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Abstract

There is growing evidence that environmental chemicals can disrupt endocrine systems. Most evi-
dence originates from studies on reproductive organs. However, there is also suspicion that thyroid
homeostasis may be disrupted. Several groups of chemicals have potential for thyroid disruption.
There is substantial evidence that polychlorinated biphenyls, dioxins and furans cause hypothyroid-
ism in exposed animals and that environmentally occurring doses affect human thyroid homeostasis.
Similarly, flame retardants reduce peripheral thyroid hormone (TH) levels in rodents, but human
studies are scarce. Studies also indicate thyroid-disruptive properties of phthalates, but the effect of
certain phthalates seems to be stimulative on TH production, contrary to most other groups of chemi-
cals. Thyroid disruption may be caused by a variety of mechanisms, as different chemicals interfere
with the hypothalamic –pituitary –thyroid axis at different levels. Mechanisms of action may involve
the sodium–iodide symporter, thyroid peroxidase enzyme, receptors for THs or TSH, transport pro-
teins or cellular uptake mechanisms. The peripheral metabolism of the THs can be affected through
effects on iodothyronine deiodinases or hepatic enzymes. Even small changes in thyroid homeostasis
may adversely affect human health, and especially fetal neurological development may be vulnerable.
It is therefore urgent to clarify whether the animal data showing effects of chemicals on thyroid func-
tion can be extended to humans.

European Journal of Endocrinology 154 599–611

Introduction

Over the past decade there has been an increasing focus
on the effects of synthetic chemicals on human endo-
crine systems – especially on effects related to androgen
and estrogen homeostasis. However, there is increasing
evidence from animal and in vitro studies that also the
thyroid is vulnerable to endocrine-disrupting effects.

Environmental chemicals may interfere with thyroid
homeostasis through many mechanisms of action, i.e.
at the receptor level, in binding to transport proteins,
in cellular uptake mechanisms or in modifying the
metabolism of thyroid hormones (THs) (Fig. 1). Several
environmental chemicals have a high degree of struc-
tural resemblance to the THs thyroxine (T4) and triio-
dothyronine (T3), and therefore interfere with binding
of THs to receptors or transport proteins. This, in
turn, may lead to subclinical hypothyroidism, which
in adults is often diagnosed only by chance because of
subtle symptoms. However, growth and development
in fetal life and childhood is highly dependent on
normal levels of THs. Particularly during gestation,
normal levels of THs are crucial for the development
of the central nervous system. This critical phase
may be vulnerable to even subtle effects of synthetic

chemicals on fetal and maternal TH levels. Such devel-
opmental deficiencies may not be identifiable until later
in life (1).

Perchlorate is an example of a chemical with well
known antithyroidal effects, which has been exploited
in diagnosis and treatment of thyrotoxicosis (2). It
has therefore been of concern that perchlorate is
found in drinking water (3). A study of workers in an
ammonium perchlorate production plant found a sig-
nificant decrease in thyroid gland iodine uptake related
to presence at work (4). However, human studies are
contradictory concerning the effect of environmentally
occurring levels of perchlorate on neonatal thyroid
function (5–7).

Here we present a review of the literature on the
impact of endocrine disrupters on thyroid function –
with a focus on human health and especially fetal
vulnerability.

Industrial chemicals

Polychlorinated biphenyls (PCBs)

PCBs comprise 209 highly persistent, distinct congeners
that accumulate in lipid tissues. Their hydroxylated
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metabolites are also biologically active. PCBs and
especially the hydroxylated metabolites have a high
degree of structural resemblance to T4. The effect of
PCB exposure on peripheral TH levels is well documen-
ted by studies in laboratory animals. One of the most
consistent findings is that PCB exposure decreases the
levels of circulating THs, especially T4 (8–10). Histo-
pathological changes of the thyroid indicative of hyper-
activity were found after both oral and s.c. exposure
(10, 11). Monkeys exposed orally to PCB for 18-23
weeks showed significant dose-dependent reduction of
T4, free T4 (FT4), total T3 (TT3) and increase in thyr-
oid-stimulating hormone (TSH) as well as histopatholo-
gical changes of the thyroid compatible with induced
hypothyroidism (12). There is substantial evidence
that perinatal PCB exposure decreases THs in rat pups
(13–21). Also injection of PCBs into chicken eggs
from early gestation resulted in a severe decrease of
the TH peak late in gestation, accompanied by a con-
siderable delay in the timing of hatching (22, 23).

