
functional  specialization in various environments. We address 

the links between these different microbial communities through 

food consumption, which raise the question of the evolution of 

gut microbes.

BACTEROIDETES  IN THE NORMAL MICROBIOTA OF ANIMALS

Microbes that live in and on humans (known as microbiota) can 

represent up to 100 trillion cells, 10 times more than the eukaryotic 

stem and somatic cells (Ley et al., 2006b; Turnbaugh et al., 2007). 

The large majority of these microbes reside in our GIT, and belong 

either to the Firmicutes or Bacteroidetes phyla (Marchesi, 2010). In 

fact, these two bacterial phyla account for >98% of the 16S rRNA 

sequences detected in the gut microbiota of mammals (Ley et al., 

2006b). Bacteroidetes have colonized all the different parts of the 

GIT, despite the different conditions they have to face in terms of, 

e.g., pH, nutrients, and oxygen availability. Due to their easier acces-

sibility, the mouth and colon microbiota have been the most studied. 

The large intestine is the most colonized compartment of the GIT, 

with bacterial densities reaching 1011–1012 cells/ml (Whitman et al., 

1998). Members of the Bacteroidetes phylum are well known colo-

nizers of the colon. They account for about 50% of the 16S rRNA 

sequences detected from healthy human mucosal tissues (Eckburg 

et al., 2005). Among this phylum, members of the genus Bacteroides 

THE PHYLUM BACTEROIDETES

The phylum Bacteroidetes is a very diverse bacterial phylum, the 

name of which changed several times over the past years. It is also 

known as the Cytophaga–Flexibacter–Bacteroides (CFB) group, an 

appellation that reflects the diversity of organisms found in this 

phylogenetic group (Woese, 1987; Woese et al., 1990). According 

to the Bergey’s Manual of Systematic Bacteriology (Bergey’s, 2011), 

the Bacteroidetes phylum comprises four classes: Bacteroidia, 

Flavobacteria, Sphingobacteria, and Cytophagia, representing 

around 7000 different species (NCBI, October 2010). The larg-

est class is the Flavobacteria, grouping together around four times 

more species than the three others (Table 1). These bacteria are all 

Gram negative, cover a mixture of physiological types, from strictly 

anaerobic Bacteroides to strictly aerobic Flavobacteria. They are 

non-motile, flagellated, or move by gliding.

Members of the phylum Bacteroidetes have colonized many dif-

ferent ecological niches, including soil, ocean, freshwater, and the 

gastrointestinal tract (GIT) of animals, where they display various 

biological functions. In particular, they are well known degrad-

ers of polymeric organic matter. This review describes current 

knowledge on the role and mechanisms of polysaccharide deg-

radation by Bacteroidetes in their respective habitats. We empha-

size the features shared by members of the phylum that allow this 
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are the most abundantly represented in the fecal microbiota (Moore 

and Holdeman, 1974; Sghir et al., 2000). Bacteroidetes have also been 

found in the normal microbiota of the oral cavity, either in the saliva 

or dental plaque (Keijser et al., 2008; Nasidze et al., 2009a,b). In the 

throat, Andersson et al. (2008) found that Bacteroidetes account for 

∼20% of the reads using barcoding pyrosequencing, and identified 

Prevotella genus as the second most represented after Streptococcus. 

The same proportions were found in the distal esophagus (Pei et al., 

2004). Due to its low pH, the stomach is a harsh ecological niche, 

quite different from the other GIT compartments. However, even if 

Helicobacter pylori represents a major part of the stomach microbiota, 

Bacteroidetes were still found to account for 10–20% of the bacte-

ria (Bik et al., 2006), including members of the genera Prevotella, 

Capnocytophaga, Bergeyella, Porphyromonas, and Tannerella. In fact, 

Prevotella was the third most abundant genus in the stomach micro-

biota, after Helicobacter and Streptococcus.

Bacteroidetes are also encountered in the microbiota of other 

mammals, such as mice (Dubos et al., 1965; Savage et al., 1968), dogs 

(Middelbos et al., 2010), pigs (Leser et al., 2002), and ruminants 

(Tajima et al., 1999; Leng et al., 2010). They appear in the GIT of 

domesticated and wild birds, such as chickens (Zhu et al., 2002), 

turkeys (Scupham et al., 2008), goose (Lu et al., 2009), and ostrichs 

(Matsui et al., 2010). They have been demonstrated as dominant 

in the microbiota of echinoderms (Balakirev et al., 2008), mil-

lipedes (Knapp et al., 2010), and the last compartment of termite 

gut (Schmitt-Wagner et al., 2003).

The interaction between Bacteroidetes and their animal host is 

now known to be mutualism rather than commensalism since the 

fitness of both partners is increased (Backhed et al., 2005). Several 

studies have shown the implication of Bacteroidetes for the normal 

development of the GIT. For example, it has been shown that germ-

free animals display an altered GIT compared to conventional ones, 

leading to changes in morphology and function (see for review, 

Abrams, 1983). Other contributions of Bacteroidetes to the health 

of their host include interactions with the immune system for the 

activation of T-cell mediated responses (Mazmanian et al., 2008; 

Wen et al., 2008), and limitation of the GIT colonization by poten-

tial pathogenic bacteria (Mazmanian, 2008). Gut Bacteroidetes gen-

erally produce butyrate, an end product of colonic fermentation 

which is thought to have antineoplastic properties and thus plays 

a role in maintaining a healthy gut (Kim and Milner, 2007). They 

are also involved in bile acid metabolism and transformation of 

toxic and/or mutagenic compounds (Smith et al., 2006).

However, their main and most studied biological function as 

symbionts is the degradation of biopolymers in the large intes-

tine, and in particular polysaccharides. Carbohydrates represent 

the bulk of normal human and animal diets, thus forming a main 

source of nutrients for both the host and the microbiota. Mammals 

can easily absorb simple sugars (e.g., glucose, galactose) via active 

transport in the proximal small intestine (Ferraris, 2001) or degrade 

some disaccharides (e.g., lactose, maltose, sucrose) to monomers. 

They also possess enzymes which allow the degradation of starch 

to glucose. However, they are generally under-equipped for the 

degradation of other complex polysaccharides, which are resistant 

to the action of digestive enzymes and reach the colon relatively 

intact. The microbiota and especially Bacteroidetes are believed to 

complement eukaryotic genomes with degradation enzymes target-

ing resistant dietary polymers, such as plant cell wall compounds 

(e.g., cellulose, pectin, and xylan). Bacteroidetes also degrade host-

derived carbohydrates, primarily coming from GIT secretions, such 

as N-glycans found in mucins or chondroitin sulfates (Salyers et al., 

1977). With this respect, one well studied example is Bacteroides 

thetaiotaomicron, a prominent member of the human microbiota 

that has been shown to principally forage on host mucin O-glycans. 

