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Abstract

Environment matting is a generalization of traditional bluescreen
matting. By photographing an object in front of a sequence of struc-
tured light backdrops, a set of approximate light-transport paths
through the object can be computed. The original environment mat-
ting research chose a middle ground—using a moderate number of
photographs to produce results that were reasonably accurate for
many objects. In this work, we extend the technique in two oppo-
site directions: recovering a more accurate model at the expense of
using additional structured light backdrops, and obtaining a simpli-
fied matte using just a single backdrop. The first extension allows
for the capture of complex and subtle interactions of light with ob-
jects, while the second allows for video capture of colorless objects
in motion.
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1 Introduction

Conventional matting consists of filming a foreground object
against a known background and determining the foreground color
and opacity at each image pixel. Conventional image compositing
simply layers the foreground over an arbitrary background using the
opacity to control the relative contributions at each pixel. Environ-
ment matting and compositing generalize the conventional methods
by modeling arbitrary transport paths from the background through
the foreground object to the camera. After making a set of approxi-
mations, Zongker et al. [20] demonstrate the ability to capture and
render the effects of reflection, refraction, scatter, and colored fil-
tering of light from a background. These effects, none of which are
modeled with conventional matting and compositing, make a dra-
matic contribution to the visual realism of the final image.

The original environment matting method employs a sequence of
structured backdrops to estimate mappings from the background
through the foreground object. These backdrops consist of a hier-
archy of finer and finer horizontal and vertical square-wave stripes
from which the matte can be extracted with O(log k) images for

Figure 1 Sample composite images constructed with the techniques of this

paper: slow but accurate on the left, and a more restricted example acquired at

video rates on the right.

an k × k pixel grid. This choice of backdrops is inspired by a re-
lated technique developed for 3D range scanning [1]. In practice,
however, this approach has a number of shortcomings.

The previous approach of Zongker et al. assumes, first of all, that
each image pixel collects light from a single region of the back-
ground, augmented with an alpha component for straight-through
partial coverage. This assumption fails when we consider the ef-
fects of simultaneous reflection and refraction at a dielectric. Sec-
ond, the method is tuned to capturing highly specular interactions,
but breaks down in the presence of surfaces that are even moder-
ately rough. Third, the mappings that are captured assume axis-
aligned filtering of background pixels. At pixels where this assump-
tion does not hold, this axis alignment results in excessive blurring
and degrades the quality of the final composite. Fourth, the original
method accounts for colored filtering of light, but does not account
for the effects of dispersion, which necessitate different mappings
per color channel and give rise to prismatic rainbowing effects. Fi-
nally, the number of images required is typically about 20 per matte,
and thus the technique does not lend itself to real-time acquisition.

In this paper, we address each of these limitations. Again taking in-
spiration from the 3D range-scanning literature, we follow two dis-
tinct paths. In the first approach, the background consists of a single
stripe swept over time in the vertical, horizontal, and two diagonal
directions. In each case, the stripe orientation is perpendicular to the
sweeping direction. By combining sweeps with stripes of varying
widths and intensity profiles, we demonstrate an efficient method
for extracting the highest quality environment mattes to date. This
method, however, requires O(k) images and is even less suitable
for real-time acquisition than the previous method.

Our second approach utilizes a single background image consist-
ing of a color ramp. Through careful simplification of the govern-
ing equations, we demonstrate a method capable of extracting pure
specular refractive and reflective mappings through a moving, de-
forming colorless object, such as water pouring into a glass. This
technique is real-time in the sense that the data it requires can be
collected in real-time, though the analysis and extraction of the
matte must still be performed offline.



1.1 Related work

Environment matting [20] builds upon and substantially extends re-
search and practice in blue screen matting. Pioneered by Vlahos
[16], conventional (and commercial) blue screen matting relies on
a single-color background sufficiently different from the foreground
objects to extract an alpha and foreground color at each pixel. Smith
and Blinn [16] use two backdrops to lift restrictions on the color of
foreground objects. Neither of these techniques models transport
paths beyond scalar (non-color) attenuation and partial pixel cov-
erage. In addition, the Smith and Blinn technique does not easily
extend to real-time capture, given the two-frame requirement. Our
real-time method for capturing environment mattes is actually sim-
ilar in spirit to the Vlahos work in that we must place constraints on
the object and lighting in order to achieve our results.

The structured-light range-scanning literature suggests many possi-
ble ways to capture spatially varying properties of an object [1].
We should note that the end goals are substantially simpler in
the range-scanning case. Range scanners attempt to recover just a
handful of parameters per pixel: primarily, depth and reflectance.
Environment-matting procedures, on the other hand, generally need
to recover a continuous, wavelength-dependent mapping from a
background to the image plane. Even with the approximations de-
scribed in Section 3, we must estimate at least 21 parameters per
pixel, and sometimes many more.

Despite the dissimilarities, the range-scanning illumination pat-
terns do inspire a number of techniques for environment matting.

The most “brute force” range-scanning method is to sweep a beam
of light over an object in a raster pattern. Such an approach, while
O(k2) in time since each range-image pixel is acquired sequen-
tially, is actually practical for triangulation and imaging radar sys-
tems [1], since the reflected light seen by the sensor is known to
have followed a straight line from the object. As a result, objects can
be imaged with fast 1D (triangulation) or 0D (imaging radar) sen-
sors. These faster sensors make the acquisition speeds comparable
to, and in some cases better than, the O(k) swept-stripe techniques
described below. By contrast, typical objects used in environment
matting will cause light from the background to bend through or
reflect off of the object in unpredictable ways, thus requiring a full
2D sensor array to capture the light. In this case, the O(k2) penalty
is prohibitive.

