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Transport phenomena at the nanoscale are of interest due to the presence of both quantum and classical

behavior. In this work, we demonstrate that quantum transport efficiency can be enhanced by a dynamical

interplay of the system Hamiltonian with pure dephasing induced by a fluctuating environment. This is in

contrast to fully coherent hopping that leads to localization in disordered systems, and to highly incoherent

transfer that is eventually suppressed by the quantum Zeno effect. We study these phenomena in the Fenna-

Matthews-Olson protein complex as a prototype for larger photosynthetic energy transfer systems. We also

show that disordered binary tree structures exhibit enhanced transport in the presence of dephasing.

PACS numbers: 03.65.Yz, 05.60.Gg, 71.35.-y, 03.67.-a

The dynamical behavior of a quantum system can be sub-

stantially affected by the interaction with a fluctuating envi-

ronment. Noise and decoherence collapse the quantum wave-

function, and one might be lead to expect an inhibitory effect

on, for example, quantum transport involving coherent hop-

ping of a (quasi-) particle between localized sites. One of

the most important classes of quantum transport is the en-

ergy transfer in molecular systems [1], for example in the

chromophoric light-harvesting complexes [2, 3]. The role

of the environment in chromophoric systems [4, 5, 6] and

model geometries [7] has been widely studied. The Haken-

Strobl model is used to describe Markovian bath fluctuations

[7, 8, 9]. Quantum transport can also be affected by the well-

known quantum localization [10, 11]. Energy mismatches

in disordered materials lead to destructive interference of the

wavefunction and subsequently to localization of the quan-

tum particle. Specifically, it has been argued that quantum

localization can seriously limit computational power and/or

quantum walk properties in binary tree structures [12], where

an exponential speed-up over a classical random walk can in

principle be observed [13]. Generally, the overall effect of

environment and static disorder is expected to be negative.

However, as we demonstrate here, in a large variety of trans-

port systems and under proper conditions, the interaction with

the environment can result in increased quantum transport ef-

ficiency.

In chromophoric complexes, an environment-assisted quan-

tum walk approach within a Redfield model involving relax-

ation and dephasing was suggested to explain the high en-

ergy transfer efficiency [14]. This approach was also used to

quantify the percentage contributions of quantum coherence

and environment-induced relaxation to the overall efficiency

[15]. Phonon-enhanced transfer has recently been reported

for two quantum dots within the Redfield theory including re-

laxation [16]. Measurement of a single site in a quantum-dot

array leads to complete delocalization of electrons in the one-

dimensional Anderson model [17]. Noise-induced enhance-

ment can also been seen in stochastic resonance [18], where

the quantum system is driven to a non-linear regime. The role

of pure dephasing in quantum localization was discussed in

[19, 20, 21, 22]. Several authors investigated quantum en-

tanglement in biological systems in the presence of dissipa-

FIG. 1: Quantum transport occurs in natural and engineered sys-

tems, for example: a) Energy transfer in photosynthetic complexes

between chlorophyll molecules, such as the Fenna-Matthews-Olson

protein complex, in which quantum coherence has been shown to

play a significant role in the exciton dynamics [2]. (b) Transport of

particles and/or information in artificial or engineered systems de-

scribed by a tight-binding Hamiltonian. Here, a four generation bi-

nary tree is shown. In particular, an exponential speed-up in reaching

certain target sites (red) in these structures has been proposed in the

context of quantum walk algorithms [13]. (The grey sites represent

initial states for the quantum transport.)

tive dynamics, reset mechanisms, and molecular oscillations

[23, 24].

Interactions of a quantum system with a thermal environ-

ment or measurement of an observable can lead to the Zeno

and anti-Zeno effects. In the Zeno effect [25], sometimes also

termed the ’watchdog effect’, repeated, fast measurement sup-

presses the free evolution governed by Schrödinger’s equa-

tion. The quantum system remains in an eigenstate of the

measurement operator. The anti-Zeno effect describes the op-

posite scenario [26, 27, 28]. Here, such interactions, if well

timed, accelerate certain processes, such as the decay of an

unstable state, compared to the unperturbed case.

