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Vancomycin-resistant enterococci (VRE) were detected in samples of sewage obtained downstream of hos-
pitals of the Porto area in Portugal, and in samples from the Douro Estuary. Clonal analysis, Tn1546 typing,
and presence of putative virulence traits indicate the clinical origin of these isolates. This observation
highlights the importance of hospital sewage in the VRE contamination of the environment.

Enterococci have been traditionally considered as indicators
of fecal contamination of drinking and recreational waters (1),
although they are usually recovered at high concentrations
from natural environments lacking exposure to heavy fecal
contamination, such as rivers, seawater, and nonagricultural
soils (2, 11). Release of antibiotic-resistant bacteria to the
community is therefore of particular concern since they might
proliferate in soil and surface waters, persist and spread in
different environments (11, 14, 15, 25, 26), and transfer anti-
biotic resistance genes among different species (3, 12). The
enterococcal population in wastewater from different Euro-
pean countries and the United States has been previously eval-
uated (4, 11, 12), but knowledge of the relationship between
enterococcal populations from sewage or surface waters and
those recovered from hospitalized patients is scarce (11).

Vancomycin-resistant enterococci (VRE) are one of the
most worrisome pathogens in hospitals in the United States,
and they are starting to increase in European health institu-
tions, Portugal being the area with the currently highest VRE
prevalence (Annual Report of European Antibiotic Resistance
Surveillance System, 2002 [http//:www.earss.rivm]). We
screened hospital sewage and river water samples for the pres-
ence of antibiotic-resistant enterococci, characterizing clonal
relatedness and genes coding for antibiotic resistance and pu-
tative virulence traits.

Twenty-six sewage samples (SW) were collected in an urban
sewer from January 2001 to May 2002 in an area near four
Porto hospitals. Twelve samples were collected from sewage
upstream of the hospitals (SWU), flowing from residential
neighborhoods. Fourteen samples were collected from sewage
downstream of health institutions (SWD). Porto wastewaters
are drained to the Douro river estuary. Samples were obtained
from the shore of this estuary (n � 3) and from the Coura and
Sousa Rivers (n � 2), tributaries of the Douro before the
estuary.

Samples were collected in sterile bottles and kept at 4°C
until processing (2 to 8 h). Slanetz-Bartley agar plates with and

without vancomycin (6 mg/liter) were used to incubate mem-
branes with filtered aliquots (0.45-mm-pore-size membranes;
Millipore Corporation) of 100-ml river samples and 0.1-ml
aliquots of SWU and SWD that were directly spread on plates.
Susceptibility testing was performed following CLSI (formerly
NCCLS) guidelines and using the recommended breakpoints
to define resistance (18). A multiplex PCR assay was used for
species identification and vancomycin resistance gene detec-
tion (8). VRE isolates were typed by pulsed-field gel electro-
phoresis (PFGE) (16, 21). Genes coding for resistance to ami-
noglycosides, streptogramins, and macrolides, the backbone
structure of the Tn1546 harbored by VRE isolates, and the
presence of some putative enterococcal virulence factors (cy-
tolysin [Cyl], gelatinase [Gel], aggregation substance [Agg],
hyaluronidase [Hyl], and enterococcal surface protein [Esp])
were investigated as described previously (10, 17, 20, 23, 24,
27). Conjugation experiments were performed using Entero-
coccus faecalis strain JH2-2 or E. faecium GE1 as recipients
(19). Amplification and sequencing of the purK allele from
vancomycin-resistant Enterococcus faecium clones were per-
formed as previously reported (13). Statistical significance for
comparison proportions was calculated by the chi-square test
(P � 0.05 was considered to be statistically significant).

Enterococci were isolated in 25 out of 26 (96%) of the
sewage samples and 5 out of 5 (100%) of the river samples.
VRE were isolated from 11/14 (79%) samples collected from
SWD and in 2/3 samples from the Douro Estuary, being better
recovered from plates containing vancomycin (21/31 isolates;
68%) than from those supplemented with ampicillin (6/31;
19%) or gentamicin (3/31; 10%) or from Slanetz plates with-
out antibiotic (1/31; 3%). VRE were not detected in SWU or
in the rivers before the Douro Estuary. Rates of resistance to
ampicillin, ciprofloxacin, and erythromycin and of high-level
resistance (HLR) to streptomycin, gentamicin, or kanamycin
were higher among isolates from SWD samples than among
those from SWU samples. Similar rates of resistance to tetra-
cycline and chloramphenicol were found among SWU and
SWD (Table 1).

vanA, vanB, and vanC1 genes were detected in 27, 4, and 1
VRE isolates, respectively. Among these strains, HLR to gen-
tamicin and erythromycin was always due to aac(6�)-aph(2��),
and erm(B). Transference of vanA was achieved for 13/24
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(54%) isolates. vanA and erm(B) were observed in 8/14 (57%)
cases, and cotransference of vanA and aph(3�)-IIIa in 13/14
(93%) cases. Four transconjugants harbored vanA, erm(B),
and aph(3�)-IIIa (29%) (Table 2).

