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Envelopes of Legendre curves in the unit tangent bundle
over the Euclidean plane

Masatomo Takahashi

May 9, 2016

Abstract

For singular plane curves, the classical definitions of envelopes are vague. In order to
define envelopes for singular plane curves, we introduce a one-parameter family of Legen-
dre curves in the unit tangent bundle over the Euclidean plane and the curvature. Then
we give a definition of an envelope for the one-parameter family of Legendre curves. We
investigate properties of the envelopes. For instance, the envelope is also a Legendre curve.
Moreover, we consider bi-Legendre curves and give a relationship between envelopes.

1 Introduction

Envelopes are classical object in the differential geometry. There are many applications of
envelopes to differential geometry, differential equations and physics, for instance [4, 5, 7, 9, 10,
15, 16, 18, 20]. An envelope of a family of curves in the plane is a curve that is ”tangent” to each
member of the family at some point. If the curves are regular, then the tangent is well-defined.
However, the definitions of envelopes are vague for singular plane curves (smooth curves with
singular points). In this paper, we would like to clarify the definition of the envelope for a family
of singular curves. As singular curves, we consider Legendre curves in the unit tangent bundle
over R2, see Appendix A (cf. [8]). The basic results on the singularity theory see [2, 4, 14, 17].
In §2, we quickly review on the definitions of envelopes which are given by implicit functions
[3, 4, 12] and parametric curves [11, 19]. In §3, we consider one-parameter families of Legendre
curves. We give a moving frame and the curvature of the one-parameter family of Legendre
curves. Then we show that the existence and uniqueness theorem for one-parameter families of
Legendre curves. In §4, we define an envelope of a one-parameter family of Legendre curves.
Then the envelope is also a Legendre curve and hence we give a curvature of the envelope as
a Legendre curve. Moreover, we give relationships between the envelopes given by implicit
functions and one-parameter family of Legendre curves. In §5, we define a bi-Legendre curve
as a special class of one-parameter family of Legendre curves and give a relationship between
envelopes.

All maps and manifolds considered here are differential of class C∞.

2010 Mathematics Subject classification: 58K05, 53A04
Key Words and Phrases. envelope, one-parameter family of Legendre curves, Legendre curve.
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2 Previous results

Let R2 be the Euclidean plane equipped with the inner product a · b = a1b1 + a2b2, where
a = (a1, a2), b = (b1, b2) ∈ R2.

We review two definitions of envelopes for one-parameter family of plane curves. These are
given by implicit functions and parametrized curves. Here we denote these envelopes by EI

and EP respectively. Other related definitions of envelopes see [3, 19, 21].

Let F : V × Λ → R, (x, y, λ) 7→ F (x, y, λ) be a smooth function, where V is a domain in
R2, and Λ is an interval or R. A family of curves in the plane is given by Γλ = {(x, y) ∈
V | F (x, y, λ) = 0} for each λ ∈ Λ. Then one of the classical definition of the envelope is as
follows, see for instance [3, 4]:

Definition 2.1 The envelope of the family F is the set EI of points given by

EI =

{
(x, y) ∈ V | for some λ ∈ Λ, F (x, y, λ) =

∂F

∂λ
(x, y, λ) = 0

}
.

If F (x, y, λ) = (∂F/∂λ)(x, y, λ) = 0, we say that (x, y) ∈ EI with respect to λ.

On the other hand, let γ : I × Λ → R2 be a one-parameter family of smooth parametrized
curves, and let ep : U → I × Λ, ep(u) = (t(u), λ(u)) be a regular curve, where I,Λ and U are
intervals or R. We denote Γλ(t) = γ(t, λ) and EP (u) = γ ◦ ep(u).

Definition 2.2 ([11, Page 138]) We call EP an envelope (and ep a pre-envelope) for the family
γ, when the following conditions are satisfied.

(i) The function λ is non-constant on any non-trivial subinterval of U . (The Variability Con-
dition.)

(ii) For all u, the curve EP is tangent at u to the curve Γλ(u) at the parameter t(u), meaning

that the tangent vectors E ′
P (u) = (dEP/du)(u) and Γ̇λ(u)(t(u)) = (dΓλ(u)/dt)(t(u)) are linearly

dependent. (The Tangency Condition.)

We say that the singular set of γ : I × Λ → R2, γ(t, λ) = (x(t, λ), y(t, λ)) is the subset of
the domain I × Λ defined by

det (γt(t, λ), γλ(t, λ)) = det

(
xt(t, λ) yt(t, λ)
xλ(t, λ) yλ(t, λ)

)
= 0. (1)

Here we denote γt(t, λ) = (∂γ/∂t)(t, λ) = (xt(t, λ), yt(t, λ)) and γλ(t, λ) = (∂γ/∂λ)(t, λ) =
(xλ(t, λ), yλ(t, λ)). Then the envelope theorem is as follows:

Theorem 2.3 ([11, Page 140]) Let γ : I ×Λ → R2 be a family of parametrized curves, and let
ep : U → I×Λ be a regular curve satisfying the variability condition. Then ep is a pre-envelope
of γ (and EP is an envelope) if and only if the trace of ep lies in the singular set of γ.

2



We consider one-parameter families of 3/2-cusps as examples. Other examples see [3, 11].

Example 2.4 Let F : R2 × R → R, F (x, y, λ) = (x − λ)3 − y2. Since (∂F/∂λ)(x, y, λ) =
−3(x− λ)2, the envelope is given by EI = {(λ, 0)|λ ∈ R}.

Let γ : R × R → R2, γ(t, λ) = (t2 + λ, t3). Since (1), we have −3t2 = 0. By Theorem
2.3, the pre-envelope and the envelope are given by ep : R → R × R, ep(u) = (0, u) and
EP : R → R2, E(u) = (u, 0).

Both cases, the envelopes are given by the x-axis, see Figure 1.

Example 2.5 Let F : R2 × R → R, F (x, y, λ) = x3 − (y − λ)2. Since (∂F/∂λ)(x, y, λ) =
−2(y − λ), the envelope is given by EI = {(0, λ)|λ ∈ R}.

Let γ : R × R → R2, γ(t, λ) = (t2, t3 + λ). Since (1), we have 2t = 0. By Theorem
2.3, the pre-envelope and the envelope are given by ep : R → R × R, ep(u) = (0, u) and
EP : R → R2, EP (u) = (0, u).