Using a swept plane of light,O(k) images can provide shape infor-
mation through optical triangulation [1]. The first environment mat-
ting technique described in Section 3 uses such a pattern, though
multiple oriented sweeps are required to capture all the parame-
ters. Note that this particular environment matting technique bears
some resemblance to the space-time analysis described by Kanade
et al. [9] and Curless and Levoy [4], in which the authors study
the time evolution of reflected light and triangulate over space and
time.

By projecting a hierarchy of progressively finer stripe patterns, the
required number of images for optical triangulation can be reduced
to O(log k) [14]. Zongker et al. [20] use such a stripe hierarchy
with some accompanying compromises over the swept-stripe tech-
nique.

Finally, using a color ramp, researchers have demonstrated single-
frame triangulation, that is, an acquisition with time complexity
O(1), albeit with increased susceptibility to noise [6, 15]. In Sec-
tion 4, we apply a similar pattern to extract environment mattes in
real time. To combat the effects of noise, we apply a non-linear,
discontinuity-preserving filter [11] to the resulting matte sequence.

Hybrid stripe-ramp methods have been proposed to manage the
trade-off between number of images and susceptibility to noise
[3, 8]. We have not explored such methods for environment matting,

as they will likely yield results of lower quality than the swept-stripe
method we describe here, and will still require multiple frames,
making them unsuitable for real-time capture.

Our work also has some connection to BRDF acquisition. Though
we do not explicitly solve for the BRDF, one could certainly imag-
ine using environment matting to capture reflection functions over
a uniformly coated surface of known geometry, such as a sphere.
A more direct connection lies in the BRDF fitting work of Ward
[18]. Using an elliptical Gaussian model for rough specular reflec-
tion, he achieves excellent matches to goniometric samples. This
model is the motivation for our choice of oriented, elliptical, Gaus-
sian weighting functions described in Section 3.

1.2 Overview

In Section 2 we describe the general environment matting model.
The two following sections describe the two extensions we have
developed—higher accuracy mattes in Section 3 and real-time-
capture mattes in Section 4. Each of Sections 3 and 4 describes
the assumptions made to reduce the general matting equation to
something that can be captured, then describes the experimental
procedure used and shows results. We conclude in Section 5 with a
summary and ideas for future work.

2 The environment matting equation

We begin by developing a general expression for the environment
matting equation and showing how it reduces to the traditional com-
positing equation, as well as the equation developed by Zongker et
al. [20].

An imaging system, such as a CCD camera, records a discrete set
of samples over an image plane. Let’s assume for the moment that
we have a camera that measures the irradiance at each wavelength
separately. Then, for a given pixel, the camera records a value C
for each wavelength.1 Following the environment mapping work
of Blinn and Newell [2], we can express this color in terms of an
infinitely distant environment illumination E(!):

C =

∫

W (!)E(!) d! . (1)

The weighting function W comprises all means of transport of en-
vironment lighting from all directions ! through a foreground ob-
ject to the camera, including any blurring due to the camera op-
tics and area integration at a sensor cell. This equation holds under
the assumption that none of the materials that are scattering light
from the environment exhibit any wavelength coupling (e.g., fluo-
rescence).

Next, we rewrite this equation as a spatial integral over a bounding
surface (e.g., an environment map). Further, we augment the equa-
tion to include an additive foreground color F . This foreground
color is typically due to some additional lighting that is separate
from the environment map, though it could encompass object emis-
sivity as well. Under these assumptions, our equation becomes

C = F +

∫

W (x)T (x) dx . (2)

From this equation, we can develop a series of approximations that
allow us to embed a foreground object in a new environment with
varying degrees of quality.

1Throughout this paper, we use ordinary italics for scalar quantities (e.g.,

a position x); bold-italics for functions of more than one spatial parameter

(e.g., an area A); colored italics for functions of wavelength (e.g., a color

C); and colored bold-italics for functions of both wavelength and more than

one spatial parameter (e.g., a texture map T ).



To arrive at the traditional image compositing equation [12], we as-
sume that the straight-through background pixel is the only environ-
ment sample that affects the camera pixel. LetP be the rectangular-
area support of the pixel p on the background. Then we describe the
(in this case, monochromatic) weighting function as

W (x) = (1 − α)Π(x;P ) , (3)

where α represents the foreground’s transparency or partial pixel
coverage, and Π(x;A) is the box function of unit volume sup-
ported over an arbitrary axis-aligned area A. Next we define
M(T , A) as the “texture-mapping operator” that performs the area
integral and returns the average value of the texture T over re-
gion A:

M(T , A) ≡
∫

Π(x;A)T (x) dx . (4)

Finally, defining the filtered background B to be the integral over
the pixel’s support

B ≡ M(T , P ) , (5)

and substituting the previous three equations into Equation 2, gives
the traditional compositing equation:

C = F + (1 − α)B . (6)

Note that α does not have any wavelength dependence and thus can-
not model color-filtered transparency. In addition, F is a measured
quantity that is added directly to the attenuated background—in ef-
fect, it is pre-multiplied by α.

Zongker et al. model more complex lighting effects by approximat-
ing the environment as a set ofm texture maps T i(x) (the six sides
of a bounding cube for instance), and by using more general light
transport paths. Their weighting function is

W (x) = (1 − α)Π(x;P ) +

m
∑

i=1

Ri Π(x;Ai) . (7)

In their formulation, theAi represent various axis-aligned regions,
each lying on a different texture map (corresponding, typically, to
a different face of the environment cube). The Ri are reflectance
coefficients describing the amount of light from the designated area
of texture map i that is reflected or transmitted by the object at
a given wavelength. In this formulation, Ri captures color-filtered
transparency, and α represents only partial pixel coverage of the
object. Substituting this weighting function into Equation 2 gives
the environment matting equation used by Zongker et al.:

C = F + (1 − α)B +

m
∑

i=1

Ri M(T i, Ai) . (8)

Note that this approach not only permits colored filtering of light,
but also enables effects such as reflection and refraction since the
light contributing to a pixel can be scattered from parts of the envi-
ronment other than just the pixel directly behind the object. This
approach, however, does have several distinct limitations. First,
the components of the weighting function are assumed to be sep-
arable products of wavelength functions Ri and spatial functions
Π(x;Ai). Thus, phenomena such as dispersion are not handled,
since these require the weighting functions to shift spatially with
wavelength. Second, the axis-aligned rectangle weighting functions
do not simulate the effects of, for example, smooth BRDF’s, which
when mapped onto a background have a smooth, oriented footprint.
Finally, other than the straight-through α-component, the approach
models only a single mapping from a texture face to the camera. In
reality, multiple mappings to the same face can and do happen and
must be modeled, for example, when reflection and refraction at an

interface cause view rays to split into distinct groups that strike the
same backdrop.

