordinate transformation such as

(59) can be written as

aA(O) a2A(O)
i_J_+M--_J -== N IA(O) j2A(O)+R

J
'A<OJaT J ag2 J J J '

(61)

(62)

where AjO) is-a function of g, C, T, Xg, T3and Rj is that of T, C, Xg, T3. This

equation, in a frame of reference moving with the group velocity of the waves,
is a nonlinear equation which governs the evolution in slow time and space

scales T2 and X2, of the waves propagating in a barotropic atmosphere with a

zero basic state. When we consider the variation of AJ<OJ with respect to T and'
(whose order can be regarded as 0(1) with respect to (62), then Xg, T3 become

of higher orders and in this sense they can be considered as slow parameters.
Therefore, upto second order variation, AjO) can be regarded as a complex function

of'T' and C, while Rj as a real function of ~ j . If boundary or initial conditions.
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are such that (and hence RJ) is constant with respect to T, (62) is called

the "modified nonlinear Schrodinger equation", because of the linear terms
appearing on the right hand side of (62) as a modification to the usual nonlinear

Schrodinger equation. Whether Rj is a constant or varies with r, the linear
interaction RjAj term in (62) is not very important because it causes only a
phase shift in the solution Aj. Making a transformation such that

T

A(O) =A:O) (e, '1") exp [- iIR (T') dT'],
J J

(63)

(64)

the Rj Aj (0) term can be formally eliminated from (62). With the transformation
(63), (62) can be rewritten as

ilA-(O) a2A(0) - -
i----L+ M-j-=Nj I AID) I 2A(U).

aT J as" J J

It should be noted that the modified nonlinear Schr~dinger equation (64)

describing amplitude modulation of the wave trains represented by (19), (20)

and (21), has been derived from the non-secular conditions (boundness condition
for the wave solutions) for D( E2) perturbation equations and therefore, is valid

for scales as large as D(E- 2).

3. Solutions of modified nonlinear s('hrodinger equation (64)

If now, we look for a plane wave solution to (64) for the amplitude Aj (0), of

the form

we get following nonlinear dispersion relation

n. _ M. K-· 2 + N I A-(9) I 2
UJ - J J I I '

(65)

(66)

where ]( and Q. are respectively the wave number and frequency of the envelope
J I

of the wave trains represented by (19), (20) and (21).

3.1 Stationary solitary wave solution

Let us look for a localized solution of (64) for jf(9) satisfying the boundary
J

conditions; (a) 11(9) 12 is bounded between two limits Amax and Amin. (b) at
J

IA(9) j2 :c. Amax, an extremum i.e. (j I A-(9) 12/J~=O but (521 )i(Q) I 21a~2 'T- 0 and
J ) I

(c) Amin is the asymptotic value of 1::4(9) I 2 at ~ -7 ± CD •
I

introducing two real variables t\i and e which represent the real and imaginary
parts of'A(9) we can write :4(0) as

J J

(67)

Substituting (67) into (64) and separating real and imaginary parts, we get after

simplification.
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(68)

(69)

It can be seen from (68) and (69) that M j = 0, the envelope will steepen in the
course of time evolution and finally break down. On the other hand, if

Mi ,= 0, the dispersive term

[
.~Mj2~rA--l (~)2}J
- oA 1 J \ a~

begins to playa role in checking the steepening of the envelope. Therefore, one

may expect an equilibrium stationary Pstate resulting from the balance between
nonlinear steepening and the dispersive effects. Following Hasegawa (1975), the

stationary solution (i.e. when alaT .- 0) to the modified nonlinear Scmodinger

equation (64) for the case when M j Nj < 0 and subject to the boundray conditions
(a), (b), (c), mentioned above, can be written as

A\0) (~, T) -:: 6j sech (~ I Wj) exp { i (Qj 12Mj) T}

where

6i = A~lj; = ';-o.
j
I MjNj, W'j = (-2M IM)1/2/6j and o.J > 0

(70)

and is a constant. This solution has structure similar to' the: "soliton ~ soluton"

for weakly nonlinear waves in a dispersive medium and hence, is called "envelope

soliton" which moves at a speed equal to Vg i.e. group velocity of the waves. It is
seen that the amplitude of envelope soliton 65 (also called the height) is inversely

proportional to its width Wi. As is obvious, the constant parameter Q
j
in (70)

is a phase factor and will thus determine the phase of envelope soliton. When
Mj Nj > 0, the solution of (64) has a "envelope hole" structure and has not been

discussed here for its lack of relevance in geophysical fluid dynamics.

4. Results and discussions

The various asymptotic behaviours of the atmospheric waves have been discus

sed, using multiple time and space scales and the derivative expansion method.