PCBs are metabolized to hydroxylated PCB com-
pounds (OH-PCBs), which in rodents can accumulate
in the fetal compartment. In pregnant rats exposed to
4-OH-CB107, accumulation of the metabolite was

found in fetal liver, brain and plasma, and total T4
(TT4) in both maternal and fetal blood samples was
decreased. Furthermore, FT4 was significantly
decreased and TSH increased in the fetus. The levels
of T4 in fetal forebrain were similarly decreased and
deiodination of T4 to T3 was increased (18). A study
of PCB77 showed a similar reduction of fetal peripheral
THs and an accumulation of the hydroxylated metab-
olite of this congener in the fetal compartment in
mice (15). Similar relationships between thyroid func-
tion and the concentration of PCBs in plasma are
reported from wildlife animals. Significant decreases
of T3 and/or T4 were found in sea lions (24), polar
bears (25) and seals (26, 27), and histopathological
changes of thyroid glands related to exposure level
were found in jungle crows (28) and cormorants (29).

Multiple studies of PCB exposure and effects have
been carried out in human populations, the majority
of which raise concern that environmental levels of
PCBs may alter thyroid homeostasis. In adults, adoles-
cents and children (Table 1) from highly PCB-exposed
areas the concentration of PCB in blood samples corre-
lated negatively to levels of circulating peripheral THs
(30, 31). A few studies also demonstrated a positive

Figure 1 Possible mechanisms of action of
environmental chemicals on the hypothala-
mic–pituitary–thyroid axis. (1) Synthesis of
THs: interference with NIS, TPO or TSH
receptor. (2) Transport proteins. (3) Cellular
uptake mechanisms. (4) The TH receptor.
(5) Iodothyronine deiodinases. (6) Metab-
olism of THs in the liver. TRH, thyrotropin-
releasing hormone.
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correlation between PCB exposure and TSH (32, 33).
In contrast, other studies found no associations
between PCBs and THs in serum (34, 35). The thyroid
volume is another endpoint for thyroid function,
which is rarely used in human toxicological studies.
In adults from a PCB-polluted area the thyroid
volume assessed by ultrasound was found to be signifi-
cantly larger than in ‘non-exposed’ subjects. The high-
est thyroid volumes were clustered among 5% of
subjects (n ¼ 23) with PCB levels above 10 000 ng/g
lipids (36).

Perinatal exposure to PCBs may be the most import-
ant for chronic effects. Measurements of PCBs in cord
blood were not associated with infant THs (37 –39).
However, measurements of PCBs in maternal blood
during pregnancy showed negative correlations to per-
ipheral maternal THs and positive correlations to TSH
(39). Similarly, most studies of PCB content in breast
milk did not demonstrate significant associations
with infant peripheral TH levels (40–42), although
one study found significant positive correlation to
TSH in the infants as well as significant negative corre-
lations to maternal TT3 and TT4 (40). These changes
in THs were within normal reference ranges. A study
of boys prenatally exposed to high doses of PCBs and
polychlorinated dibenzo-p-furans (PCDFs) showed no
differences in thyroid function compared with a con-
trol group (43). In conclusion, human and wildlife
observations point towards subtle, but significant,
effects of low-dose PCB exposure on human thyroid
function.

Dioxins

Polychlorinated dibenzo-p-dioxins (PCDDs) and furans
(PCDFs) are widespread, persistent and highly toxic
environmental pollutants from industrial burning

processes or production of herbicides. 2,3,7,8-tetra-
chloro-dibenzo-p-dioxin (TCDD) is the prototype for
this class of chemicals and the most toxic among
PCDD/F congeners.

