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Abstract

Since Zika virus (ZIKV) was detected in Brazil in 2015, it has spread explosively across the

Americas and has been linked to increased incidence of microcephaly and Guillain-Barré

syndrome (GBS). In one year, it has infected over 500,000 people (suspected and con-

firmed cases) in 40 countries and territories in the Americas. Along with recent epidemics of

dengue (DENV) and chikungunya virus (CHIKV), which are also transmitted by Aedes

aegypti and Ae. albopictusmosquitoes, the emergence of ZIKV suggests an ongoing

intensification of environmental and social factors that have given rise to a new regime of

arbovirus transmission. Here, we review hypotheses and preliminary evidence for the envi-

ronmental and social changes that have fueled the ZIKV epidemic. Potential drivers include

climate variation, land use change, poverty, and human movement. Beyond the direct

impact of microcephaly and GBS, the ZIKV epidemic will likely have social ramifications for

women’s health and economic consequences for tourism and beyond.

Introduction

Over the past four decades, the global emergence and resurgence of arboviruses has become a

burgeoning public health crisis. Dengue virus (DENV; family Flaviviridae, genus flavivirus),

which began reappearing globally in the late 20th century, more than quadrupled in reported

incidence from the 1980s–2000s and now causes an estimated 96 million symptomatic cases

yearly [1–3]. In 2013, chikungunya virus (CHIKV; family Togaviridae, genus alphavirus)

emerged for the first time in the Americas in St. Martin, causing 1.8 million suspected and

confirmed cases in the region [4]. In 2015, Brazil confirmed the first case of locally acquired

Zika virus (ZIKV; family Flaviviridae, genus flavivirus) infection in the Americas [5]. The

ZIKV epidemic has since caused over 500,000 suspected and confirmed cases in 40 countries

and territories in the Americas [6,7] (Fig 1). Many ZIKV cases have likely gone unreported

due to the initial low reporting, high proportion of asymptomatic cases (>80%) [8], and diag-

nostic challenges (including overlapping symptoms and immunological cross-reactivity with

DENV, which is also a flavivirus). Since ZIKV and DENV antibodies are structurally similar,
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antibody cross-reactivity between ZIKV and DENVmay even enhance ZIKV infection (Fig 2)

[9]. Mutations in the ZIKV genome may also contribute to ZIKV infection [10]. As of now,

mutations have been identified but none have been linked to the rapid spread of ZIKV or the

severity of its complications [10], including microcephaly and Guillain-Barré syndrome (GBS)

[6,11]. With strikingly similar paths of arrival and spread through the Americas, the ongoing

DENV, CHIKV, and ZIKV epidemics represent a dangerous new pattern of arbovirus emer-

gence and resurgence that demands renewed focus on the global ecology of vector

transmission.

These (re)emerging arboviruses are diseases of global movement and change. They share a

primary mosquito vector (Aedes aegypti) that lives alongside human settlements, oviposits in

household water containers, and feeds preferentially on humans [12–14]. During the 16th and

17th centuries, Ae. aegypti and yellow fever virus (YFV; family Flaviviridae, genus flavivirus),

also transmitted by this vector, spread fromWest Africa to the Americas with the slave trade

[15]. DENV followed, expanding worldwide along shipping routes in the 18th and 19th centu-

ries [16] and circulating throughout Southeast Asia after World War II. In Latin America,

DENV declined with aggressive vector control in the 1950s–1970s but has since resurged, in

part as a result of decreased prioritization of vector control efforts [1] and increased mosquito

pesticide resistance [17]. CHIKV and ZIKV were first isolated and described in Africa in the

1940s–1950s [18], though extensive continental spread of both viruses likely occurred prior to

their discovery [19–21]. Like DENV, they spread into Southeast Asia in the 1960s–1970s, then

began causing major outbreaks on islands several decades later before sweeping through the

Americas starting in 2013 and 2015, respectively [18]. This shared history of widespread circu-

lation in Africa, emergence in Southeast Asia, and recent explosive epidemics in Pacific and

Indian Ocean Islands and the Americas suggests a changing global ecology of transmission by

the shared Aedes spp. vectors, with global change intensifying transmission (Fig 2).

