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Abstract3

We incorporate the idea of reduced rank envelope [7] to elliptical multivariate linear regres-4

sion to improve the efficiency of estimation. The reduced rank envelope model takes advantage5

of both reduced rank regression and envelope model, and is an efficient estimation technique in6

multivariate linear regression. However, it uses the normal log-likelihood as its objective func-7

tion, and is most effective when the normality assumption holds. The proposed methodology8

considers elliptically contoured distributions and it incorporates this distribution structure into9

the modeling. Consequently, it is more flexible and its estimator outperforms the estimator de-10

rived for the normal case. When the specific distribution is unknown, we present an estimator11

that performs well as long as the elliptically contoured assumption holds.12
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1 Introduction14

The multivariate linear regression model studies the conditional distribution of a stochastic re-15

sponse vector Y ∈ R
r as a linear function of the predictor X ∈ R

p. It can be formulated as16

Y = µY + β(X − µX) + ǫ, (1)

where β ∈ R
r×p is the coefficient matrix, the error vector ǫ is independent of X and follows a17

normal distribution with mean zero and covariance matrix Σ. The standard method of estimation18

fits a linear regression model for each response independently. The association among the response19

is not used and the efficiency of the estimation can be improved by considering these dependences.20

The envelope model is introduced in a seminal paper [8] in the context of (1) and the key idea is to21

identify the part of Y that is immaterial to the changes inX by using sufficient dimension reduction22

techniques. This immaterial part is removed from subsequent analysis, making the estimation more23

efficient. Another method that considers the association among the response is the reduced rank24

regression ([1], [2], [26], [41], [46]). Reduced rank regression assumes that the rank of the matrix25

β ∈ R
r×p is less than or equal to d, where d ≤ min(r, p). It has less number of parameters and26

therefore more efficient estimators can be obtained.27

The envelope model and the reduced rank regression both use dimension reduction techniques28

to improve the estimation efficiency, but they have different perspectives and make different as-29

sumptions. In practice, it may take considerable effort to find out which method is more efficient30

for a given problem. The reduced rank envelope was recently proposed in [7], which combines31

the advantage of both methods and is more efficient than both methods. However, the estimation32
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of the reduced rank envelope model takes the normal likelihood function as the objective function,33

and is most effective when the normality assumption holds.34

It is well-known that the normality assumption is not always reasonable in many applications,35

and alternative distributions (or methodologies) have to be considered to fit the distribution of the36

data better. One choice is the family of elliptically contoured distributions, which includes the37

classical normal distribution and many important distributions such as Student-t, power exponen-38

tial, contaminated normal, etc. They can have heavier or lighter tails than the normal distribution,39

and are more adaptive to the data. Elliptical multivariate linear regression models have been ex-40

tensively studied in the statistical literature, see for example [5], [10], [12], [13], [18], [19],[22],41

[20], [28], [30], [32], [33], [34], [40], [43], [45] and [48] among others. In particular, [32] in-42

troduces a general elliptical multivariate regression model in which the mean vector and the scale43

matrix have parameters in common. Then they unify several elliptical models, such as nonlinear44

regressions, mixed-effects model with nonlinear fixed effects, errors-in-variables models, etc. Bias45

correction for the maximum likelihood estimator and adjustments of the likelihood-ratio statistics46

are also derived for this general model (see [38], [37]). The elliptical distributions can also be used47

as the basis to consider robustness in multivariate linear regression, as in [14], [21], [29], [36],48

[42], [50] and many others. Nevertheless the envelope model under the context of elliptical multi-49

variate regression has not yet been implemented. There is also not much literature about reduced50

rank regression beyond the normal case. The only attempt to extend reduced rank regression to51

the non-normal case is through M-estimators or other robust estimators which include some of52

the elliptical class. For example, [50] develops a robust estimator in reduced rank regression and53

proposes a novel rank-based estimation procedure using Wilcoxon scores. While the reduced rank54

estimator in [50] allows a general error distribution, we aim to further improve the efficiency of the55
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reduced rank estimator using maximum likelihood estimators (MLE) and envelope methods in the56

context of elliptical multivariate linear regression.57

The goal of this paper is to derive the reduced rank regression estimator, envelope estimator and58

reduced rank envelope estimator for elliptical multivariate linear regression. Since both reduced59

rank regression and the envelope model are special cases of the reduced rank envelope model,60

we present a unified approach that focuses on the reduced rank envelope model. The asymptotic61

properties and efficiency gains of the reduced rank regression, envelope model and reduced rank62

envelopes model will be studied, and we will demonstrate their effectiveness in simulations and63

real data examples.64

The rest of this paper is organized as follows. In Section 2, we introduce the reduced rank re-65

gression, envelope model and reduced rank envelope model under the elliptical multivariate linear66

regression. Section 3 describes the most used elliptically contoured distributions in elliptical mul-67

tivariate linear regression. In Section 4, we derive the maximum likelihood estimators (MLE) for68

the models considered in Section 2, and propose a weighted least square estimator when the error69

distribution is unknown but elliptically contoured. Section 5 studies the asymptotic properties of70

the estimators, and demonstrates the efficiency gains without the normality assumptions. Section 671

discusses the selection of the rank and dimension in the reduced rank envelope model. The simula-72

tion results are presented in Section 7, and examples are given in Section 8 for illustration. Proofs73

are included in the Online Supplement.74
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2 Models75

We consider the following elliptical multivariate linear regression model given by76

Y = µY + β(X − µX) + ǫ, ǫ ∼ ECr(0,Σ, gY |X), (2)

where Y ∈ R
r denotes the response vector, X ∈ R

p denotes the predictor vector, β ∈ R
r×p, and77

∼ denotes equal in distribution. If a random vector Z ∈ R
m follows an elliptically contoured78

distribution ECm(µZ ,ΣZ , gZ) with density, then the density function is given by79

fZ(z) = |ΣZ |−
1

2 gZ
[
(z − µZ)

TΣ−1
Z (z − µZ)

]
, (3)

where µZ ∈ R
m is the location parameter; ΣZ ∈ R

m×m is a positive definite scale matrix; gZ(·) ≥80

0 is a real-valued function and
∫∞

0
um/2−1gZ(u)du < ∞. We call (2) the standard model in81

the following discussions. Based on (2), Y | X follows the elliptically contoured distribution82

ECr(µY |X ,Σ, gY |X) where µY |X = µY + β(X − µX). When the conditional expectation and83

variance exist, E(Y | X) = µY |X and var(Y | X) = cXΣ, where cX = E(Q2)/r and Q2 =84

(Y − µY |X)
TΣ−1(Y − µY |X) (see Corollary 2 in [17], p. 65). Notice that in general var(Y | X)85

depends on X , except for the normal errors with constant variance.86

The reduced rank regression assumes that the rank of the coefficient β in model (2) is at most87

d ≤ min(p, r). As a consequence88

β = AB, A ∈ R
r×d, B ∈ R

d×p, rank(A) = rank(B) = d, (4)
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for some A ∈ R
r×d and B ∈ R

d×p. Note that A and B are not identifiable since AB =89

(AU)(U−1B) := A∗B∗ for any invertible U . If the errors are normally distributed with a con-90

stant covariance matrix, the MLE of β for (4) and its asymptotic distribution were derived in [2],91

[41] and [46], by imposing various constraints on A and B for identifiability. Since the goal is to92

estimate β, rather than A and/or B, recently [7] derived the estimator of β without imposing any93

constraints onA andB other than requiring the rank of β is equal to d. It has been shown that when94

ǫ follows the multivariate normal distribution with a constant covariance matrix, the reduced rank95

regression has the potential to yield more efficient estimator for β than the ordinary least square96

(OLS) estimator. Note that under normality, the OLS estimator is the MLE.97

The envelope model [8] is another way to get efficient estimator. Let span(β) denote the98

subspace spanned by the columns of β. Under model (2), if span(β) is contained in the span of m99