In this work, we study the interaction between pure dephas-

ing noise and coherent dynamics that can result in greatly in-

creased efficiency of transport. Unlike stochastic resonance,

this enhancement occurs in undriven systems. The intuition is

ar
X

iv
:0

80
7.

09
29

v2
  [

qu
an

t-
ph

] 
 1

0 
Fe

b 
20

09



2

as follows: In a quantum system with some degree of disorder,

localization suppresses transport at low noise levels. By con-

trast, at very high noise levels, decoherence effectively pro-

duces a ‘watchdog effect’ that also suppresses transport. How-

ever, at intermediate noise levels coherence and decoherence

can collaborate to produce highly efficient transport. This en-

hancement holds even if the noise itself is purely decoher-

ing and can induce no transport on its own. We investigate a

general dephasing model of such environment-assisted quan-

tum transport (ENAQT) and apply that model to the Fenna-

Matthews-Olson complex and binary trees. For the Fenna-

Matthews-Olson complex we note that the pure-dephasing

model is highly idealized, since it ignores exciton relaxation

and temporal/spatial correlations in the environment. Within

these limitations, we show that the interplay between coher-

ence and decoherence leads to maximally efficient transport

at a noise level corresponding to ambient temperature.

Master equations for quantum transport. The tight-binding

Hamiltonian for an interacting N -body system in the presence

of a single excitation is given by [1]:

HS =

N
∑

m=1

ǫm|m〉〈m| +
N

∑

n<m

Vmn(|m〉〈n| + |n〉〈m|). (1)

This Hamiltonian applies to a large class of quantum transport

systems such as excitons and charges in molecular crystals

and quantum dots [29, 30]. The states |m〉 denote the excita-

tion being at site m. The site energies and two-body interac-

tions are given by ǫm and Vmn respectively. The site energies,

or static disorder, can be due to different local environments

of otherwise identical molecules or due to fabrication imper-

fections of engineered structures. For chromophores, the cou-

pling is mediated by the Coulomb interaction (Förster cou-

pling) or electron exchange (Dexter coupling). It is appropri-

ate to study the dynamics only in the single exciton manifold,

spanned by the states |m〉. This is because in the absence of

light-matter interaction events the number of excitons is con-

served within the exciton recombination time scale of 1 ns

[31], which is much longer than the usual time scales of the

Hamiltonian (1) [14, 32, 33].

A multichromophoric system interacts with the surround-

ing environment, such as the solvent or the protein, which is

usually a macroscopic system with many degrees of freedom.

This coupling leads to irreversible dynamics which is char-

acterized by relaxation of an exciton from a high- to a low-

energy state and dephasing of coherences. At ambient tem-

perature and in common photosynthetic complexes the energy

relaxation of an exciton occurs on a time scale of ∼ 1 ps, while

dephasing occurs on a time scale of ∼ 100 fs [9]. Thermal

fluctuations of the environment couple to the chromophores

by the electron-phonon Hamiltonian:

HSB(t) =
∑

m

qm(t)|m〉〈m|, (2)

where the qm(t) describe stochastic bath fluctuations. Here,

we consider only diagonal fluctuations which are typically

larger than fluctuations of the inter-molecular couplings [29,

33]. To a certain approximation, the decoherence part of the

resulting equation of motion for a multi-level system in the

presence of Markovian fluctuations is dominated by pure de-

phasing [8, 9]. This is especially the case at high tempera-

tures. The Liouville-von Neumann equation for the system

when averaging over the fluctuations is ρ̇(t) = − i
~
〈[HS +

HSB(t), ρ(t)]〉. The random variables qm(t) are taken to be

unbiased Gaussian fluctuations, with 〈qm(t)〉 = 0 and a two-

point correlation function [9, 29, 33]:

〈qm(t)qn(0)〉 = δmnδ(t)γφ, (3)

where γm is a site-dependent rate. First, we assumed that

fluctuations at different sites are uncorrelated. Second, we as-

sumed that the phonon correlation time is small compared to

the system timescales, an assumption that is justified at room

temperatures where the phonon correlation time is estimated

to be below 50 fs [9]. Finally, the correlator is assumed to

be site-independent, so all chromophores experience the same

coupling strength to the environment, γφ. With these assump-

tions, one obtains the Haken-Strobl equation for the density

operator in the Schrödinger picture as [8]:

ρ̇(t) = − i

~
[HS, ρ(t)] + Lφ(ρ(t)), (4)

where the pure-dephasing Lindblad operator is given by:

Lφ(ρ(t)) = γφ

∑

m

[Amρ(t)A†
m−1

2
AmA†

mρ(t)−1

2
ρ(t)AmA†

m].

(5)

with the generators Am = |m〉〈m| and a pure dephasing rate

is given by γφ. This Lindblad equation leads to exponential

decay of all coherences in the density operator.

Energy transfer efficiency and transport time. There are

several possible ways to measure or quantify the success rate

of an energy transfer process, such as energy transfer effi-

ciency and transfer time [32, 34, 35, 36]. First, in order to ac-

count for exciton recombination and exciton trapping, we aug-

ment the Hamiltonian (1) with anti-Hermitian parts [14, 37],

Hrecomb = −i~Γ
∑

m

|m〉〈m|, (6)

Htrap = −i~
∑

m

κm|m〉〈m|. (7)

The exciton recombines with a rate Γ at every site and is

trapped with a rate κm at certain molecules [7, 9, 34, 38].

The probability that the exciton is successfully captured at a

target site m within the time interval [t, t + dt] is given by

2κm〈m|ρ(t)|m〉dt. Thus, the efficiency can be defined as the

integrated probability of trapping at multiple sites as:

η = 2
∑

m

κm

∫ ∞

0

dt 〈m|ρ(t)|m〉. (8)

In general, the efficiency is reduced by finite exciton lifetimes

(∼ 1 ns). Another relevant measure for a quantum transport

process is the average transfer time defined as:

τ =
2

η

∑

m

κm

∫ ∞

0

dt t 〈m|ρ(t)|m〉. (9)
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The efficiency of quantum transport elucidates the shorter

time scales given by the trapping/recombination rates. This

approach differs from approaches that consider the limiting

distribution of site populations [13]. For example, the lim-

iting distribution of a pure-dephasing master equation, such

as Eq. (4) (i.e. without the trapping/recombination part), is an

equal population of all sites, which is the same as for a clas-

sical random walk on a regular graph [13]. The efficiency

captures the physically relevant shorter time scales.

Environment-assisted quantum transport (ENAQT). The ef-

ficiency of quantum transport in an open system can be sub-

stantially enhanced by the interaction with a fluctuating en-

vironment. The master equation (4) is a specific example of

a large class of transport master equations representing site-

to-site hopping situations. As noted above, the Hamiltonian

part of these master equations has a diagonal part represent-

ing the energies of the individual sites, while the off-diagonal

part represents hopping terms. The open-system Lindblad op-

erators in the master equation are dominated by terms that de-

phase the system in the site basis. Relaxation, another pos-

sible non-unitary contribution to the quantum transport in-

volving energy exchange with the environment, is rather slow

compared with dephasing. The dephasing rate is slow at low

temperatures, and fast at high temperatures. Based on fun-

damental physical principles, we can make the following set

of phenomenological predictions for such decohered quantum

evolution. As will be seen, these predictions are borne out

by the simulated behavior of the Fenna-Matthews-Olson com-

plex and in binary trees. We predict that the same generic

behavior will hold for decohered quantum walks in general.

At low temperatures, the dynamics is dominated by coher-

ent hopping. Because of the variation in the energy levels of

different sites and in the strength of the hopping terms, the

system is disordered and exhibits quantum localization [10].