This has an impact on their colonization and probably represents 

an important evolved component of their adaptation to the gut 

habitat (Martens et al., 2008). The bacteria-mediated fermentation 

of these food, and host-derived polysaccharides in the colon leads 

to the release of volatile, short-chain fatty acids (mainly acetate, 

propionate, and butyrate) that are reabsorbed by the host. Therefore 

these intestinal bacteria help the host to gain energy from otherwise 

refractory carbohydrate sources. In herbivorous animals such as 

ruminants, the diet consists largely of plant cell wall compounds 

resistant to the host’s digestive enzymes. Thus, assimilation of short-

chain fatty acids produced by microbial fermentation of polysac-

charides can support more than 50% of the total caloric supply 

(Carroll and Hungate, 1954). In omnivorous mammals, notably 

humans, this extra-source of energy accounts for 7–10% of the daily 

allowance (Smith and Bryant, 1979; Hooper et al., 2002). In rats, it 

has been shown that germ-free animals excrete 87% more calories 

within the feces than their normal counterparts, and need to ingest 

30% more food to maintain their body weight (Wostmann et al., 

1983). Hence, the presence of the intestinal microbiota is required 

for the optimal uptake of energy from the diet.

ENVIRONMENTAL BACTEROIDETES

Members of the phylum Bacteroidetes have colonized virtually 

all types of environments encountered on Earth. This versatil-

ity is reflected by the diversity of sources from which cultivated 

strains have been isolated, such as soil, activated sludge, decaying 

plant material, compost, freshwater, and marine samples, algae, 

dairy products, and diseased animals (Bernardet and Nakagawa, 

2006; Reichenbach, 2006). While the GIT microbiota is mainly 

composed of species from the Bacteroidia class, environmental 

Bacteroidetes belong primarily to the Flavobacteria, Cytophagia, 

and Sphingobacteria classes.

Over the past years, the diversity of environmental bacterial 

communities has been re-evaluated due to the use of culture-

independent techniques. Bacteroidetes are increasingly recognized 

as an important compartment of the bacterioplankton in marine 

environments (Jooste and Hugo, 1999; Kirchman, 2002), especially 

in pelagic oceans. They are highly abundant as shown by fluores-

cent in situ hybridization (FISH) experiments using specific probes 

Table 1 | Census of the phylogenetic divisions inside the Bacteroidetes 

phylum (NCBI, October 2010).

Class No. of families No. of genera No. of species

Bacteroidia 5 28 858

Flavobacteria 3 110 3583

Sphingobacteria 3 29 787

Cytophagia 3 47 765

Unclassified strains – – 996
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Several lines of evidence designate Bacteroidetes as crucial 

degraders of complex organic matter in the environment and not 

only in laboratory, many of them resulting from research on aquatic 

ecosystems (Kirchman, 2002). In the ocean, particulate and dis-

solved organic matter tends to aggregate to form particulate detritus 

(>0.5 mm) known as marine snow (Chin et al., 1998). These sinking 

particles are hotspots of organic carbon and thus play a key role 

in the export of matter from the euphotic surface to the sediment 

of the deep ocean (Azam and Malfatti, 2007). Marine snow hosts 

a considerable bacterial population, with densities reaching 106–

108 cells per aggregate (Alldredge et al., 1986). Numerous studies 

characterizing these particles-associated populations have revealed 

that Bacteroidetes account for a large part (Rath et al., 1998; Ploug 

et al., 1999) and can even be the most abundant phylogenetic type 

detected (DeLong et al., 1993). Similar results have been found for 

estuarine particles, where Cytophaga spp. are amongst the domi-

nant species in the bacterial assemblage (Crump et al., 1999). This 

enrichment of Bacteroidetes can be linked to their ability (i) to 

efficiently degrade complex and recalcitrant biopolymers seques-

tered in the particulate organic detritus and (ii) to colonize surfaces 

(Kirchman, 2002). Similarly, the immersion of insoluble cellulose 

for one month in the Irish Sea resulted in the colonization of the 

fibers by a specific bacterial biofilm, dominated by Bacteroidetes 

and Gammaproteobacteria (Edwards et al., 2010). In lakes, Glöckner 

et al. (1999) found that Bacteroidetes relative abundance in the 

water column increased with the depth of sampling. They proposed 

that this was due to the accumulation of slowly degradable, sink-

ing macromolecules, a substrate that may have selected efficient 

degraders like Bacteroidetes.

Another evidence for consumption of high molecular weight 

(HMW) compounds by Bacteroidetes comes from several experi-

ments where the bacterial community was followed after an increase 

of input of organic matter. Coastal and deep-sea environments typi-

cally receive seasonal pulses of organic matter after phytoplankton 

bloom events (Gooday, 2002; Kim et al., 2009). During such blooms 

of diatoms (Riemann et al., 2000) and dinoflagellates (Fandino 

et al., 2001), the population of Bacteroidetes increased significantly 

in a short time scale, concomitant with increasing activity of extra-

cellular hydrolytic enzymes. Concordant with these results, a recent 

study of the communities of water masses from the North Atlantic 

Ocean revealed a specific enrichment of Flavobacteria in the space 

directly surrounding nanophytoplankton (Gomez-Pereira et al., 

2010). In a freshwater lake, the virus-induced lysis of filamentous 

cyanobacteria led to the appearance of newly emerging bacterial 

species (van Hannen et al., 1999). The majority of these new micro-

bial populations belonged to Cytophagales and Actinomycetes.

In alternative experiments, seasonal pulses were mimicked 

in laboratory conditions by an artificial increase of the organic 

carbon input. Gihring et al. (2009) simulated a phytodetritus 

deposition event by adding heat-killed Spirulina cyanobacteria 

on coastal sediments, resulting in an increase in the proportion 

of Bacteroidetes that was limited to the surface of the sediment 

(from 0 to 4 mm depth). This suggests a role of Bacteroidetes in 

the phytodetritus degradation in aerobic conditions (Gihring 

et al., 2009). The addition of exogenous protein to Californian 

coastal seawater mesocosms also triggered a change in the bac-

terial community, with an increase of the occurrence of several 

on seawater samples. They account for as much as half of the iden-

tified cells potentially identified and outnumber alternative species 

(Glöckner et al., 1999; Simon et al., 1999; Cottrell and Kirchman, 

2000). Using 16S rRNA gene clone libraries from nine different 

sampling sites (including coastal and oceanic waters at 5 m-depth 

in temperate, tropical, and polar regions), Pommier et al. (2007) 

found that Bacteroidetes and Proteobacteria were dominant. Marine 

Bacteroidetes are also often demonstrated as living on marine inert 

or living surfaces, either in sediments (Llobet-Brossa et al., 1998; 

Julies et al., 2010), in biofilms (Edwards et al., 2010), in hydrother-

mal vents (Sievert et al., 2000), associated with corals (Frias-Lopez 

et al., 2002; Rohwer et al., 2002) or on the surface of macroalgae 

(Beleneva and Zhukova, 2006; Staufenberger et al., 2008; Salaun 

et al., 2010) and angiosperms (Crump and Koch, 2008).

Bacteroidetes also colonize freshwater environments to a signifi-

cant extent. Using FISH, they were found in all the water samples 

collected in lakes from different locations (Austria, Switzerland, 

Germany, and Siberia), with a median abundance ranging from 2 

to 12% which tends to increase with depth (Glöckner et al., 1999). 

