# Envelope Theorems for Arbitrary Choice Sets 

Paul Milgrom \& Ilya Segal
03.11 .2011

## I ntroduction

- Envelope theorems do the following two:
- Conditions for a differentiable value function (in the parameter)
- A formula for this value function
- Classically to guarantee differentiability:
- Convexity and a topological structure on the choice set.
- Applications:
- Concave optimization in demand theory
- Analysis of Incentive Constraints on Contract Theory
- Non-convex production Problems
- The theory of monotone and robust comperative statics.


## I ntroduction

- Choice sets often lack the convexity or the topological structure.
- This paper do not assume anything on the choice sets.



## Results

- $X$ denotes the choice set.
- $t \in[0,1]$ denotes the relevant parameter.
- $f: X \times[0,1] \rightarrow R$ denotes the objective function.
${ }^{*} V(t)=\sup _{x \in X} f(x, t)$ is the value function.
- $X^{*}(t)=\{x \in X: f(x, t)=V(t)\}$ is the optimal choice set.


## Results

-Theorem 1: Take $t \in[0,1]$ and suppose $f_{t}\left(x^{*}, t\right)$ exists. If $t>0$ and $V$ is left-hand differentiable at $t$, then $V^{\prime}(t-) \leq f_{t}\left(x^{*}, t\right)$. If $t<1$ and $V$ is right-hand differentiable, then $V^{\prime}(t+) \geq f_{t}\left(x^{*}, t\right)$. If $t \in[0,1]$ and $V$ is differentiable at $t$ then, $V^{\prime}(t)=f_{t}\left(x^{*}, t\right)$.

- Theorem 1 is useful when the value function is sufficiently well-behaved.
- Theorem 2.a: Suppose $f(x,$.$) is absolutely continuos for all x$. Suppose also that there is an integrable function $b:[0,1] \rightarrow R_{+}$such that $\left|f_{t}(x, t)\right| \leq b(t)$ for all $x$ and almost all $t$. Then, $V$ is absolutely continuous.


## Results

- Definition: $f$ is absolutely continuos if $f$ ' exists almost everywhere and it is

Lebesque integrable and for any $x \in[a, b]$

$$
f(x)=f(a)+\int_{a}^{x} f^{\prime}(t) d t
$$

Example : $f(x)=\left\{\begin{array}{ll}0 & \text { if } x=0 \\ x / \sin (x) & \text { ow }\end{array}\right.$ is not absolutely continuous.

## Results

- Theorem 2.b:Suppose the hypothesis of Theorem 2a holds and in addition $f\left(x\right.$, .) is differentiable for all $x$ and $X^{*}(t) \neq \varnothing$ almost everywhere on $[0,1]$. Then, for any selection $x^{*}(t)$,

$$
V(t)=V(0)+\int_{0}^{t} f_{t}\left(x^{*}(s), s\right) d s
$$

- Definition: The family of functions $\{f(x, .)\}_{x \in X}$ is equidifferentiable at $t$, if $\left(f\left(x, t^{\prime}\right)-f(x, t)\right) /\left(t^{\prime}-t\right)$ converges uniformly as $t^{\prime} \rightarrow t$.


## Results

- Theorem 3: Suppose the family of functions $\{f(x, .)\}_{x \in X}$ is equidifferentiable at $t_{0}$, $\sup _{x \in X}\left|f_{t}\left(x, t_{0}\right)\right|<\infty$, and $X(t) \neq \varnothing$ for all $t$. Then, $V$ is left and right differentiable at $t_{0}$. For any $x^{*} \in X^{*}(t)$, the directional derivatives are

$$
\begin{aligned}
& V^{\prime}\left(t_{0}+\right)=\lim _{t \rightarrow t_{0}+} f_{t}\left(x^{*}(t), t_{0}\right) \text { for } t_{0}<1 . \\
& V^{\prime}\left(t_{0}-\right)=\lim _{t \rightarrow t_{0}-} f_{t}\left(x^{*}(t), t_{0}\right) \text { for } t_{0}>0 .
\end{aligned}
$$

$V$ is differentiable at $t_{0} \in(0,1)$ iff $f\left(x^{*}(t), t_{0}\right)$ is continuous in $t$ at $t=t_{0}$.

- Note that all the assumptions are tight.


## Application from Decision Theory

- Dekel-Lipman Self-Control and Random Strotz Representations
- More of a note on Gul-Pesendorfer(2001) on temptation
- Self-Control representation over the set of menus vs.

Expected future choices by a future-self whose preferences are not known with certainity

## Application from Decision Theory

- Let $B$ be a compact set and $\Delta(B)$ denote the set of lotteries over $B$.
- $X \subseteq \Delta(B)$ denotes the set of menus. Compact and non-empty.
- The preference $\succ$ is defined over $X$.
- $w: \Delta(B) \rightarrow \mathfrak{R}$ is an expected utility if it is continuous and linear.
- Random Strotz representation:

Let $u$ be an expected utility function and $\mu$ be a measure over the set of expected utility functions such that $\succ$ is represented by:

$$
V_{R S}(x)=\int \max _{\beta \in B_{w}(x)} u(\beta) \mu(d w) \longrightarrow \text { Best elements in } \mathrm{B} \text { wrt } \mathrm{w} \text {. }
$$

## Application from Decision Theory

- Self Control Representation:

Let $(u, v)$ be a pair of expected utility functions such that $\succ$ is represented by :

$$
V_{S C}(x)=\max _{\beta \in x}[u(\beta)+v(\beta)]-\max _{\beta \in x} v(\beta)
$$

- Re-write as :

$$
V_{S C}(x)=\max _{\beta \in x}[u(\beta)-c(\beta ; x)]
$$

- $c(\beta ; x)$ is the cost of resisting temptation.
-Theorem: Fix any self-control representation $(u, v)$ and the corresponding $V_{S C}$. Then, there is a random Strotz representation $V_{R S}$ such that for every menu $x$, $V_{S C}(x)=V_{R S}(x)$.


## Application from Decision Theory

- Proof : Let $W$ denote the set of expected utility preferences such that $w \in W$ iff there is $A \in[0,1]$ with $w=v+A u$. Define $\mu$ over $W$ by taking s.t

$$
\mu(E)=\operatorname{Pr}[\{A \in[0,1]: v+A u \in E\}],
$$

where Pr is the uniform distribution. Let $V_{R S}$ be the corresponding representation.
Now, fix any menu $x$. Then,

$$
V_{R S}(x)=\int_{0}^{1} \max _{\beta \in B_{v+A u}(x)} u(\beta) d A=\int_{0}^{1} \max _{\beta \in B_{v+A u}(x)} \hat{u}(A) d A
$$

Define $U(A)=v\left(\max _{\beta \in B_{v+A u}(x)} u(\beta)\right)+A \hat{u}(A)=\hat{v}(A)+A \hat{u}(A)$

$$
=\max _{\bar{A} \in[0,1]} \hat{v}(\bar{A})+A \hat{u}(\bar{A})
$$

Now, by Theorem 2,

$$
U(1)-U(0)=\int_{0}^{1} U^{\prime}(A) d A=\int_{0}^{1} \hat{u}(A) d A=V_{R S}(x)
$$

However, $U(1)=\max _{\beta \in x}[u(\beta)+v(\beta)]$ and $U(0)=\max _{\beta \in x} v(\beta)$.
Therefore, $U(1)-U(0)=V_{S C}(x)$.