This method has, as pointed out by Kawahara (1973), an advantage over the

other methods in the sense that the dependence of the parameters on the indepen

dent variables need not be specified a priori and also that the perturbation

analysis to the different orders could be carried out systematically. Based upon
the divergent barotropic model on a ,B-plane, we have investigated the long time

evolution of finite amplitude (i.e. weakly nonlinear) and slowly varying wave
trains propagating in the atmosphere with a zero basic zonal flow. The present

analysis is basically an extension of the linear stability analysis of the atmospheric

wave motions in the equatorial region (Matsuno 1966) into the nonlinear regimes
for these waves.
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In the lowest order approximations of our model, i.e. to the 0(1), the results
of the linear theory of Matsuno (1966) are retrieved. The propagation characteristics
of the linearized solutions for these atmospheric waves are such that !':there exist
three distinct classes of planetary scale waves for the meridional modes-J1j;;;;' 1. The
first two types are the eastward and westward propagating inertial
gravity waves while the third is the westward propagating Rossby waves.
They are distinguished from each other by the fact that the frequencies of the iner
tial-gravity waves are much larger than that of Rossby waves (figure 2). For the
particular lowest meridional mode nj=:O, the existence of only two types of waves
is possible; one is eastward :propagating inertial-gravity w:wes and the other
describes the westward propagating mixed Rossby-gravity or 'Yanai waves'
(figure 2). The dispersion relation for the latter type resembles that of the
Rossby waves for the wavelength much smaller than the meridional extent.
For the case where the wavelength is longer than the meridional extent,
however, the frequency approaches that of the gravity waves of the same wave
length. In other words, the mixed Rossby-gravity wave connects two families of
waves and its frequency ranges from a value which is comparable to the
frequency of the inertial-gravity waves to a value which is close to that of the

Rossby waves.

Using multiple time scale method to solve the weakly nonlinear equations, it
is shown that the evolution of the wave amplitude on slowly varying time and

space scales is governed by the modified nonlinear SChrodinger equation. The

stationary solutions to the modified nonlinear Schrodinger equation are obtained
and found to have the structure of 'envelope solitary waves (envelope solitons or
wave packets)' moving at a speed equal to the group velocity of waves, which
results from the balance between the nonlinear steepening and the dispersive
effects. We consider this result as an indication of :'the possible existence of the
envelope solitary waves in the atmosphere. Though the dispersive waves in optics
and plasmas are known to have envelope soliton solutions, this is, to our
knowledge a very good theoretical evidence of the existence of 'envelope 'solitons'

in a geophysical situation.

The methodology presented in §2 for deriving (59) [or (62)] governing the
the evolution of the amplitude is quite general in the sense that this equation
governs the amplitude evolution for all the waves described by the Shallow
Water Equations. However, the envelope soliton solution presented in § 3
is valid only for the dispersive waves. For example, Rossby waves and Rossby
gravity waves will have such nonlinear solution. On the other hand the Kelvin
waves will not have soliton solution. We note that for the Kelvin waves
Wj =-kj and J1j ::; -1. Therefore, the group velocity Vg for the Kelvin waves

given by (32) is a constant. Thus Mj in (62) is given by Mj =~ 1l{~ =0 [see (60) l·

In the absence of the dispersive term containing Mj, (62) represents

steepening of the amplitude of the Kelvin waves in the nonlinear regime.

We note here that the modified nonlinear Schrodinger equatlOn describing

the dependence of the wave amplitude on slower time and space scales (Tz and
Xz), has been derived from the non-secular cOilditions (boundedness conditions
for the wave solutions) for D(E2) perturbation equations and therefore, is valid

for scales as large as O(c Z). Although the dependence of the wave amplitude on
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O(E3 ) and higher order scales should be determined up to this order of pertur

bations we have however not considered in the model the variation in the change

of the wave amplitud~ upto O( E3) and higher order scales which may be

considered in a sense as a kind of slow parameters since E<l. In other wOlds,

the evolution of the wave amplitude in the present analysis is accurate up to O(E2)

scales and will have an error of O(E 3).

5. Conclusions

In conclusion, our model predicts that thelong time evolution of finite-amplitude

waves generaied in a barotropic single layer model atmosphere on a ,a-plane can

be described by a modified nonlinear Schrodinger equation. The model further

predicts that these finite-amplitude waves finally evolve in time in the shape of

envelope solitary waves or envelope solitons (i. e. in the shape of wave packets)

and this provides us theoretical evidence for the existence of 'envelope solitons' in

a barotropic atmosphere, in particular and in any geophysical situation, in general.

These envelope solitons propagate with the group velocity of the wave.

Acknowledgements

The authors are grateful to Mr M Mohan of Physical Research Laboratory,

Ahmedabad for many valuable discussions and constructive criticisms.