Bacteroidetes accounted for 40–60% of the detectable bacteria in 

river samples from Spain (Simek et al., 2001). An integrative analy-

sis of the available bacterial 16S rDNA sequences recovered from 

freshwater lakes and rivers over the past 15 years concluded that 

these environments host a specific planktonic bacterial community, 

different from the adjacent terrestrial habitats and sediments (Zwart 

et al., 2002). Bacteroidetes were amongst the major bacterial lineages 

in this community, together with Proteobacteria, Actinobacteria, 

and Verrucomicrobia.

Soil-associated bacterial communities also comprise mem-

bers of the Bacteroidetes phylum. Using different techniques 

they have been detected in soil samples from various locations, 

including cultivated fields (Borneman et al., 1996; Martinez-

Alonso et al., 2010), greenhouse soils (Kim et al., 2006) and 

unexploited areas (Buckley and Schmidt, 2003; Zhou et al., 

2009). Recently, a study including soils from 88 different 

places revealed a positive correlation between the pH of the 

substrate and the relative abundance of Bacteroidetes (Lauber 

et al., 2009), ranging from 1.7% at low pH (<4) to 17% in 

basic soils (pH > 8). The surface of leaves, or phyllosphere, 

is another location of Bacteroidetes colonization in terrestrial 

environments. In a recent study, they accounted for 21.5% of 

the OTUs sequenced in samples from 56 tree species. Indeed, 

the most common group of bacteria found on the leaves was 

Sphingobacteriales which represented 21.3% of all sequences 

(Redford et al., 2010). Interestingly, Bacteroidetes tend to be 

more abundant on conifers (gymnosperms), reaching 70% of 

the sequences detected on the leaves, and less abundant on 

leaves from angiosperms.

Environmental Bacteroidetes are thought to be specialized in the 

degradation of complex organic matter in the biosphere, especially 

in the form of polysaccharides and proteins (Church, 2008). As a 

group, they are very versatile in the range of biopolymers they can 

use as carbon and energy source, e.g., plant, algal, or animal com-

pounds. The description of new taxa often results from screening 

of environmental samples to discover original enzymatic activities 

with potential biotechnological applications (Barbeyron et al., 2001, 

2008; Pankratov et al., 2006; Lee et al., 2010).
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Members of the genera Riemerella, Ornithobacterium, and Coenonia 

can cause septicemia and respiratory tract infections in birds 

(Segers et al., 1993; Vandamme et al., 1994, 1999).

In addition, Bacteroidetes can affect various plants and algae. 

F. johnsoniae is incriminated as an opportunistic pathogen in the 

decay of fresh plants and vegetables called “soft rot” (Liao and Wells, 

1986). Members of the genera Zobellia, Cellulophaga, and Kordia 

have algicidal activities (Skerratt et al., 2002; Sohn et al., 2004), and 

can therefore control blooms of microscopic algae. The Anaaki 

disease, severely damaging the red macroalga Porphyra yezoensis, is 

caused by Flavobacterium sp. LAD-1 (Sunairi et al., 1995). Uyenco 

(1977) isolated strains of Flavobacterium associated with “ice-ice 

disease” in decaying red alga Eucheuma striatum, characterized 

by whitening and hardening of the seaweed’s tissues. Similarly, a 

Cytophaga sp. promotes the ice–ice disease in stressed branches 

of the farmed Rhodophytes Kappaphycus alvarezii and Eucheuma 

denticulatum (Largo et al., 1995). Members of the Flavobacterium 

genus can also infect brown macroalga such as Undaria pinnatifida, 

where they are associated with “spot-rotting” disease and “shot hole 

disease” (Neill et al., 2008).

The pathogenicity of Bacteroidetes is at least partly due to the pro-

duction of polymer-degrading enzymes targeting host cellular com-

ponents. Animal pathogens produce a range of hydrolytic enzymes 

such as hyaluronidase, chondroitin sulfatase, heparinase, glucosi-

dases, and N-acetylglucosaminidase (Rudek and Haque, 1976; 

Duerden, 1994). These enzymes damage the extracellular matrix 

of animals and thus are important both for tissue colonization and 

nutrients supply. In a study of the fish pathogen F. columnare, a chon-

droitin lyase was found to be related to the virulence (Suomalainen 

et al., 2006). Plant and algal pathogens are able to degrade cell wall 

compounds such as pectins and agars. Indeed, phytopathogenic 

strains of F. johnsoniae secrete much more pectate lyase than their 

non pathogenic counterparts (Liao and Wells, 1986). Bacteroidetes 

also secrete various proteases, and this has been documented as an 

important virulence factor. Proteases secreted by different patho-

genic Bacteroides species can destroy human brush border diges-

tive enzymes (Riepe et al., 1980). Greiner and Mayrand (1987) 

found that the pathogenic strains of Porphyromonas gingivalis had 

a higher collagenolytic activity than the non-virulent strains. In 

animal models, P. gingivalis mutants lacking the ability to produce 

various proteases lost their virulence (Loesche, 1993; Fletcher et al., 

1995). Whatever their environment, it appears that the biological 

function of Bacteroidetes either as symbiont, environmental, or 

pathogen bacteria is connected with their propensity to degrade 

complex biopolymers, i.e., polysaccharides and proteins.

HABITAT EVOLVED ADAPTATION MEASURED BY THE VARIETY 

OF POLYSACCHARIDES THAT ARE DEGRADED

As a phylum, and especially due to their versatility in habitats, 

Bacteroidetes have access to an amazing diversity of carbon 

sources. Indeed, the chemical diversity of polysaccharides largely 

outnumbers the possibility for protein folds – it has been calcu-

lated that there are 1.05 × 1012 possible linear and branched forms 

of a single hexasaccharide (Laine, 1994). Moreover, these struc-

tural variations have been harnessed by living organisms to ful-

fill very different roles: e.g., structural, storage, specific signaling, 

 specific  recognition, host–pathogen interactions to name but a few 

Bacteroidetes species (Pinhassi et al., 1999). Finally, by combining 

microautoradiography and FISH (MICRO–FISH), Cottrell and 

Kirchman (2000) compared the uptake of biopolymers (protein 

and chitin) and their constituent monomers (amino acids and 

N-acetylglucosamine, respectively) by natural bacterial assem-

blages from coastal waters of Delaware. This approach showed 

an over-representation of Bacteroidetes in the portion of bacteria 

consuming polymers, whereas Alphaproteobacteria dominated 

uptake of monomers (Cottrell and Kirchman, 2000).

Taken together, these results show that environmental 

Bacteroidetes specialize in the mineralization of HMW organic mat-

ter. Thus, this phylum represents a key compartment for carbon 

fluxes and budgets in ecosystems (Nagata, 2008).