Both cases, the envelopes are given by the y-axis, see Figure 2. However, in the sense of
limit tangent of the 3/2-cusp, y-axis is not tangent to the 3/2-cusps. Moreover, as a solution of
differential equations, the x-axis in Figure 1 is a singular solution of the ODE−y+((2/3)y′)3 = 0
and y-axis in Figure 2 is not a singular solution of the ODE −x+((2/3)y′)2 = 0 (cf. [15, 16, 20]).
We would like to distinguish as envelopes, see Examples 4.2 and 4.3 below.
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Figure 1. Figure 2.

3 One parameter families of Legendre curves

In this section, we consider one-parameter families of Legendre curves in the unit tangent
bundle T1S

2 = R2 × S1 over R2. The fundamental results for Legendre curves in the unit
tangent bundle over R2 see the Appendix or [8].

Definition 3.1 Let (γ, ν) : I × Λ → R2 × S1 be a smooth mapping. We say that (γ, ν) is a
one-parameter family of Legendre curves if γt(t, λ) · ν(t, λ) = 0 for all (t, λ) ∈ I × Λ.

Then (γ(·, λ), ν(·, λ)) : I → R2 × S1 is a Legendre curve for each fixed parameter λ ∈ Λ,
that is, (γ(·, λ), ν(·, λ)) is an integrable curve with respect to the canonical contact 1-form on
R2 × S1. Therefore, γ : I × Λ → R2 is a one-parameter family of frontals.

We denote J(a) = (−a2, a1) the anticlockwise rotation by π/2 of a vector a = (a1, a2). We
define µ(t, λ) = J(ν(t, λ)). Since {ν(t, λ),µ(t, λ)} is a moving frame along γ(t, λ) on R2, we
have the Frenet type formula.(

νt(t, λ)
µt(t, λ)

)
=

(
0 ℓ(t, λ)

−ℓ(t, λ) 0

)(
ν(t, λ)
µ(t, λ)

)
,(

νλ(t, λ)
µλ(t, λ)

)
=

(
0 m(t, λ)

−m(t, λ) 0

)(
ν(t, λ)
µ(t, λ)

)
3



and
γt(t, λ) = β(t, λ)µ(t, λ),

where ℓ(t, λ) = νt(t, λ) ·µ(t, λ),m(t, λ) = νλ(t, λ) ·µ(t, λ) and β(t, λ) = γt(t, λ) ·µ(t, λ). By the
integrability condition νtλ(t, λ) = νλt(t, λ), ℓ and m satisfies the condition

ℓλ(t, λ) = mt(t, λ) (2)

for all (t, λ) ∈ I ×Λ. We call the pair (ℓ,m, β) with the integrability condition (2) a curvature
of the one-parameter family of Legendre curves (γ, ν).

Remark 3.2 Let (γ, ν) : I × Λ → R2 × S1 be a one-parameter family of Legendre curves with
the curvature (ℓ,m, β). Then (γ,−ν) is also a one-parameter family of Legendre curves with
the curvature (ℓ,m,−β).

Example 3.3 (Example 2.4) Let (γ, ν) : R × R → R2 × S1, γ(t, λ) = (t2 + λ, t3), ν(t, λ) =
(4 + 9t2)−1/2(−3t, 2). Since γt(t, λ) = (2t, 3t2), νt(t, λ) = 6(4 + 9t2)−3/2(−2,−3t), νλ(t, λ) = 0
and µ(t, λ) = (4 + 9t2)−1/2(−2,−3t), (γ, ν) is a one-parameter family of Legendre curves with
the curvature (ℓ(t, λ),m(t, λ), β(t, λ)) = (6(4 + 9t2)−1, 0,−t(4 + 9t2)1/2).

Example 3.4 (Example 2.5) Let (γ, ν) : R × R → R2 × S1, γ(t, λ) = (t2, t3 + λ), ν(t, λ) =
(4 + 9t2)−1/2(−3t, 2). Since γt(t, λ) = (2t, 3t2), νt(t, λ) = 6(4 + 9t2)−3/2(−2,−3t), νλ(t, λ) = 0
and µ(t, λ) = (4 + 9t2)−1/2(−2,−3t), (γ, ν) is a one-parameter family of Legendre curves with
the curvature (ℓ(t, λ),m(t, λ), β(t, λ)) = (6(4 + 9t2)−1, 0,−t(4 + 9t2)1/2).

Definition 3.5 Let (γ, ν) and (γ̃, ν̃) : I ×Λ → R2 ×S1 be one-parameter families of Legendre
curves. We say that (γ, ν) and (γ̃, ν̃) are congruent as one-parameter family of Legendre curves
if there exist a constant rotation A ∈ SO(2) and a smooth translation mapping a : Λ → R2

such that γ̃(t, λ) = A(γ(t, λ)) + a(λ) and ν̃(t, λ) = A(ν(t, λ)) for all (t, λ) ∈ I × Λ.

We give the existence and uniqueness theorems for one-parameter families of Legendre
curves.

Theorem 3.6 (The Existence Theorem for one-parameter families of Legendre curves.) Let
(ℓ,m, β) : I × Λ → R3 be a smooth mapping with the integrability condition. There exists a
one-parameter family of Legendre curves (γ, ν) : I × Λ → R2 × S1 whose associated curvature
is (ℓ,m, β).

Proof. Let (t0, λ0) ∈ I × Λ be fixed. We define a smooth mapping θ : I × Λ → R by

θ(t, λ) =

∫ t

t0

ℓ(t, λ)dt+

∫ λ

λ0

m(t0, λ)dλ.

Then θ satisfy the conditions θt(t, λ) = ℓ(t, λ) and θλ(t, λ) = m(t, λ). We define a smooth
mapping (γ, ν) : I × Λ → R2 × S1 by

γ(t, λ) =

(
−
∫
β(t, λ) sin θ(t, λ)dt,

∫
β(t, λ) cos θ(t, λ)dt

)
,

ν(t, λ) = (cos θ(t, λ), sin θ(t, λ)) .

By a direct calculation, (γ, ν) is a one-parameter family of Legendre curves with the curvature
(ℓ,m, β). 2
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Theorem 3.7 (The Uniqueness Theorem for one-parameter families of Legendre curves.) Let
(γ, ν) and (γ̃, ν̃) : I × Λ → R2 × S1 be one-parameter families of Legendre curves with the

curvatures (ℓ,m, β) and (ℓ̃, m̃, β̃) respectively. Then (γ, ν) and (γ̃, ν̃) are congruent as one-

parameter family of Legendre curves if and only if (ℓ,m, β) and (ℓ̃, m̃, β̃) coincides.