TCDD given to pregnant rats is transferred to their
offspring via transplacental and lactational routes
(44). A single dose of TCDD in rats dose-dependently
decreased T4 and FT4 (45) and increased TSH (46).
In offspring a single dose of TCDD to the dam during
gestation was correlated to decreased T4 and to a
2-fold increase in TSH (in male offspring) as well as
hyperplasia of the thyroid gland (47). Human studies
are scarce, but in a large study of Vietnam war veter-
ans, the group with the highest exposure to TCDD
showed a significant increase in TSH levels (48).

Flame retardants

The group of flame retardants contains different chemi-
cals such as tetrabromobisphenol A (TBBPA), polybro-
minated diphenyl ethers (PBDEs) and polybrominated
biphenyls. TBBPA and PBDEs show even closer struc-
tural relationship to T4 than PCBs. PBDEs are exten-
sively used as flame retardants in plastics, paints,
electrical components and synthetic textiles. TBBPA is
a halogenated derivative of bisphenol A (BPA) and is
widely used as a flame retardant in electrical equipment
such as televisions, computers, copying machines,
video displays and laser printers. TBBPA is generally
regarded a safe flame retardant because it is not readily
accumulated in the environment, nor is it highly toxic.

In rodent studies, PBDEs reduced the circulating levels
of THs. The commercial PBDE mixture DE-71 decreased
the levels of circulating THs and induced the activity of
the hepatic enzymes uridinediphosphate-glucuronosyl-
transferase (UDPGT), ethoxyresorufin-o-deethylase
(EROD) and pentoxyresorufin-o-deethylase (PROD)

Table 1 Human studies of thyroid effects of PCB. PCBs were measured in blood if not otherwise stated.

Author Year No. of subjects Effect Reference

Hsu et al. 2005 60 boys No effects 43
Takser et al. 2005 101 mothers Mothers: # TT3, " TSH 39

92 cord blood Cord blood: No significant correlations
Schell et al. 2004 115 adults # FT4, # T4, " TSH 33
Bloom et al. 2003 66 adults No effects 35
Ribas-Fito et al. 2003 98 infants No significant effects (trend toward " TSH) 38
Langer et al. 2003 101 adults Higher thyroid volume in highly exposed subjects 36
Persky et al. 2001 229 adults # T4, FTI (females); " T3-uptake (men) 31
Matsuura et al. 2001 337 breastfed infantsa No effects 42
Sala et al. 2001 192 (608) adults No significant effects (trend toward " TSH) 105
Hagmar et al. 2001 110 adults (men) No effects 34
Hagmar et al. 2001 182 adults (women) # TT3 30
Steuerwald et al. 2000 182 children No effects 37
Longnecker et al. 2000 160 cord blood No effects 41
Osius et al. 1999 320 children # FT3, " TSH 32
Koopman-Esseboom et al. 1994 105 mothers and Mothers: # TT3, # TT4 40

Infantsa Infants: " TSH (2 weeks and 3 months age)

aPCB measured in breast milk.
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(49–51). High doses of DE-71 also resulted in histo-
pathological changes such as increased follicular epi-
thelial height and colloid depletion, indicative of a
hypothyroid state. Another commercial mixture, Brom-
kal, as well as the pure congener DE-47 decreased FT4
and TT4 levels and induced microsomal enzyme activi-
ties (EROD, methoxyresorufin-o-deethylase (MROD),
PROD) (9), whereas the pure pentabrominated congener
BDE-99 was a less potent reducer of TH levels when
administered at equimolar doses (52). No histopatholo-
gical changes were observed after treatment with DE-
47, but plasma binding of T4 was significantly reduced
after high dose of DE-47 (10). Lower-brominated BDE
congeners were more potent plasma T4 reducers than
mixtures containing higher-brominated congeners
(50). In fish, TT4 was decreased after exposure to
PBDE (53). Perinatal maternal exposure of rats to differ-
ent mixtures and congeners of PBDE reduced THs pre-
and postnatally in both dams and fetuses (54). Similarly,
exposure of kestrels before and after hatching to differ-
ent PBDE congeners decreased T4 levels in the offspring
(55). TBBPA exhibited antithyroidal effects by decreas-
ing the rate of tail shortening in tadpole metamorphosis
(56). Further studies of TBBPA are mainly in vitro and
described in details below.