BACTEROIDETES AS PATHOGENS

As outlined above, Bacteroidetes are found in the normal bacte-

rial community of many diverse habitats, where they play a ben-

eficial role in the degradation of organic matter. On the contrary, 

some members of this phylum can have a strong pathogenic 

behavior toward different eukaryotic species. This is underlined 

by the number of Bacteroidetes strains isolated from clinical 

samples of human and animal origin (Hugo et al., 1999), includ-

ing blood, urine, infected wounds, and feces. Some members of 

the Bacteroides genus, although belonging to the normal GIT 

microbiota, can cause opportunistic infections if the integrity 

of the intestinal mucosal barrier is broken (Smith et al., 2006). 

Indeed, the majority of species isolated from anaerobic infec-

tions falls into the Bacteroides genus, acting on different discrete 

sites such as peritoneal cavity, vagina, sinuses, skin, and heart 

(Wexler, 2007). These infections are usually polymicrobial, but 

B. fragilis and B. thetaiotaomicron are the most frequent species. 

Bacteroides are also associated with bacteremia, and B. fragilis is 

the most common blood isolate recovered from patients (Brook, 

2010). Members of the genera Porphyromonas, Prevotella, and 

Tannerella are well known pathogens of the oral cavity, where 

they can notably cause periodontal disease and caries (Tanner 

et al., 1986; Shah and Collins, 1990; Gibson and Attardo Genco, 

2006). The emergence of an infection seems to be linked to the 

assemblage of pathogens in bacterial consortia more than on 

the individual action of specific species (Jenkinson and Lamont, 

2005).

The Flavobacteria class also contains opportunistic human 

pathogens, invading hosts with poor immune system (Bernardet 

and Nakagawa, 2006). One of them, Elizabethkingia meningo-

septica, causes meningitis in infants (King, 1959; Ratner, 1984; 

Kim et al., 2005). Myroides has been reported in cases of surgery 

wound, urinary tract infections, septicemia, pneumonia, menin-

gitis, fasciitis, ventriculitis, and nosocomial infections (Mammeri 

et al., 2002). The genera Empedobacter, Bergeyella, Weeksella, and 

Capnocytophaga also contain pathogenic species (Hugo et al., 

2006a,b; Leadbetter, 2006).

Bacteroidetes infections can have devastating effects for farmed 

and wild fish (Austin and Austin, 2007), as reported a century ago 

and first observed in aquaria (Davis, 1922). Flavobacterium psychro-

philum, F. columnare, F. branchiophilum, Tenacibaculum maritimum, 

and Chryseobacterium scophtalmum are some of the species with 

the most severe economic impact (Bernardet and Bowman, 2006). 
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This data allows comparing the different enzymatic capabilities 

of various genera, which sheds new light on the specialization of 

Bacteroidetes toward degradation of organic matter. A striking 

common feature revealed by this comparative genomic approach 

is the trend of Bacteroidetes genomes to encode many polymer-

degrading enzymes, acting either on proteins or carbohydrates. 

The census of Carbohydrate-Active enzymes (CAZ Ymes) in the 

CAZY database1 (Cantarel et al., 2009) eases the comparison of 

the number of glycosylhydrolases (GH) and polysaccharide lyases 

(PL) in an increasing number of sequenced species. In each of 

the four classes of the Bacteroidetes phylum, there are examples of 

CAZYme-enriched species. In Bacteroidia, the proteomes of B. the-

taiotaomicron, B. fragilis, and P. ruminicola comprise 272, 137, and 

130 GH and PL respectively (Xu et al., 2003; Kuwahara et al., 2004), 

much more than other members of the gut microbiota, or outside 

the Bacteroidetes phylum, such as Clostridium perfringens (57 GH 

and PL) and Bifidobacterium longum (49 GH). The same is true for 

Flavobacteria [e.g., G. forsetii with 48 GH/PL (Bauer et al., 2006), 

Z. profunda with 120 GH (Qin et al., 2010), F. johnsoniae with 152 

GH/PL (McBride et al., 2009)], Cytophagia [e.g., S. linguale with 151 

GH/PL (Lail et al., 2010), D. fermentans with 98 GH/PL (Lang et al., 

2009), and Sphingobacteria, e.g., C. pinensis with 184 and P. hepari-

nus with 163 GH/PL, respectively (Han et al., 2009; Del Rio et al., 

2010)]. In some cases, the prediction of CAZYme-encoding genes 

in newly sequenced organisms can even unveil unexpected cata-

bolic capabilities toward specific substrates (McBride et al., 2009). 

Moreover, the predicted enzymatic battery of a bacterial species will 

help characterize its natural habitat (i.e., the available substrates) 

and its ecological function in organic matter recycling. Recently, 

this feature has been used for genome and habitat comparison, 

linking the number and occurrence of specific CAZyme-families 

to the environmental niche (Pope et al., 2010; Purushe et al., 2010). 

With this respect, the presence of a vast majority of exo-acting 

enzymes in the genome of B. thetaiotaomicron, suggests that the 

organism is able to use the saccharide decorations appended to 

the backbone of structural polysaccharides and glycoproteins (Xu 

et al., 2003). Another recent study elegantly demonstrates that this 

particularly evident expansion in exo-GHs of family GH92 enzymes 

(23 members) is indeed related to the α-mannosides present in 

the N-glycans of host and dietary glycoproteins (Zhu et al., 2010).

However, one has to keep in mind that a rough analysis of the 

number of degradation enzymes in general is insufficient; one needs 

to go down to the enzymatic sub-family to infer a putative metabo-

lism. Indeed, the CAZyme classification based on sequence  similarity1 

has the consequence that gene families group together enzymes with 

widely different substrate or product specificities (Henrissat, 1991). 

Therefore, to derive knowledge useful for subsequent functional 

predictions, phylogenetic analyses defining subgroups that contain 

biochemically characterized representatives are needed to perform 

unambiguous assignments (Turnbaugh et al., 2010).

In spite of the general trend of Bacteroidetes to possess numer-

ous degradation enzymes, there are several noteworthy excep-

tions. The fish pathogen F. psychrophilum genome harbors only 

13 proteases, i.e., 4.5 proteases per megabase (Mb) and 3 GH 

(Carpita and Gibeaut, 1993; Graham et al., 2000; Stahl and Bishop, 

2000). Consequently, carbohydrates account for around 75% of the 

biomass on Earth, a natural resource that was not lost on competing 

organisms that were developing their own strategies to utilize this 

chemical energy for their own survival.

But even more importantly several classes of polysaccharides 

are niche specific. While cell walls are a characteristic feature of all 

plants, they are not exclusive to plants, with most bacterial and algal 

cells as well as all fungal cells also being surrounded by extracellular, 

macromolecular barriers (extracellular matrix or ECM). The mac-

romolecular composition, however, is characteristically different 

among the major evolutionary lineages of the living world, linking 

specific life style or nutritional habits to specifically encountered 

biopolymers. A vivid example is provided by the polysaccharides of 

the marine environment that are typically and to a large majority 

sulfated (carrageenans and fucans) or highly ionic (alginates) and 

unique to this particular habitat (Michel et al., 2010a,b; Popper 

et al., 2011). In contrast, the basic polysaccharide components of 

plant cell walls are cellulose and hemicellulose (pectins, xylans, 

mannans, xyloglucans, etc.), whereas fungal cell walls primarily 

consist of chitin (Niklas, 2004). In metazoa, the ECM will predomi-

nantly consist of chondroitin or dermatan, which are essentially 

made of sulfated polysaccharides referred to as glycosaminoglycans 

(GAGs; Sugahara and Kitagawa, 2002) that are interconnected by 

fibrillar proteins (collagens). Other sources of carbohydrates in 

animals are glycosylation sites, such as mucin that contain a high 

proportion of sialic acid in addition to GAGs (Raman et al., 2005).