Global change includes a suite of anthropogenically-driven factors that intensify with popu-

lation growth and are changing in concert, including climate, land use, urbanization, social

and political policies, poverty, and human movement. These factors interact to influence mos-

quito distribution and abundance, human contact, and association with arboviruses (Fig 2).

How have intensifying environmental and social factors shaped the global ecology of vector

transmission to allow ZIKV to emerge in the Americas? Here, we evaluate the evidence for a

range of human-induced environmental and social changes that may have led to ZIKV emer-

gence and the social consequences that may arise from the ZIKV epidemic.

Environmental drivers of ZIKV emergence

The establishment of autochthonous (local) ZIKV transmission usually occurs in an urban

transmission cycle [23]. Ae. aegyptimosquitoes have high vector competence [13,24], making

them highly effective vectors for ZIKV and other arboviruses. ZIKV can also infect Ae. albopic-

tus—a secondary vector of CHIKV, DENV, and likely ZIKV [25,26]—and many other Aedes

spp. mosquitoes [14]. Once introduced, ZIKV can begin an urban cycle anywhere with suffi-

cient mosquito and human populations or a sylvatic transmission cycle if it is present in wild-

life-feeding mosquito populations. This intimate connection between ZIKV and the mosquito

life cycle makes transmission highly sensitive to the environmental conditions that affect Ae.

aegypti survival and abundance, including temperature and availability of breeding sites.

Climate variation and change

Weather and climate shape mosquito geographic distribution, population abundance, lifespan,

and transmission potential. Based on the nonlinear effects of temperature on virus incubation
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rate and rates of fecundity, development, survival, and biting for Ae. aegypti and Ae. albopictus

[27], recent work suggests that ZIKV transmission can occur between 18˚C and 34˚C, with a

peak at 29˚C [27]. In the Americas, ZIKV has emerged primarily in tropical and subtropical

zones where summer temperatures are already highly suitable for Ae. aegypti, supporting the

role of climate suitability in driving ZIKV transmission (Fig 2) [28]. However, climate varia-

tion and/or change may have increased year-round temperatures to the optimal levels for

ZIKV transmission, lengthening the transmission season in tropical and subtropical regions.

For example, in 2015, Brazil’s winter and spring were among the warmest and driest on record

due to a strong El Niño and possibly climate change [29]. Warmer winter temperatures, which

also promote human water storage practices that can increase the number of Ae. aegypti breed-

ing sites [30], may have placed much of Brazil into transmission-permissive conditions year-

round in 2015, potentially supporting ZIKV spread during a typically low-transmission season.

However, this connection remains poorly supported to date.

Climate variation and/or change may also be a concern in temperate regions where year-

round temperatures are not typically suited to Ae. aegypti. There, warmer winter temperatures

can increase Ae. aegypti overwinter egg survival, which is restricted to the 10˚C winter average

temperature isotherm, potentially expanding Ae. aegypti’s range to higher latitudes and alti-

tudes [31,32]. While warmer winter temperatures may expand the geographic range of Ae.

aegypti and its arboviruses, warmer spring, summer, and fall temperatures may extend the

length of the transmission season in temperate areas as well, especially in regions where Ae.

aegypti or Ae. albopictus are locally established, such as Italy and the northeastern United States

[27,33,34]. As a result, climate change and/or variation may influence the geography of vector

transmission and intensify the threat of ZIKV in temperate regions.

Rural–Urban gradient, land use change, and deforestation

The rural–urban gradient clearly influences ZIKV vectors, Ae. aegypti and Ae. albopictus

[35,36]. We examined the relationship between the per capita rate of confirmed ZIKV-linked

microcephaly cases, a proxy for total ZIKV cases, and the percentage of forest cover in each

Brazilian state with one or more cases. We used confirmed ZIKV-linked microcephaly cases as

a proxy for total cases because they are more likely to be reported than ZIKV cases in the gen-

eral population (particularly asymptomatic cases), the data were available across states in Bra-

zil, and they are expected to be strongly correlated with total ZIKV cases. We compared

confirmed ZIKV-linked microcephaly cases to the percent of light forest cover (percent of

hectares with>10% forest cover) and dense forest cover (percent of hectares with>50% forest

cover). Both light and dense forest cover were negatively correlated with the prevalence of con-

firmed ZIKV-linked microcephaly cases (Pearson’s correlation coefficient r = -0.27 and Pear-

son’s correlation coefficient r = -0.35, respectively; Fig 3). Areas with less forest cover likely

have higher human population densities, urbanization, suitability for Ae. aegypti, and ZIKV

incidence, so human activities like deforestation and urbanization that decrease forest cover

may increase the risk of ZIKV transmission.