(m < r) eigenvectors of the error covariance matrix Σ, not necessarily the leading eigenvectors,100

then the envelope estimator of β is expected to be more efficient than the OLS estimator. More101

specifically, let S be a subspace of Rr that is spanned by some eigenvectors of Σ, and span(β) ⊆ S .102

The intersection of all such S is called the Σ-envelope of β, which is denoted by EΣ(β). Let u be103

the dimension of EΣ(β). Then u ≤ r. Take Γ ∈ R
r×u to be an orthonormal basis of EΣ(β) and104

Γ0 ∈ R
r×(r−u) to be a completion of Γ, i.e., (Γ,Γ0) is an orthogonal matrix. Since span(β) ⊆105

EΣ(β) = span(Γ), there exists a ξ ∈ R
u×p such that β = Γξ. Because that EΣ(β) is spanned by106

eigenvectors of Σ, there exist Ω ∈ R
u×u and Ω0 ∈ R

(r−u)×(r−u) that Σ = ΓΩΓT +Γ0Ω0Γ
T
0 . Here ξ107

carries the coordinates of β with respect to Γ and Ω and Ω0 carry the coordinates of Σ with respect108

to Γ and Γ0. To summarize, if β and Γ satisfy the following conditions109

β = Γξ Σ = ΓΩΓT + Γ0Ω0Γ
T
0 , (5)
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we called (2) an envelope model of dimension u. Based on (5), EΣ(β) provides a link between110

β and Σ: The variation of the ǫ can be decomposed to one part ΓΩΓT that is material to the111

estimation β and the other part Γ0Ω0Γ
T
0 that is immaterial to the estimation of β. By realizing this112

decomposition, in the normal setting, [8] showed that the envelope estimator of β is more or at113

least as efficient as the OLS estimator asymptotically. The efficiency can be substantial especially114

if the immaterial variation ‖Γ0Ω0Γ
T
0 ‖ is substantially larger than the material variation ‖ΓΩΓT‖,115

where ‖ · ‖ denotes the spectral norm of a matrix.116

Under normal distribution for the error term, [7] presented a novel unified framework of the117

reduced rank regression and the envelope model called the reduced rank envelope model, which118

obtains more efficient estimators compared to either of them. [7] assumed that β and Σ follows the119

envelope structure (5) and at the same time the coordinate ξ has a reduced rank structure ξ = ηB,120

where η ∈ R
u×d and B ∈ R

d×p with the rank d ≤ min(r, p). Then model (2) is called the reduced121

rank envelope model when122

β = AB = ΓηB, Σ = ΓΩΓT + Γ0Ω0Γ
T
0 , (6)

where B ∈ R
d×p has rank d, η ∈ R

u×d, Ω ∈ R
u×u and Ω0 ∈ R

(r−u)×(r−u) are positive-definite123

matrices, and Γ0 ∈ R
r×(r−u) is a completion of Γ, i.e. (Γ,Γ0) is an orthogonal matrix. The reduced124

rank envelope model performs dimension reduction in two levels: The first level β = AB assumed125

that we have a reduced rank regression. The second level β = ΓηB is based on the assumption126

that β only intersects u eigenvectors of the covariance matrix Σ. When u = r, Γ = Ir, then (6)127

degenerates to the usual reduced rank regression (4). When d = min(u, p), then (6) reduces to128

an envelope model (5). Finally, the reduced rank envelope model (6) is equivalent to the standard129
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model (2) if d = u = r. [7] obtained the MLEs of β and Σ, as well as their asymptotic distribu-130

tions under the normality assumption. It should be noted that for the reduced rank regression, the131

envelope model and the reduced rank envelope model, the constituent parameters A, B, Γ, Γ0, ξ,132

η, Ω, Ω0 are not unique. Hence, they are not identifiable. Nevertheless, β and Σ are unique. No ad-133

ditional constraints are imposed on the constituent parameters in [7] when studying the asymptotic134

distribution of the identifiable parameters β and Σ.135

3 Examples136

In this section we present three scenarios where the elliptically contoured distributions are used in137

regression.138

3.1 The data matrix is elliptically contoured distributed139

A case that is commonly studied in the literature is that the data matrix follows a matrix ellip-140

tically contoured distribution. A p × q random matrix Z follows a matrix elliptically contoured141

distribution ECp,q(M,A⊗B,Ψ) if and only if vec(ZT ) follows an elliptically contoured distribu-142

tion ECpq(vec(M
T ), A⊗ B,Ψ), where ⊗ denotes Kronecker product, and vec denotes the vector143

operator that stacks the columns of a matrix into a vector.144

Let X = (XT
1 , . . . , X

T
n )

T ∈ R
n×p and Y = (Y T

1 , . . . , Y
T
n )T ∈ R

n×r be data matrices such that145

Y | X follows a matrix elliptically contoured distribution ECn,r(M, η ⊗ Σ, g) with M = 1nµ
T
Y +146

(X− 1nµ
T
X)β

T , where 1n denotes an n dimensional vector of 1’s. Under this assumption, by using147

Theorem 2.8 from [24], we have Yi | X ∼ Yi | Xi ∼ ECr(µY + β(Xi − µX), ηiiΣ, g). This allows148

the errors to be modeled with a heteroscedastic structure. More properties of the matrix elliptically149
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contoured distribution are discussed in [24]. Examples of this distribution include matrix variate150

symmetric Kotz Type distribution, Pearson Type II distribution, Pearson Type VII distribution,151

symmetric Bessel distribution, symmetric Logistic distribution, symmetric stable law, etc. Among152

these distributions, the most common one is the normal with non-constant variance [16].153

As an example of the matrix elliptically contoured distribution, we consider that Y | X follows154

a matrix normal distribution Nn×r(M, η ⊗Σ) with M = 1nµ
T
Y + (In − 1

n
1n1

T
n )Xβ

T and η being a155

diagonal matrix. The diagonal elements of η are denoted by ηii and ηii > 0 for i = 1, . . . , n. Then156

Yi = µY + β(Xi − µX) + ǫ,

where ǫ ∼ N(0, ηiiΣ). Therefore Yi | Xi follows a normal distribution with mean µY +β(Xi−µX)157

and covariance matrix ηiiΣ. In other words, it is an elliptically contoured distribution ECr(µY +158

β(Xi − µX),Σ, gi) with gi(t) = (2πηii)
−r/2e

− t
2ηii .159

Note that we only considered the error structure that the covariance matrices are proportional,160

and the heteroscedasticity only depends on g, not the scale parameter. The general non-constant161

covariance structure is not included because we would need a general rn× rn scale matrix instead162

of η ⊗ Σ in the matrix elliptically contoured distribution.163

3.2 X and Y is jointly elliptically contoured distributed164

Sometimes (XT , Y T )T jointly follows an elliptically contoured distribution or it can be trans-

formed to ellipticity (e.g., [9]). Suppose (XT , Y T )T follows the distributionECp+r((µ
T
X , µ

T
Y )

T ,Φ, g),
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then its density function is

fX,Y (x, y) = |Φ|− 1

2 g
[{

(xT , yT )− (µT
X , µ

T
Y )
}
Φ−1

{
(xT , yT )− (µT

X , µ
T
Y )
}T

]

where g(·) ≥ 0 and Φ is a (p+ r)× (p+ r) positive definite matrix. Following [5], if we partition165