Proof. Suppose that (γ, ν) and (γ̃, ν̃) are congruent as one-parameter families of Legendre
curves. By a direct calculation, we have

γ̃t(t, λ) =
∂

∂t
(A(γ(t, λ)) + a(λ)) = A(γt(t, λ)) = β(t, λ)A(µ(t, λ)) = β(t, λ)µ̃(t, λ),

ν̃t(t, λ) =
∂

∂t
(A(ν(t, λ))) = A(νt(t, λ)) = ℓ(t, λ)A(µ(t, λ)) = ℓ(t, λ)µ̃(t, λ),

ν̃λ(t, λ) =
∂

∂λ
(A(ν(t, λ))) = A(νλ(t, λ)) = m(t, λ)A(µ(t, λ)) = m(t, λ)µ̃(t, λ).

Therefore the curvatures (ℓ,m, β) and (ℓ̃, m̃, β̃) coincides.

Conversely, suppose that (ℓ,m, β) and (ℓ̃, m̃, β̃) coincides. Let (t0, λ0) ∈ I ×Λ be fixed. By
using a congruence as one-parameter family of Legendre curves, we may assume γ(t0, λ0) =

γ̃(t0, λ0) and ν(t0, λ0) = ν̃(t0, λ0). Moreover, we have θ(t, λ) = θ̃(t, λ) for all (t, λ) ∈ I × Λ in
the proof of Theorem 3.6. It follows from the construction that we have ν(t, λ) = ν̃(t, λ), and
γ(t, λ) = γ̃(t, λ) up to a smooth translation mapping a(λ) for all (t, λ) ∈ I × Λ. 2

4 Envelopes of Legendre curves

Let (γ, ν) : I × Λ → R2 × S1 be a one-parameter family of Legendre curves with the curvature
(ℓ,m, β), and let eL : U → I × Λ, eL(u) = (t(u), λ(u)) be a smooth curve. We denote Γλ(t) =
γ(t, λ) and EL = γ ◦ eL(u). Note that we don’t assume eL is a regular curve, see section 2.

Definition 4.1 We call EL an envelope (and eL a pre-envelope) for the family of Legendre
curves (γ, ν), when the following conditions are satisfied.

(i) The function λ is non-constant on any non-trivial subinterval of U .(The Variability Condi-
tion.)

(ii) For all u the curve EL is tangent at u to the curve Γλ(u) at the parameter t(u), meaning
that E ′

L(u) and µ(t(u), λ(u)) are linearly dependent. (The Tangency Condition.)

Note that the tangency condition is equivalent to the condition E ′
L(u) · ν(eL(u)) = 0 for all

u ∈ U .

Example 4.2 (Example 3.3) Let (γ, ν) : R × R → R2 × S1, γ(t, λ) = (t2 + λ, t3), ν(t, λ) =
(4 + 9t2)−1/2(−3t, 2). Let eL : R → R × R, eL(u) = (t(u), λ(u)) = (0, u). Then EL(u) =
γ ◦ eL(u) = (u, 0). Since λ′(u) = 1 and E ′

L(u) · ν(0, u) = 0, EL is an envelope of (γ, ν).

Example 4.3 (Example 3.4) Let (γ, ν) : R × R → R2 × S1, γ(t, λ) = (t2, t3 + λ), ν(t, λ) =
(4 + 9t2)−1/2(−3t, 2). Let eL : R → R × R, eL(u) = (t(u), λ(u)) = (0, u). Then EL(u) =
γ ◦ eL(u) = (0, u) and λ′(u) = 1. Since E ′

L(u) · ν(0, u) = 1 ̸= 0, EL is not an envelope of (γ, ν).
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Proposition 4.4 Let (γ, ν) : I×Λ → R2×S1 be a one-parameter family of Legendre curves with
the curvature (ℓ,m, β). Suppose that eL : U → I×Λ is a pre-envelope and EL = γ◦eL : U → R2

is an envelope of (γ, ν). Then EL is a frontal. More preciously, (EL, ν ◦ eL) : U → R2 × S1 is
a Legendre curve with the curvature

ℓE(u) = t′(u)ℓ(eL(u)) + λ′(u)m(eL(u)),

βE(u) = t′(u)β(eL(u)) + λ′(u)γλ(eL(u)) · µ(eL(u)).

Proof. We denote eL(u) = (t(u), λ(u)). Since EL is an envelope, E ′
L(u) · ν(eL(u)) = 0 for

all u ∈ U . It follows that (EL, ν ◦ eL) : U → R2 × S1 is a Legendre curve. Then ℓE(u) =
(d/du)(ν(eL(u))) · µ(eL(u)) = (t′(u)νt(eL(u)) + λ′(u)νλ(eL(u))) · µ(eL(u)) = t′(u)ℓ(eL(u)) +
λ′(u)m(eL(u)) and βE(u) = (d/du)(γ(eL(u))) · µ(eL(u)) = (t′(u)γt(eL(u)) + λ′(u)γλ(eL(u))) ·
µ(eL(u)) = t′(u)β(eL(u)) + λ′(u)γλ(eL(u)) · µ(eL(u)). 2

We give the envelope theorem for one-parameter family of Legendre curves.

Theorem 4.5 Let (γ, ν) : I × Λ → R2 × S1 be a one-parameter family of Legendre curves,
and let eL : U → I × Λ be a smooth curve satisfying the variability condition. Then eL is a
pre-envelope of (γ, ν) (and EL is an envelope) if and only if γλ(eL(u)) · ν(eL(u)) = 0 for all
u ∈ U .

Proof. Suppose that eL is a pre-envelope of (γ, ν). By the tangency condition, there exists
a function c(u) ∈ R such that E ′

L(u) = c(u)µ(eL(u)). By differentiate EL(u) = γ ◦ eL(u),
we have E ′

L(u) = t′(u)γt(eL(u)) + λ′(u)γλ(eL(u)). It follows from γt(t, λ) = β(t, λ)µ(t, λ) that
(t′(u)β(eL(u))−c(u))µ(eL(u))+λ′(u)γλ(eL(u)) = 0. Then we have λ′(u)γλ(eL(u))·ν(eL(u)) = 0.
By the variability condition, we have γλ(eL(u)) · ν(eL(u)) = 0 for all u ∈ U .