Reflecting this chemical diversity of the substrate, glycosidases, 

the enzymes responsible for the breakdown of di-, oligo-, and poly-

saccharides, as well as glycoconjugates, are ubiquitous through all 

domains of life (Turnbaugh et al., 2010). Carbohydrate process-

ing enzymes (CAZymes), including glycosidases and glycosyltrans-

ferases (the enzymes which transfer saccharides to other saccharide 

moieties, small molecules, lipids, or proteins), constitute between 

1 and 3% of the genome of most organisms (Davies et al., 2005). 

Noteworthy, the genomes of Bacteroidetes species have revealed that 

they are champions with respect to the diversity and number of 

CAZymes they contain, reflecting the molecular strategies evolved 

by this microbial community to differentiate, capture, and degrade 

complex glycans. Consequently and as a result of this ability to 

degrade host and plant glycans, cultured (environmental or gut) 

species are often used to isolate specific enzymes for polysaccharide 

degradation (Berg et al., 1980; Tierny et al., 1994; Bernardet and 

Nakagawa, 2006; Reichenbach, 2006).

THE GENOMIC PERSPECTIVE

The first sequenced genome of a Bacteroidetes representative was 

published in 2002 for the human symbiont B. thetaiotaomicron 

(Xu et al., 2003). Since then, many sequencing projects have been 

conducted to increase the genomic knowledge on this phylum. 

To date, 33 Bacteroidetes genomes are complete, publicly avail-

able and published (Table 2). Many others are in a draft state or 

have not yet been published (total of 125 sequences censed on 

NCBI). During the last 10 years, sequencing efforts have indiscrimi-

nately concerned environmental, pathogen, and symbiotic/com-

mensal species with the aim to better understand their biological 

 functions, including their capacity to interact with their habitats. 1http://www.cazy.org
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of hydrolases (only 24 GHs) compared to other members of the 

Bacteroidia class (Nelson et al., 2003). Again, the most plausible 

explanation is the high speciation of this species to dental plaque 

degradation that results in the restricted diversity of substrates 

utilized by this bacterium.

Some marine representatives of the Flavobacteria class seem to 

alternate between two life strategies depending on the abundance 

of carbon sources. This is notably the case of Polaribacter dok-

donensis (strain MED152), Leeuwenhoekiella blandensis (strain 

per Mb (Duchaud et al., 2007). This is far less than its closely 

related soil-associated cousin F. johnsoniae, which possesses 20.5 

proteases and 23 GH per Mb and has a genome more than twice 

as large. The reduced number of degradation enzymes in the fish 

pathogen can be explained by its dedication to the infection of 

animal tissues. For such a species, the relative restricted diver-

sity of substrates (compared to a soil-associated species) would 

diminish the need of multiple families of hydrolases. A second, 

similar example is P. gingivalis that has a relatively lower number 

Table 2 | List of Bacteroidetes with a fully sequenced and published genome, and their respective habitats.

Species Genome size (CDS number) Habitat (functional role) Reference

FLAVOBACTERIA CLASS

Capnocytophaga ochracea DSM 7271 2.6 Mb (2193) Animals and humans (S/P) Mavrommatis et al. (2009)

Gramella forsetii KT0803 3.8 Mb (3585) North Sea surface water Bauer et al. (2006) 

  during phytoplankton bloom (E)

Robiginitalea biformata HTCC2501 3.5 Mb (3211) Sargasso Sea (E) Oh et al. (2009)

Flavobacterium johnsoniae UW101 6.1 Mb (5056) Soil and freshwater (E) McBride et al. (2009)

Flavobacterium psychrophilum JIP02/86 2.9 Mb (2432) Fish (P) Duchaud et al. (2007)

Croceibacter atlanticus HTCC2559 3.0 Mb (2715) Sargasso Sea (E) Oh et al. (2010)

Zunongwangia profunda SM-A87 5.1 Mb (4653) Deep-sea sediments (E) Qin et al. (2010)

Candidatus Sulcia muelleri GWSS 0.3 Mb (228) Sap-feeding insects flora (S) McCutcheon and Moran (2007)

Maribacter sp. HTCC2170 3.9 Mb (3411) Surface sea water, Oregon coast (E) Oh et al. (2011)

Periplaneta americana 0.6 Mb (581) Cockroach endosymbiont (S) Sabree et al. (2009)

Blattella germanica 0.6 Mb (586) Cockroach endosymbiont (S) Lopez-Sanchez et al. (2009)

Polaribacter dokdonensis MED152 3.0 Mb (2646) Northwestern Mediterranean Gonzalez et al. (2008) 

  sea surface water (E)

Dokdonia donghaensis MED134 3.3 Mb (2284) Korean sea water (E) Gomez-Consarnau et al. (2007)

Leeuwenhoekiella blandensis MED217 4.2 Mb (3735) Mediterranean sea water (E) Gomez-Consarnau et al. (2007)

SPHINGOBACTERIA CLASS

Chitinophaga pinensis DSM 2588 9.1 Mb (7302) Pine litter in Australia (E) Del Rio et al. (2010)

Pedobacter heparinus DSM 2366 5.2 Mb (4287) Soil (E) Han et al. (2009)

Salinibacter ruber M8 3.6 Mb (3086) Saltern crystallizer pond, Mallorca (E) Pena et al. (2010)

Salinibacter ruber M31 3.6 Mb (2934) Saturated thalassic brines (E) Mongodin et al. (2005)

Rhodothermus marinus R-10 3.4 Mb (2914) Submarine hot spring, Iceland (E) Nolan et al. (2009)

CYTOPHAGIA CLASS

Dyadobacter fermentans NS114 7.0 Mb (5804) Stems from Zea mays (E) Lang et al. (2009)

Cytophaga hutchinsonii ATCC 33406 4.4 Mb (3790) Soil (E) Xie et al. (2007)

Spirosoma linguale 1 8.5 Mb (7069) Soil, freshwater (E) Lail et al. (2010)

BACTEROIDIA CLASS

Candidatus Azobacteroides 1.1 Mb (758) Endosymbiont of Hongoh et al. (2008) 

pseudotrichonymphae CfPt1-2  termite gut protist (S)

Porphyromonas gingivalis ATCC 33277 2.4 Mb (2090) Deep periodontal pockets (P) Naito et al. (2008)

Porphyromonas gingivalis W83 2.3 Mb (1990) Deep periodontal pockets (P) Nelson et al. (2003)

Parabacteroides distasonis ATCC 8503 4.8 Mb (3867) Human gastrointestinal tract (S) Xu et al. (2007)

Bacteroides vulgatus ATCC 8482 5.2 Mb (4088) Human gastrointestinal tract (S) Xu et al. (2007)