Our first objective, then, is to choose a different model for the
weighting function that is more physically motivated and whose
parameters are still easy to acquire using a simple apparatus.

3 Towards higher accuracy

To address the limitations of the weighting function described in
Zongker et al., we generalize it to a sum of Gaussians:

W (x) =

n
∑

i=1

RiGi(x) . (9)

In our formulation, we allow any number of contributions from a
single texture map. Here, Ri is an attenuation factor, and each Gi

is the unit-area, elliptical, oriented 2D Gaussian:

Gi(x) ≡ G2D(x; i, �i, θi) , (10)

whereG2D is defined as

G2D(x; ,�, θ) ≡ 1

2πσuσv

exp

[

− u2

2σu
2
− v2

2σv
2

]

(11)

with

u = (x− cx) cos θ − (y − cy) sin θ

v = (x− cx) sin θ + (y − cy) cos θ.

Here, x = (x, y) are the pixel coordinates,  = (cx, cy) is the
center of each Gaussian, � = (σu, σv) are the “unrotated” widths
(a.k.a. standard deviations) in a local uv-coordinate system, and θ
is the orientation. Figure 2 illustrates these parameters. Thus, our
weighting function is some n-modal Gaussian with each term con-
tributing a reflective or refractive effect from the object. Substitut-
ing into Equation 2, we arrive at a new form of the matting equation:

C = F +

n
∑

i=1

Ri

∫

G2D(x; i, �i, θi)T (x) dx . (12)

(In this equation, we use T (x) to represent the set of all texture
maps. The n modes of the weighting function are distributed over
m textures, where n may be larger than m in general. The choice
of the particular texture map used in computing a given Gaussian
contribution i should be assumed to be implicitly controlled by the
position i of the Gaussian weighting function.)

The key advantages of this weighting function over the one used by
Zongker et al. are that: (1) the spatial variation can be coupled with
wavelength to permit modeling of dispersion; (2) it supports multi-
ple mappings to a single texture; and (3) it approximates the behav-
ior of BRDF’s more closely (by using oriented Gaussian weighting
functions rather than box functions).

In practice, each of the “colored” values C,F ,Ri, i,�i, θi and T
in Equation 12 is implemented as an rgb vector. So, in practice, this
equation actually represents three independent equations, one for
each of the color components. Our unknowns are F ,Ri, i,�i, θi,
which means that each pixel encodes 3 + 18n parameters.

3.1 Swept Gaussians for environment matting

Recovering the environment matte requires taking a set of images of
an object in front of a sequence of backdrops. Our method consists
of three steps: (1) identifying pixels outside the object silhouette,
(2) recovering the foreground color, and (3) applying a set of novel



x

r

y

cr

cc

s

t

v

u

θ

φ

σsσs

σuσu

σvσv

σr

rr

T(x;r)

W(x)

C(r)

Figure 2 Illustration of the variables used in recovering an unknown ellip-

tical, oriented Gaussian by sweeping out convolutions with known Gaussian

stripes. As a tilted stripe T (x; r) of width σs and position r sweeps across

the background in direction s, it passes “under” the elliptical Gaussian weight-

ing function W (x) associated with a single camera pixel. The camera records

the integral of the product of the stripe and the weighting function, which de-

scribes a new, observed function C(r) as the stripe sweeps. The center cr

and width σr of this observed function are related to the center c and width

σ = (σu, σv) of the weighting function and the width of the stripe through

Equations 20 and 21.

background stimulus functions to estimate the remaining parame-
ters in the matte.

In the first step of our high-accuracy matting method, we identify
pixels that are outside the silhouette of the object. This step is de-
sirable for two reasons: it saves us the computational effort of es-
timating the matte parameters at these pixels, and it prevents us
from making potentially noisy estimates of how straight-through
background pixels map to the image, which would result in shim-
mering artifacts when rendering. To identify these pixels, we use
the method of Zongker et al. In particular, we display a coarse-to-
fine sequence of horizontal and vertical square-wave background
patterns with and without the object. If we measure the same color
(within a user-specified tolerance) at a pixel both with and without
the object for each background, then we consider the pixel to map
straight through. The overhead of taking these additional images is
small compared to the total acquisition time.

To recover the foreground color, we photograph the object against
two solid backgrounds. Replacing T (x) in Equation 12 with a sin-
gle backdrop of constant color T and integrating, we get

C = F + RT (13)

where R ≡
∑n

i=1
Ri. Given the two images, we have two equa-

tions in two unknowns for each color channel, i.e., the foreground
color F and the aggregate attenuation factor R. Solving the system
of equations yields the foreground color.

Once we have the silhouette mask and the foreground color, we can
solve for the remaining parameters of Equation 12 using a large
set of controlled backdrops (i.e., stimulus functions). Zongker et al.
use a hierarchical set of square-wave stripe patterns in both the ver-
tical and horizontal directions. They encounter difficulties with this
method for two reasons: (1) the square waves are not good stimuli
for recovering smooth functions, and (2) there is no obvious way to
recover multiple mappings to the backdrop using these stimuli. To
combat the first problem, we choose a smooth set of stimulus func-
tions. To address the second, we constrain the stimuli to be narrow
in one dimension, sweeping over time to reveal multiple mappings

to the same background. Our choice of stimulus function, then, is a
set of swept Gaussian stripes.