The degree of localization depends on the variation in the en-

ergies: for small variation, the system should exhibit weak lo-

calization, and for large variation, strong localization should

take place. Note that the characteristic behavior of quantum

localization can occur even in a system with only a few sites

[39]. In this case, localization can be thought of in terms of

energy conservation: an excitonic state originally localized at

an initial site is a superposition of energy eigenstates that ex-

hibits only a slight overlap with an excitonic state localized

at a final state with significantly different site energy. As a

result, coherent hopping on its own has a low efficiency for

transporting an excitation from one site to another with sig-

nificantly different site energy.

As the temperature rises, dephasing comes into play. At

first, it might seem that dephasing in the site basis can have

no role in enhancing transport, as this form of noise induces

no transport on its own. A moment’s reflection, however, re-

veals that this expectation is incorrect. Localization is caused

by coherent interference between paths; if that coherence is

destroyed, then the localization effect is mitigated. Coherence

causes an excitation to become ‘stuck.’ It might oscillate back

and forth between a few sites that are strongly coupled and

have similar energies, but the exciton will never venture far

afield. By destroying the coherence of the beating, dephasing

also destroys the localization and allows the exciton to prop-

agate through the system. This phenomenon, by which deco-

herence enhances transport, affects all such hopping systems.

When the dephasing rate grows larger than the terms of

the system Hamiltonian we expect transport to be suppressed

again. This suppression of transport by high dephasing can be

thought of as an example of the watchdog (quantum Zeno) ef-

fect: rapid dephasing at a rate γφ in the site basis is equivalent,

so far as the system is concerned, to being measured repeat-

edly in the site basis at time intervals ≈ γ−1
φ . The watchdog

effect will then suppress transport away from the initial site.

While these predictions hold for a large class of transport sys-

tems, we study these effects for three different systems includ-

ing a two-chromophore system, the Fenna-Matthews-Olson

complex, and a binary tree structure.

Quantum transport in a two chromophore system. A par-

ticularly simple and illustrative example is to study quantum

transport in a system of two sites without trapping and re-

combination: a particle hops from site 1 to 2 with a signif-

icant energy mismatch between 1 and 2. With |1〉 and |2〉,
the states where the exciton is localized at site 1 and 2, re-

spectively, the Hamiltonian for such a system can be written

H = ǫ/2(|1〉〈1| − |2〉〈2|) + V/2(|1〉〈2| + |2〉〈1|), where ǫ is

the energy mismatch between 1 and 2, and V is the strength of

the hopping term. As usual, we define the Larmor frequency

~Ω =
√

ǫ2 + V 2. The coherent evolution of the system, start-

ing from site 1, is simply a rotation about an axis displaced

by an angle θ = sin−1(V/~Ω) from the z-axis in the x − z
plane. The maximum probability of finding the system at site

2 is sin2 2θ, and the average probability of finding it there is

sin2 θ. If the energy mismatch is sufficiently large, substantial

hopping does not occur and the system remains localized at

site 1.

In the presence of decoherence, the system obeys the Bloch

equation. Pure dephasing corresponds to a Lindblad operator√
γφ(|1〉〈1| − |2〉〈2|), where γφ = 1/Tφ. The conventional

Bloch analysis now holds. The system, instead of remaining

localized at site 1, gradually diffuses, ultimately becoming a

uniform mixture of |1〉 and |2〉. In the equilibrium state the

system has a 50% chance of being found at site 2. The diffu-

sion process can be thought of as a random walk on the Bloch

sphere with step length θ and with time per step γ−1
φ . Ac-

cordingly, the system must perform ≈ (π/θ)2 steps and the

diffusion time is τdiff ≈ (π/θ)2γ−1
φ to reach a steady state.

For a system with more than two sites, the transport will be

more complicated. Nevertheless, we still expect the transport

rate to increase in direct proportion to the inverse of the in-

dividual site decoherence time. This is indeed true if the de-

coherence time does not substantially exceed the time scales

defined by the transport terms in the Hamiltonian and the en-

ergy mismatch from site to site. This fact supports the second

prediction of environment-assisted quantum transport.

In the case of rapid dephasing, γφ > Ω, the angle φ that

the system precesses before being decohered is ≈ Ω/γφ.