Bacteroides fragilis NCTC 9343 5.2 Mb (4274) Human gastrointestinal tract (S/P) Cerdeno-Tarraga et al. (2005)

Bacteroides fragilis YCH46 5.3 Mb (4578) Human gastrointestinal tract (S/P) Kuwahara et al. (2004)

Bacteroides thetaiotaomicron VPI-5482 6.3 Mb (4779) Human gastrointestinal tract (S) Xu et al. (2003)

Prevotella ruminicola 23 3.6 Mb (2763) Bovine rumen (S) Purushe et al. (2010)

Prevotella bryantii B
1
4 3.6 Mb (2780) Bovine rumen (S) Purushe et al. (2010)

UNCLASSIFIED

Candidatus Amoebophilus asiaticus 5a2 1.9 Mb (1557) Obligate intracellular Schmitz-Esser et al. (2010) 

  ameba symbiont (S)

The functional role is given in brackets: S, symbiont; P, pathogen; E, environmental.
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containing susB to susG (D’Elia and Salyers, 1996; Reeves et al., 

1997). This allows a co-regulation of the PUL (Anderson and 

Salyers, 1989b).

The characterization of this first starch-specific PUL was 

 followed by the discovery of numerous PULs in Bacteroidetes. 

susC-like and susD-like genes are strikingly frequent in 

Bacteroidetes genomes, often appearing in tandem and as the 

central units of substrate-specific PULs. B. thetaiotaomicron pos-

sesses 107 paralogs of susC, of which 101 are paired to a susD-like 

gene. 62 of these pairs are part of larger clusters, together with 

polysaccharide-degrading enzymes (Xu et al., 2003). In addition, 

some of these PULs comprise enzymes targeting glycan deco-

rations, such as sulfatases or acetyl esterases. Thus, depending 

on the specificity of the predicted enzymes, one can infer the 

favorite substrate(s) of a given PUL. In total, PULs represent 

18% of the genome of B. thetaiotaomicron (Martens et al., 2008). 

The closely related B. fragilis, B. vulgatus, and Parabacteroides 

distasonis also possess numerous PULs (Kuwahara et al., 2004; 

Xu et al., 2007). These PULs likely favor the success of Bacteroides 

spp. in the uptake of dietary and host-derived polysaccharides in 

the highly competitive gut habitat, and may explain their evolu-

tion as symbionts.

Interestingly, environmental species also harbor plenty of spe-

cific PULs. The annotation of the F. johnsoniae genome revealed 

42 pairs of susC-like and susD-like genes, among which many were 

associated with CAZymes (McBride et al., 2009). The authors were 

notably able to predict PULs targeting starch (homologous the 

B. thetaiotaomicron Sus locus), chitin, and hemicelluloses. The 

genome of the marine Flavobacteria G. forsetii encodes 40 para-

logs of SusC, and 14 clusters of susCD-like genes were detected 

(Bauer et al., 2006), often in the vicinity of CAZyme genes. This 

suggests that environmental Bacteroidetes as well as their gut-

associated cousins use a unique and similar strategy to bind and 

degrade polymeric organic matter. Indeed, SusD homologs are only 

found in Bacteroidetes representatives. Thus, we speculate that the 

appearance of PULs including a susD-like gene in the ancestral 

Bacteroidetes could have at least partly driven the emergence of 

the phylum, and allowed its evolution as a group specialized in 

carbohydrate degradation.

THE HIGH PLASTICITY OF BACTEROIDETES GENOMES

The size of Bacteroidetes genomes varies considerably between spe-

cies (Table 2). Among published sequencing projects, Chitinophaga 

pinensis has the largest genome (9.1 Mb) whereas Candidatus 

Sulcia muelleri has the smallest (0.3 Mb). This great discrepancy 

can be at least partly associated with the different ecological niches 

colonized and the biological functions played by Bacteroidetes 

(Figure 1). Obligate intracellular symbionts have a more reduced 

genome size, due to their peculiar lifestyle. These species have 

evolved through successive inactivation and loss of genes, affect-

ing virtually every cellular process. The possible causes of this 

genome reduction are multiple, including the unusual stability and 

metabolic richness of the cytoplasmic compartment they inhabit 

(McCutcheon and Moran, 2010). Pathogenic Bacteroidetes, such 

as P. gingivalis and F. psychrophilum, have a small genome typi-

cally around 2 Mb. This can be linked to the dedication of their 

metabolic capabilities toward the infection of specific sites. Living 

MED217T), and Dokdonia donghaensis (strain MED134). On the 

one hand, commonly with other Bacteroidetes, they are very well 

equipped to attach to surfaces and depolymerize organic mat-

ter. For example, P. dokdonensis and D. donghaensis genomes 

encode many enzymes to degrade proteins (93 and 120 pepti-

dases, respectively) and polysaccharides (30 and 22 GH, respec-

tively; Gonzalez et al., 2008; Kirchman, 2008; Woyke et al., 

2009). On the other hand, when polymeric substrates become 

scarce, these species switch to a free-living lifestyle adapted to 

carbon-poor environments. Genome analysis showed the pres-

ence of proteorhodopsin, a light-dependent H+ pump that can 

drive ATP synthesis (Beja et al., 2000). This protein allows the 

phototrophic production of sufficient energy to maintain the 

population growth when the concentration of organic carbon 

decreases (Gomez-Consarnau et al., 2007). Additionally, P. dok-

donensis is enriched in enzymes involved in anaplerotic reac-

tions, and assimilates CO
2
 faster in light conditions than in the 

dark (Gonzalez et al., 2008). Altogether, these results suggest that 

marine Bacteroidetes may cope as well with feast and famine, and 

complement the understanding of their role in carbon cycles 

(DeLong and Beja, 2010).

Beyond the prediction of numerous polysaccharide-degrading 

enzymes, two large paralogous families of proteins have been found 

in Bacteroidetes genomes, which likely participate in polysaccharide 

uptake. These include homologs of the outer membrane proteins 

SusC and SusD from B. thetaiotaomicron, which are involved in 

starch utilization. Seminal work of the Salyers’ group showed that 

this human gut symbiont degrades starch via a dedicated starch 

utilization system (Sus) with several proteins acting in coordination 

to sense, bind, and hydrolyze the substrate (Anderson and Salyers, 

1989a,b; Shipman et al., 2000). The genes encoding these proteins 

cluster on the bacterial chromosome into typical polysaccharide 

utilization loci (PUL).

POLYSACCHARIDE UTILIZATION LOCUS: FROM THE 

ARCHETYPIC SUS SYSTEM TO NEW SUBSTRATES

In B. thetaiotaomicron, the Sus locus comprises eight genes, sus-

RABCDEFG (Martens et al., 2009). SusR is an inner membrane 

regulatory protein which activates the transcription of the other 

genes in the presence of maltose or starch (D’Elia and Salyers, 

1996). SusC, SusD, SusE, and SusF are outer membrane pro-

teins involved in the binding of the polysaccharide (Shipman 

et al., 2000). In fact, analyses of mutant strains have shown that 

SusC and SusD account together for 70% of the starch-binding 

capabilities of the wild type (Reeves et al., 1997). Surface-bound 

starch is hydrolyzed by the outer membrane α-amylase SusG, 

which acts endolytically and releases oligosaccharides larger 

than maltotriose (Shipman et al., 1999; Martens et al., 2009). 