Animal reservoirs and the zoonotic transmission cycle

While Ae. aegypti is critical for human ZIKV epidemics, ZIKV also persists in a sylvatic trans-

mission cycle that involves animal reservoirs [23]. The discovery of ZIKV in a sentinel rhesus

monkey (a nonnative species) in Uganda [18], along with evidence of ZIKV antibodies in

human blood samples collected in Africa in the 1950s–1960s [20], implies a sylvatic cycle. For

ZIKV, as with other vector-borne zoonoses, urban and sylvatic cycles are likely maintained by

different mosquito species, with occasional spillover by bridge vectors that feed on both
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Fig 1. ZIKV epidemic dynamics in 2015–2016 across the Americas, in Brazil, and in an Ecuadorian province struck by an earthquake. (A)
Weekly cumulative suspected and confirmed ZIKV cases (see Glossary for case definitions) across countries in the Americas, on a log scale, colored by
the total size of the epidemic. (B) Weekly cumulative confirmed ZIKV-linked microcephaly cases (see Glossary for case definitions) in Brazil. (C) Weekly
cumulative confirmed autochthonous cases in Manabi province, Ecuador, where a magnitude 7.8 earthquake struck on April 16, 2016 (indicated by the
dashed line). Data are from weekly epidemiological reports from the Pan American Health Organization (PAHO), as compiled by the Centers for Disease
Control and Prevention Epidemic Prediction Initiative (CDC EPI; https://github.com/cdcepi/zika; accessed 15 July 2016).

doi:10.1371/journal.pntd.0005135.g001
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animals and humans [23,37]. Human activity in areas where a sylvatic cycle is propagating can

lead to human infection [37], which can then initiate an urban cycle with transmission via

anthropophilic vectors like Ae. aegypti.

Fig 2. Hierarchy of factors that influence ZIKV transmission, illness, and social consequences.Climate suitability, mosquito abundance, and
human–mosquito contact partly determine rates of ZIKV transmission, which causes illness in some cases. Social consequences depend on both actual
and perceived risks of illness. Arrows indicate environmental (green) and social (red) changes hypothesized to contribute to the shifting ecology of vector
transmission in the Americas. Figure inspired by Plowright et al. [22].

doi:10.1371/journal.pntd.0005135.g002
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If ZIKV emerged from an animal reservoir into human populations, then significant con-

tact between humans and infected animals may have preceded the human epidemic. We

examined published seropositive rates of ZIKV in animal species in relation to their phyloge-

netic relatedness and physical proximity to humans. Despite living in close proximity to

humans, all livestock species studied had low prevalence of ZIKV antibodies (Table 1). By con-

trast, some African primates, rodents, and birds—particularly those living in intact forest—

had relatively high ZIKV seroprevalence, indicating an ongoing sylvatic cycle (Table 1). The

highest risk of spillover to humans may be from coinhabiting primates, which are both phylo-

genetically and physically close to humans. Two such Brazilian primate species sampled

between July and November 2015—capuchin monkeys and common marmosets—had

high rates of ZIKV seroconversion (Table 1). Both are highly adaptable and thrive near indus-

trialized cities [38,39]. While increased contact between wild animal reservoirs, sylvatic mos-

quitoes, and human populations as a result of land use change may have supported ZIKV

emergence, the most important role of the sylvatic cycle going forward may be in maintaining

a virus reservoir between human epidemics.

Social drivers of ZIKV emergence

Social changes interact with environmental changes to promote ZIKV emergence and spread.