Φ as166

Φ =



Φ11 Φ12

Φ21 Φ22


 =



ΣX ΦY

ΦT
Y ΣY


 , (7)

then X and Y are marginally elliptically contoured distributed where X follows ECp(µX ,ΣX , g)167

and Y follows ECr(µY ,ΣY , g) (Theorem 2.8 from [24]). The conditional distribution of Y | X is168

also elliptically contoured169

Y | X ∼ ECr(µY |X ,Φ22.1, gY |X),

where µY |X = µY + Φ21Φ
−1
11 (X − µX), Φ22.1 = Φ22 − Φ21Φ

−1
11 Φ

T
21 and gY |X(t) = g(t +170

m(X))/g(m(X)) with m(X) = (X − µX)
TΦ−1

11 (X − µX). Note that µY |X is linear in X and171

Φ22.1 is a constant.172

Now we use multivariate t-distribution as an example. Suppose that Z ∈ Rk follows a multi-173

variate t-distribution tk(µ,Σ, ν), where ν denotes the degrees of freedom. The density function of174

Z is given by175

fZ(z) =
Γ(ν+k

2
)

Γ(ν
2
)

1

νπk/2

1√
|Σ|

(
1 +

(z − µ)TΣ−1(z − µ)

ν

)− k+ν
2

.
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Suppose that (XT , Y T )T ∼ tp+r

(
(µT

X , µ
T
Y )

T ,Φ, ν
)

with Φ following the structure in (7). Then

Y | X ∼ tr

(
µY + Φ21Φ

−1
11 (X − µX),

ν + (x− µX)
TΦ−1

11 (x− µX)

ν + p
Φ22.1, ν + p

)
.

Equivalently, Y | X ∼ ECr(µY |X ,Φ22.1, gY |X) with µY |X = µY + Φ21Φ
−1
11 (X − µX), Φ22.1 =176

Φ22 − Φ21Φ
−1
11 Φ

T
21 and gY |X(t) = cν,p,rg[t/h(X)]/h(X)r/2, where g(t) = (ν + p + t)−

p+r+ν
2 ,177

h(X) = [ν + (X − µX)
TΦ−1

11 (X − µX)]/(ν + p) and cν,p,r is the normalizing constant.178

3.3 Y given X follows an elliptically contoured distribution179

It is also reasonable to assume that the error vector ǫ follows an elliptically contoured distribu-180

tion, in other words, Y given X follows an elliptically contoured distribution. We will present181

two examples, Y | X follows a normal mixture distribution and Y | X follows a conditional182

t-distribution.183

We say Y | X follows a normal mixture distribution if its density function is a convex linear184

combination of normal density functions. Suppose Y | X follows a normal mixture distribution185

fromm normal distributionsNr(µY |X , kiΣ), i = 1, . . . ,mwith weights p1, . . . , pm, then its density186

function is given by187

fY |X(y) =
m∑

i=1

pik
− r

2

i

1

(2π)r/2|Σ|1/2 e
− 1

2ki
(y−µY |X)TΣ−1(y−µY |X)

,

where ki > 0, pi > 0 for i = 1, . . . , r and
∑m

i=1 pi = 1. Equivalently Y | X follows an elliptically188

contoured distribution ECr(µY |X ,Σ, g) with g(t) =
∑m

i=1 pik
−r/2
i (2π)−r/2|Σ|−1/2e−t/(2ki).189

The t-distribution is useful to model heavy tails. As discussed in Section 3.2, Y | X follows a190
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t-distribution tr(µY + β(X − µX),Σ, ν) if its density function takes the form191

fY |X(y) =
Γ(ν+r

2
)

Γ(ν
2
)

1

νπr/2

1√
|Σ|

(
1 +

[y − µY + β(X − µX)]
TΣ−1[y − µY + β(X − µX)]

ν

)− r+ν
2

.

Equivalently, Y | X follows an elliptically contoured distribution ECr(µY + β(X − µX),Σ, g)192

with g(t) = cν,r(1 +
1
ν
t)−

ν+r
2 , where cν,r = ν−1π−r/2Γ(ν+r

2
)/Γ(ν

2
) is a normalizing constant.193

4 Estimation194

Under the standard model (2), if the errors (ǫ1, . . . , ǫn) jointly follow a matrix elliptically contoured195

distribution, the OLS estimator of β is its MLE (See Chapter 9, [15]). When the errors (ǫ1, . . . , ǫn)196

do not jointly follow a matrix elliptically contoured distribution but gY |X is known, an estimator of197

β can be computed via an iterative re-weighted least squares algorithm and its properties are studied198

in [5]. When gY |X is unknown, [5] derived an estimator of β and investigated its properties.199

The goal of this section is to derive the MLEs for the reduced rank regression, the envelope200

model and the reduced rank envelope model for given d, u and gY |X , where d is the rank of β and u201

is the dimension of the envelope EΣ(β). Procedures for selecting d and u are discussed in Section202

6. Note that when the errors (ǫ1, . . . , ǫn) jointly follow a matrix elliptically contoured distribution,203

the estimators of β obtained by [7] are the MLEs of the corresponding models.204

4.1 Parametrization for the different models205

Let vech denote the vector half operator that stacks the lower triangle of a matrix to a vector.

Then under the standard model (2), the parameter vector is h =
(
vecT (β), vechT (Σ)

)T
. We did
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not consider µX or µY because the estimators are asymptotically independent to the estimators of

β and Σ. We use ψ to denote the parameter vector of the reduced rank regression (4), δ for the

envelope model (5) and φ for the reduced rank envelope model (6). Then

h =




vec(β)

vech(Σ)


 , ψ =




vec(A)

vec(B)

vech(Σ)



, δ =




vec(Γ)

vec(ξ)

vech(Ω)

vech(Ω0)




, φ =




vec(Γ)

vec(η)

vec(B)

vech(Ω)

vech(Ω0)




.

We use N(v) to denote the number of parameters in a parameter vector v. Then N(h) = pr +206

r(r + 1)/2, N(ψ) = (r − d)d + pd + r(r + 1)/2, N(δ) = pu + r(r + 1)/2 and N(φ) =207

(u − d)d + pd + r(r + 1)/2. The reduced rank regression has less parameters than the standard208

model since N(h)−N(ψ) = (p− d)(r − d) ≥ 0, and the reduced rank envelope model has even209

less parameters than the reduced rank regression as N(ψ) − N(φ) = (r − u)d ≥ 0. On the other210

hand, compared to the standard model, the number of parameters is reduced by p(r − u) ≥ 0 by211

using the envelope model and it is further reduced by (p − d)(u − d) ≥ 0 by using the reduced212

rank envelope model.213

Remark: If the model assumption holds, less parameters often result in an improvement of214

estimation efficiency. And the improved efficiency often leads to an improved prediction accuracy.215

However, if the model assumption does not hold, having less parameters will introduce bias but216

may still reduce the variance of the estimator. Then it is a bias-variance trade-off on if the increase217

in bias or reduction in variance dominates.218
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4.2 Maximum likelihood estimators219

Assume that Y | X follows an elliptically contoured distribution ECr(0,Σ, gY |X) with density

given by (3). Let (Xi, Yi) be n independent samples of (X, Y ), i = 1, . . . , n, and let mi =

[Yi − µY − β(Xi − µX)]
TΣ−1[Yi − µY − β(Xi − µX)]. The log-likelihood function is given by

l = −n
2
log |Σ|+

n∑

i=1

log g(mi),

where we denote gY |X as g from now on. Taking the derivative of the log-likelihood function with

respect to β and Σ and setting to zero, we have

∂l

∂β
= −1

2

n∑

i=1

Wi
∂mi

∂β
= 0,

∂l

∂Σ
= −n

2
Σ−1 − 1

2

n∑

i=1

Wi
∂mi

∂Σ
= 0,

whereWi = −2g′(mi)/g(mi). If Y | X followed a normal distribution, the log-likelihood function220

would be221

l2 = −n
2
log |Σ| − 1

2

n∑

i=1

mi.