The probability of remaining in site 1 becomes cos2 φ ≈
1 − (Ω/γφ)2. The system essentially performs a biased ran-

dom walk with step size φ and an average time per step of

(γφ/Ω)2γ−1
φ = γφ/Ω2. In time t, the system diffuses by an



4

angle Ω
√

t/γφ · Ω/γφ = Ω2t1/2γ
−3/2
φ . In the case that the

system has more than two states, we still expect this analy-

sis to hold, taking γφ to be the dephasing rate and Ω to be an

average eigenfrequency. This supports our third prediction:

as the dephasing rate grows larger than the Hamiltonian en-

ergy scale, the transport rate is suppressed by a polynomial

in the dephasing rate. The system will obviously converge to

the same statistical mixture as mentioned above, albeit on a

long and in some cases physically irrelevant time scale. These

general properties of ENAQT are also observed by the simula-

tions of the FMO complex and binary trees, where we include

recombination and trapping.

Quantum transport in Fenna-Matthews-Olson protein com-

plex. The Fenna-Matthews-Olson protein of the green sul-

phur bacterium Chlorobium tepidum [2, 29, 40] is a trimer

in which each of the three subunits has seven chlorophyll

molecules spatially arranged within a distance of several nm

[41]. The three subunits can be treated independently from

each other. The FMO complex transfers excitation energy

from the chlorosomes, the main light-harvesting antennae, to

a reaction center where a charge separation event and subse-

quent biochemical reactions occur. In analogy to the two-level

system discussed above, we expect the same environment-

assisted dynamical behavior in the FMO complex monomers.

The dynamics of a single excitation is governed by a Hamil-

tonian of the form Eq. (1) for seven sites with a distribution

of site energies and inter-site couplings as given in Ref. [29].

The chromophoric Förster couplings are up to 100 cm−1. The

chlorophyll transition frequencies are shifted by the electro-

static protein environment, resulting in site-dependent elec-

trochromic shifts of up to 300 cm−1 [33, 40]. Fluctuations

of the protein in the solvent lead to fluctuations of the tran-

sition frequency of the chlorophyll molecules and therefore

to loss of excitonic phase coherence. We use the master

Eq. (4) with a site-independent dephasing rate γφ according

to the Haken-Strobl model. This approach is not the standard

method for describing decoherence effects within the FMO

complex. Usually, relaxation [14, 29, 33] and spatial correla-

tions [33] are included. In fact, a more complete description

would also involve a phonon bath with memory effects. How-

ever, the Haken-Strobl model has already been used to de-

scribe the quantum dynamics of certain chromophoric arrays

[7, 9] and is expected to deliver insight into the high tempera-

ture behavior of the FMO protein.

The initial state for our simulation of the system is a statisti-

cal mixture of localized excitations at sites 1 and 6, the chloro-

phyll molecules that are close to the chlorosome antenna. In

the FMO complex, chromophore 3 is in the vicinity of the re-

action center [33, 40, 41]. Thus, one can assume that chloro-

phyll 3 is the main excitation donor to the reaction center [14].

The precise transfer rate to the reaction center is not fully char-

acterized. Yet, based on typical transfer rates in chromophoric

complexes with similar inter-molecular distances, we estimate

it to be κ3 = 1 ps−1 [14]. Thus, the efficiency of energy trans-

fer according to Eq. (8) becomes η = 2κ3

∫ ∞

0
dt〈3|ρ(t)|3〉.

In Fig. 2 (upper panel) the efficiency of transfer and the

transfer time is given as a function of the dephasing rate γφ.

At low dephasing, purely quantum mechanical evolution leads

FIG. 2: (Upper panel) Efficiency (blue) and transfer time (red) as a

function of the pure-dephasing rate is demonstrated for the Fenna-

Matthew-Olsen complex. A clear picture of the three dephasing

regimes is obtained: from left to right, the fully quantum regime

which is dominated by intrinsic static disorder in the system Hamil-

tonian; the ENAQT regime (qualitatively indicated by the yellow

color gradient), where unitary evolution and dephasing collaborate

with the result of increased efficiency; finally, the quantum Zeno

regime, where strong dephasing suppresses the quantum transport.

