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Description  
Environmental assisted cracking of metals is an important topic 
related to many industries in lives. Although the problem with this 
type of corrosion has been known for many years, the debate on the 
effects and possible remedies available under different environmental 
conditions is ongoing and topical. Previous volumes have tended to 
concentrate on single aspects and causes (e.g. stress corrosion 
fracture), while ignoring other mechnisms such as hydrogen 
embrittlement, corrosion fatigue and more modern concerns such as 
the near neutral SCC pipelines). 
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Abstract 
 
 One of the main causes of failure in pressurized water reactors (PWR) is the stress corrosion 
cracking (SCC) at control rods drive mechanism (CRDM) nozzles, produced by tensile stress, 
temperature, susceptible metallurgical microstructure and environmental conditions of the 
primary water. Such cracks can cause accidents that reduce nuclear safety by blocking the rods 
displacement at CRDM and/or leakage of primary water. This paper will present a preliminary 
development of a model to predict such damage, including initiation and propagation of primary 
water SCC (PWSCC). The model assumes the Pourbaix potential-pH diagram for Alloy 600 on 
the typical PWR environment, primary water at high temperature. Over this diagram, the region 
where the SCC submodes can occur is plotted. Submodes are determined by regions of potential 
where various modes of surface material-environment interactions can occur, such as stress 
corrosion, pitting, generalized corrosion or passivation. Over these regions an empirical-
probabilistic is linked to a strain rate damage model that can evaluate the time to failure and the 
damage parameter, as a function of total stress at the material surface, its temperature and other 
factors depending on environment-material combination and thermomechanical treatment of this 
alloy.  
 
1. Introduction  
 
 Degradation of materials during operation –  mainly corrosion, fatigue and 
irradiation – represents one of the main technological factors that may limit the 
reliability and safety of nuclear power plants [1]. One of the modes that causes risks to 
pressurized water reactors (PWRs) is the stress corrosion cracking (SCC) of steels and 
alloys. The cracks (axial or circumferential) may cause accidents such as leaking of 
coolant [2], nozzle components ejection and blocking of the rod drive mechanism at 
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CRDM (control rods drive mechanism) [3]. Leakage of coolant/primary water can 
cause general corrosion in the low-alloy vessel head by boron deposits.  
 Most Western PWRs have CRDM penetration in the pressure vessel head made of 
stainless steel and Alloy 600. The composition of Alloy 600 is primarily >72% Ni, 14–
17% Cr, 6–10% Fe [3–5]. The yield strength of the alloy varies from 213 to 517 MPa. 
Normally this alloy is mill annealed at 885°C, and final annealed for 4–6 h followed by 
air cooling. Nevertheless such a treatment can be varied depending on its purpose. The 
Alloy 600 works with some variation at 315°C and 15.5 MPa in pure water [3].  
 The primary water SCC (PWSCC) appears in the lower part of each nozzle that is 
fabricated in Alloy 600 and welded to the internal vessel head surface with dissimilar 
material such as Alloy 182. There are typically 40–90 penetrations per vessel that may 
include some spare penetrations which are not fitted with CRDM or through core 
instrumentation of PWR [6].  
 
2. Models and modelling  
 
 SCC nucleation and propagation are very complex phenomena. SCC is  one modality 
of environment-assisted cracking (EAC) besides corrosion fatigue and hydrogen 
embrittlement, depending on several variables that can be classified in microstructural, 
mechanical, and environmental terms [7,8]. Microstructural variables are: (i) grain 
boundary microchemistry and segregation, M; (ii) thermal treatment, TT, that can cause 
intragranular and intergranular metallic carbide distribution; and (iii) grain size , gs, and 
cold work, CW, or plastic deformation. The second two variables fix another variable 
such as the yield stress, σYS. Mechanical variables are: (i) residual stress, σr; (ii) applied 
stress, σa (a tension stress and geometry can be summarized as a stress intensity factor, 
KI); and (iii) strain ε  and strain rate ε& . Environmental variables include: (i) 
temperature, T; (ii) [H]+ or pH; (iii) solution or water chemistry, SC; (iv) inhibitors or 
pollutants in solution; (v) electrochemical potential, V; and (vi) partial pressure of 
hydrogen, pH2 [9]. Environmental cracking susceptibility can be expressed as [10]:   
 

SCC = f (M, TT, gs, CW, KI, ε , ε& , T, pH, SC, V, pH2)                    (1) 
 
 Fig. 1 summarizes the main processes by which the above conditions at grain 
boundaries lead to SCC [11].   
 There are several models to express these phenomena mathematically : (i) the slip 
dissolution/film rupture by Ford and Andresen [13]; (ii) the enhanced surface mobility 
theory by Galvele [14]; (iii) coupled environment fracture model by Macdonald and 
Urquidi-Macdonald [15]; (iv) the internal oxidation mechanism by Scott and Le Calvar 
[16]; (v) numerical model by Rebak and Smialowska [17] and by Seung-gi and Il Soon 
Hwang [18];  and (vi) hydrogen-induced cracking models by Shen and Shewmon, and 
Magnin et al. (see Ref. [10]). For a comprehensive review of several of these models , 
see Ref. [10], and for hydrogen action models see Refs. [19,20]. Two kinetic models , 
including an empirical-probabilistic model and a deterministic strain rate damage model 
[21], were chosen to develop the model presented in this work.  
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Fig. 1. The processes starting from (a) to (k) range from the mostly chemical to the mostly 
mechanical [11].  
 