Taking the derivative of l2 with respect to β and Σ and setting to zero, we have

∂l2
∂β

= −1

2

n∑

i=1

∂mi

∂β
= 0,

∂l2
∂Σ

= −n
2
Σ−1 − 1

2

n∑

i=1

∂mi

∂Σ
= 0.

If the weightsWi are positive and they were known, we could transform the data to (
√
WiXi,

√
WiYi)222

and solve for β and Σ as if the data follow the normal distribution. With this idea in mind, we223

propose the following iterative re-weighted least squares (IRLS) algorithm when Wi ≥ 0. The224

obtained estimator from this algorithm is equivalent to the MLE estimator (See [11] and [23]).225
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1. Get the initial values for β and Σ226

2. Repeat the following until convergence227

(a) Compute Wi = −2g′(mi)/g(mi) with β and Σ being the current estimator228

(b) With the data (
√
WiXi,

√
WiYi), update the estimators of β and Σ as if the data follow229

normal distribution.230

The estimator in Step 2 (b) is obtained from a fast envelope estimation algorithm developed in [6],231

which is implemented in the R package Renvlp [31]. This algorithm can be used not only for the232

standard model, but also for the reduced rank regression, the envelope model and the reduced rank233

envelope model. Take the reduced rank envelope model as an example, we have234

∂l

∂φT
=

∂l

∂hT
∂h

∂φT
,

∂l2
∂φT

=
∂l2
∂hT

∂h

∂φT
.

Notice that the term ∂h/∂φT is the same for both likelihoods, and h is a function of β and Σ. We235

can estimate the reduced rank envelope estimator using the preceding algorithm except that 2(b)236

is changed to “With the data (
√
WiXi,

√
WiYi), update the reduced rank envelope estimators of237

β and Σ as if the data follow normal distribution.” The reduced rank regression and the envelope238

model can follow the same procedure. For completeness we include in the Online Supplement the239

derivatives of mi with respect to the parameters β and Σ.240

4.3 Weights241

We now give the weights for some commonly used elliptically contoured distribution.242

Normal with non-constant variance243
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If Yi | Xi follows the normal distribution N(µY |X , ηiiΣ) with ηii > 0, i = 1, . . . , n. Then Wi =244

1/ηii.245

Normal mixture distribution246

Suppose Y | X follows a normal mixture distribution from m normal distributions Nr(µY |X , kiΣ),247

i = 1, . . . ,m with weights p1, . . . , pm. From the discussions in Section 3.3, the weights are given248

by249

W (ti) =

∑m
j=1 pjk

−r/2−1
j e−ti/2kj

∑m
j=1 pjk

−r/2
j e−ti/2kj

,

where ti = [Yi − µY − β(Xi − µX)]
TΣ−1[Yi − µY − β(Xi − µX)].250

Multivariate t-distribution251

Suppose that (XT , Y T )T follows a joint multivariate t-distribution tp+r((µ
T
X , µ

T
Y )

T ,Φ, ν) with Φ252

following the structure in (7). Based on the discussion in Section 3.2, Y | X follows the t-253

distribution tr(µY +Φ21Φ
−1
11 (X−µX),

ν+(x−µX)TΦ−1

11
(x−µX)

ν+p
Φ22.1, ν+p). After some straightforward254

calculations,255

Wi(ti) =
p+ r + ν

ν + (Xi − µX)TΦ
−1
11 (Xi − µX) + ti

,

where ti = [Yi − µY − Φ21Φ
−1
11 (Xi − µX)]

TΣ−1
Y |X [Yi − µY − Φ21Φ

−1
11 (Xi − µX)] and ΣY |X =256

ν+(x−µX)TΦ−1

11
(x−µX)

ν+p
Φ22.1.257

Conditional t-distribution258

Suppose that Y | X follows a t-distribution with tr(µY |X ,Σ, ν), then259

W (ti) =
ν + r

ν + ti
,

where ti = (Yi − µY |X)
TΣ−1(Yi − µY |X).260
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Notice that all these weights are positive. For illustration purpose, the constants ηii’s in normal261

with non-constant variance and ki’s in normal mixture distribution are fixed and known in the262

calculation of the weights. If they are unknown, or more generally if g is unknown, Section 4.4263

presents an algorithm to estimate the weights.264

4.4 Weighted least square estimators265

The IRLS algorithm in Section 4.2 requires the knowledge of g, which may not be available in266

practice. In this section we propose an algorithm for the case when g is unknown.267

Suppose that the model has the structure in (2), then we have var(Y | X) = cXΣ, where268

cX = E(Q2)/r and Q2 = [Y − µY − β(X − µX)]
TΣ−1[Y − µY − β(X − µX)] (see Corollary 2269

in [17]). Notice that cX can be different across the observations. We use cXi
to denote cX for the270

ith observation. If cXi
is known, then we can transform the data to (c

−1/2
Xi

Xi, c
−1/2
Xi

Yi) and estimate271

the parameters as if the data follows the normal distribution. If cXi
is unknown, we estimate it by272

ĉXi
= [Yi − µ̂Y − β̂(Xi − µ̂X)]

T Σ̂−1[Yi − µ̂Y − β̂(Xi − µ̂X)]. According to [5], the resulting273

estimators of β and Σ are robust to a moderate departure from normality. Let X̄ and Ȳ denote the274

sample mean of X and Y . The following algorithm summarized the preceding discussion.275

1. Get the initial values for β and Σ from the corresponding model, i.e. reduced rank regression,276

envelope model or reduced rank envelope model. Set the initial values of µX and µY as X̄277

and Ȳ .278

2. Repeat the following until convergence279

(a) Compute ĉXi
= [Yi − µ̂Y − β̂(Xi − µ̂X)]

T Σ̂−1[Yi − µ̂Y − β̂(Xi − µ̂X)], where µ̂X , µ̂Y ,280

β̂ and Σ̂ are the estimates of µX , µY , β and Σ.281
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(b) With the data (ĉ
−1/2
Xi

Xi, ĉ
−1/2
Xi

Yi), update the estimators of β, Σ, µX and µY under the282

corresponding model as if the data follows normal distribution.283

Note that this algorithm is similar to the algorithm discussed in Section 4.2 except that we are284

using ĉ−1
Xi

as weights instead of using the exact weights computed from the knowledge of g. We285

call ĉ−1
Xi

as approximate weights in subsequent discussions. The
√
n-consistency of the estimator286

of β obtained by using these approximate weights follows similarly to Theorem 4 from [5].287

5 Asymptotics288

In this section, we present the asymptotic distribution for the MLEs of β: the standard estimator289

β̂std, the reduced rank regression estimator β̂RR, the envelope model estimator β̂E and reduced rank290

envelope estimator β̂RE.291

Without loss of generality, we assume that µX = 0 and the predictors are centered in the292

sample. Let Cr and Er denote the contraction and expansion matrix defined in [25] that connects293

the vector operator vec and the vector half operator vech as follows vec(S) = Er vech(S) and294

vech(S) = Crvec(S) for any r × r symmetric matrix S. Let U = Σ−1/2[Y − µY − β(X −295

µX)], NX = E

[(
g′(UTU)
g(UTU)

)2

UTU

∣∣∣∣X
]
/r and MX = E

[(
g′(UTU)
g(UTU)

)2

(UTU)2
∣∣∣∣X

]
/[r(r + 2)]. We296

define Σ̃X = E(NXXX
T ) and M = E(MX) if X is random and the expectations exist, Σ̃X =297

limn→∞
1
n

∑n
i=1NXi

XiX
T
i and M = limn→∞

1
n

∑n
i=1MXi

if X is fixed when the limits are finite.298

We further assume that Σ̃X is positive definite andM > 0. For the rest of the section we ask g such299

that the above quantities are finites and that the maximum likelihood estimator for model (2) exists,300

is consistent and asymptotically normal (See for example the conditions for elliptical distributions301

on [39], [4], [3], [27], [29], [35], [39], [50] or more generally conditions on Theorems 5.23, 5.31,302
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5.39, 5.41 or 5.42 from [47]. Then, the Fisher information for h =
(
vecT (β), vechT (Σ)