For example, a number of social changes that expose people to a high density of infected mos-

quitoes emerge during and after natural disasters. In Ecuador, increased local ZIKV transmis-

sion occurred following the earthquakes that struck the Manabi province in April 2016 (Fig

1C), most likely by destroying infrastructure, contaminating drinking water (leading to

Fig 3. Confirmed ZIKV-linkedmicrocephaly cases in Brazilian states versus percent light and dense forest cover.
The number of confirmed ZIKV-linked microcephaly cases per 100,000 people (as of July 15, 2016) in Brazilian states with
(A) light forest cover (r = -0.27) and (B) dense forest cover (r = -0.35) is shown for states that reported one or more cases.
For each state, each hectare with >10% and >50% forest cover is added to the forest cover total for light and dense forest
cover calculations, respectively. The x-axis shows forest cover as a percentage of total land area, based on light (A) and
dense (B) forest calculations. Microcephaly data are from PAHO case reports, as compiled by the CDC EPI. Population
sizes by state were retrieved from the 2014 Brazilian Institute of Geography and Statistics (IBGE) report (ftp://ftp.ibge.gov.
br/Estimativas_de_Populacao/Estimativas_2014/estimativa_dou_2014.pdf; accessed 7 July 2016). Forest cover data are
from http://rainforests.mongabay.com/20brazil.htm (accessed July 7, 2016).

doi:10.1371/journal.pntd.0005135.g003
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makeshift water storage), and forcing people to live outdoors [45], all of which increase the

rate of human contact with ZIKV-infected Ae. aegyptimosquitoes. Natural disasters can also

interfere with the delivery of health care services, vector control, and education programs [46].

Social, political, and economic changes can also impact human exposure to ZIKV, particularly

for the urban poor, who often live in areas with inadequate sanitation, infrastructure, and

water access [47]. Shifting public sanitation policy, vector control efforts, and human move-

ment can exacerbate existing discrepancies in these services. These social drivers have contrib-

uted to the shifting global ecology of vector transmission that has enabled ZIKV to emerge in

the Americas by dangerously uniting human host, vector, and pathogen.

Vector control

ZIKV transmission is closely connected to the abundance of Ae. aegypti, so changes in the effi-

cacy of vector control may coincide with shifting prevalence of ZIKV and other Ae. aegypti-

transmitted viruses. Historically, vector control has affected the global ecology of YFV and

DENV transmission. In 1901, aggressive vector control reduced YFV cases more than 50-fold

in a single year, from 1,400 cases in 1900 to 37 cases in 1901 [48], with similar results during

construction of the Panama Canal [49]. Following World War II, the widespread availability of

the pesticide DDT shifted public health responses to YFV from primarily emergency action to

Table 1. Seropositive rates of ZIKV for selected animals in Uganda, Borneo, Pakistan, Kenya, and Brazil.

Host Species Location Habitat Percentage of Population with Zika Virus
Antibodies

Wild Animal

Colobus Monkey Bwamba, Uganda Intact Forest 45% (n = 11) [40]

Redtail Monkey Kisubi, Uganda Intact Forest 19% (n = 21) [40]

Redtail Monkey Bwamba, Uganda Intact Forest 19% (n = 21) [40]

Mona Monkey Bwamba, Uganda Intact Forest 44% (n = 52) [40]

Mangabey Bwamba, Uganda Intact Forest 50% (n = 2) [40]

Orangutan Borneo Intact Forest 13% (n = 40) [41]

Indian Desert Jird Pakistan Habitat Not Specified 6% (n = 33) [42]

Indian Gerbil Pakistan Habitat Not Specified 2% (n = 47) [42]

African Sacred Ibis Kenya Habitat Not Specified 4% (n = 49) [43]

Cattle Egret Kenya Habitat Not Specified 3% (n = 37) [43]

Ruffe Kenya Habitat Not Specified 50% (n = 2) [43]

African Grass Rat Kenya Habitat Not Specified 4% (n = 1,446) [43]

Kaiser’s Rock Rat Kenya Habitat Not Specified 34% (n = 250) [43]

Shrew Kenya Habitat Not Specified 3% (n = 63) [43]

Livestock

Sheep Pakistan Habitat Not Specified 2% (n = 46) [42]

Goat Pakistan Habitat Not Specified 2% (n = 48) [42]

Cattle Kenya Undeveloped Land 0.7% (n = 963) [43]

Goat Kenya Adjacent to Irrigated Land 0.1% (n = 655) [43]

Sheep Kenya Adjacent to Irrigated Land 0.7% (n = 283) [43]