Few human studies exist regarding flame retardants
and thyroid function. Eleven workers in an electronic
recycling facility were followed over 1.5 years. Levels
of PBDE were fluctuating during the study and there
was a trend towards increasing T4 over time. Changes
were small and not significant, and as such not con-
clusive (57). In 110 men exposed through Baltic fish
consumption, plasma levels of persistent organohalo-
gens were measured and showed among multiple cor-
relations a significant negative association between
TSH and the PBDE BDE-47 (34). In a study of perinatal
exposure levels, THs and six congeners of PBDE were
measured in 12 pairs of maternal and cord blood.
There was no apparent correlation between serum
PBDEs and TH levels, which may be due to a very
small sample size (58).

Thus, our current knowledge on the effect of flame
retardants on human thyroid function is very limited.

Phenols: nonylphenol (NP), pentachlorophenol
(PCP) and BPA

NP and octaphenol are industrial additives used in a
wide variety of detergents, plastics and pesticides. NP
may be one of the more critical compounds due to its
toxicity, persistence and estrogenic effects. PCP has
been extensively used as a biocide and wood preserva-
tive in the timber industry and as an antifungal agent
in the leather industry. Furthermore, PCP is the pri-
mary metabolite of the pesticide hexachlorobenzene
(HCB), which is described in detail below. BPA is used
to manufacture polycarbonate and numerous plastic
products including compact discs, foodcan linings,

adhesives, powder paints and dental sealants. BPA is
rapidly glucuronidated in rats and humans.

Exposure of rats to NP increased TSH dose-depen-
dently (59), but no consistent effects on peripheral hor-
mones were found (59, 60). Another rat study showed
increased levels of T3 and T4, but no change in TSH in
ovariectomized rats. This pattern was not consistent
with in vitro studies of protein extracts showing NP to
inhibit thyroperoxidase (TPO) activity (61). PCP also
decreased T4 levels in ewes (62, 63). In fish and tad-
poles, NP may have an impact on development as TH
levels were clearly decreased (64) as well as the rate
of metamorphic progression and tail resorption in bull-
frog tadpoles (65).

Rats exposed to BPA exhibited increased weight of the
thyroid, but no histopathological changes (66). No sig-
nificant effects on TH levels were found in either pole-
cats (67) or field voles (68) after BPA exposure.
However, a positive correlation between increasing
BPA and activity of UDPGT was found – UDPGT cata-
lyzes the conjugation of various substances to glucuro-
nic acid, and an increasing activity may lead to faster
metabolism of THs. BPA blocked T3-induced resorption
of tail segments in larvae in vitro and decelerated T4-
induced metamorphic changes of tadpoles in vivo
(69). BPA fed to pregnant rats was associated with sig-
nificant increase of TT4 at postnatal day 15 in the
pups (70).

Human literature on these compounds is very sparse.
In human newborns, PCP in cord plasma was nega-
tively correlated to T3, FT4 and T4-binding globulin
(TBG) (71). These results suggest that PCP may alter
TH levels in newborns and consequently may lead to
adverse neurodevelopmental defects.