)T
is given303

by304

Jh =




Jβ 0

0 JΣ




with Jβ = 4Σ̃X ⊗ Σ−1 and JΣ = 2MET
r (Σ

−1 ⊗ Σ−1)Er + (M − 1
4
)ET

r vec(Σ
−1)vecT (Σ−1)Er.305

Detailed calculations are included in the Online Supplement. When ǫ follows a normal distribution,306

we have NX =M = 1/4 and Jh has the same form as in the literature (e.g. [8]).307

Proposition 1 gives the asymptotic variance of the MLEs of β under the standard model (2),308

the reduced rank regression (4), the envelope model (5) and the reduced rank envelope model (6).309

Suppose that θ̂ is an estimator of θ. We write avar(
√
nθ̂) = V if

√
n(θ̂ − θ)

d−→ N(0, V ), where310

d−→ denotes convergence in distribution.311

Proposition 1 Suppose that model (2) holds, i.e. the error vector ǫ follows the elliptically con-312

toured distribution ECr(0,Σ, g). Suppose that the MLE of β under the standard model (2),313

β̂std, exists and vec(β̂std) is
√
n consistent and asymptotically normally distributed with asymp-314

totic variance equal to the inverse of the Fisher information matrix Jβ . We further assume that315

(Xi, Yi), i = 1, . . . , n are independent and identical copies of (X, Y ). Then
√
nvec(β̂std − β) is316

asymptotically normally distributed with mean zero and variance given by (8). If models (4), (5) or317

(6) hold, then
√
nvec(β̂RR−β),

√
nvec(β̂E−β) and

√
nvec(β̂RE−β) are asymptotically normally318
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distributed with mean zero and variance given by (9), (10) and (11) respectively.319

avar[
√
nvec(β̂std)] =

1

4
Σ̃−1
X ⊗ Σ, (8)

avar[
√
nvec(β̂RR)] =

1

4
Σ̃−1
X ⊗ Σ− 1

4
(Σ̃−1

X −MB)⊗ (Σ−MA), (9)

avar[
√
nvec(β̂E)] =

1

4
Σ̃−1
X ⊗ ΓΩΓT

+
1

4
(ξT ⊗ Γ0)[ξΣ̃XξT ⊗ Ω−1

0 +M(Ω⊗ Ω−1
0 +Ω−1 ⊗ Ω0 − 2Iu ⊗ Ir−u)]

−1(ξ ⊗ ΓT
0 ), (10)

avar[
√
nvec(β̂RE)] =

1

4
Σ̃−1
X ⊗ Σ− 1

4
(Σ̃−1

X −MB)⊗ [Σ− Γη(ηTΩ−1η)−1ηTΓT ]− 1

4
MB ⊗ Γ0Ω0Γ

T
0 (11)

+
1

4
(BT ηT ⊗ Γ0)[ηBΣ̃XBT ηT ⊗ Ω−1

0 +M(Ω⊗ Ω−1
0 +Ω−1 ⊗ Ω0 − 2Iu ⊗ Ir−u)]

−1(ηB ⊗ ΓT
0 )

where MA = A(ATΣ−1A)−1AT and MB = BT (BΣ̃XB
T )−1B.320

Remark 1 The asymptotic variance does not depend on the choices of A, B, Γ, ξ or η, since the321

values of the terms ξT ξ, MA, MB, Γη(ηTΩ−1η)−1ηTΓT and BTηTηB are unique.322

Remark 2 Notice that avar[
√
nvec(β̂RE)] coincides with avar[

√
nvec(β̂RR)] when u = r, and323

avar[
√
nvec(β̂RE)] coincides with avar[

√
nvec(β̂E)] when d = min(u, p). This is consistent with324

the structure of the reduced rank envelope model: the reduced rank envelope model degenerates to325

the reduced rank regression when u = r and to the envelope model when d = min(u, p).326

Now we compare the efficiency of the models. Since Σ̃−1
X −MB and Σ −MA are both semi-327

positive definite, avar[
√
nvec(β̂std)] − avar[

√
nvec(β̂RR)] is semi-positive definite. This implies328

the reduced rank regression estimator is more efficient than or as efficient as the standard estimator329

when the reduced rank regression model holds.330

Next we prove that the envelope estimator is asymptotically at least as efficient as the standard331
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estimator. Notice that Ω⊗ Ω−1
0 + Ω−1 ⊗ Ω0 − 2Iu ⊗ Ir−u is semi-positive definite. Then332

(ξT ⊗ Γ0)[ξΣ̃Xξ
T ⊗ Ω−1

0 +M(Ω⊗ Ω−1
0 + Ω−1 ⊗ Ω0 − 2Iu ⊗ Ir−u)]

−1(ξ ⊗ ΓT
0 )

≤ (ξT ⊗ Γ0)(ξΣ̃Xξ
T ⊗ Ω−1

0 )−1(ξ ⊗ ΓT
0 ) = ξT (ξΣ̃Xξ

T )−1ξ ⊗ Γ0Ω0Γ
T
0 ≤ Σ̃−1

X ⊗ Γ0Ω0Γ
T
0 .

Therefore333

avar[
√
nvec(β̂E)] =

1

4
Σ̃−1

X ⊗ ΓΩΓT

+
1

4
(ξT ⊗ Γ0)[ξΣ̃Xξ

T ⊗ Ω−1
0 +M(Ω⊗ Ω−1

0 + Ω−1 ⊗ Ω0 − 2Iu ⊗ Ir−u)]
−1(ξ ⊗ ΓT

0 )

≤ 1

4
Σ̃−1

X ⊗ ΓΩΓT +
1

4
Σ̃−1

X ⊗ Γ0Ω0Γ
T
0 =

1

4
Σ̃−1

X ⊗ Σ = avar[
√
nvec(β̂std)].

To compare the reduced rank envelope estimator and the reduced rank regression estimator, notice334

that335

4
{
avar[

√
nvec(β̂RR)]− avar[

√
nvec(β̂RE)]

}

= MB ⊗ Γ0Ω0Γ
T
0 − (BTηT ⊗ Γ0)[ηBΣ̃XB

TηT ⊗ Ω−1
0 +M(Ω⊗ Ω−1

0 + Ω−1 ⊗ Ω0 − 2Iu ⊗ Ir−u)]
−1(ηB ⊗ Γ

≥ MB ⊗ Γ0Ω0Γ
T
0 − (BTηT ⊗ Γ0)(ηBΣ̃XB

TηT ⊗ Ω−1
0 )−1(ηB ⊗ ΓT

0 )

= BT (BΣ̃XB
T )−1B ⊗ Γ0Ω0Γ

T
0 − BTηT (ηBΣ̃XB

TηT )−1ηB ⊗ Γ0Ω0Γ
T
0

= BT (BΣ̃XB
T )−1/2(Id − P(BΣ̃XBT )1/2ηT )(BΣ̃XB

T )−1/2B ⊗ Γ0Ω0Γ
T
0 ≥ 0.