Cattle Kenya Adjacent to Irrigated Land .5% (n = 1,361) [43]

Coinhabiting Primates

Orangutan Borneo Rehabilitation Center 3% (n = 31) [41]

Capuchin Monkey Brazil Pets/Near Humans 33% (n = 9) [44]

Common Marmoset Brazil Free-Ranging/Near Humans 27% (n = 15) [44]

doi:10.1371/journal.pntd.0005135.t001
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a large scale Ae. aegypti eradication program in Central and South America [50]. These efforts

successfully eliminated Ae. aegypti and reduced outbreaks of YFV and DENV in large areas of

the Americas from 1946 to 1970 [2,49]. A victim of their own success, vector control programs

declined in the late 20th century [51], contributing to the dramatic resurgence of Ae. aegypti

and DENV incidence [51,52]. Further, the unregulated use of insecticides to control DENV

outbreaks has since allowed widespread resistance to develop in Ae. aegypti, exacerbating exist-

ing problems with modern vector control even amidst growing concerns about pesticide use

[17]. Clearly, effective and coordinated vector control is necessary to suppress mosquito popu-

lations and, by extension, epidemics of arboviruses.

In 2002, Brazil instituted a National Plan for Dengue Control (PNCD) to address the recur-

ring threat of DENV using source reduction, ultra-low volume space spraying of insecticides,

and larvicide application [51]. While DENV incidence in Brazil initially dropped from 701,335

cases in 2002 to 72,552 cases in 2004, it quickly rebounded to 981,276 cases in 2010 [51], sug-

gesting that transmission reductions from the ongoing PNCD were short-lived. Despite past

success, classical vector control strategies, largely unchanged over the last 50 years, have not

kept pace with the modern ecology of vector transmission. New self-limiting and self-sustain-

ing approaches to vector control such as releasing genetically modified virus-refractory mos-

quitoes have been proposed [53] and have achieved some limited success [54], but they remain

preliminary and hotly debated.

Public sanitation policy, poverty, and recession

Public sanitation, including reliable access to clean piped water, garbage disposal, and sewage

treatment, is one of the most essential public services that governments perform. In Brazil, the

urban housing crisis, which is reinforced by large socioeconomic disparities, magnifies existing

gaps in public sanitation services. In 2010, about 11.4 million people in Brazil lived in favelas

(slums) on the outskirts of metropolitan areas [55]. Life in a favela implies life without infrastruc-

ture. Most slums lack effective sewage systems, access to potable water, and waste management

[47], leading to increased water storage, especially in southeastern states where water storage in

household containers accounts for more than 50% of mosquito breeding sites [12]. Changes in

the quality and availability of public sanitation services may influence human exposure to ZIKV

by increasing human–mosquito contact (Fig 2). Historically, public sanitation efforts in Brazil

have routinely shifted between public and private funding, but sanitation policy is currently under

government regulation [56]. Still, Brazil struggles to guarantee public sanitation to its poorest citi-

zens [56], many of whom live in the northeastern states first and hardest hit by ZIKV [47,55].

Poverty can create the ideal conditions for disease transmission. It affects access to running

water, education, and health care. Together, these interacting symptoms of poverty lead to

negative correlations between income and ZIKV risk. Across Brazilian states, higher per capita

gross domestic product (GDP) is correlated with lower per capita rates of confirmed ZIKV-

linked microcephaly cases, a proxy for ZIKV incidence (Fig 4). Periods of economic decline

may force individuals into lower socioeconomic status, in which the symptoms of poverty pro-

mote ZIKV risk. In 2014, before ZIKV emerged in the Americas, Brazil fell into a recession

and the unemployment rate jumped from 6.8% to 8.5% [57]. The ongoing recession may have

increased the risk of ZIKV infection for a new group of vulnerable people, but this link

requires further investigation.

Humanmovement

Mobility between individuals of lower and higher socioeconomic status may extend ZIKV

transmission risk to a wider demographic. On a national scale, human movement has
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predicted DENV epidemic dynamics in Pakistan [58]. At the local level, house-to-house move-

ments based on social connections have shaped the geographic distribution of new cases of

DENV in Iquitos, Peru [59], suggesting that routine travel from impoverished communities to

wealthier neighborhoods may expand infection risk. In Brazil, slums are generally situated

near metropolitan cities [55], so the close proximity of these socioeconomically distinct

regions may also facilitate the spread of ZIKV across social boundaries.