Conversely, suppose that γλ(eL(u)) · ν(eL(u)) = 0 for all u ∈ U . Since E ′
L(u) · ν(eL(u)) =

(t′(u)γt(eL(u)) + λ′(u)γλ(eL(u))) · ν(eL(u)) = 0, eL is a pre-envelope of (γ, ν). 2

Example 4.6 Let i, j,m, n, j, k be natural numbers with j = i+ h, n = m+ k. Moreover, we
take h = 1 or k = 1, or h, k are relatively prime numbers. Let (γ, ν) : R× R → R2 × S1,

γ(t, λ) =

(
tm

m
+
λi

i
,
tn

n
+
λj

j

)
, ν(t, λ) =

1√
t2k + 1

(−tk, 1).

Since γt(t, λ) = (tm−1, tn−1), we have γt(t, λ) · ν(t, λ) = 0 for all (t, λ) ∈ R × R. Moreover,
since γλ(t, λ) = (λi−1, λj−1), we have γλ(t, λ) · ν(t, λ) = (λi−1/

√
t2k + 1)(−tk + λh). If we take

eL : R → R× R, eL(u) = (uh, uk), then the variability condition holds. Furthermore, since

γλ(eL(u)) · ν(eL(u)) =
uk(i−1)

√
u2kh + 1

(−uhk + uhk) = 0,

eL is a pre-envelope of (γ, ν) by Theorem 4.5. Hence, the envelope (EL, νL) : R → R2 × S1 is
given by

EL(u) =

(
umh

m
+
uik

i
,
unh

n
+
ujk

j

)
, νL(u) =

1√
u2kh + 1

(−ukh, 1).

Proposition 4.7 Let (γ, ν) : I × Λ → R2 × S1 be a one-parameter family of Legendre curves.
Suppose that eL : U → I × Λ is a pre-envelope and EL = γ ◦ eL is an envelope of (γ, ν). Then
eL : U → I × Λ is also a pre-envelope and EL = γ ◦ eL is also an envelope of (γ,−ν).
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Proof. By Remark 3.2, (γ,−ν) is also a one-parameter family of Legendre curves. It follows
from Theorem 4.5 that we have the same pre-envelopes and the envelopes of (γ, ν) and (γ,−ν).
2

Definition 4.8 We say that a map Φ : Ĩ × Λ̃ → I ×Λ is a one-parameter family of parameter
change if Φ is a diffeomorphism and given by the form Φ(s, k) = (ϕ(s, k), φ(k)).

Proposition 4.9 Let (γ, ν) : I × Λ → R2 × S1 be a one-parameter family of Legendre curves.

Suppose that eL : U → I×Λ is a pre-envelope, EL = γ◦eL is an envelope and Φ : Ĩ×Λ̃ → I×Λ
is a one-parameter family of parameter change. Then (γ̃, ν̃) = (γ ◦Φ, ν ◦Φ) : Ĩ × Λ̃ → R2 × S1

is also a one-parameter family of Legendre curves. Moreover, Φ−1 ◦ eL : U → Ĩ × λ̃ is a
pre-envelope and EL is also an envelope of (γ̃, ν̃).

Proof. Since γ̃s(s, k) = ϕs(s, k)γt(Φ(s, k)) and γt(t, λ) · ν(t, λ) = 0 for all (t, λ) ∈ I × Λ,

we have γ̃s(s, k) · ν̃(s, k) = 0 for all (s, k) ∈ Ĩ × Λ̃. Therefore, (γ̃, ν̃) is a one-parameter
family of Legendre curves. By the form of the diffeomorphism Φ(s, k) = (ϕ(s, k), φ(k)), Φ−1 :

I × Λ → Ĩ × Λ̃ is given by the form Φ−1(t, λ) = (ψ(t, λ), φ−1(λ)). It follows that Φ−1 ◦
eL(u) = (ϕ(t(u), λ(u)), φ−1(λ(u))). Since (d/du)φ−1(λ(u)) = φ−1

λ (λ(u))λ′(u), the variability
condition holds. Moreover, we have γ̃k(s, k) · ν̃(s, k) = (γt(Φ(s, k))ϕk(s, k) + γλ(Φ(s, k))φ

′(k)) ·
ν(Φ(s, k)) = φ′(k)γλ(Φ(s, k)) · ν(Φ(s, k)). It follows that γ̃k(Φ

−1 ◦ eL(u)) · ν̃(Φ−1 ◦ eL(u)) =
φ′(φ−1(λ(u)))γλ(eL(u)) · ν(eL(u)) = 0. By Theorem 4.5, Φ−1 ◦ eL is a pre-envelope of (γ̃, ν̃).
Therefore, γ̃ ◦ Φ−1 ◦ eL = γ ◦ Φ ◦ Φ−1 ◦ eL = γ ◦ eL = EL is also an envelope of (γ̃, ν̃). 2

We give a relationship between envelopes which are given by implicit functions (Definition
2.1) and one-parameter families of Legendre curves.

Proposition 4.10 Let (γ, ν) : I ×Λ → R2×S1 be a one-parameter family of Legendre curves,
and let F (x, y, λ) = 0 be an implicit function of the one-parameter family of frontals, that is,
F (x(t, λ), y(t, λ), λ) = 0, where γ(t, λ) = (x(t, λ), y(t, λ)). If eL : U → I × Λ is a pre-envelope
and EL : U → R2 is an envelope of (γ, ν), then EL(U) ⊂ EI .

Proof. By differentiate F (x(t, λ), y(t, λ), λ) = 0, we have

xt(t, λ)Fx(x(t, λ), y(t, λ), λ) + yt(t, λ)Fy(x(t, λ), y(t, λ), λ) = 0

and

xλ(t, λ)Fx(x(t, λ), y(t, λ), λ) + yλ(t, λ)Fy(x(t, λ), y(t, λ), λ) + Fλ(x(t, λ), y(t, λ), λ) = 0.

Equivalently, γt(t, λ) · (Fx, Fy)(x(t, λ), y(t, λ), λ) = 0 and γλ(t, λ) · (Fx, Fy)(x(t, λ), y(t, λ), λ) +
Fλ(x(t, λ), y(t, λ), λ) = 0. Since (γ, ν) is a one-parameter family of Legendre curves, there
exists a function c(t, λ) such that (Fx, Fy)(x(t, λ), y(t, λ), λ) = c(t, λ)ν(t, λ). Moreover, eL(u) =
(t(u), λ(u)) is a pre-envelope of (γ, ν), we have γλ(eL(u)) · ν(eL(u)) = 0 for all u ∈ U . It follows
that Fλ(x(t(u), λ(u)), y(t(u), λ(u)), λ(u)) = 0. Therefore, we have E(u) = γ ◦ eL(u) ∈ EI with
respect to λ(u) for all u ∈ U . 2

In order to consider the converse result, we need the following lemma and proposition.