Therefore the reduced rank envelope estimator is more efficient than or as efficient as the reduced336

rank regression estimator. Finally, comparing the envelope estimator and the reduced rank envelope337
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estimator, we have338

1

4
Σ̃−1

X ⊗ Σ− 1

4
(Σ̃−1

X −MB)⊗ [Σ− Γη(ηTΩ−1η)−1ηTΓT ]− 1

4
MB ⊗ Γ0Ω0Γ

T
0

=
1

4
Σ̃−1

X ⊗ ΓΩΓT − 1

4
(Σ̃−1

X −MB)⊗ [ΓΩΓT − Γη(ηTΩ−1η)−1ηTΓT ]

=
1

4
Σ̃−1

X ⊗ ΓΩΓT − 1

4
(Σ̃−1

X −MB)⊗ (ΓΩΓT − ΓΩ1/2PΩ−1/2ηΩ
1/2ΓT ),

where PΩ−1/2η denotes the projection matrix onto the space spanned by the columns of Ω−1/2η. We339

have avar[
√
nvec(β̂E)] ≥ avar[

√
nvec(β̂RE)] since Σ̃−1

X −MB and ΓΩΓT − ΓΩ1/2PΩ−1/2ηΩ
1/2ΓT

340

are both semi-positive definite. Therefore the reduced rank envelope model yields the most efficient341

estimator compared to all the other models.342

6 Selections of rank and envelope dimension343

For the reduce rank regression, we choose d using the same sequential test as in [7]. To test the344

null hypothesis d = d0, the test statistic is T (d0) = (n − p − 1)
∑min(p,r)

i=d0+1 λ
2
i , where λi is the ith345

largest eigenvalue of the matrix Σ̂
1/2
X β̂T

stdΣ̂
−1/2
Y |X , Σ̂X denotes the sample covariance matrix of X346

and Σ̂Y |X denotes the sample covariance matrix of the residuals from the OLS fit of Y on X . The347

reference distribution is a chi-squared distribution with degrees of freedom (p − d0)(r − d0). We348

start with d0 = 0, and increase d0 if the null hypothesis is rejected. We choose the smallest d0 that349

is not rejected. For the envelope model, we can apply information criterion such as AIC or BIC to350

select the dimension u. The information criterion requires the log likelihood function. We use the351

actual log likelihood if g is known. If g is unknown, we substitute the normal log likelihood with352
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approximate weights353

lu0
= −1

2

n∑

i=1

log |cXi
Σ̂| − 1

2

n∑

i=1

[Yi − Ȳ − β̂(Xi − X̄)]T Σ̂−1[Yi − Ȳ − β̂(Xi − X̄)],

where β̂ and Σ̂ are the envelope estimators obtained using the algorithm in Section 4.4 with u = u0,354

0 ≤ u0 ≤ r. Then u is chosen as the one that minimizes −2lu+ kN(δ), where N(δ) is the number355

of parameter of the envelope at dimension u (see Section 4.1) and k is the penalty which takes 2 in356

AIC and log(n) in BIC.357

The reduced rank envelope model has two parameters d and u. We first choose d using the same358

sequential test as in the reduced rank regression. If d is chosen to be r, then we have u = d = r. If d359

is chosen to be d0 < r, we then compute the information criterion, AIC or BIC, for u = d0, · · · , r,360

the same way as for the envelope model. We pick the u that minimizes the information criterion.361

7 Simulations362

In this section, we report results from the numerical experiments to compare the performance of363

the estimators derived under the elliptically contoured distribution, the estimators derived using364

the normal likelihood and the estimators derived using the approximate weights. The simulation in365

Section 7.1 is in the context of the envelope model and the simulation in Section 7.2 is in the context366

of the reduced rank envelope model. Sections 7.1 and 7.2 focus on estimation performance and367

Section 7.3 focuses on prediction performance. For simplicity, we call the envelope model derived368

in [8] as basic envelope model, and the reduced rank envelope model derived in [7] as basic reduced369

rank envelope model.370
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7.1 Envelope model371

In this simulation, we investigate the estimation performance of our estimators in the context of372

envelope model. We fixed p = 5, r = 20 and u = 4. The predictors were generated independently373

from uniform (0, 5) distribution, (Γ,Γ0) was obtained by orthogonalizing an r by r matrix of374

independent uniform (0, 1) variates, and elements in ξ were independent standard normal variates.375

The errors were generated from the multivariate t-distribution with mean 0, degrees of freedom 5376

and Σ = σ2ΓΓT + σ2
0Γ0Γ

T
0 , where σ = 2 and σ0 = 5. The intercept µY was zero. The sample377

size was varied from 100, 200, 400, 800 and 1600. For each sample size, we generated 10000378

replications. For each data set, we computed the OLS estimator, the basic envelope estimator,379

the envelope estimator with exact weights (the weights are computed from the true g) and the380

envelope estimator derived with the approximate weights. The estimation standard deviations of381

two randomly selected elements in β are displayed in Figure 1. In the left panel, the basic envelope382

model is more efficient than the OLS estimator. But the envelope estimators with exact weights and383

approximate weights achieve even more efficiency gains. The right panel indicates that the basic384

envelope model can be similar or even less efficient than the OLS estimator, while the envelope385

estimators with the exact weights or approximate weights are always more efficient than the OLS386

estimator. For example, at sample size 1600, the ratios of the estimation standard deviation of the387

OLS estimator versus that of the basic envelope estimator for all elements in β range from 0.800 to388

2.701, with an average of 1.372. The ratios of the OLS estimator over the envelope estimator with389

exact weights range from 1.111 to 3.536, with an average of 1.823. If the approximate weights390

are used, the ratios of the estimation standard deviation of the OLS estimator over the envelope391

estimator range from 1.301 to 3.467, with an average of 1.903. The performance of the envelope392
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estimator with approximate weights are very similar to the estimator with exact weights, as also393

demonstrated in Figure 1. Sometimes it can be even a little more efficient than the envelope394

estimator with exact weights since it is data adaptive, as indicated in the right panel. Figure 1 also395

confirms the asymptotic distribution derived in Section 5, and the envelope estimator with exact396

weights is
√
n-consistent. We have computed the bootstrap standard deviation for each estimator,397

and found that it is a good approximation to the actual estimation standard deviation. The results398

are not shown in the figure for better visibility.399
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Figure 1: Estimation standard deviation versus sample size for two randomly selected elements in

β. Line — marks the envelope estimator with approximate weights, line −∗− marks the envelope

estimator with exact weights, line - - marks the basic envelope estimator and line · · · marks the

OLS estimator. The horizontal solid line at the bottom marks the asymptotic standard deviation of

the envelope estimator with exact weights.

The average of absolute bias and MSE of the estimators in Figure 1 are included in Figure 2400

and Figure 3 respectively. We notice that the estimation variance is the main component of the401

MSE. And the pattern of the MSE in Figure 3 is similar to the pattern of the estimation standard402

deviation in Figure 1.403

The results in Figure 1 are based on known dimension of the envelope subspace. However,404

the dimension u is usually unknown in applications. Therefore we look into the performance of405
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Figure 2: Average absolute bias versus sample size for two randomly selected elements in β. The

line types are the same as in Figure 1.
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Figure 3: Average MSE versus sample size for two randomly selected elements in β. The line

types are the same as in Figure 1.

the dimension selection criteria discussed in Section 6. For the 200 replications, we computed406

the fraction that a criterion selects the true dimension. The results are summarized in Table 1.407

When AIC or BIC are not selecting the true dimension, we find that they always overestimate408

the dimension. This will cause a loss of some efficiency gains, but it does not introduce bias in409

estimation. When the exact weights are used, BIC is a consistent selection criterion. AIC is too410

conservative and selects a bigger dimension most of the time. When the approximate weights are411
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Exact Weights Approximate Weights

AIC BIC AIC BIC

n = 100 14.4% 81.6% 10.0% 39.8%

n = 200 14.2% 90.2% 14.7% 26.0%

n = 400 13.9% 95.1% 21.3% 31.9%

n = 800 13.7% 96.3% 28.0% 36.4%

n = 1600 14.4% 98.1% 33.8% 42.6%

Table 1: Fraction of the time that selects the true dimension.

used, BIC tends to overestimate the dimension of the envelope subspace, but we can still achieve412

efficiency gains and have a smaller MSE than the standard model, as indicated in Figure 4. When413

exact weights are used, the estimation standard deviation and MSE of the envelope estimator are414

very close to those of the envelope estimator with known dimension, due to the consistency of BIC.415
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Figure 4: Estimation standard deviations and MSEs for a randomly selected element in β. Left

panel: Estimation standard deviation versus sample size. Right panel: MSE versus sample size.