Let’s see how we can use sweeping stripes to recover some of the
parameters of our weighting functions. To begin, let us assume that
the weighting function is unimodal and axis-aligned (n = 1 and
θ = 0). Under these assumptions, we can omit the summation and
the subscript i in Equations 9 and 10 and then decompose the 2D
Gaussian weighting function into two 1D components:

W (x) = RG1D(x; cx, σu)G1D(y; cy , σv) , (14)

where

G1D(x; c, σ) =
1√
2πσ

exp

[

− (x− c)2
2σ2

]

. (15)

Our first stimulus function will be a vertical stripe that is constant
in y and has a 1D Gaussian intensity profile in x with width σs:

T (x) = G1D(x; 0, σs) . (16)

Now consider sweeping the stripe horizontally, displacing it at each
step by some offset r:

T (x; r) = G1D(x− r; 0, σs) = G1D(r − x; 0, σs) . (17)

The camera observation at a pixel is then given by:

C(r) =

∫

W (x)T (x; r) dx

=

∫∫

RG1D(x; cx, σu)G1D(y; cy , σv)G1D(r−x, 0, σs) dx dy

=

∫

RG1D(x; cx, σu)G1D(r−x; 0, σs) dx ·
∫

G1D(y; cy , σv) dy

= RG1D(r; cx, σu) ∗G1D(r; 0, σs) · 1
= RG1D(r; cx,

√

σu
2 + σ2

s). (18)

Thus, at each pixel, we expect to record a Gaussian evolving over
time. Given an illumination stripe of known width, we can now es-
timate the rgb parameters cx and σu using the procedure described
below in Section 3.2. By symmetry, we can recover the vertical cen-
ter coordinate and width by sweeping a horizontal Gaussian stripe
in the vertical direction behind the foreground object. Thus, for the
case of a single, unoriented Gaussian weighting function, a hori-
zontal and a vertical swept Gaussian stripe are enough to estimate
all the remaining parameters of the environment matte.

Figure 2 illustrates the more general case of a sweeping stripe that
is constant in the t-direction and has Gaussian profile in the s-
direction. This stripe is oriented at an angle φ with respect to the
xy-coordinate system and travels in the s-direction. Under these
circumstances, it is straightforward to show that the observation at
a pixel will be:

C(r) = RG1D(r; cr, σr) , (19)

where

cr = cx cosφ+ cy sinφ (20)

σr =
√

σu
2 cos2(φ− θ) + σv

2 sin2(φ− θ) + σ2
s (21)

Here, cr is the center of the weighting function projected onto the
r-axis, and σr is the projected, convolved standard deviation of the
observed Gaussian.



Figure 3 The green concentric rings depict a possible bimodal weight-

ing function. The curves around the image indicate the convolved projec-

tions resulting from sweeping horizontal, vertical, and left and right diagonal

Gaussian stripes across the screen independently. The horizontal and vertical

sweeps alone (purple) are insufficient to determine the mode positions, but by

adding additional diagonal sweeps (yellow) the correct modes can be deter-

mined.

Horizontally and vertically swept stripes alone (φ = 0◦ and 90◦,
respectively) are not enough to determine the weighting function,
so we introduce two diagonal passes at φ = 45◦ and −45◦. The
additional oriented stripes serve another purpose: disambiguating
multiple mappings to the backdrop. As shown in Figure 3, a bi-
modal weighting function results in two Gaussian images over time
at a pixel as the stripe sweeps across. If we use just the horizontal
and vertical stripes, the two modes recorded in each sweep yield
multiple indistinguishable interpretations of the bimodal weighting
function. The oriented stripes can be used to disambiguate these
choices, as described below.

3.2 Estimating the matte parameters

In practice, our acquisition process entails stepping each Gaussian
stripe across a computer screen and recording a set of samples for
each sweep and for each color channel. Given this data, we seek the
best set of parameters that explain the measurements. We estimate
these parameters (separately for each color channel) in four steps:
(1) identifying the number of Gaussians modes in the response, (2)
solving for the projected centers and widths associated with each
Gaussian mode, (3) intersecting the centers to localize the Gaussian
modes, and (4) computing the parameters for each Gaussian mode.

To identify the number of Gaussians for the response to a given
stripe sweep, we search for a series of peaks above the noise floor
of the sensor. To make this process more robust, we first filter the
1D response function, and then identify the peaks. The locations
of the peaks are the starting points for the projected centers of the
projected modes. If the projected modes are clearly separated, we
also estimate the projected widths by examining the extent of the
signal that is above the noise floor. For two overlapping modes, we
compute the distances from the left mode to the left extent and the
right mode to the right extent and then estimate widths accordingly.
For more overlapping modes, we compute the total width and di-
vide by the number of modes. In any case, these center and width
estimates are simply starting points for a Levenburg-Marquardt op-
timization procedure [13] that takes the original data, the number
of Gaussians, and the initial center and width estimates in order to
find the best centers and widths that explain the data.

Next, we use the sets of projected centers to choose the most likely
locations of the Gaussian modes Gi (from Equation 10). The cen-

Figure 4 A photograph of our experimental setup. In this instance an accurate

environment matte is being acquired.

ters computed in the previous step should each correspond to the
center of a Gaussian mode as projected onto the axis defined by
the stripe. We then construct a line passing through each projected
center point running parallel to the stripe’s t direction. We consider
all 4-tuples of horizontal, vertical, and two diagonal lines, and hy-
pothesize their intersections by computing the point closest to each
set of four lines. We measure the distance of that point to each of
the lines, and apply a user-specified tolerance to reject or accept the
purported intersection.