Ae. aegypti and the arboviruses it spreads often follow human movement: historically, Ae.

aegypti, YFV, and DENV spread globally with the slave trade and the shipping industry

[15,16]. More recently, intercontinental air travel, which increases yearly, has expedited the

spread of vector-borne diseases, especially in industrialized countries [60]. Long distance travel

amplifies the international threat of ZIKV transmission by allowing pathogens including

Ebola, SARS, and influenza to spread rapidly around the world [60–62]. Since air travel

demand is expected to double by 2035 [63], it will become an even more effective means of

spreading viruses globally. Particularly in asymptomatic cases, viruses can be easily transported

globally with human hosts, supporting the hypothesis that ZIKV arrived in the Americas via

human air travel.

Social consequences of ZIKV emergence

Though ZIKV generally causes mild, self-limiting febrile illness [10], it has raised alarm for its

link to GBS and microcephaly. Fetal ZIKV cases have been identified in pregnant women in 21

countries [64], and ZIKV-linked microcephaly has been confirmed in eight countries includ-

ing Brazil (1,687 cases) and the US (15 cases) as of July 14, 2016 [6] (Fig 1). The coming years

Fig 4. Confirmed ZIKV-linkedmicrocephaly cases in Brazilian states versus per capita GDP (in log10
US Dollars). The number of confirmed ZIKV-linked microcephaly cases per 100,000 people (as of July 15,
2016) is negatively correlated (Pearson’s correlation coefficient r = -0.64) with per capita GDP for states with
one or more cases. Total GDP data were retrieved from the 2012 IBGE report (http://www.ibge.gov.br/
english/estatistica/economia/contasregionais/2012/default.shtm; accessed July 7, 2016). Population sizes by
state were retrieved from the 2014 IBGE report. Per capita GDP = Total GDP/population size. Microcephaly
data are from weekly epidemiological reports from PAHO, as compiled by the CDC EPI.

doi:10.1371/journal.pntd.0005135.g004
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will see a cohort of children with unknown long-term health outcomes and caregivers with an

immense social and economic burden. Fear of these rare conditions and sexually-transmitted

ZIKV [65] will redefine public interest in the prevention and treatment of infectious diseases.

As WHODirector-General Margaret Chan stated, “The response [to ZIKV] now requires a

unique and integrated strategy that places support for women and girls of child-bearing age at

its core” [66]. Women’s health has taken center stage in the public, the scientific community,

and the press. The spread of information (and potentially misinformation) about the risks of

ZIKV infection will likely affect women’s reproductive rights, tourism, and beyond.

Perceived risk of disease

Perceived risk of disease likely influences people’s behavior, beliefs, and health outcomes. In

St. Martin and Brazil, where CHIKV and ZIKV emerged for the first time in the Americas,

respectively, the onset of symptoms is a major sign of illness and thus a major indicator of

disease risk [67, 68]. ZIKV, which is highly asymptomatic [8], does not comply with this per-

ception of disease, while CHIKV, which shows symptoms in 75% of cases [69], does. We exam-

ined the influence of risk perception of CHIKV and ZIKV on public interest over time using

Google Trends data for “Zika” searches in Brazil and “chikungunya” searches in St. Martin.

CHIKV and ZIKV share similar transmission ecology and emerged in countries with similar

perceptions of disease, but differ widely in their rate of symptomatic versus asymptomatic

cases. As a result, we hypothesized that relative to the Google search volume in each country,

searches for CHIKV in St. Martin would be consistently high, while searches for ZIKV in Bra-

zil would be relatively low. CHIKV received more immediate attention than ZIKV, likely

because it was initially perceived to pose a higher risk (Fig 5A). However, coincident with

WHO’s declaration of a reported association between ZIKV and microcephaly (and a concom-

itant, sudden increase in perceived risk), searches for “Zika” drastically increased (Fig 5B).

Beyond the impact of the perceived risk of ZIKV on public interest, the magnitude and inten-

sity of public health responses to the ZIKV epidemic may also be linked to symptomatology

and risk perception.