Line −∗− marks the envelope estimator with dimension selected by BIC using exact weights, line

— marks the envelope estimator with dimension selected by BIC using approximate weights, line

- - marks the envelope estimator with known dimension and exact weights, and line · · · marks the

OLS estimator.

We also investigate the performance of our estimators under normality. We repeated the sim-416

ulations with the same settings except that the errors were generated from a multivariate normal417

distribution. The results are summarized in Figure 5. From the plot, we notice that the estima-418
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tion standard deviations and MSEs of the basic envelope estimator and the envelope estimators419

with “exact” weights (i.e., the weights computed from t distribution) and approximate weights are420

almost indistinguishable. In this example, using the weights derived from t distribution or approx-421

imate weights does not cause a notable loss of efficiency in the normal case. This may be because422

that the approximate weights are computed from data, and therefore are data adaptive. For the423

“exact” weights, although it depends on the error distribution, it also has a data-dependent part424

(see Section 4.3). Therefore, these estimators do not lose much efficiency when the true distribu-425

tion is normal. The performance of the dimension selection criteria is similar to that in Table 1,426

except that the BIC with “exact” weights selects the true dimension less frequently and the BIC427

with approximate weights selects the true dimension slightly more frequently.
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Figure 5: Estimation standard deviations and MSEs for a randomly selected element in β. Left

panel: Estimation standard deviation versus sample size. Right panel: MSE versus sample size.

The line types are the same as in Figure 1.
428

7.2 Reduced rank envelope model429

This simulation studies the estimation performance of different estimators in the context of the430

reduced rank envelope model. We set r = 10, p = 5, d = 2 and u = 3. The matrix (Γ,Γ0) was431
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obtained by normalizing an r by r matrix of independent uniform (0, 1) variates. The elements in432

η and B were standard normal variates, Σ = σ2ΓAATΓT + σ2
0Γ0Γ

T
0 , where σ = 0.4, σ0 = 0.1433

and elements in A were N(0, 1) variates. The elements in the predictor vector X are independent434

uniform (0, 1) variates. The errors are generated from normal mixture distribution of two normal435

distributions N(0, 2Σ) and N(0, 0.1Σ) with probability 0.5 and 0.5. We varied the sample size436

from 100, 200, 400, 800 and 1600. For each sample size, we generated 10000 replications and com-437

puted the OLS estimator, the basic reduced rank envelope estimator and the reduced rank envelope438

estimator with exact weights (weights derived from the true error distribution) and approximate439

weights (Section 4.4). The estimation standard deviation for a randomly chosen element in β is440

displayed in the left panel of Figure 6. We notice that the basic reduced rank envelope estimator441

does not gain much efficiency compared to the OLS estimator. For example, with sample size 100,442

the standard deviation ratios of the OLS estimator versus the basic reduced rank envelope estimator443

range from 0.94 to 3.26 with an average of 1.42. The reduced rank envelope estimator computed444

from the exact weights obtains the most efficiency gains. When the sample size is 100, the ra-445

tios of the OLS estimator versus the reduced envelope estimator with exact weights range from446

2.37 to 12.00 with an average of 3.98. This indicates that correctly specifying the structure of the447

error distribution will provide efficiency gains in estimation. However, we do not know the exact448

weights in practice. Figure 6 shows that the estimator computed from the approximate weights still449

provides substantial efficiency gains. The ratios of the OLS estimator versus the reduced envelope450

estimator with approximate weights range from 1.63 to 8.79 with an average of 2.77. Although451

the estimator with approximate weights is not as efficient as the estimator with exact weights, it is452

still more efficiency than the basic reduced rank envelope estimator or the OLS estimator. We also453

computed the bootstrap standard deviation of the estimators from 10000 residual bootstraps, and454
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included the results in the right panel of Figure 6. The bootstrap standard deviation seems to be a455

good estimator of the actual estimation standard deviation. Therefore we compare the efficiency456

of different estimators using bootstrap standard deviations in applications.457
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Figure 6: Estimation standard deviation and bootstrap standard deviation for a randomly selected

element in β. Left panel: Estimation standard deviation only. Right panel: Estimation standard

deviation with bootstrap standard deviation imposed. Line — marks the reduced rank envelope

estimator with exact weights, line − · − marks the reduced rank envelope estimator with approxi-

mate weights, line - - marks the basic reduced rank envelope estimator and line · · · marks the OLS

estimator. The lines with circles mark the bootstrap standard deviations for the corresponding

estimator.

We investigated the bias and the MSE of the estimators. The results are summarized in Fig-458

ure 7. Comparing the scale of the estimation standard deviation and the bias, we notice that for all459

estimators, the estimation standard deviation is the major component of MSE. Therefore the MSEs460

follow a similar trend as the estimation standard deviation. From the absolute bias plot, we notice461

that the OLS estimator and the basic reduced rank envelope estimator are more biased than the re-462

duced rank envelope estimators with true and approximate weights. Figures 6 and 7 together show463

that we obtain a less biased and more efficiency estimator by considering the error distribution.464

Now we look into the performance of the sequential test, AIC and BIC discussed in Section 6 in465

the selection of d and u. We used the same context as that generated Figures 6 and 7, and computed466
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Figure 7: Average absolute bias and MSE for a randomly selected element in β. Left panel: Bias

versus sample size. Right panel: MSE versus sample size. The line types are the same as in

Figure 6.

the fraction that a criterion selects the true dimension (out of 200 replications). The significance467

level for the sequential test was set at 0.01. The results are summarized in Table 2. The fraction that468

the sequential test chooses the true d approaches 99% as the sample size becomes large. When the469

exact weights are used, BIC performs better since it is a consistent selection criterion. AIC tends470

to be conservative and always selects a bigger dimension. When the approximate weights are used,471

AIC and BIC tend to overestimate the dimension of the envelope subspace. Overestimation causes472

a loss of efficiency, but it retains the useful information. Based on this result, we use BIC to choose473

u in applications. We compared the estimators with known and selected dimension as we did in474

Figure 4 of Section 7.1. The pattern is the same as in Figure 4, the reduced rank envelope estimator475

with dimension selected by BIC using approximate weights loses some efficiency compared to the476

estimator with known dimension and exact weights, but it is still notably more efficient than the477

estimator with the basic reduced rank envelope estimator.478

We repeated the simulation with the same setting as in Figure 6, but the errors were gener-479

ated from the multivariate normal distribution N(0, 2Σ). The results are included in the Online480
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Selection of d Exact weights Approximate weights

Sequential test AIC BIC AIC BIC

n = 100 96.3% 71.3% 97.1% 11.4% 12.2%

n = 200 98.1% 77.0% 99.0% 18.1% 19.0%

n = 400 98.6% 79.3% 99.7% 24.9% 26.6%

n = 800 98.9% 81.6% 99.8% 28.2% 31.1%

n = 1600 98.8% 83.5% 99.8% 26.0% 29.3%

Table 2: Fraction of the time that selects the true dimension.