Lemma 4.11 Let a, b : U → R2 be smooth maps. Suppose that the set of non-zero points of
smooth function k : U → R is dense in U . If k(u)a(u) and b(u) are linearly dependent, then
a(u) and b(u) are linearly dependent for all u ∈ U .
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Proof. Since det(k(u)a(u), b(u)) = 0, we have k(u)det(a(u), b(u)) = 0. By the condition and
continuous property, we have det(a(u), b(u)) = 0 for all u ∈ U . 2

Proposition 4.12 Let (γ, ν) : I × Λ → R2 be a one-parameter family of Legendre curves, and
let eL : U → I × Λ be a smooth curve satisfying the variability condition. If the set of regular
points of γ on eL(U) is dense in U and the trace of eL lies in the singular set of γ, then eL is
a pre-envelope of (γ, ν) (and EL is an envelope).

Proof. Since eL(u) belong to the singular set of γ, we have det(γt(eL(u)), γλ(eL(u))) = 0 for
all u ∈ U . Therefore γt(eL(u)) = β(eL(u))µ(eL(u)) and γλ(eL(u)) are linearly dependent. By
the assumption, the set of non-zero points of β ◦ eL is dense in U . It follows from Lemma 4.11
that µ(eL(u)) and γλ(eL(u)) are linearly dependent. Therefore γλ(eL(u)) · ν(eL(u)) = 0 for all
u ∈ U . By Theorem 4.5, eL is a pre-envelope of (γ, ν). 2

Proposition 4.13 Let (γ, ν) : I ×Λ → R2×S1 be a one-parameter family of Legendre curves,
and let F (x, y, λ) = 0 be an implicit function of the one-parameter family of frontals, that
is, F (x(t, λ), y(t, λ), λ) = 0, where γ(t, λ) = (x(t, λ), y(t, λ)). Let eL : U → I × Λ, e(u) =
(t(u), λ(u)) be a smooth curve satisfying the variability condition. If the set of regular points of
γ on eL(U) is dense in U , EL(u) = γ ◦ eL(u) ∈ EI with respect to λ(u) and

(Fx, Fy)(x(t(u), λ(u)), y(t(u), λ(u)), λ(u)) ̸= (0, 0)

for all u ∈ U , then eL is a pre-envelope of (γ, ν) (and EL is an envelope).

Proof. By differentiate F (x(t, λ), y(t, λ), λ) = 0, we have

xt(t, λ)Fx(x(t, λ), y(t, λ), λ) + yt(t, λ)Fy(x(t, λ), y(t, λ), λ) = 0

and

xλ(t, λ)Fx(x(t, λ), y(t, λ), λ) + yλ(t, λ)Fy(x(t, λ), y(t, λ), λ) + Fλ(x(t, λ), y(t, λ), λ) = 0.

SinceEL(u) = γ◦eL(u) ∈ EI with respect to λ(u), we have Fλ(x(t(u), λ(u)), y(t(u), λ(u)), λ(u)) =
0. It follows that(

xt(t(u), λ(u)) yt(t(u), λ(u))
xλ(t(u), λ(u)) yλ(t(u), λ(u))

)(
Fx(x(t(u), λ(u)), y(t(u), λ(u)), λ(u))
Fy(x(t(u), λ(u)), y(t(u), λ(u)), λ(u))

)
=

(
0
0

)
.

Then the trace of eL lies in the singular set of γ. By Proposition 4.12, eL is a pre-envelope of
(γ, ν). 2

We give interesting examples of envelopes of one-parameter families of Legendre curves by
using two Legendre curves. Also see [6, 9, 10].

Let (p, νp) : I → R2 × S1 and (q, νq) : Λ → R2 × S1 be Legendre curves with the curvature
(ℓp, βp) and (ℓq, βq) respectively, see Appendix A. We denote

p(t) = (p1(t), p2(t)), νp(t) = (νp1(t), νp2(t)),µp(t) = (−νp2(t), νp1(t)),

q(λ) = (q1(λ), q2(λ)), νq(λ) = (νq1(λ), νq2(λ)),µq(λ) = (−νq2(λ), νq1(λ)),
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respectively. Suppose that p(0) = (0, 0) and νp(0) = (0, 1).

We define (γ, ν) : I × Λ → R2 × S1 by

γ(t, λ) = q(λ) + A(θ(λ))p(t), ν(t, λ) = A(θ(λ))νp(t), (3)

where θ : Λ → R and

A(θ(λ)) =

(
cos θ(λ) − sin θ(λ)
sin θ(λ) cos θ(λ)

)
.

By a direct calculation, (γ, ν) is a one-parameter family of Legendre curves.

First, we consider a Legendre curve p along a Legendre curve q which satisfying the both unit
normal vectors coincide. Suppose that ν(0, λ) = νq(λ). This means that the unit normal vector
of γ at (0, λ) coincide with the unit normal vector of q at λ. It follows that cos θ(λ) = νq2(λ)
and sin θ(λ) = −νq1(λ). By a direct calculation, we have γλ(t, λ) · ν(t, λ) = −βq(λ)νp1(t) −
ℓq(λ)p(t) · µp(t). By a corollary of Theorem 4.5, we have the following.

Corollary 4.14 Under the above notations, let (γ, ν) be given by (3) with the conditions p(0) =
(0, 0), νp(0) = (0, 1) and ν(0, λ) = νq(λ). Let eL : U → I × Λ be a smooth curve satisfying the
variability condition. If βq(λ(u))νp1(t(u)) + ℓq(λ(u))p(t(u)) · µp(t(u)) = 0, then eL is a pre-
envelope of (γ, ν) (and EL is an envelope).

Note that eL(u) = (0, u) is a pre-envelope of (γ, ν). Thus, EL(u) = q(λ) is always an
envelope of (γ, ν).

Second, we consider a Legendre curve p along a Legendre curve q which satisfying the unit
normal vector of p coincide with the tangent vector of q. Suppose that ν(0, λ) = µq(λ). This
means that the unit normal vector of γ at (0, λ) coincide with the unit tangent vector of q at
λ. It follows that cos θ(λ) = νq1(λ) and sin θ(λ) = νq2(λ). By a direct calculation, we have
γλ(t, λ) · ν(t, λ) = βq(λ)νp2(t) − ℓq(λ)p(t) · µp(t). By a corollary of Theorem 4.5, we have the
following.