These degradation products are then channeled to the periplasm 

through the TonB-dependent receptor, β-barrel-type SusC, 

where they are further cleaved by the neopullulanase SusA and 

α-glucosidase SusB. The atomic structures of several protein 

members have been resolved, namely the starch-binding SusD 

(Koropatkin et al., 2008), the α-glucosidase SusB (Kitamura 

et al., 2008), and the α-amylase SusG (Koropatkin and Smith, 

2010). The Sus locus is organized into two transcriptional units 

under the control of SusR, one containing susA and the other 
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In this respect, the sequencing era unraveled the plasticity of 

Bacteroidetes genomes, which evolved, and probably still evolve, 

through dynamic processes. The outcome of this plasticity reflects 

in the rapid deterioration of the global synteny between evolution-

ary-related species living in the same environment, as revealed for 

gut and rumen Bacteroidetes (Xu et al., 2007; Purushe et al., 2010). 

Their evolution is driven by highly frequent genetic rearrange-

ments, gene duplications, and lateral gene transfers (LGT) between 

species. Genome analysis of two B. fragilis strains revealed extensive 

DNA inversions affecting the expression patterns of several genes 

(Kuwahara et al., 2004; Cerdeno-Tarraga et al., 2005). These events 

control the antigenic composition of bacterial surface structures 

and likely help B. fragilis evading the immune system and colonize 

novel sites. Notably, the expression of 20 SusC-like proteins, most 

of them coupled with SusD homologs, is regulated through DNA 

inversions (Kuwahara et al., 2004). This may participate in the cell 

adaptation to degrade specific polysaccharides found at the infec-

tion sites. Bacteroidetes evolution is also characterized by frequent 

gene duplications and further divergence in sequence and func-

tion, leading to considerably expanded paralogous groups. Notably, 

GH and SusC/SusD-like proteins are amongst the largest paralo-

gous families in several sequenced Bacteroidetes (Xu et al., 2003, 

2007; Bauer et al., 2006). In addition to this intra-strain plasticity, 

Bacteroidetes genomes evolve through inter-species exchange of 

genetic material (Thomas and Nielsen, 2005). Using a phyloge-

in complex habitats and metabolizing a lot of different substrates, 

environmental, and intestinal species tend to have larger genomes 

(Figure 1),  correlating with their broader catabolic capabilities. 

This is also the case of the opportunistic pathogen B. fragilis, which 

is part of the  normal human gut microbiota but can cause infec-

tions at many other sites. To date, marine representatives harbor 

smaller genomes than their intestinal or terrestrial counterparts, 

but this will certainly progress as the number of complete genome 

sequences increases. For example, our group has recently annotated 

the genome of the marine Flavobacteria Zobellia galactanivorans. It 

comprises 5.5 Mb and encodes 4738 proteins, representing one of 

the largest genomes for a marine Bacteroidetes (Barbeyron et al., 

unpublished data). Interestingly, the proteorhodopsin-containing 

P. dokdonensis and D. donghaensis possess the smallest proteome 

among environmental species (2646 and 2284 proteins, respec-

tively). Thus, the genome size fits the ecological niche. Big genomes 

increase the metabolic capacities, and hence broaden the spectrum 

of potential substrates for bacteria living in complex environments. 

In more stable habitats, bacteria tend to specialize toward specific 

functions and harbor smaller genomes. This raises the question 

of the nature of the ancestral Bacteroidetes genome. Indeed, the 

present variations in genome size could be due either to mas-

sive loss of genes from a large ancestral genome, or to successive 

acquisitions completing a small genome with genes representing 

a selective advantage.

FIGURE 1 | Schematic diagram representing the total number of coded proteins as a function of genome size of Bacteroidetes species. Only complete and 

published genomes of the Bacteroidetes phylum have been included (see also Table 2).
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and starch degradation that are typical for Bacteroidetes (Turnbaugh 

et al., 2009). An independent study on a murine model showed that a 

high-fat diet was associated with a decrease in more than 30 lineages 

within the Bacteroidetes phylum, including in the Bacteroidaceae, 

Prevotellaceae, and Rikenellaceae families (Hildebrandt et al., 2009). 

Recent studies have investigated the diet impact on the human gut 

microbiota. The consumption of chemically modified resistant 

starch (RS4) instead of normal, digestible starch led to a shift in the 

bacterial community (Martinez et al., 2010). Even if results varied 

substantially between the 10 considered subjects, RS4 consumption 

was notably followed by enrichment in Bacteroidetes, among which 

Parabacteroides distasonis increased sevenfold. The observed changes 

were completely reversible within 1 week, demonstrating the high 

population dynamics (Martinez et al., 2010). In a recent comparison 

of the fecal microbiota of children from Burkina Faso, and Italy, De 

Filippo et al. (2010) showed a significant difference in the commu-

nity composition. African children showed a higher proportion of 

Bacteroidetes (57 vs. 22%) and a lower proportion of Firmicutes (27 

vs. 63%) than Europeans. The authors explained this difference by 

the higher dietary fiber content of the rural African food, mainly 

composed of cereals, legumes, and vegetables, which would favor 

the development of the polysaccharide-degrading Bacteroidetes. 

Interestingly, the genera Prevotella, Xylanibacter, Cytophaga, and 

Paludibacter were found exclusively in African microbiota. This is 

probably due to their increased fitness to grow on polysaccharides 

abundant in the Burkina Faso diet, such as xylan or cellulose (De 

Filippo et al., 2010). The control of gut microbiome composition by 

the diet quality likely denotes a selection of the population that opti-

mally degrades the available substrates. In the case of Bacteroidetes, 

the selection criteria would primarily be based on the ability to digest 

complex polymers. Some species may have acquired specific cata-

bolic pathways that others lack. This hypothesis has been recently 

tested in a mouse model. Germ-free mice were inoculated with two 

Bacteroides thetaiotaomicron and B. caccae strains of which the latter 

one can grow with inulin as carbon source. When the mice where fed 

with an inulin rich diet the ratio of the two species changed toward 

B. caccae. The ability to use inulin was associated with a GH32 absent 

in B.  thetaiotaomicron. This clearly showed that diet selects species 

composition in the animal intestine (Sonnenburg et al., 2010).

The question arises if different human populations with dif-

ferent diets contain specific food adaptations on the genetic level 

of their gut microbes. Recently, our group has shown that gut 

Bacteroidetes were able to get gene updates from environmen-

tal species to acquire novel functions (Hehemann et al., 2010; 

Rebuffet et al., 2011). Indeed, in the marine flavobacterium Zobellia 

galactanivorans, we have discovered and characterized the first por-

phyranases (Hehemann et al., 2010) as well as a 1,3-α-3,6-anhydro-
L-galactosidase (Rebuffet et al., 2011). These enzymes are used by 

marine bacteria to degrade agarocolloïds, sulfated galactans only 

found in the cell walls of red algae, such as Porphyra or Gracilaria. 