Finally, given the set of Gaussian modes selected by the intersec-
tion process, we determine the parameters of each Gaussian mode.
For each identified mode, we have estimates of the convolved, pro-
jected parameters according to Equations 20 and 21. We compute
R as the average of individually computed R’s. The center i of
Gi is simply the closest point to the lines as described in the previ-
ous step. Finally, we have four equations that relate the width and
orientation of each Gaussian mode to the four measured widths.
We solve this over-constrained, non-linear system of equations by
finely sampling the space of possible orientations, solving for the
linear-least-squares-best width parameters, and then choosing the
orientation and widths that yield the lowest overall error.

The result of this sequence of steps is a reasonable estimate for the
number of Gaussian modes and their parameters. As a final step, we
apply a full Levenburg-Marquardt optimization to find the best i,
�i, and θi that explain all of the measurements.

3.3 Results of accurate matting

Figure 4 shows our experimental setup. A Sony DCR-TRV900 dig-
ital video camera records images of an object as one of three moni-
tors presents a sequence of stimulus functions. We correct for non-
linearities in the video camera using Debevec and Malik’s method
[5]. To calibrate each monitor’s brightness settings, we display a
sequence of solid gray images and record them with the radiometri-
cally corrected camera. After averaging the gray values within each
image, we have a mapping between gray values on the computer
and displayed radiance. Each stripe image is adjusted so that the
profile is Gaussian in radiance space.

After calibration, we begin imaging the object by extracting the
foreground color and silhouette mask as described in the previous
section. Next, we display the sequence of background patterns. We
translate each Gaussian stripe across the screen in steps of σs/2 to
ensure enough samples for the estimation procedure. We typically



use σs = 2 or 4 (measured in camera pixels) requiring about 300 or
150 stripe positions, respectively, per horizontal, vertical, or diago-
nal sweep. Due to the lack of synchronization between the monitor
refresh and the camera, we are unable to capture at video rates; in-
stead, a typical capture plus digital video transfer requires roughly
30 minutes. (With a synchronized system and real-time transfer to
PC memory, we expect acquisition could take less than a minute.)
Processing time for an environment matte is typically about 20 min-
utes on a 400 MHz Pentium II PC with 128 MB of RAM.

We demonstrate the accuracy of our new environment matting al-
gorithm on three objects. For each example, we render the matte
by explicitly integrating the oriented Gaussian filters over the back-
ground. The results are shown in Figures 5 and 6.

The first object is a crystal in the shape of a regularly triangu-
lated sphere, shown in Figure 5(a). The planar facets give rise to
prismatic rainbowing effects due to dispersion. This effect is cap-
tured by our new matting algorithm because we estimate a different
Gaussian weighting function (with a different center) for each color
channel. This effect is not modeled by the old matting algorithm,
which breaks down even further due to the multiple mappings at
pixels that straddle crystal facets.

The multiple mapping problem is more clearly demonstrated by our
next object, a beer glass laid on its side (Figure 5(b)). Due to the
grazing angle, simultaneous reflection and refraction at the top of
the glass results in bimodal mappings to the background. The old
method simply cannot handle this phenomenon, whereas the new
method captures the effect realistically.

Finally, we captured an environment matte for a pie tin with a rough
surface, oriented to cause tilted reflections from the backdrop. Fig-
ure 5(c) demonstrates the failure of the old method to capture the
large, smooth weighting function indicative of surface roughness,
in contrast to the new method’s success.

Figure 6 demonstrates the importance of capturing the orientation
of the weighting function. When we apply the new method without
estimating orientation (i.e., by simply using the widths determined
by the horizontal and vertical sweeps), the texture lines running at
25◦ off of vertical are significantly blurred. After estimating the
orientation, we obtain a matte that faithfully preserves these details.

4 Towards real-time capture

In the previous section, we considered ways to increase the accu-
racy of composites produced with the environment matting tech-
nique, at the expense of increasing the number of input images re-
quired. Now we will attempt to go the other way—to see how much
realism can be maintained when we restrict the input to just a single
image of the object.

The single-image case is interesting for two reasons. First, it rep-
resents a definite, extreme end of the image-count-versus-accuracy
spectrum—a sort of lower bound on the quality of the whole en-
vironment matting technique. Secondly, unlike a solution that re-
quires even two or three images of the object, a single-image so-
lution makes it straightforward to capture video environment mat-
tes of moving objects in front of a still, structured background. The
original environment matting work [20] produced video using a sort
of stop-motion technique, where a rigid object was placed on a mo-
tion platform, allowing multiple photographs to be taken of each
pose. This severely limited the kinds of motions that could be cap-
tured. In contrast, a method utilizing just a single background image
could be used to capture breaking glass, sloshing liquids, and other
kinds of non-repeatable, uninterruptible motions. Although the data
capture itself is real-time, the matte extraction process is performed
off-line at a slower speed. The matte extraction process analyzes the
frames of a captured video and constructs a matte for each frame.

4.1 Simplifying the matting equation

Using the high-accuracy matting process, we enjoy the luxury of
having many samples per pixel. In the current process, we only
have three samples per pixel: red, green, and blue. Our first objec-
tive, then, is to simplify the problem just enough to be solvable—
that is, so that there will be only three unknowns remaining. We
choose these simplifications to maximize the visual impact of the
final matte. Then, using some carefully designed heuristics, we at-
tempt to recover more variables in order to significantly improve
visual appearance.

We begin by examining the original environment matting equation
[20], written here as Equation 8. Assuming a single backdrop tex-
ture, we drop the summation and the subscript i:

C = F + (1 − α)B + RM(T , A) . (22)

We can now count variables, keeping in mind that where we see a
wavelength dependence, we can assume an rgb vector in practice.
The unknowns are then F and R (rgb vectors), α, and A. The A
term can be broken into {,w}, where  = (cx, cy) is the center of
the area and w = (wx, wy) is the width in x and y. Thus, we have
eleven variables.