Phthalates

Phthalates are widely used as plastic emollients and the
amount used globally is rising. Exposure to phthalates
is inevitable, but for certain groups such as hospitalized
neonates exposure may be massive. The exposure to
phthalates through necessary medical devices such as
feeding tubes is correlated to the urinary content of
mono(2-ethylexyl)phthalate (72), and such intensive
exposure at a potentially vulnerable point of develop-
ment may cause permanent damage, despite the fast
metabolism of phthalates. Expert panel reports
reviewed reproductive and developmental effects of
five di-phthalates (di-isodecyl phthalate (DIDP), di-n-
octyl phthalate (DnOP), di-n-hexyl phthalate (DnHP),
di-isononyl phthalate and di(2-ethylhexyl) phthalate
(DEHP)). As relatively few studies have been focusing
on thyroid-disrupting effects, firm conclusions on this
aspect could not be drawn (73 –79).

Rodent studies found histopathological changes in
the thyroid of rats after exposure to DEHP, DnOP and
DnHP, corresponding to hyperactivity of the thyroid
(80 –84). Long-term treatment with high doses of
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DEHP resulted in basophilic deposits in the colloid and
enlargement of the lysosomes (80). The levels of circu-
lating THs were not affected after oral exposure of rats
to DEHP (85), whereas i.v. exposure in doses corre-
sponding to levels of DEHP solubilized in blood bags
for human transfusions resulted in a significant
increase in serum T3 and T4, which returned to
normal after 7 days (86). The thyroid glands examined
in this study showed initial reactive hyperplasia. In con-
trast di-n-butyl phthalate (DBP) decreased T3 and T4 in
rats in a dose-dependent manner (87).

Only few studies exist on the effects of phthalates on
human thyroid function. A follow-up examination of
19 adolescents, who were exposed to large amounts of
DEHP due to invasive treatment in the neonatal period
(extra-corporeal membrane oxygenation (ECMO)),
showed normal levels of THs (88). These results may
not be representative, as DEHP exposure through
ECMO treatment is extremely high (89), but of short dur-
ation. Furthermore, changes in TH levels as a result of
exposure to environmental chemicals may be transient.
They may nonetheless have permanent effects on the
development of the central nervous system, if changes
occur in a critical developmental phase.

Other chemicals

Other groups of chemicals with potential effects on the
thyroid are parabens and pesticides, of which the latter
are a large and inhomogeneous group of compounds.

Parabens are widely used as preservatives in food,
cosmetics and pharmaceutical products. Recent studies
suggest that parabens possess estrogenic potential, but
no studies have focused on thyroid toxicity (90).
Methylparaben seemed to have a weak intrinsic antith-
yroid activity in vitro by dose-dependently inhibiting
iodide organification (91).

Among many different pesticides, the thyroid-dis-
rupting effects of dichlorodiphenyltrichloroethane
(DDT) and HCB are the most studied. DDT exposure of
birds decreased T4 (92) or increased thyroid weight
and reduced colloid content of the follicles (93). How-
ever, other studies found no measurable thyroid effects
(94). Blubber concentration of DDT correlated nega-
tively to TT3 and free T3 in seals (26, 27), whereas a
study of sea-gulls showed no correlations with THs
(95).

HCB is metabolized to PCP, which has endocrine-dis-
rupting abilities. Multiple studies in laboratory animals
confirm the negative correlation between HCB and T4
(96 –100), and in some studies also T3 (101, 102).
The metabolites of HCB, PCP and tetrachlorohydroqui-
none, had even stronger effects than the parent com-
pounds (103). Prenatal HCB exposure of rats reduced
serum levels of T4 and FT4 in pups and increased T4-
UDPGT and type II 50deiodinase (50DII) in the brain
(98). This indicated an increased peripheral T4 metab-
olism, which may represent local hypothyroidism in the

fetal brain, where 50DII is responsible for deiodination
of T4 to the biologically active T3. Wildlife observations
of HCB exposure showed negative correlations to the
ratio TT4/FT4 in polar bears (25), and to T4 and
T4/T3 ratio in gulls (95). A study of seals found no
associations of THs to HCB (27). An excess ratio of
enlarged thyroid was found among people accidentally
exposed to high levels of HCB (104), and several studies
of adults have shown negative associations between
HCB and serum levels of T4 (33, 35, 105) or T3 (39),
but not TSH or free hormones (105). In infants, no cor-
relations between the concentration of HCB and THs in
cord blood were found (39). Thus, evidence of thyroid-
disruptive properties of DDT and HCB is concerning.