Fig 5. Search interest for “chikungunya” and “Zika.” Search interest, relative to the highest search
volume between June 2013 and June 2016, for the terms “chikungunya” in St. Martin (A) and “Zika” in Brazil
(B). A value of 100 represents the highest search volume recorded in each country within this time period, so
direct comparison of relative search volume is possible without controlling for population or the number of
Internet users. Gray dashed lines indicate the first cases of laboratory-confirmed CHIKV and ZIKV in the
Americas. The orange bold line indicates declaration of a public health emergency of international concern
(PHEIC) byWHO. Data are fromGoogle Trends (https://www.google.com/trends/; accessed 5 July 2016).

doi:10.1371/journal.pntd.0005135.g005
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Abortion and reproductive rights

The threat of microcephaly has expanded the cultural implications of ZIKV because women at

risk of ZIKV infection may wish to postpone or terminate pregnancies. Outbreaks of viruses

that cause birth defects are relatively rare, but an epidemic of rubella in the US in the 1960s

caused congenital rubella syndrome (CRS) in the babies of infected mothers. This example

may be illustrative as a model for social responses to teratogenic viruses during the current

ZIKV epidemic. Though abortions were strictly regulated, in a study of rubella-infected preg-

nant women, most chose to terminate their pregnancy [70]. Using rubella as a model for

ZIKV, we would expect that (potentially illicit) abortion rates, including miscarriages, in the

Americas could increase above typical rates during the ZIKV epidemic; however, inadequate

collection of abortion data in Latin America limits the scope of this hypothesis.

Safe abortions are not readily accessible for most women in Latin America. In Brazil, the

United Nations has supported efforts to increase access to abortions, but some government

officials have sought to restrict it further [71]. In a 2014 poll, 79% of Brazilians rejected the

legalization of abortions [72]. Pope Francis has called abortion an “absolute evil” to be avoided

in the interest of life, instead favoring contraception as “the lesser of two evils” [73, 74]. Amidst

public, legislative, and religious backlash, the main government recommendation has been

to postpone pregnancy [75]. The success of this response will likely be limited because un-

planned pregnancy represented 56% of total pregnancies in Latin America in 2012 [76], likely

due to limited access to contraceptives, lack of sex education, and high rates of sexual assault

[77, 78]. These factors may also exacerbate the risk of sexually-transmitted ZIKV. Access to

contraception and safe (legal or illegal) abortions will inevitably vary by socioeconomic status,

potentially further exacerbating the differential impact of ZIKV on the urban poor. Because

religious beliefs dictate most abortion policies, it is unclear if abortion policies will change in

the wake of the ZIKV epidemic.

Tourism and the 2016 summer olympics in Rio de Janeiro

Perceived risk of ZIKV infection poses a threat to tourism. For example, widespread public

apprehension about ZIKV stirred doubts about the safety of the 2016 Summer Olympics in

Rio de Janeiro. Historically, mass gatherings have been favorable for rapid transmission of

infectious diseases [79]. As a result, some in the public health community and beyond sug-

gested that the 2016 Summer Olympics should be moved or postponed. By contrast, Burattini

et al. estimated that there is only a 3.5% chance of foreign tourists being bitten by an Ae. aegypti

mosquito during the Summer Olympics, while the risk of becoming infected with ZIKV from

a mosquito bite was estimated to be 1.8/1,000,000 [80]. Travel specifically for the Summer

Olympics was projected to pose little additional risk of establishing autochthonous transmis-

sion by Ae. aegypti [81], and according to WHO, no athletes or visitors reported ZIKV infec-

tion during the Summer Olympics [82]. Nonetheless, tourism is likely to suffer from fears

about ZIKV throughout the Americas. Travel warnings have extended to 59 countries and ter-

ritories, including Latin America, Pacific Islands, Singapore, Cape Verde, and southern Flor-

ida. Perceived ZIKV risk, particularly for couples considering pregnancy, may impact tourism

for the next several years.