The properties of the matte that we would most like to preserve
are, in order: (1) the capacity to refract, reflect, and attenuate the
background (A, R); (2) smooth blending with the background on
silhouettes (α); and (3) specular highlights due to foreground light-
ing (F ).

Let’s focus on preserving the first property, which still has seven
unknowns. We can simplify this set to three unknowns under the
assumption that the object is both colorless and specularly reflec-
tive and refractive (i.e., has no roughness or translucency). If the
object is colorless, then R becomes a scalar ρ, with no wavelength
dependence. In addition, pure specularity implies that neighboring
pixels do not have overlapping support in their weighting functions.
Thus,  is now an image warping function, andw, derived from the
warping function, indicates the size of the filter support for proper
antialiasing [19]. We have found the following approximation for
w to work well in practice:

wx ≡ ∂
∂x
cx ≈ 1

2
[cx(x+ 1, y) − cx(x− 1, y)] (23)

wy ≡ ∂
∂y
cy ≈ 1

2
[cy(x, y + 1) − cy(x, y − 1)] . (24)

Thus, our rgb environment matting equation becomes

C = ρM(T ,A) (25)

4.2 Single image matte recovery

What kind of stimulus function could we use to recover all the pa-
rameters in this problem? A logical choice would be a smooth func-
tion, where we define smoothness as

M(T ,A) ≈ T () (26)

for any area A. Such a function would have the property under our
simplified model that

C ≈ ρT () . (27)

Treating this equation as three equations in r, g, and b, we can eas-
ily solve for the three unknowns ρ, cx, cy. Backgrounds that are
smooth according to the definition in Equation 26 include constant
color functions and linear color ramps. However, our function must
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Figure 5 Comparisons between the composite results of the previously published algorithm, the higher accuracy environment matting technique described here,

and reference photographs of the matted objects in front of background images. Lighting in the room contributed a yellowish foreground color F that appears, e.g.,

around the rim of the pie tin in the bottom row. (a) A faceted crystal ball causes rainbowing due to prismatic dispersion, an effect successfully captured by the higher

accuracy technique since shifted Gaussian weighting functions are determined for each color channel. (b) Light both reflects off and refracts through the sides of

a glass. This bimodal contribution from the background causes catastrophic failure with the previous unimodal method, but is faithfully captured with the new

multi-modal method. (c) The weighting functions due to reflections from a roughly-textured pie tin are smooth and fairly broad. The new technique with Gaussian

illumination and weighting functions handles such smooth mappings successfully, while the previous technique based on square-wave illumination patterns and

rectangular weighting functions yields blocky artifacts.

(a) (b) (c) (d)

Figure 6 Oriented weighting functions reflected from a pie tin. (a) As in Figure 5, the previous method yields blocky artifacts for smooth weighting functions. (b)

Using the higher accuracy method with unoriented Gaussians (θ = 0) produces a smoother result. (c) Results improve significantly when we orient the Gaussians

and solve for θ. In this case, θ ≈ 25◦ over most of the bottom surface (facing up) of the pie tin. (d) Reference photograph.



also be invertible, so that we can identify which pixel we are seeing
from its color. Obviously, a constant color function does not fill this
requirement. Instead, we display a color ramp background which is
a slice through the rgb cube.

Before extracting the environment matte against a ramp back-
ground, we add a step that will allow us to recover an estimate of α,
the second desirable property on our list. In Section 3, we described
a method for classifying pixels as to whether they belong to the ob-
ject. We can think of this classification as choosing between either
α = 1 (i.e., the pixel belongs to a foreground object) or α = ρ = 0
(i.e., the pixel belongs to the background).

To classify pixels, we first take a series of pictures of the back-
ground without the object and average them together to give us a
low noise estimate of the ramp background. Once we begin record-
ing video of the object, we apply a simple difference threshold to
each frame, comparing the image of the object to the image of the
background alone. This step separates foreground and background
pixels. We then use some morphology operations (dilation followed
by hole-filling followed by erosion) to clean up this binary map,
giving us a reasonably accurate mask of the pixels covered by the
object. To avoid a sharp discontinuity, we slightly feather the alpha
at the boundaries of the object as a post-processing step. Thus, we
arrive at the improved matting equation:

C = (1 − α)B + ρM(T ,A) (28)

which, for a smooth background, reduces to

C = (1 − α)B + ρT () . (29)

We can now begin to recover an environment matte. Because we
assume that F = 0 everywhere, we photograph the object in a
dark room, lit only by the structured backdrop. The structured back-
ground is a smoothly-varying wash of color, in particular, a planar
slice through the rgb cube. Due to non-linearities in the system, in-
cluding crosstalk between the spectra of the monitor phosphors and
the CCD elements, the gamma of the backdrop display, and pro-
cessing in the camera’s electronics, this plane in color space will
be distorted, becoming a curved 2D manifold lying within the rgb
cube, as in Figure 7(b).

To extract matte parameters at each pixel, we consider the line join-
ing the observed color and the black point in rgb space. The point
where this line intersects the background-color manifold gives us
the point , and the fractional distance of the observed color to the
manifold gives us ρ, as illustrated in Figure 7(a). The manifold is
difficult to characterize algebraically, so rather than projecting the
observed color onto it, we do a multiresolution search to find the
point on the manifold closest to the construction line.