Supplement.481

7.3 Prediction482

By modeling the error distribution, the efficiency gains in estimation often lead to improvements483

in prediction accuracy. In this section, we report the results of two numerical studies on prediction484

performance, one under the context of the envelope model and the other one under the context of485

the reduced rank envelope model.486

We first generated the data from the envelope model (5). We set p = 5, r = 5, u = 3 and487

n = 25. The predictors were independent uniform (0, 4) random variates. The coefficients had488

the structure β = Γξ, where elements in ξ were independent standard normal random variates489

and (Γ,Γ0) were obtained by orthogonalizing an r × r matrix of uniform (0, 1) variates. The490

errors were generated from the multivariate t-distribution with mean 0, degrees of freedom 5 and491

Σ = σ2ΓΓT + σ2
0Γ0Γ

T
0 , where σ = 0.9 and σ0 = 2. We used 5-fold cross validation to evaluate492

the prediction error, and the experiment was repeated for 50 random splits. The prediction error493

was computed as

√
(Y − Ŷ )T (Y − Ŷ ), where Ŷ was the predicted value based on the estimators494

calculated form the training data. The average prediction error for 50 random splits were calculated495

for the OLS estimator, basic envelope estimator, the envelope estimator with exact weights and the496
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envelope estimator with approximate weights. Results were summarized in Figure 8. The average497

prediction error for the OLS estimator is 8.34. We notice that the basic envelope estimator always498

has a larger prediction error than the OLS estimator for all u and its prediction error at u = 3499

is 8.46. This indicates that by misspecifying the error distribution, we can also have a worse500

performance on prediction. The predictor error for the envelope estimator with exact weights501

achieves its minimum 7.49 at the u = 3. Compared to the OLS estimator, the envelope estimator502

with exact weights reduces the prediction error by 10.2%. The estimator with approximate weights503

achieves its minimum prediction error 7.21 at u = 3, which is a 14.8% reduction compare with the504

OLS estimator. In this example, the estimator with approximate weights gives a better prediction505

than the estimator with exact weights. This might be explained by the fact that we have a small506

sample size and the approximate weights are more adaptive to the data.
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Figure 8: Prediction error versus u. Line — marks the envelope estimator with exact weights, line

− · − marks the reduced rank envelope estimator with approximated weights, line - - marks the

basic reduced rank envelope estimator and line · · · marks the OLS estimator.

507
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In the second numerical study, data were simulated from the reduced rank envelope model508

(6). We set p = 5, r = 10, d = 2, u = 3 and n = 30. The predictors were independent509

uniform (0, 1) random variates, and the errors were normal mixture random variates from two510

normal populationsN(0, 2Σ) andN(0, 0.1Σ) with probability 0.5 and 0.5. Here Σ has the structure511

Σ = σ2ΓAATΓT + σ2
0Γ0Γ

T
0 , where σ = 0.4, σ0 = 0.1 and elements in A were standard normal512

random variates. The regression coefficients β has the structure β = ΓηB, where elements in B513

and η were independent standard normal random variates, and (Γ,Γ0) was obtained by normalizing514

an r× r matrix of independent uniform (0, 1) random variates. We computed the prediction errors515

of the OLS estimator, basic reduced rank envelope estimator, the reduced rank envelope estimators516

with true and approximate weights for u from d to r − 1. The prediction errors were calculated517

based on 5-fold cross validation with 50 random splits of the data. The results are included in518

Figure 9. The prediction error of the OLS estimator is 1.35. The basic reduced rank envelope519

estimator achieves its minimum prediction error 1.20 at u = 7, although the prediction errors520

for u ≥ 3 are all quite close. Compared to the OLS estimator, the basic reduced rank envelope521

estimator reduced the prediction error by 11.1%. The reduced rank envelope estimator with exact522

weights achieves it minimum prediction error 1.14 at u = 6, which is a 15.6% reduction compared523

to the OLS estimator. The reduced rank envelope estimator with approximate weights achieves524

it minimum prediction error 1.11 at u = 5, which is a 17.8% reduction compared to the OLS525

estimator. In this numerical study, although the basic envelope estimator shows better prediction526

performance than the OLS estimator; by taking the error distribution into account, we can further527

improve the prediction performance.528

From the simulation results, it seems that when the true gY |X is unknown, it is best to use the529

approximate weights.530
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Figure 9: Prediction error versus u. Line — marks the envelope estimator with exact weights, line

−·− marks the reduced rank envelope estimator with approximate weights, line - - marks the basic

reduced rank envelope estimator and line · · · marks the OLS estimator.

8 Examples531

8.1 The concrete slump test data532

The slump flow of concrete depends on the components of the concrete. This dataset contains 103533

records on various mix proportions [49], where the initial data set included 78 records and 25 new534

records were added later. The input variables are cement, fly ash, slag, water, super plasticizer,535

coarse aggregate and fine aggregate. They are ingredients of concrete and are measured in kilo536

per cubic meter concrete. The output variables are slump, flow and 28-day compressive strength.537

We use the first 78 records as training set and the new 25 records as testing set. The prediction538

error of the OLS estimator is 25.0. We fit the basic envelope model to the data, and BIC suggested539

u = 2. The bootstrap standard deviation ratios of the OLS estimator versus the basic envelope540

estimator range from 0.985 to 1.087 with an average of 1.028. This indicates that the basic enve-541
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lope model does not yield much efficiency gains in this data. The prediction error for the basic542

envelope estimator is 24.2, which is quite close to that of the OLS estimator. From the discus-543

sion in Section 7, we find that when the error distribution is unknown, the approximate weights544

is adaptive to the data and gives good estimation and prediction results. We fit the data with the545

reduced rank envelope estimator with approximate weights. The sequential test selected d = 2 and546

BIC inferred u = 2. So the reduced rank envelope estimator degenerates to the envelope estimator547

with approximate weights. The bootstrap standard deviation ratios of the OLS estimator versus the548

envelope estimator with approximate weights range from 4.925 to 118.2 with an average of 55.57,549

which suggests a substantial efficiency gain. This is also confirmed by prediction performance:550

The prediction error is 12.27 for the envelope estimator with approximate weight. This is a 51%551

reduction compared to the prediction error of the OLS estimator, and a 49% reduction compared552

to the basic envelope estimator. This example shows that by considering the error structure of the553

data, we achieve efficiency gains and also obtain better prediction performance.554

8.2 Vehicle data555

The vehicle data contains measurements for various characteristics for 30 vehicles from different556

makers, e.g. Audi, Dodge, Honda, etc. The data is found in the R package plsdepot [44], and is557

used as an example to illustrate methods for partial least squares regression. Following [44], we558

use price in dollars, insurance risk rating, fuel consume (miles per gallon) in city and fuel consume559

in highway as responses. The predictors are indicators for turbo aspiration, vehicles with two doors560

and hatchback body-style, car length, width and height, curb weight, engine size, horsepower and561

peak revolutions per minute. This data set does not come with a natural testing set, so we used562
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5-fold cross validation with 50 random splits to evaluate the prediction performance. We scale the563

data so that all variables have unit standard deviation. This is because the range of the response564

variables are very different, for example, price in dollars ranges from 5348 to 37038 while the565

fuel consume in city ranges from 15 to 38. If the original scale is used, the prediction error is566

dominated by price in dollars. The prediction error for the OLS estimator is 1.70. Then we fit the567

reduced rank envelope estimator with approximate weights. The sequential test selected d = 2568

and BIC suggested u = 3. The prediction error is 1.52, which is a 10.6% reduction compared569

to that of the OLS estimator. The basic reduced rank envelope estimator with u = 3 and d = 2570

has prediction error 1.64, which is a 3.5% reduction compared to that of the OLS estimator. The571

bootstrap standard deviation ratios of the OLS estimator versus the basic reduced rank envelope572

estimator range from 0.919 to 1.844 with an average of 1.277. And the bootstrap standard deviation573

ratios of the OLS estimator versus the reduced rank envelope estimator with approximate weights574

range from 0.862 to 1.734 with an average of 1.289. In this case, the estimation standard deviation575

of the two estimators are similar. However, since the basic reduced rank envelope estimator has a576

larger bias due to misspecification of the error structure, the reduced rank envelope estimator with577

approximate weights gives a better prediction performance.578
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Technical details583

The proofs of the results stated in these paper as well as some additional simulation results are584

available online in the Online Supplement.585
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