 
 The empirical-probabilistic model is derived from the general dependencies of time-
to-failure shown in Eq. (2) treated statistically: 
 

+ -m -n
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where t f = time to failure,  σ = stress, n = exponent of stress , Q = thermal activation 
energy, T = absolute temperature (K), R = gas constant, [H+] = hydrogen ion activity, m 
= exponent of hydrogen ion activity, and d = constant [11].  
 The model proposed in Ref. [22] is a simplification of Eq. (2) that can be converted 
into a form more convenient to use as:  
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where A  = non-dimensional material constant reflecting the effect of material properties 
on time to 1% PWSCC, tref = time to selected fraction of PWSCC for a reference case, 
σref = reference value of stress, and Tref = reference value of temperature.   
 The 2-parameter Weibull statistical distribution describes the variation of PWSCC 
as time function as:  
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bt
- F = 1- exp

    θ   
                                                   (4) 

 
where F = fraction of population of components under consideration all susceptible to 
the same failure mode that experience PWSCC, t  = time normally given in effective full 
power years (EFPY), b  = Weibull slope, a fitted parameter determined by analysis of 
failure data, and θ  = Weibull characteristic time that corresponds to the time when 
63.2% of the components have experienced PWSCC. This parameter can be written as 
tf = t1%:  
 

 
)0101.0( /1

%1
b

t
=θ                                                      (5) 

 
Eqs. (4) and (5) combined yield Eq. (6):  
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The value of t1% together with an appropriate value for the Weibull slope, b, determine 
the complete prediction for PWSSC as a time function using Eq. (6). More detail on 
this model, plus several examples that were solved, are given in Refs. [11,22].  
 The strain rate damage model is essentially a semi-empirical model theory of SCC, 
where strain rate rather than stress is considered to be the main mechanical variable. 
The main parameter of this model is the damage parameter, D, that includes the 
initiation and propagation stages of the cracks. It begins essentially from a semi-
empirical theory of SCC, based on the analogy with Tresca criterion to plastic flow. It 
formalized the strain rate as a moving factor in a damage model that allows quantitative 
predictions on serviceable life which in turn depends on SCC. A damage function is 
defined as a mode linked to a component submitted to a strain rate history. When this 
damage function reaches a critical value, it can predict the SCC. The critical value of 
this damage function depends on the material in question and environment  
 

D = ∫0
t A [ ε& (t)]p dt,          [D] = [length]                                (7) 

 
where t = time, ε& (t) = total strain rate, A and p = parameters that depend on material-
environment combination.  
 In Eq. (7), the strain is divided into elastic and a non-elastic:  
 

net εεεε &&&& +==)(                                                    (8) 

 
It is then necessary to adjust the experimental true stress-true strain data in accordance 
with Eq. (8). This can be accomplished using the Bodner-Partom constitutive equation 
that assumes Eq. (8) where the applied uniaxial stress s is related to the non-elastic 
strain rate nε&  by  
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where D0 is a constant, n is a temperature-dependent material parameter, and Z is a 
function related to strain hardness. When thermal recovery is neglected, the hardness 
function Z is such that  
 

Z = Z1 – (Z1 – Z0)exp(–mWp)                                         (10) 
 
where the inelastic strain energy density is   
 

Wp = ∫ σ d nε&                                                     (11) 

 
The temperature-dependent constants in the above equations might be written as: 
 

b
T
a

n +=                                                         (12) 

 
m = m0T + c0                                                       (13) 

 
Z0 = Z1(m1T + c1)                                                   (14) 

 
Hence the list of material constants  in Bodner-Partom’s model include D0, a, b, Z1, m1, 
c1, m0, and c0.  
 Thus, the model needs at least three values of stress and strain at two different strain 
rates at each of two temperatures as the minimum data set to determine these constants. 
In brief, in this model, we have formalized the concept of strain rate as a driving force 
in a damage model that permits quantitative predictions of stress corrosion lifetimes 
through a damage function defined as dependent on the strain rate history of a 
component. SCC is predicted when this damage function reaches a critical value. The 
critical damage value depends on both the material in question and the environmental 
condition of interest. The principal advantage of this model is that it’s not necessary to 
distinguish between cracking initiation and propagation [21,22]. More detail on this 
model, plus modelling examples, are given in Ref. [22].  
 