A single frame of video captured with a CCD camera will have
considerable noise. While we can capture several seconds of the
empty background and average frames to create a nearly noise-
free reference, we get only one frame of the object in front of the
backdrop. This leads to grainy composite images, as seen in Fig-
ure 8(a). One way to combat this effect is to filter the input im-
ages to smooth out noise before matte extraction. However, our
extraction process is so sensitive to noise that we have not been
successful in obtaining smooth mappings without also significantly
smoothing away detail in the images. Instead, we find that directly
smoothing the extracted warping function, , is most effective. To
this end, we apply the edge-preserving smoothing operator of Per-
ona and Malik [11] to the cx and cy channels. This operator aver-
ages each pixel with its neighborhood, with unequal contributions
from neighboring pixels. The relative contributions are determined
by the difference of the pixels’ values, so that similarly-valued pix-
els affect each other more. This filter smoothes out regions with
low-to-moderate noise levels while preventing significant energy

background

manifold

O

C

B(x)

C´

W

B(x,y)

(a) (b)

Figure 7 (a) 2D version of the algorithm for constructing environment mattes

from a single image, assuming that F = 0. The observed color C is pro-

jected from black onto the background manifold. The position of point C′ on

the manifold gives the position x, and ρ = OC/OC′ . (b) In reality, the

background colors lie on a 2D manifold within the rgb cube, and we recover

an (x, y) position.

(a) (b)

Figure 8 A composite created from a single-frame environment matte. Part

(a) shows the results when no filtering is applied. Filtering the matte both

spatially and temporally reduces noise in the composite considerably, as seen

in part (b).

transfer across sharp edges. For video, the best results are obtained
when this operator is applied temporally as well as spatially, giving
frame-to-frame coherence, which is especially important in areas of
the object that are not moving.

4.3 Heuristics for specular highlights

The most noticeable visual effect of this restricted model is the
loss of specular highlights. The objects we capture are typically
curved glass, and highlights are both important for communicat-
ing the shape of the object and for making it visually appealing. In
this section, we develop a method for recovering the intensity of
the foreground color F , under the restriction that it is white. Thus,
F = fW where W = (1, 1, 1), so that only one additional pa-
rameter, f is added to the matting equation. This new single-image
environment matting equation then becomes

C = fW + (1 − α)B + ρM(T ,A) (30)

or, for a smooth background:

C = fW + (1 − α)B + ρT () . (31)

We extend our simple model by allowing the objects to be pho-
tographed with bright, near-point light sources. Because the sur-
faces of our objects are curved, such light sources primarily create
bright spots and highlight contours where the normal is equal to the
halfway vector between the viewing and lighting rays.

When applied to images taken with lighting other than the back-
drop, the recovery algorithm of the last section will discover some
points where ρ > 1, i.e., where the observed color point lies on
the side of the background manifold closer to white. The theory of
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Figure 9 Sample frames from four environment matte video sequences. Rows (a) and (b) show bubbles being blown in an Ehrlenmeyer flask filled with glycerin,

while rows (c) and (d) show a glass being filled with water. Sequences (a) and (c) were captured with no lighting other than the backdrop, so that the foreground

color is zero. Sequences (b) and (d) were captured separately, shot with the lights on, and the foreground estimation technique is used to recover the highlights.

light transport (see Appendix A) tells us that this should not hap-
pen when the object is lit only by the backdrop, so we assume that
wherever ρ exceeds unity there must be some F -term contribution
to the pixel. (In practice, sensor noise means that ρ can occasion-
ally exceed unity even where there is no highlight. Our algorithm
actually looks for highlights only in regions where ρ > 1 + δ, and
clamps smaller ρ values to the range [0, 1]. For our (fairly noisy)
video camera, a δ in the range 0.03–0.10 is typically used.)

Since the highlights we observe will be small or narrow, we make
the assumption that the refraction direction and transparency will be
smoothly varying in the area of the highlight. We estimate the pa-
rameters ρ, cx, and cy for the neighborhood around the highlight by
interpolating from the values at nearby pixels outside the highlight
area and then applying Gaussian smoothing. Once we have esti-

mates for these parameters, we can use Equation 31 to compute f
independently for each color channel, e.g.:

fg = Cg − (1 − α)Bg − ρTg() , (32)

where the g subscript on each variable represents the green color
component. Similarly, we compute fr and fb for the red and blue
color components, respectively, and then combine them to esti-
mate f :

f = max{fr, fg , fb} . (33)

In principle, fr , fg , and fb should all be the same, but in practice
some or all channels of the observed color C can be clipped, result-
ing in an artificially low f value. We compute f using each channel
separately and take the maximum to counter the effects of such clip-
ping. In practice, the resulting f values may still appear too dim,



(a) (b)

Figure 10 Image (a) is an image of a glass fish sculpture captured in front of a

photograph displayed on a computer monitor. Image (b) shows a single frame

environment matte composite—the same fish photographed once in front of

a color wash and digitally composited onto the fruit image. The background

image was darkened using the color histogram matching technique of Heeger

and Bergen [7] to approximate the darkening produced by photographing the

image on a monitor.

so we scale them up when compositing to produce a more vivid
highlight. In addition, we currently solve for f before feathering α,
though it would be straightforward to solve for f after feathering.

Figure 9 shows some still images taken from an environment matte
video captured with this method. While this technique is most effec-
tive for video, still images can also be used for gauging the quality
of the extracted mattes. The first four rows all show examples of liq-
uids in motion, which could not be captured by a technique requir-
ing multiple images of the same object pose. Figure 10 compares
the results of video environment matting to a photograph. Some de-
tails, such as the ridges on the fish’s dorsal fin, which are clearly
visible in the photograph, have become indistinct with the environ-
ment matte, but the environment matte has done a reasonable job of
capturing the gross refraction pattern of the object.

5 Conclusion

Environment matting involves an inherent tradeoff: the amount of
input data required versus the quality of the resulting matte. The
original environment matting and compositing paper by Zongker et
al. [20] provided one data point in this space—a reasonably accu-
rate model obtained using a reasonably small (logarithmic) number
of photographs. In this work, we have presented two additional data
points in the environment matting design space. The first captures a
higher quality model in which each pixel can see one or more dif-
ferent Gaussian regions of the environment on a per-channel basis.
This approach allows for accurate capture of objects with multi-
modal refraction and reflection qualities, or with prismatic color
dispersion. In the second approach, we limited ourselves to a sin-
gle input image to see how much quality could be retained. While
the range of modeled effects must be severely pared down, in many
interesting situations the composite images created are still quite
convincing. The effect is greatly enhanced by matting an object in
motion, an effect made possible with a single-frame solution.