Corollary 4.15 Under the above notations, let (γ, ν) be given by (3) with the conditions p(0) =
(0, 0), νp(0) = (0, 1) and ν(0, λ) = µq(λ). Let eL : U → I × Λ be a smooth curve satisfying
the variability condition. If βq(λ(u))νp2(t(u)) − ℓq(λ(u))p(t(u)) · µp(t(u)) = 0, then eL is a
pre-envelope of (γ, ν) (and EL is an envelope).

Example 4.16 Let (p, νp) : [0, 2π) → R2 × S1 be an astroid p(t) = (cos3 t− 1, sin3 t), νp(t) =
(sin t, cos t) and (q, νq) : [0, 2π) → R2 × S1 be the unit circle q(λ) = (cosλ, sinλ), νq(λ) =
(cosλ, sinλ), see Figure 3. Then we have βp(t) = 3 cos t sin t, ℓp(t) = −1, βq(λ) = 1 and
ℓq(λ) = 1. Moreover, the conditions p(0) = (0, 0) and νp(0) = (0, 1) are satisfied.

First, we consider a Legendre curve p along a Legendre curve q which satisfying the both
unit normal vectors coincide. By (3) and the condition ν(0, λ) = νq(λ), the one-parameter
family of Legendre curves (γ, ν) : [0, 2π)× [0, 2π) → R2 × S1 is given by

γ(t, λ) =

(
cosλ
sinλ

)
+

(
sinλ cosλ

− cosλ sinλ

)(
cos3 t− 1
sin3 t

)
,

ν(t, λ) =

(
sinλ cosλ

− cosλ sinλ

)(
sin t
cos t

)
.
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By a direct calculation, we have γλ(t, λ) ·ν(t, λ) = −4 cos(t−(π/4)) cos((t/2)−(π/4)) sin t/2. It
follows that eL : [0, 2π) → [0, 2π)× [0, 2π), eL(u) = (0, u), (3π/4, u), (3π/2, u), (7π/4, u) are pre-
envelopes of (γ, ν) respectively, by Corollary 4.14. Therefore, the envelopes EL : [0, 2π) → R2

of (γ, ν) are given by EL(u) = (cosu, sinu), (
√
2 + (1/2))(cos(u+ π/4), sin(u+ π/4)), (cos(u+

π/2), sin(u+ π/2)), (
√
2− (1/2))(cos(u+ π/4), sin(u+ π/4)), respectively see Figure 4 left.

Second, we consider a Legendre curve p along a Legendre curve q which satisfying the unit
normal vector of p coincide with the tangent vector of q. By (3) and the condition ν(0, λ) =
µq(λ) = (− sinλ, cosλ), the one-parameter family of Legendre curves (γ, ν) : [0, 2π)× [0, 2π) →
R2 × S1 is given by

γ(t, λ) =

(
cosλ
sinλ

)
+

(
cosλ − sinλ
sinλ cosλ

)(
cos3 t− 1
sin3 t

)
,

ν(t, λ) =

(
cosλ − sinλ
sinλ cosλ

)(
sin t
cos t

)
.

By a direct calculation, we have γλ(t, λ) · ν(t, λ) = cos 2t. It follows that eL : [0, 2π) → [0, 2π)×
[0, 2π), eL(u) = (π/4, u), (3π/4, u), (5π/4, u), (7π/4, u) are pre-envelopes of (γ, ν) respectively,
by Corollary 4.15. Therefore the envelopes EL : [0, 2π) → R2 of (γ, ν) are given by EL(u) =
(1/2)(cos(u+π/4), sin(u+π/4)), (1/2)(cos(u+3π/4), sin(u+3π/4)), (1/2)(cos(u+5π/4), sin(u+
5π/4)), (1/2)(cos(u+ 7π/4), sin(u+ 7π/4)), respectively see Figure 4 right.
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Figure 4.

5 Bi-Legendre curves and envelopes

We consider a special class of one-parameter families of Legendre curves. Let (γ, ν) : I × Λ →
R2 × S1 be a smooth mapping.

Definition 5.1 We say that (γ, ν) : I×Λ → R2×S1 is a bi-Legendre curve if γt(t, λ)·ν(t, λ) = 0
and γλ(t, λ) · ν(t, λ) = 0 for all (t, λ) ∈ I × Λ.
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Then (γ, ν) is a one-parameter family of Legendre curves with respect to both parameters t
and λ. We define µ(t, λ) = J(ν(t, λ)). Since {ν(t, λ),µ(t, λ)} is a moving frame along γ(t, λ),
we have the Frenet type formula.(

νt(t, λ)
µt(t, λ)

)
=

(
0 ℓ(t, λ)

−ℓ(t, λ) 0

)(
ν(t, λ)
µ(t, λ)

)
,(

νλ(t, λ)
µλ(t, λ)

)
=

(
0 m(t, λ)

−m(t, λ) 0

)(
ν(t, λ)
µ(t, λ)

)
,

γt(t, λ) = β(t, λ)µ(t, λ),

γλ(t, λ) = α(t, λ)µ(t, λ),

where

ℓ(t, λ) = νt(t, λ) · µ(t, λ), m(t, λ) = νλ(t, λ) · µ(t, λ),
β(t, λ) = γt(t, λ) · µ(t, λ), α(t, λ) = γλ(t, λ) · µ(t, λ).

By the integrability conditions νtλ(t, λ) = νλt(t, λ), γtλ(t, λ) = γλt(t, λ), ℓ,m, β, α satisfies the
conditions

ℓλ(t, λ) = mt(t, λ), βλ(t, λ) = αt(t, λ), ℓ(t, λ)α(t, λ) = m(t, λ)β(t, λ) (4)

for all (t, λ) ∈ I × Λ. We call the pair (ℓ,m, β, α) with the integrability conditions (4) a
curvature of the bi-Legendre curve (γ, ν).

Definition 5.2 Let (γ, ν) and (γ̃, ν̃) : I × Λ → R2 × S1 be bi-Legendre curves. We say that
(γ, ν) and (γ̃, ν̃) are congruent as bi-Legendre curves if there exist a constant rotation A ∈ SO(2)
and a translation a on R2 such that γ̃(t, λ) = A(γ(t, λ)) + a and ν̃(t, λ) = A(ν(t, λ)) for all
(t, λ) ∈ I × Λ.