Appendix 1. ExpressiOns for hO.2l j andJii, i= 1, 2, 3 appearing in (47).

hlj'= (wf - kf)2 (yHnj - Hnj+l) exp - (y2/2) + (YWj + kj a/ay)

[exp (-i/2) {(y2(Wj - kj) +Wj + (2nj + l)kj) Hnj - YWj Hnj+ I}]

-(ykj + Wj a/ay ( [exp (-iI2) {(y2(Wj - kj) - kj - Wj (2m + 1) )Hni

(Ala)

h2j=kj (wf-kn2Hnj exp (_),212) +kj (ywi +kj a/aynexp (-y2/2)

{Y(Wj - kj) H nj + k j Hni+,}l - k j (yk j +W a/ay) [exp(-y2j2) {y(wj-kj)

Hnj - Wj Hnj~l}]' (Alb)

iIi -:: -} (w~ - k~) [{y(.~kj +w·-1 (wf - 3kf) ) Vql + (2wf -3k2 ). vq)'/2wi}
) J - ) ) J nJ J ) nJ

Hnj exp (-y2/2) - (Wj - 3kf fwD VW Hnj+1 exp (-y2/2) +kj (wf-kf)

H n i e x p ( - ~ y 2 ) {(y2Wj (Wj - k j ) + w f - k P H ~ j - y w f H n j Hni+!l], (A2a)
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hj=(YWj + k j alay) [exp( -v2/2){kj(y(wj - kj) Hnj +kjHnj+ J) (Hwf- kp-l

(yVW + V~1)' kj(wj) + (y2Wj (wj-kj) + wf -kPH~j exp (_y2) - ywf Hn

X Hnju exp (_y2» + iHnj (V~l} + yVW' + kjVW"/wj - 4 (wf- kp

{(y2Wj (Wj - kj) + wl + Wj (Wj - k j ) - njwf - kl) y H~j - (y2Wj (Wj - k j)

+iwf- kJ) Hnj Uni + 1 + tyw;Hnj+l} e x p ( - y 2 » + t W j - l V ~ N (Hnj [y2(Wj

(A2b)

f3j'=.kj(ykj +W alay) [exp-y2/2{t(wJ- kp-l [yew; - kj) Hnj - wjHnj+1]

(yV~/ + kjV~j'IWj) + i(wr- kr )[Y(Wj - kj) Hnj + kj Hni+1](kjyVWIWj

+ V~n - VW{(y2(Wj - kj) - kj + (2nj+I) Wj) Hnj +ykj Hni+l}/2wh

+Hni(VW + yVW' + wjV~tlkj)/4C<Ji + exp (_y2)({Y(Wj -kj) Hnj + kj

Hnj+:l.~ {(y2(Wj - kj) Wj + (wJ- kf) (I + 2kjfWj) + 2nj (wf- kf)

H;j + ykj (Wj +2) Hnj Hni+1 + k} Hnj+l} -Hy(wj - kj) Hnj - Wj

Hniu} {(y2(Wj - kj)wj + wf- kJ) H;j - ywy Hnj Hnj+l} - tHni (wJ

-kJ) [y (Wj (wJ - kj ) (y2 + 1) + Wj-I (wJ - kn (Wj + 2kj) - 2kf +kj

(nj + 1) (Wj +2) + 2nj (wf- kJ» H~i - ykj (1 + k) +Wj/2) H;j+l

_(y2Wj (Wj - kj) + (wJ- kf) (Wj + 2kj)fWj - 2kf- kj (I +Wj/2)

+2nj(wf -2kf) ) Hnj Hni+tl)}], (A2c)

where a prime denotes the derivative with respect to Y.

Appendix 2. Expressions for il2, lI, and il. appearing in (54) and (55).

lI2-=yexp (-y2) [(y (Wj - kj) Hnj + kj Hnj +1 )2 - {(Vg + 1) (y2 + 1)

(wf - kJ) -2 (nj + 1) (2Wjkj VG- wf - kJ)} H ~ j +Y{(Vll + 1)

(wf- k;> - 2wjkjVt + wf + kf }Hnj Hnj+l]'

ill=Y: exp (_y2) [{ykj(VG + 1) (1 - 2kjlWj) Hnj ~kjWjl (wJ - kp-l

[Wj (wf- 3k;)Vg + 2kJ] Hnj+1}{y (Wj - kj ) Hnj +kJ Hnj+l } +{ykj

(Vb + 1) Hnj - kj (wf- kj)-I (2wjkjVg - wf- kf) Hnj+l } {y (Wj - kj)

Hnj - WjHnj+l } + (wf- kf) Hnj{( (Vg +1) (y2 + 1)

(Wj - 2kj)fWj - 2Wj_1 (wf-kP-1 (nj + 1) [WjVe (wJ- 3kp + 2kf])
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"'4 =2(w? - k2 ) H . exp(-v2) {}' (w? - 2k? + w·k·) H . - (w 2 - 2k2 )Hoi+ 1 }.
J J OJ • J J J J OJ J J
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