Many other pesticides are currently used, and
reports on their thyroid-disrupting effects are emer-
ging, e.g. methoxychlor (106, 107), chlordane (26,
108) and endosulfan (109). Humans may be exposed
to mixtures of these compounds and numerous
others, which makes a prediction of expected health
effects very difficult. Chemicals may have different
effects on the thyroid axis or act synergistically as
has been shown in rats exposed to a mixture of
PCBs, PCDDs and PBDEs, which resulted in a dose-
dependent decrease of TT4 (110).

Mechanisms of action

Until recent years the estimation of antithyroidal effects
of environmental chemicals has mainly relied on
measures of circulating hormone levels, thyroid size
or histopathology, but over the last 10 years, additional
endpoints have been developed. Intra-thyroidal T4 con-
tent, gene transcription activity and cellular growth
appear to be more sensitive endpoints when assessing
the significance of endocrine disruption from various
chemicals. A well established example is perchlorate,
which in small amounts does not alter plasma hormone
levels, but diminishes thyroid gland T4 content (111–
113), supporting the observation from in vitro studies
of an inhibition of sodium –iodide symporter (NIS)
(114). Thus, endocrine-disrupting chemicals present
in small amounts in the environment may not cause
overt changes of hormone levels in animals and
humans, but may nonetheless alter the hormonal
homeostasis.

The mechanisms involved in thyroid homeostasis
are numerous and complex. As a consequence environ-
mental chemicals can act at many levels in the thyroid
system (Table 2).

Synthesis of THs: interference with the NIS,
TPO or TSH receptor (Fig. 1, point 1)

Perchlorate compromises iodine uptake to the thyroid
follicular cells by inhibiting the NIS (114) (Fig. 2).
In contrast, phthalates such as DIDP, butyl benzyl
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phthalate (BBP) and DnOP increased the activity of the
NIS and enhanced NIS mRNA expression (115). TPO
activity was inhibited in vitro by NP (61). The activity
of the thyroid gland is stimulated by TSH and may
thus be altered by environmental chemicals affecting
the function of the TSH receptor. DDT and the PCB mix-
ture Aroclor 1254 interfered in vitro with post-receptor
signaling by inhibition of the adenylate cyclase activity
and cAMP production (116).

Transport proteins (Fig. 1, point 2)

Halogenated aromatic hydrocarbons structurally
resemble THs and may therefore compete with binding
to the TH receptors and transport proteins, possibly
interfering with TH transport and metabolism. PCBs
(18, 117), flame retardants (118), phenol compounds
(119, 120) and phthalates (121) competitively bound
to transthyretin (TTR). Metabolites and derivatives of
PCBs, several brominated flame retardants and phenol
compounds had remarkably stronger binding affinity
than their parent compounds, indicating an important
role for hydroxylation and halogenation in thyroid tox-
icity (118). In contrast to the interference with TTR, no
environmental chemicals have been demonstrated to

compete with THs for binding to TBG or albumin
with significant strength (122, 123).

Competitive binding of environmental chemicals to
TH transport proteins may result in increased bioavail-
ibility of endogenous THs. The investigation of this
mechanism of action is restrained by interspecies differ-
ences, as TTR is the principal transport protein in
rodents and TBG in humans. It is unlikely that
enough T4 could be displaced from TTR to be toxic in
adult humans (117). However, TTR is the major TH
transport protein in the human brain, presumably
playing an essential role in the determination of FT4
levels in the extracellular compartment, which is inde-
pendent of the T4 homeostasis in the body. Further-
more, TTR may mediate the delivery of T4 across the
blood–brain barrier and the maternal to fetal transport
through the placenta. Thus, environmental chemicals
bound to TTR may be transported to the fetal compart-
ment and fetal brain, and be able to decrease fetal brain
T4 levels (124).