When using these new sequences as lead sequences to probe publicly 

available databases, homologs were identified not only in other 

marine bacteria, but surprisingly also in the human gut isolate 

Bacteroides plebeius. The genome of B.  plebeius (DSM 17135) con-

tains a porphyran/agar degradation locus, transferred from an 

ancestral marine Bacteroidetes (Hehemann et al., 2010; Rebuffet 

et al., 2011). This PUL was identified as a result of biochemical and 

netic approach, Xu et al. (2007) showed that around 5.5% of the 

genes in gut Bacteroidetes genomes were laterally acquired from non 

gut-associated bacteria, among which glycosyltransferases (GT) 

where significantly over-represented. These LGT events could partly 

explain the niche specialization of different species. The authors 

suggest that acquisition of new genes from outside the gut brought 

novel metabolic pathways to intestinal Bacteroidetes and broaden the 

spectrum of digestible substrates. Furthermore, it has been shown 

that the convergence of GT and GH repertoires in gut Bacteroidetes 

sharing the same habitat is largely due to massive LGT rather than 

gene duplications (Lozupone et al., 2008). Conjugative LGT events 

are also demonstrated to be responsible for antibiotic resistance 

spreading in natural communities of gut Bacteroides (Shoemaker 

et al., 2001). The exchange of genetic material is not necessarily 

restricted to closely related species and can overcome phylogenetic 

barriers. Indeed, glyceraldehyde-3-phosphate dehydrogenase genes 

have been horizontally transferred from a β-proteobacteria to a 

Bacteroidetes (Figge et al., 1999). Another example is the transfer of 

genes between an Archeae and the hyperhalophilic Sphingobacteria 

S. ruber (Mongodin et al., 2005).

Taken together, recent analyses of Bacteroidetes genome sequences 

have shown that: (i) there is a gradation in the size of the genomes 

correlated with the functional specialization; (ii) genomes can 

undergo massive reorganizations; (iii) highly frequent LGT events 

allow spreading of novel metabolic capabilities inside Bacteroidetes 

populations. As already mentioned, intestinal Bacteroidetes are spe-

cialized in the degradation of plant-derived polymers, a feature 

shared with environmental relatives. In the last part of this review, 

we will discuss the potential connections between these two com-

munities that are not prima facie obviously interacting.

THE FOOD CONNECTION: TELL ME WHAT YOU EAT, I WILL TELL 

YOU WHAT YOUR BACTERIA CAN DO

Several studies have shown that the diet strongly influences the 

intestinal microbiota. Early research focused on the comparison 

of fecal microbes retrieved from individuals with different nutri-

tional habits. Benno et al. (1986) showed significant variations in 

the cultivable microbiota of rural Japanese and urban Canadians. 

They proposed that this discrepancy relates to the contrasted diet 

of the two populations. Similarly, in a rat model transplanted with 

human microbiota, the consumption of resistant starch changed 

the bacterial composition compared to a sucrose diet (Silvi et al., 

1999). Yet, the use of cultivable bacterial counts is a limited method 

(Amann et al., 1995) and no statistical difference was found when 

comparing the fecal microbiota of strictly vegetarians and indi-

viduals consuming a general diet (Goldberg et al., 1977). The 

development of culture-independent techniques to assess bacterial 

abundance and diversity helped testing the influence of diet on 

the GIT microbiota. In a mouse model reproducing the human 

intestinal microbiome, the bacterial community composition and 

the representation of metabolic pathways was strongly dependant 

on the nature of the diet (Turnbaugh et al., 2009). The proportion 

of Bacteroidetes representatives decreased drastically when animals 

were switched from a chow containing low levels of fat and high 

level of plant polysaccharides to a Western diet (high fat, high sugar). 

Feeding on the diet rich in plant polysaccharides resulted in an 

enriched set of pathways including N-glycan, glycosaminoglycan, 

Thomas et al. Linking environmental and gut Bacteroidetes

www.frontiersin.org May 2011 | Volume 2 | Article 93 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_and_Infection_Microbiology/archive


Rebuffet et al., 2011). The biological rationale of “marine” enzymes 

in gut microbes could be linked to the high input of sea-derived 

products in the diet of these two populations. Indeed, the Japanese 

consume about 14.2 g seaweed per day and person (Fukuda et al., 

2007), and the most popular seaweed is Nori (Porphyra spp.) used 

to make maki-sushi (Nisizawa et al., 1987). Similarly, Spain is the 

second largest consuming nation of seafood in the world (Manrique 

and Jensen, 2001). In both populations, contact between human-

associated microbes and non-sterile seaweed or seafood could have 

created a favorable condition for a LGT from marine bacteria to 

human gut Bacteroidetes. Noteworthy, Nori is the only food that 

contains porphyran, which allowed associating the transfer of 

these genes to one special food source. This first evidence of a life 

style-associated adaptation of the genetic repertoire of the human 

gut microbiome could be detected due to the unique signature of 

structural characterization of the first two porphyranases belong-

ing to the family GH16 (PorA and PorB; Hehemann et al., 2010) 

and the 1,3-α-3,6-anhydro-L-galactosidase AhgA belonging to the 

family GH117 (Rebuffet et al., 2011). The PUL contains sequences 

coding for two putative β-agarases (GH86), one β-agarase (GH16), 

two β-galactosidases (GH2), a sulfatase, a carbohydrate-binding 

module, and a susD-like gene associated with its TonB-dependant 

receptor (Figure 2). Altogether these enzymes form a complete 

system of detection and degradation for porphyran and agar, which 

provides B. plebeius with the set of utensils to use these polysac-

charides as carbon source.

Metagenomic data revealed that porphyranases and 1,3-α-3,6-

anhydro-L-galactosidases are absent in North American and Danish 

population but present in Spanish and Japanese populations with 

proportions of 10 and 38% respectively (Hehemann et al., 2010; 

FIGURE 2 | Schematic representation of a PUL region, present in the 

genome of Bacteroides plebeius and first identified as interesting because 

of the presence of a porphyranase gene (Bp1689; Hehemann et al., 2010). 

Besides the conserved Sus-like genes, the locus also contains carbohydrate-

related genes which share highest identity with proteins used for red algal 

galactan degradation in two marine Bacteroides. Shown are the sequence 

identities between B. plebeius and one Microscilla sp. PRE1 protein, as well as 

with several Zobellia galactanivorans proteins. Six of these genes (Bp1670, 

Bp1671, Bp1689, Bp1693, Bp1694, and Bp1696) are conserved only with marine 

bacteria, and are absent in genomes of other gut Bacteroides. The crystal 

structures of marine homologous enzymes, coded by three of these genes 

(namely Bp1670, Bp1671, and Bp1689) have recently been determined and are 

illustrated as ribbon representations (PDB codes: AgaB – 1O4Z; AghA – 3P2N; 

and PorA – 3ILF). The 3D structures help determine the crucial residues for 

activity and substrate specificity that are all verified and present in the 

sequences of the B. plebeius proteins.
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