Envelope Theorems for Arbitrary Choice Sets

Paul Milgrom & Ilya Segal

03.11.2011

Introduction

- Envelope theorems do the following two:
 - Conditions for a differentiable value function (in the parameter)
 - A formula for this value function
- Classically to guarantee differentiability:
 - Convexity and a topological structure on the choice set.
- Applications:
 - Concave optimization in demand theory
 - Analysis of Incentive Constraints on Contract Theory
 - Non-convex production Problems
 - The theory of *monotone* and *robust* comperative statics.

Introduction

- Choice sets often lack the convexity or the topological structure.
- This paper do not assume anything on the choice sets.

- *X* denotes the choice set.
- $t \in [0,1]$ denotes the relevant parameter.
- $f: X \times [0,1] \rightarrow R$ denotes the objective function.

 $V(t) = \sup_{x \in X} f(x, t)$ is the value function.

• $X^*(t) = \{x \in X : f(x,t) = V(t)\}$ is the optimal choice set.

•**Theorem 1:** Take $t \in [0,1]$ and suppose $f_t(x^*,t)$ exists. If t > 0 and V is left-hand differentiable at t, then $V'(t-) \le f_t(x^*,t)$. If t < 1 and V is right-hand differentiable, then $V'(t+) \ge f_t(x^*,t)$. If $t \in [0,1]$ and V is differentiable at t then, $V'(t) = f_t(x^*,t)$.

Theorem 1 is useful when the value function is sufficiently well-behaved.

• **Theorem 2.a**: Suppose f(x,.) is absolutely continuos for all x. Suppose also that there is an integrable function $b:[0,1] \rightarrow R_+$ such that $|f_t(x,t)| \le b(t)$ for all x and almost all t. Then, V is absolutely continuous. • **Definition :** f is absolutely continuos if f' exists almost everywhere and it is Lebesque integrable and for any $x \in [a,b]$

 $f(x) = f(a) + \int_a^x f'(t)dt$

Example :
$$f(x) = \begin{cases} 0 & \text{if } x = 0 \\ x/\sin(x) & \text{ow} \end{cases}$$
 is not absolutely continuous.

Theorem 2.b: Suppose the hypothesis of Theorem 2a holds and in addition *f*(*x*,.) is differentiable for all *x* and *X*^{*}(*t*) ≠ Ø almost everywhere on [0,1]. Then, for any selection *x*^{*}(*t*),

 $V(t) = V(0) + \int_0^t f_t(x^*(s), s) ds$

• **Definition :** The family of functions ${f(x,.)}_{x \in X}$ is *equidifferentiable* at *t*, if (f(x,t')-f(x,t))/(t'-t) converges uniformly as $t' \rightarrow t$.

• **Theorem 3**: Suppose the family of functions $\{f(x,.)\}_{x \in X}$ is equidifferentiable at t_0 , $\sup_{x \in X} |f_t(x,t_0)| < \infty$, and $X(t) \neq \emptyset$ for all t. Then, V is left and right differentiable at t_0 . For any $x^* \in X^*(t)$, the directional derivatives are $V'(t_0+) = \lim_{t \to t_0+} f_t(x^*(t),t_0)$ for $t_0 < 1$. $V'(t_0-) = \lim_{t \to t_0-} f_t(x^*(t),t_0)$ for $t_0 > 0$.

V is differentiable at $t_0 \in (0,1)$ iff $f(x^*(t), t_0)$ is continuous in *t* at $t = t_0$.

Note that all the assumptions are tight.

- Dekel-Lipman Self-Control and Random Strotz Representations
- More of a note on Gul-Pesendorfer(2001) on temptation
- Self-Control representation over the set of menus vs.
 Expected future choices by a future-self whose preferences are not known with certainity

- Let *B* be a compact set and $\Delta(B)$ denote the set of lotteries over *B*.
- $X \subseteq \Delta(B)$ denotes the set of menus. Compact and non-empty.
- The preference \succ is defined over *X*.
- $w: \Delta(B) \rightarrow \Re$ is an expected utility if it is continuous and linear.
- Random Strotz representation:

Let *u* be an expected utility function and μ be a measure over the set of expected utility functions such that \succ is represented by:

$$V_{RS}(x) = \int \max_{\beta \in B_w(x)} u(\beta) \mu(dw) \longrightarrow \text{Best elements in B wrt w.}$$

Self Control Representation:

Let (u, v) be a pair of expected utility functions such that \succ is represented by : $V_{SC}(x) = \max_{\beta \in x} [u(\beta) + v(\beta)] - \max_{\beta \in x} v(\beta)$

• Re - write as :

 $V_{SC}(x) = \max_{\beta \in x} [u(\beta) - c(\beta; x)]$

- $c(\beta; x)$ is the cost of resisting temptation.
- **Theorem :** Fix any self-control representation (u, v) and the corresponding V_{SC} . Then, there is a random Strotz representation V_{RS} such that for every menu x, $V_{SC}(x) = V_{RS}(x)$.

Proof: Let W denote the set of expected utility preferences such that w ∈ W iff there is A ∈ [0,1] with w = v + Au. Define μ over W by taking s.t μ(E) = Pr[{A ∈ [0,1]: v + Au ∈ E}], where Pr is the uniform distribution. Let V_{RS} be the corresponding repre-

sentation.

Now, fix any menu *x*. Then,

$$V_{RS}(x) = \int_{0}^{1} \max_{\beta \in B_{\nu+Au}(x)} u(\beta) dA = \int_{0}^{1} \max_{\beta \in B_{\nu+Au}(x)} \hat{u}(A) dA$$

Define $U(A) = v(\max_{\beta \in B_{\nu+Au}(x)} u(\beta)) + A\hat{u}(A) = \hat{v}(A) + A\hat{u}(A)$
$$= \max_{\overline{A} \in [0,1]} \hat{v}(\overline{A}) + A\hat{u}(\overline{A})$$

Now, by Theorem 2,

$$U(1) - U(0) = \int_0^1 U'(A) dA = \int_0^1 \hat{u}(A) dA = V_{RS}(x)$$

However, $U(1) = \max_{\beta \in x} [u(\beta) + v(\beta)]$ and $U(0) = \max_{\beta \in x} v(\beta)$.

Therefore, $U(1) - U(0) = V_{sc}(x)$.