Theorem 5.3 (The Existence Theorem for bi-Legendre curves.) Let (ℓ,m, β, α) : I ×Λ → R4

be a smooth mapping with the integrability conditions. There exists a bi-Legendre curve (γ, ν) :
I × Λ → R2 × S1 whose associated curvature is (ℓ,m, β, α).

Proof. Let (t0, λ0) ∈ I × Λ be fixed. We define a smooth mapping θ : I × Λ → R by

θ(t, λ) =

∫ t

t0

ℓ(t, λ)dt+

∫ λ

λ0

m(t0, λ)dλ.

Then θ satisfy the conditions θt(t, λ) = ℓ(t, λ) and θλ(t, λ) = m(t, λ). We also define a smooth
mapping (x, y) : I × Λ → R2 by

x(t, λ) = −
∫ t

t0

β(t, λ) sin θ(t, λ)dt−
∫ λ

λ0

α(t0, λ) sin θ(t0, λ)dλ

y(t, λ) =

∫ t

t0

β(t, λ) cos θ(t, λ)dt+

∫ λ

λ0

α(t0, λ) cos θ(t0, λ)dλ.

By the integrability condition (4), we have

xt(t, λ) = −β(t, λ) sin θ(t, λ), xλ(t, λ) = −α(t, λ) sin θ(t, λ),
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yt(t, λ) = β(t, λ) cos θ(t, λ), yλ(t, λ) = α(t, λ) cos θ(t, λ).

We define a smooth mapping (γ, ν) : I × Λ → R2 × S1 by

γ(t, λ) = (x(t, λ), y(t, λ)) , ν(t, λ) = (cos θ(t, λ), sin θ(t, λ)) .

By a direct calculation, (γ, ν) is a bi-Legendre curve with the curvature (ℓ,m, β, α). 2

Theorem 5.4 (The Uniqueness Theorem for bi-Legendre curves.) Let (γ, ν) and (γ̃, ν̃) :

I × Λ → R2 × S1 be bi-Legendre curves with the curvatures (ℓ,m, β, α) and (ℓ̃, m̃, β̃, α̃) re-
spectively. Then (γ, ν) and (γ̃, ν̃) are congruent as bi-Legendre curves if and only if (ℓ,m, β, α)

and (ℓ̃, m̃, β̃, α̃) coincides.

Proof. Suppose that (γ, ν) and (γ̃, ν̃) are congruent as bi-Legendre curves. By a direct calcu-
lation, we have

γ̃t(t, λ) =
∂

∂t
(A(γ(t, λ)) + a) = A(γt(t, λ)) = β(t, λ)A(µ(t, λ)) = β(t, λ)µ̃(t, λ),

γ̃λ(t, λ) =
∂

∂λ
(A(γ(t, λ)) + a) = A(γλ(t, λ)) = α(t, λ)A(µ(t, λ)) = α(t, λ)µ̃(t, λ),

ν̃t(t, λ) =
∂

∂t
A(ν(t, λ)) = A(νt(t, λ)) = ℓ(t, λ)A(µ(t, λ)) = ℓ(t, λ)µ̃(t, λ),

ν̃λ(t, λ) =
∂

∂λ
A(ν(t, λ)) = A(νλ(t, λ)) = m(t, λ)A(µ(t, λ)) = m(t, λ)µ̃(t, λ).

Therefore the curvatures (ℓ,m, β, α) and (ℓ̃, m̃, β̃, α̃) coincides.

Conversely, suppose that (ℓ,m, β, α) and (ℓ̃, m̃, β̃, α̃) coincides. Let (t0, λ0) ∈ I×Λ be fixed.
By using a congruence as bi-Legendre curves, γ(t0, λ0) = γ̃(t0, λ0) and ν(t0, λ0) = ν̃(t0, λ0).

Moreover, we have θ(t, λ) = θ̃(t, λ) in the proof of Theorem 5.3. It follows from the construction
that ν(t, λ) = ν̃(t, λ) and γ(t, λ) = γ̃(t, λ) for all (t, λ) ∈ I × Λ. 2

Let (γ, ν) : I × Λ → R2 × S1 be a bi-Legendre curve. Then (γ, ν) is a one-parameter
family of Legendre curves with respect to the parameter λ. We denote a smooth map eL :
U → I × Λ, eL(u) = (t(u), λ(u)). Since γλ(t, λ) · ν(t, λ) = 0 for all (t, λ) ∈ I × Λ, we have
γλ(eL(u)) · ν(eL(u)) = 0 for all u ∈ U . If the function λ is non-constant on any non-trivial
subinterval of U , then EL = γ ◦ eL is an envelope of (γ, ν) with respect to the parameter λ by
Theorem 4.5. Moreover, (γ, ν) is also a one-parameter family of Legendre curves with respect to
the parameter t. Since γt(t, λ) ·ν(t, λ) = 0 for all (t, λ) ∈ I×Λ, we have γt(eL(u)) ·ν(eL(u)) = 0
for all u ∈ U . If the function t is non-constant on any non-trivial subinterval of U , then
EL = γ ◦ eL is an envelope of (γ, ν) with respect to the parameter t by Theorem 4.5. Summary
we have the following result.

Proposition 5.5 Let (γ, ν) : I×Λ → R2×S1 be a bi-Legendre curve. If eL : U → I×Λ, eL(u) =
(t(u), λ(u)) satisfy the conditions that the functions t and λ are non-constant on any non-trivial
subinterval of U , then EL = γ ◦ eL is an envelope of (γ, ν) with respect to the both parameter t
and λ respectively.

Let (γ, ν) : I × Λ → R2 × S1 be a bi-Legendre curve. Since γt(t, λ) = β(t, λ)µ(t, λ) and
γλ(t, λ) = α(t, λ)µ(t, λ), we have det(γt(t, λ), γλ(t, λ)) = 0 for all (t, λ) ∈ I × Λ. It follows that
for any (t, λ) ∈ I × Λ are singular points of γ : I × Λ → R2. Hence, at a rank 1 point, the
image of γ is a curve at least locally. We give a concrete example of bi-Legendre curves.
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Example 5.6 Let k, n be natural numbers. We define (ℓ,m, β, α) : R × R → R4 by ℓ(t, λ) =
λk+1tk,m(t, λ) = λktk+1, β(t, λ) = λn+1tn, α(t, λ) = λntn+1. Then the integrability conditions
ℓλ(t, λ) = mt(t, λ), βλ(t, λ) = αt(t, λ), α(t, λ)ℓ(t, λ) = β(t, λ)m(t, λ) hold for all (t, λ) ∈ R × R.
It follows that θ(t, λ) = λk+1tk+1/(k+ 1). By the construction in the proof of Theorem 5.3, we
give a bi-Legendre curve (γ, ν) : I × Λ → R2 × S1,

γ(t, λ) = (x(t, λ), y(t, λ)) =

(
−
∫ t

0

λn+1tn sin

(
λk+1tk+1

k + 1

)
dt,

∫ λ

0

λn+1tn cos

(
λk+1tk+1

k + 1

)
dt

)
,

ν(t, λ) = (cos θ(t, λ), sin θ(t, λ)) =

(
cos

(
λk+1tk+1

k + 1

)
, sin

(
λk+1tk+1

k + 1

))
.