As a guide to the eye, the estimated dephasing rate at room tem-

perature for the FMO complex spectral density (see text) is drawn.

The trapping rate is κ3 = 1 ps−1. (Lower panel) Transfer time as a

function of dephasing rate and trapping rate κ3 is illustrated on a log

scale. The upper panel is indicated as a horizontal line.

to an efficiency of around 80%. With increasing dephasing

the efficiency increases considerably, up to 94%, where it ap-

proximately remains constant for a range of γφ of one order

of magnitude. For stronger dephasing the efficiency is slowly

suppressed again, delocalization is destroyed, and the overlap

with the target site vanishes. The transfer time is 75 ps in the

fully quantum limit and improves significantly to 7 ps in the

intermediate ENAQT regime. For large dephasing, the trans-

fer slows down to 500 ps, the same order of magnitude as the

excitation lifetime: the exciton is more likely to recombine
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than to be trapped.

One can estimate the dephasing rate as a function of tem-

perature by employing a standard system-reservoir model

[42]. In this context, the spectral density is given by

J(ω) =
∑

i ω2
i λ2

i δ(ω − ωi), where ωi are frequencies of

the harmonic-oscillator bath modes and λi are dimensionless

couplings to the respective modes. In the continuum limit,

we assume an Ohmic spectral density with cutoff, J(ω) =
ER

~ωc

ω exp(−ω/ωc). For the FMO complex, the reorganiza-

tion energy is found to be ER = 35 cm−1 [29] and the cut-

off ωc = 150 cm−1, inferred from Fig. 2 in Ref. [33]. In

the Markovian regime, the dephasing rate γφ is given as the

zero-frequency limit of the Fourier transform of the bath cor-

relator. As a result, γφ is found to be proportional to the tem-

perature and the derivative of the spectral density at vanishing

frequency, γφ(T ) = 2π kT
~

∂J(ω)
∂ω

∣

∣

∣

ω=0
[6, 42]. For the above

spectral density the rate turns out to be γφ(T ) = 2π kT
~

ER

~ωc

.

This gives a rough estimate for the dephasing rate at room

temperature of around 300 cm−1, which is indicated in Fig. 2.

Hence, the natural operating point of the FMO complex is es-

timated to be well within the regime of ENAQT, where the de-

phasing introduced by a fluctuating environment enhances the

energy transfer efficiency. In Fig. 2 (lower panel), the trans-

fer time is shown as a function of dephasing rate and trapping

time κ3. An optimal region with respect to dephasing rate and

trapping rate is obtained.

Quantum transport in binary tree structures. Binary trees

appear in a wide variety of situations, ranging from computer

science [43] to quantum physics and quantum information

science [13]. Specifically, they arise in classical and quan-

tum random walks [13] and certain molecular structures such

as dendrimers [44]. The effect of static disorder of the site

energies in quantum walks on binary trees has been stud-

ied in Refs. [12, 35] where it was argued that such disor-

der diminishes the exponential speed-up in finding particu-

lar target sites, a consequence of quantum localization. The

presence of disorder could restrict the applicability of binary

tree structures for devising quantum algorithms or for trans-

porting quantum particles. In this section, we demonstrate

that ENAQT also occurs in a statically disordered binary tree

structure leading to a substantial improvement in quantum

transport.

The Hamiltonian of a disordered graph of generation g is:

HS =

2g−1
∑

m=1

ǫm|m〉〈m| (10)

+V

2g−1−1
∑

m=1

(|m〉〈2m| + |m〉〈2m + 1| + h.c.).

The site energies ǫm are taken to be normally distributed about

a common value ǫ0, where the standard deviation of the distri-

bution, δ, is the characteristic parameter of the static disorder.