Cellular uptake mechanisms (Fig. 1, point 3)

Bioavailibility of THs to the nuclear TH receptors may
become compromised as THs are probably actively

Table 2 Mechanisms of action of thyroid-disrupting chemicals.

Mechanisms of action Group of chemicals References

Inhibition of the iodide uptake Perchlorate, phthalates 114, 115
Thyroperoxidase NP 61
Inhibition of the function of the

TSH receptor
DDT, PCB 116

Binding to transport proteins PCB, phthalates, phenols, flame retardants, HCB 18, 117–123
Cellular uptake of thyroid hormones Phthalates, chlordanes 125
Binding to thyroid hormone receptor and

gene expression
PCB, phenols, flame retardants, BPA, HCB 56, 70, 126, 129, 130, 132–137

Iodothyronine deiodinases Methoxychlor, MBC 61, 142, 143
Excretion/clearance of thyroid hormones PCB, dioxin, phenols, flame retardants, HCB, BPA 45–47,67,68,144–146

Figure 2 The thyroid follicle cell. AC, adenyl-
ate cyclase; DIT, di-iodotyrosine; G, G-protein;
MIT, mono-iodotyrosine; Tg, thyroglobulin.
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transported across the cell surface via membrane
bound transporters. Several environmental chemicals,
including DBP and BBP inhibited [125I]T3 uptake in
red blood cells from bullfrog tadpoles (125).

The TH receptor (Fig. 1, point 4)

Environmental chemicals can change TH-stimulated
gene transcription, but it is still not clear through
which mechanisms these changes are induced.

T3-mediated gene activation through thyroid recep-
tor alfa-1 (TRalfa1) and TRbeta was dose-dependently
suppressed by BPA and expression of T3-suppressed
genes was upregulated by BPA. Thus, BPA acted as an
antagonist to T3 (126). Maternal exposure to BPA in
rats increased the expression of TH-responsive gene
neurogranin in the hippocampus of the pups. This led
to speculations that BPA may antagonize the feedback
through TRbeta, but act as an agonist at TRalfa and
thus upregulate TH-responsive genes (70). However,
other studies found no effect of BPA on expression of
T3-mediated reporter genes in a hamster ovary cell
line (127) and pituitary cell line (128). BPA was a
weak ligand for the TR (126), but the derivatives
TBBPA and tetrachlorobisphenol competed for binding
to the receptor (56).

PCBs also alter the expression of TH-responsive genes.
PCBs acted as antagonists by partial dissociation of
TR/retinoid X receptor heterodimer complex from the
TH response element (TRE) (129). OH-PCBs inhibited
the binding of T3 to the TR (130), but other studies
found that the human TRbeta had very low affinity
for OH-PCBs, DDT and its metabolites and that other
organochlorine pesticides did not compete for the recep-
tor (131). Thus, the competitive binding of some
environmental chemicals appears to be both receptor-
specific and compound-specific. Increased gene
expression in the fetal rat brain after maternal exposure
to PCBs included neuroendocrine-specific protein A,
neurogranin, myelin basic protein, and the transcrip-
tion factors oct-1 and hairy enhancer of split (132–
134), RC3/neurogranin and myelin basic protein in
pups of PCB-treated dams (134). In a study of brain
protein extracts from PCB-treated chicken embryos 17
of 109 differentially expressed proteins differed with
PCB treatment (135). Malic enzyme (ME) gene
expression is regulated mainly by THs and was
increased by exposure to HCB, probably through still
unidentified nuclear proteins that bind to the TRE of
the ME promoter (136).