A Legendre curves in the unit tangent bundle

We quickly review on the theory of Legendre curves in the unit tangent bundle over R2, see
detail [8]. We say that (γ, ν) : I → R2×S1 is a Legendre curve if (γ, ν)∗θ = 0 for all t ∈ I, where
θ is a canonical contact form on the unit tangent bundle T1R2 = R2 × S1 over R2 (cf. [1, 2]).
This condition is equivalent to γ̇(t) ·ν(t) = 0 for all t ∈ I. We say that γ : I → R2 is a frontal if
there exists ν : I → S1 such that (γ, ν) is a Legendre curve. Examples of Legendre curves see
[13, 14]. We have the Frenet formula of a frontal γ as follows. We put on µ(t) = J(ν(t)). Then
we call the pair {ν(t),µ(t)} a moving frame of a frontal γ(t) in R2 and we have the Frenet
formula of a frontal (or, Legendre curve),(

ν̇(t)
µ̇(t)

)
=

(
0 ℓ(t)

−ℓ(t) 0

)(
ν(t)
µ(t)

)
, γ̇(t) = β(t)µ(t),

where ℓ(t) = ν̇(t) · µ(t) and β(t) = γ̇(t) · µ(t). We call the pair (ℓ, β) the curvature of the
Legendre curve.

Definition A.1 Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be Legendre curves. We say that (γ, ν)
and (γ̃, ν̃) are congruent as Legendre curves if there exist a constant rotation A ∈ SO(2) and a
translation a on R2 such that γ̃(t) = A(γ(t)) + a and ν̃(t) = A(ν(t)) for all t ∈ I.

Theorem A.2 (The Existence Theorem for Legendre curves.) Let (ℓ, β) : I → R2 be a smooth
mapping. There exists a Legendre curve (γ, ν) : I → R2 × S1 whose associated curvature of the
Legendre curve is (ℓ, β).

Theorem A.3 (The Uniqueness Theorem for Legendre curves.) Let (γ, ν) and (γ̃, ν̃) : I →
R2×S1 be Legendre curves with the curvatures of Legendre curves (ℓ, β) and (ℓ̃, β̃). Then (γ, ν)

and (γ̃, ν̃) are congruent as Legendre curves if and only if (ℓ, β) and (ℓ̃, β̃) coincides.

References

[1] V. I. Arnol’d, Singularities of Caustics and Wave Fronts. Mathematics and Its Applications 62
Kluwer Academic Publishers (1990).

[2] V. I. Arnol’d, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps vol.
I. Birkhäuser (1986).

13



[3] J. W. Bruce and P. J. Giblin, What is an envelope? Math. Gaz. 65 (1981), 186–192.

[4] J. W. Bruce and P. J. Giblin, Curves and Singularities. A geometrical introduction to singularity
theory. Second edition. Cambridge University Press, Cambridge, 1992.

[5] J. W. Bruce, P. J. Giblin and C. G. Gibson, Caustics through the looking glass. Math. Intelli-
gencer 6 (1984), 47–58.

[6] G. Capitanio, On the envelope of 1-parameter families of curves tangent to a semicubic cusp. C.
R. Math. Acad. Sci. Paris. 335 (2002), 249–254.

[7] S. Ei, K. Fujii, and T. Kunihiro, Renormalization-group method for reduction of evolution
equations; invariant manifolds and envelopes. Ann. Physics. 280 (2000), 236–298.

[8] T. Fukunaga and M. Takahashi, Existence and uniqueness for Legendre curves. J. Geom. 104
(2013), 297–307.

[9] T. Fukunaga and M. Takahashi, Evolutes of fronts in the Euclidean plane. J. Singul. 10 (2014),
92–107.

[10] T. Fukunaga and M. Takahashi, Evolutes and involutes of frontals in the Euclidean plane.
Demonstr. Math. 48 (2015), 147–166.

[11] C. G. Gibson, Elementary Geometry of Differentiable Curves. An undergraduate introduction.
Cambridge University Press, Cambridge, 2001.

[12] A. Gray, E. Abbena, and S. Salamon, Modern differential geometry of curves and surfaces with
Mathematica. Third edition. Studies in Advanced Mathematics. Chapman and Hall/CRC, Boca
Raton, FL, 2006

[13] G. Ishikawa, Zariski’s moduli problem for plane branches and the classification of Legendre curve
singularities. Real and complex singularities, World Sci. Publ., Hackensack, NJ, (2007), 56–84.

[14] G. Ishikawa, Singularities of Curves and Surfaces in Various Geometric Problems. CAS Lecture
Notes 10, Exact Sciences. 2015.

[15] S. Izumiya, Singular solutions of first-order differential equations, Bull. London Math. Soc. 26
(1994), 69–74.

[16] S. Izumiya, On Clairaut-type equations, Publ. Math. Debrecen 45 (1995), 159–166.

[17] S. Izumiya, M. C. Romero-Fuster, M. A. S. Ruas, F. Tari, Differential Geometry from a Singu-
larity Theory Viewpoint. World Scientific Pub. Co Inc. 2015.

[18] T. Kunihiro, A geometrical formulation of the renormalization group method for global analysis.
Progr. Theoret. Phys. 94 (1995), 503–514.

[19] J. W. Rutter, Geometry of Curves. Chapman & Hall/CRC Mathematics. Chapman & Hall/CRC,
Boca Raton, FL, 2000.

[20] M. Takahashi, On completely integrable first order ordinary differential equations, Proceedings
of the Australian-Japanese Workshop on Real and Complex singularities. (2007), 388–418.

[21] R. Thom, Sur la thorie des enveloppes. J. Math. Pures Appl. (9) 41 (1962), 177–192.

14



Masatomo Takahashi,
Muroran Institute of Technology, Muroran 050-8585, Japan,
E-mail address: masatomo@mmm.muroran-it.ac.jp

15