The hopping strength V is uniform over the full graph and

connects the sites as depicted in Fig. 1b for a four-generation

graph (15 sites). In the presence of static disorder, the full

Hilbert space has to be taken into account and consequently

a reduction to a quantum walk on the line, as in [12, 13], is

not possible. Additionally, we include exciton recombination

at all the sites and exciton trapping at the center site 1. Both

effects are again modeled by the anti-Hermitian Hamiltonians

Hrecomb = −i~Γ
∑2g−1

m=1 |m〉〈m| and Htrap = −i~κ|1〉〈1|,
with the recombination rate Γ and the trapping rate κ. This

defines the efficiency of transfer, Eq. (8). Dephasing is taken

to be uniform over the whole graph according to the master

equation 4. We assume an initial state where all the sites in

the outermost branch are populated in a classical mixture or a

coherent superposition.

Fig. 3 shows the dependence of the transport efficiency on

the characteristic disorder parameter δ for a fourth-generation

binary tree, initially in a coherent superposition (left) or a sta-

tistical mixture (right). The parameters are Γ = 0.005V and

κ = 2V . For a given δ the efficiencies are calculated for 100

randomized graphs. The purely quantum case (blue) is com-

pared to the case where the introduction of dephasing leads to

an optimal enhancement of the energy transfer efficiency (or-

ange). In the second case the efficiency of transport for each

statically disordered graph was numerically maximized as a

function the pure dephasing rate. In the figure, the broaden-

ing around the average efficiency indicates one standard de-

viation. For the initial state being a coherent superposition of

all sites in the outermost branch, one can clearly see that static

disorder leads to a reduced transport efficiency. This is readily

explained by localization, see discussion above and Ref. [12].

Dephasing leads to an average improvement of the transport

efficiency for the binary trees considered here. The average

improvement is larger the more static disorder is in the sys-

tem.

The behavior in the case of small static disorder changes

when a classical mixture of excitations in the outermost

branch is taken as an initial state. Since the initial state is not

a column eigenstate that preserves the symmetry of the graph,

the quantum limit without static disorder shows only small

transport efficiencies of 20%. Additional static disorder on

average increases the efficiency to a maximum of 60% when

δ/V ≈ 1. Here, static disorder creates higher localization at

the root of the tree at site 1. For larger static disorder one ob-

tains the same suppression of the efficiency as for the coherent

initial state. In the presence of environmental fluctuations one

obtains an overall average improvement for all static disorder

regimes: for small static disorder the improvement is 60%,

for intermediate it is 20%, and for larger disorder it is around

40%. In summary, ENAQT is shown to consistently improve

the transport efficiency in binary tree structures, overcoming

localization induced by static disorder of the site energies.

Conclusion. Environment-assisted quantum transport is a

fundamental effect which occurs in a wide variety of transport

systems. ENAQT is similar in flavor to stochastic resonance

[18]: adding noise to a coherent system enhances a suitable

transition rate. ENAQT differs from stochastic resonance in

that the system whose transition rate is enhanced is undriven

and does not need to be in some strong nonlinear regime. The

maximum efficiency of ENAQT occurs when the decoherence

rate is comparable to the energy scales of the coherent system

as defined by the energy mismatch between states and the hop-
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FIG. 3: The efficiency as a function of the static disorder parameter δ (in units of the coupling V ) for a four-generation binary tree. A coherent

superposition (left panel) or a statistical mixture (right panel) of the outermost branch of the tree was chosen as an initial state (cf. Fig. 1b, grey

sites). In the fully quantum case (blue) large disorder reduces the efficiency due to quantum localization. 100 randomly sampled graphs were

used per data point, leading to a distribution of efficiencies. For each statically disordered binary tree the optimal dephasing rate was calculated.

The transport efficiency in the presence of dephasing with this optimal rate is considerably higher (orange). Parameters are Γ = 0.005V and

κ = 2V .

ping terms. By changing the energy mismatch and the hop-

ping terms, the temperature at which the maximum transport

efficiency occurs can be tuned. In the Fenna-Matthews-Olson

protein complex within the pure dephasing model and with the

spectral density as discussed above, this maximum occurs at

approximately room temperature. Recently, results along the

lines of this work were presented in [45]. Further studies are

in order that utilize more advanced, non-Markovian decoher-

ence models and detailed quantum chemistry calculations.
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