One general area of future work is to develop more sophisticated
mathematical tools for extracting environment mattes from our in-
put data. For the higher accuracy method, we are developing a sen-
sitivity analysis of our parameter estimation process in hopes of
selecting a new, smaller set of basis functions that exhibit greater
noise immunity. For the fast, lower accuracy method, we are re-
searching a more principled Bayesian approach to fitting matte pa-
rameters given noisy image streams.

Finally, our accurate environment matting methods should enable
us to capture the behaviors of surfaces with bimodal BRDF’s, e.g.,

having specular and diffuse components. Our initial experiments
in this direction have yielded promising results. However, we have
found that monitor illumination is too weak when reflected off of
a diffuse surface. By acquiring high dynamic range radiance maps
[5], we hope to solve this problem and demonstrate interactive light-
ing of these more complex environment mattes. We also expect that
Gaussian weighting functions will not accurately model diffuse re-
flection. Choosing new sets of weighting functions to handle such
cases is another area for future work.
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[6] Gerd Häusler and Dieter Ritter. Parallel three-dimensional sensing by color-

coded triangulation. Applied Optics, 32(35):7164–7169, December 1993.

[7] David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthesis.

Proceedings of SIGGRAPH 95, pages 229–238, August 1995.

[8] Eli Horn and Nahum Kiryati. Toward optimal structured light patterns. In

Proceedings of the International Conference on Recent Advances in Three-

Dimensional Digital Imaging and Modeling, pages 28–35, 1997.

[9] T. Kanade, A. Gruss, and L. Carley. A very fast VLSI rangefinder. In 1991

IEEE International Conference on Robotics and Automation, volume 39, pages

1322–1329, April 1991.

[10] F. E. Nicodemus, editor. Self-Study Manual on Optical Radiation Measurements:

Part I—Concepts, chapter 1–3. National Bureau of Standards, 1976. Technical

Note 910–1.

[11] P. Perona and J. Malik. Scale space and edge detection using anisotropic diffu-

sion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 12(7):629–639,

July 1990.

[12] Thomas Porter and Tom Duff. Compositing digital images. In Proceedings of

SIGGRAPH 84, volume 18, pages 253–259, July 1984.

[13] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-

nery. Numerical Recipes in C: The Art of Scientific Computing (2nd ed.). Cam-

bridge University Press, 1992.

[14] K. Sato and S. Inokuchi. Three-dimensional surface measurement by space en-

coding range imaging. Journal of Robotic Systems, 2:27–39, 1985.

[15] Erhard Schubert. Fast 3d object recognition using multiple color coded illumi-

nation. In Proc. IEEE Conference on Acoustics, Speech, and Signal Processing,

pages 3057–3060, 1997.

[16] Alvy Ray Smith and James F. Blinn. Blue screen matting. In Proceedings of

SIGGRAPH 96, pages 259–268, August 1996.

[17] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD

thesis, Stanford University, December 1997.

[18] Gregory J. Ward. Measuring and modeling anisotropic reflection. In Edwin E.

Catmull, editor, Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26,

pages 265–272, July 1992.

[19] G. Wolberg. Digital Image Warping. IEEE Computer Society Press, 1990.

[20] Douglas E. Zongker, Dawn M. Werner, Brian Curless, and David H. Salesin.

Environment matting and compositing. In Proceedings of SIGGRAPH 99, pages

205–214, August 1999.



A Bounding the attenuation coefficient

In Section 4, we claim that the attenuation coefficient ρ is always
less than or equal to 1. Here we present an argument (due to Eric
Veach) that justifies this claim in terms of known physical laws.
Our claim is equivalent to showing that the spectral radiance of any
ray entering the camera is bounded above by the maximum spectral
radiance of rays leaving the background monitor; that is, the inter-
vening objects cannot somehow increase the spectral radiance by
reflection or transmission. Since radiance can in fact be increased
by refraction, instead we work with a quantity known as basic ra-
diance, defined as radiance divided by the square of the refractive
index of the surrounding medium [10]. It is well known in classical
optics that basic radiance cannot be increased at a refractive sur-
face, a fact known as Abbe’s law. Although this law is not directly
applicable in our case (since it applies only to perfect mirrors and
lenses), a similar result can be derived for general reflecting and
transmitting surfaces [17]. This result also holds for basic spectral
radiance under the assumption that surfaces do not exhibit wave-
length coupling (e.g., fluorescence).

We now show that the basic spectral radiance along any ray can-
not exceed that of the emitting surfaces. The light transport equa-
tion can be written as L = Le + TL, where L is the equilibrium
basic radiance distribution, Le is the emitted basic radiance dis-
tribution, and T is the light transport operator. We wish to show
that ‖L‖ ≤ ‖Le‖, where all norms are infinity norms. We do this
by induction, starting with L0 = Le and considering a sequence
Li+1 = Le + TLi whose limit is L. Veach [17] shows that the
norm of T is always less than one, i.e. ‖TLi‖ < ‖Li‖ ≤ ‖Le‖.
If we now assume that the emitting surfaces do not reflect light at
the wavelengths they emit (which in fact is a well-known property
of emitters), then Le and TLi are non-zero on disjoint sets of rays.
For the infinity norm this implies that ‖Le +TLi‖ ≤ ‖Le‖, and so
by induction ‖L‖ ≤ ‖Le‖. Finally, assuming that the monitor and
the camera are in the same medium (such as air), this implies that
the sensor will never measure a value at any pixel greater than the
maximum emitted radiance.