Conclusion

A suite of concomitant environmental and social changes facilitated global ZIKV emergence

by altering the global ecology of vector transmission. In this intensified transmission regime,

explosive epidemics of DENV, CHIKV, ZIKV, and other arboviruses are likely to continue to

emerge. We showed direct correlations between ZIKV and poverty, deforestation, and natural

PLOSNeglected Tropical Diseases | DOI:10.1371/journal.pntd.0005135 February 9, 2017 11 / 16



disasters and circumstantial support for the role of warmer-than-average temperatures, declin-

ing vector control, unreliable sanitation access, recession, political corruption, and global

travel. Together, these environmental and social changes affect mosquito distribution, habitat

availability, human contact, and association with arboviruses, in turn promoting the spread of

vector-borne diseases like ZIKV. Further experimental and observational work to measure the

effects of environmental and social changes described here (Fig 2) on Ae. aegypti abundance

and contact with humans, as well as epidemiological studies of risk factors for ZIKV exposure,

susceptibility, and morbidity, are critical for responding to ZIKV and future arbovirus epidem-

ics. This research will elucidate the multifactorial “perfect storm” of arbovirus emergence and

resurgence, informing more proactive monitoring of existing and yet undiscovered vector-

borne diseases.

Key learning points

• Deforestation is associated with elevated ZIKV risk. Less forest cover correlates with

higher rates of confirmed ZIKV-linked microcephaly cases in Brazil.

• ZIKV transmission may be linked to poverty. Lower per capita GDP correlates

strongly with higher rates of confirmed ZIKV-linked microcephaly cases in Brazil.

• Inadequate or damaged infrastructure may increase the abundance of mosquito breed-

ing sites and thereby promote ZIKV transmission. Following a major earthquake in

Manabi, Ecuador, the incidence of ZIKV cases in the province increased dramatically.

• In Brazil, capuchin monkeys and common marmosets may be important reservoirs

for ZIKV. Both primates are physically and phylogenetically close to humans and have

high rates of seroconversion for ZIKV.

• As a model for ZIKV, the rubella outbreak in the United States suggests that (poten-

tially illicit) abortion rates may increase in the Americas as a result of the ZIKV

epidemic.
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Dynamics (Aedes aegypti) Influenced by Climate and Social Factors in Ecuador:

Implications for Targeted Control. 2013 Nov;8(11).

4. Musso D, Cao-Lormeau VM, Gubler DJ. Zika virus: following the path of dengue and

chikungunya? The Lancet. 2015 Jul;386(9990):243–4.

PLOSNeglected Tropical Diseases | DOI:10.1371/journal.pntd.0005135 February 9, 2017 12 / 16



Acknowledgments

This paper is the product of a Stanford University Introductory Seminar: BIO 2N Ecology and

Evolution of Infectious Disease in a Changing World. We thank the Stanford University Intro-

ductory Seminars program for support. Felix Hol, Haripriya Mukundarajan, and members of

the Mordecai, Fukami, and Peay labs provided thoughtful comments on earlier versions of this

manuscript.

References
1. Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic prob-

lem in the 21st century. Trends Microbiol. 2002 Feb 1; 10(2):100–3. PMID: 11827812

2. Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev. 1998 Jul; 11(3):480–96. PMID:
9665979

3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and
burden of dengue. Nature. 2013 Apr 25; 496(7446):504–7. doi: 10.1038/nature12060 PMID: 23563266

4. PAHOWHO | Chikungunya | Statistic Data [Internet]. [cited 2016 Jul 10]. http://www.paho.org/hq/index.
php?option=com_topics&view=readall&cid=5927&Itemid=40931&lang=en

5. Kindhauser MK, Allen T, Frank V, Santhana RS, Dye C. Zika: the origin and spread of a mosquito-borne
virus. Bull World Health Organ [Internet]. 2016 Feb 9 [cited 2016 May 4]; http://www.who.int/bulletin/
online_first/16-171082.pdf

6. Pan American Health Organization / World Health Organization. Zika Epidemiological Update, 14 July
2016. Washington, D.C.: PAHO/WHO; 2016 Jul.

7. Pan American Health Organization / World Health Organization. Cumulative Zika suspected and con-
firmed cases reported by countries and territories in the Americas, 2015–2016. [Internet]. Washington,
D.C.: PAHO/WHO; 2016 Jul [cited 2016 Jul 2]. http://ais.paho.org/phip/viz/ed_zika_cases.asp

8. Confirmação do Zika Vı́rus no Brasil [Internet]. Portal da Saúde–Ministério da Saúde. 2015 [cited 2016
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