Expression of TR genes (Fig. 1, point 4)

Seiwa et al. examined the effect of BPA on oligodendro-
cyte precursor cell (OPC) differentiation on myelin basic
protein, which is a major myelin component, and 2,3-
cyclic nucleotide 3-phosphodiesterase expression.
TRbeta1-levels in OPCs and oligodendrocytes decreased

significantly after BPA treatment for 48 h, suggesting a
suppression of T3-induced differentiation of OPCs.
Expression of TRalfa1 was not affected (137). Dicyclo-
hexyl phthalate, BBP and PCP inhibited the expression
of the TRbeta gene (138).

Neural growth

Oligodendrocyte development and myelination are
under TH control, as well as the extension of Purkinje
cell dendrites, which is essential for normal neuronal
circuit formation (synaptogenesis) and subsequent
behavioral functions. In a study of perinatal exposure,
PCB affected the development of white matter in rat
pups by mimicking some, but not all, of the effects of
hypothyroidism on white matter, indicating that PCB
may partly affect the neurological development
through thyroid disruption (139). These effects may
be congener-specific as another study showed a single
PCB congener to enhance the effect of T3 by increasing
the formation of oligodendrocytes (140). PCBs also
caused abnormal development of Purkinje cell den-
drites (141).

Metabolism of circulating THs (Fig. 1, points 5
and 6)

Peripheral iodothyronine deiodinases control the con-
version of THs in different organs and are thus essential
in the regulation of levels of the biologically active T3
by activation of T4 and inactivation of T4 and T3.
Type I 50deiodinase (50DI) in the liver was decreased
in vitro by several environmental chemicals: octyl-
methoxycinnamate, 4-methylbenzylidene-camphor
(MBC) (61), methoxychlor (142), and a mixture of
organochlorines, lead and cadmium (143).

OH-PCBs inhibited TH sulfation (144 –146).The sul-
fotransferase isozymes were also target proteins for
inhibition by hydroxylated polyhalogenated aromatic
hydrocarbons (PHAHs). OH-PCBs, PCDDs, PCDFs and
other halogenated compounds were potent inhibitors
of in vitro T2 sulfation (144). TCDD induced UDPGT
activity in a dose-dependent manner in both exposed
adult rats (46) and in the offspring (47), and
decreased the activity of 50DI in liver and kidney
(45). Exposure doses of BPA in polecats (67) and
field voles (68) were significantly correlated to the
activity of UDPGT. UDPGTs catalyze the conjugation
of various substances to glucuronic acid and increas-
ing activity may lead to faster metabolism of the
THs. However, in these studies, no significant effects
on TH levels were found.

Significance and perspectives

Humans are exposed continuously to a large number of
man-made chemicals, many of which are persistent in
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the environment. Many studies of exposure to various
environmental chemicals point towards a subtle disrup-
tion of the thyroid axis within normal reference values.
The T4/TSH relationship is very unique for each
human, and the intra-individual variation of THs is
small compared with the population-based reference
intervals (147–149). Thus, small changes in thyroid
function within the normal reference range may have
negative health consequences for the individual. In par-
ticular, the human fetus may be vulnerable to subtle
changes in the T4 and TSH homeostasis as the fetal
turnover of the thyroid store of T4 is very rapid
(150). Thus, the fetus may become depleted of T4
more rapidly than adults. Even mild hypothyroidism
in the mother or the fetus can result in neonatal neuro-
logical and cognitive deficiencies, which may not be
measurable until adulthood.

There is evidence that exposure to PHAHs such as
PCBs and dioxin may cause cognitive damage in
humans (151 –153). This effect may be mediated by
induction of hypothyroidism, which is known to
cause cognitive deficiencies in the fetus/infant.

The literature on thyroid-disrupting effects of individ-
ual chemicals is rapidly increasing, as animal exposure
studies and in vitro tests reveal a multitude of potential
mechanisms of action. For some persistent compounds,
such as PCBs, the available evidence is much stronger
than for some of the rapidly metabolized chemicals
such as phthalates. Although interspecies differences
in thyroid homeostasis need to be kept in mind, the evi-
dence from animals should raise concern, especially
about exposure of the human infant and fetus to
chemicals.
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