3. Proposed model  
 
 Staehle [11] has proposed a 3-dimensional diagram in accordance with Fig. 68 of 
Ref. [11]. It shows the thermodynamic conditions to occur at the modes of PWSCC in 
Alloy 600. The base is  the 2-dimensional potential-pH (known as Pourbaix) diagram 
for this material in primary water at high temperature (300 to 350°C) (Fig. 2). It 
superimposes the corrosion submodes based on experimental data from the literature. 
Submodes are determined by regions of potential where the different modes of surface 
material-environment interactions can occur, such as SCC, pitting, generalized 
corrosion, and passivation. The third dimension is the “useful strength” of the material 
as affected by the environment at  that point, the strength fraction. Staehle [11] 
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explained that the third variable could be a crack velocity for the vertical coordinate, 
instead of the strength fraction, because the data are sparse and the component 
experiments with reference to this diagram used different methods of loading states and 
data analysis .  
 
 

 
 
Fig. 2. Pourbaix diagram for Alloy 600 at ∼300°C used as a base for submode regions of the 3-
dimensional (V-pH-strength fraction) diagram (Fig. 68 from Ref. [11]).  
 
 
 It is proposed that the model be framed over the same Pourbaix (V-pH) diagram for 
Alloy 600 in the typical environment, namely water at high temperature. Over this 
diagram is plotted the region where the SCC submodes can occur. Firstly, over one of 
these regions will be coupled a strain rate damage model that can describe the damage 
parameter evolution with time and an empirical-probabilistic one that can describe the 
time to failure, normally expressed in terms of EFPY as a function of a  total stress at 
the material surface, its temperature and parameters depending on environment-material 
combination and thermomechanical treatment of the alloy. Then, we will test the model 
using data from the literature plus data obtained using the new slow strain rate tensile 
(SSRT) test equipment installed at CDTN in Brazil [12]. Thus, this model could be 
used for a Brazilian nuclear power plant taking into consideration the plant materials 
and the characteristics of its design and operation, including the heat material 
fabrication processes, material composition, plant thermomechanic history, primary 
water chemical composition, and operational temperature conditions at this plant.  
 



 

 

149 

4. Preliminary results   
 
 A computer worksheet was created to plot an empirical-probabilistic model to be fed 
with data. This is represented by Eqs. (3)–(6), as was done in Refs. [11,22]. Fig. 3 was 
created using data of Table 1 from Ref. [23] with b-Weibull slope parameter equal to 
1.5 to check the reproduction of the model.  
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Fig. 3. Diagram showing plotted curves for three nuclear plants referred in Table 1 of Ref. [23].  
 
 
 If it is known how long a plant has operated in the submode IIISCC (see Fig. 2), this 
length of time can be used to couple the curves of Fig. 3 with Pourbaix diagram and 
thus to estimate a parameter F by Eq. (4) that represents the fraction of population of all 
components susceptible to the same degradation submode that experiences PWSCC.  
 
5. Analysis and discussion  
 
 The above empirical model serves as  a highly practical method for the prediction of 
PWSCC. Using Eqs. (2) and (6), a higher F is expected for the lower pH. It is necessary 
to relate a damage initiation with the variations of pH and V  in the PWSCC domain. 
These values are usually below an equilibrium borderline for Ni/NiO [16,19]. It is 
therefore necessary to verify the suppositions through empirical tests. Referring to the 
plants considered in Fig. 3, it is  desirable to know which pH and V  values should be 
employed for each of them to operate efficiently.  
 The crack growth rate presents a dependence with pH shown in Eq. (15) from Ref. 
[25]: 
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 If it is considered that the crack initiation and growth combined to constitute 
damage, it is possible that the crack initiation can follow the same law-time integrated 
with differently adjusted parameters (constant C), for initiation and growth. Clearly this  
must be investigated. In both models, it is necessary to obtain the relationship between 
the time to failure and the variation in V and pH in PWSCC domain through 
experimental tests using SSRT technique in CDTN.  
 The strain rate damage model has the advantage of describing the evolution of 
damage with time, while the empirical probabilistic model has the advantage of being 
more simple  to apply. The strain rate damage model reduces to empirical model when 
one of the suggested models for creep behaviour of Alloy 600 is used in its formulation 
[22] according to Ref. [24].  
 
6. Conclusions 
 
 This paper presents a preliminary development of a combined model composed of 
the Pourbaix (potential-pH) diagram linked with a kinetic model as well as with 
empirical probabilistic and deterministic strain rate damage models . The use of the 
Pourbaix diagram has the advantage of revealing the thermodynamic conditions 
required to initiate SCC. The use of the kinetic empirical-probabilistic model linked 
with Pourbaix diagram has the advantage of obtaining the statistical estimation of the 
time to failure. The use of the kinetic strain rate damage model has the advantage of 
obtaining the deterministic strain rate damage parameter evolution with time. Data from 
the Brazilian CDTN will be used to validate the model proposed in this study.  
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