Nine PFGE types (8 E. faecium and 1 E. faecalis) were
identified among VRE from sewage, and two E. faecium PFGE
types were found among VRE from the Douro Estuary
(Table 2). Clones B, C, and L were observed on at least two

TABLE 1. MIC distribution and percentage of resistance to different antibiotics tested in enterococci isolated from Portuguese
sewage and rivers

Antimicrobial agenta Origin (n)b
No. of isolates at indicated MIC (mg/liter)

% Resistance
�4 8 16 32 64 128 �256

Vancomycin** SWU (37) 36 1 0
SWD (93) 67 1 4 21 27
R (18) 12 6 33

�4 8 16 32 64 128 �256
Teicoplanin** SWU (37) 37 0

SWD (93) 72 1 2 18 22
R (18) 11 2 4 1 39

�4 8 16 �32
Ampicillin* SWU (37) 33 4 11

SWD (93) 51 42 45
R (18) 12 6 33

�4 8 16 32 �64
Tetracycline SWU (37) 18 4 2 5 8 41

SWD (93) 51 8 13 12 9 37
R (18) 16 1 2 17

�0.5 1 2 4 8 16 �32
Erythromycin SWU (37) 9 1 3 2 4 18 59

SWD (93) 10 3 7 9 64 69
R (18) 3 3 2 3 1 6 39

�0.5 1 2 4 8 �16
Ciprofloxacin** SWU (37) 5 13 9 5 2 3 27

SWD (93) 5 8 10 12 8 50 75
R (18) 3 6 2 1 6 56

�4 8 16 32 �64
Chloramphenicol SWU (37) 9 18 6 2 2 11

SWD (93) 18 44 15 14 2 17
R (18) 2 12 4 0

�2 4 8 16 32 64 128 �256
Nitrofurantoin SWU (37) 1 9 3 19 5 14

SWD (93) 1 4 22 15 45 6 6
R (18) 1 1 7 2 7 39

�1 2 4 �8
Linezolid SWU (37) 9 9 19 0

SWD (93) 11 35 47 0
R (18) 6 12 0

�256 �500
Gentamicin SWU (37) 26 11 30

SWD (93) 56 37 40
R (18) 15 3 17

�256 500 1,000 �2,000
Streptomycin SWU (37) 22 3 12 32

SWD (93) 41 7 45 48
R (18) 17 1 6

�256 �500 1,000 �2,000
Kanamycin SWU (37) 22 13 6 18 49

SWD (93) 41 24 12 57 61
R (18) 17 14 4 22

a Differences in the susceptibility to ampicillin, vancomycin, teicoplanin, and ciprofloxacin among isolates recovered from sewage samples were statistically significant
(�, P � 0.05; ��, P � 0.005).

b SWU, sewage upstream; SWD, sewage downstream; R, river.
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different occasions over 1 year, type B being recovered from
sewage of hospitals I and II. Some of the PFGE types (B, C, D,
F, N, and P) were also observed in the hospital setting (data
not shown). Six different variants of Tn1546 (PP3, PP5, PP-16,
PP-17, PP-20, and X) were identified (Table 3). Four variants
(PP-16, PP-17, PP-20, and X) lack amplicons with primers
corresponding to regions associated with transposition func-
tions, and five Tn1546 types (PP-3, PP5, PP-17, PP-20, and X)
showed alterations in regions downstream of vanA. Tn1546
variants PP5 and PP3, found in E. faecium isolates from the
Douro Estuary, contained an ISEf1 insertion, which has been
described only among Tn1546 from clinical enterococcal iso-
lates from Portugal (19). Most vancomycin-resistant E. faecium
isolates (n � 22/31; 71%) contained at least one trait associ-
ated with virulence. Different combinations of putative viru-
lence factors were detected: esp� (n � 6), hyl� (n � 5), asa1�

(n � 3), asa1� gel� (n � 1), asa1� gel� cyl� (n � 3), and asa1�

gel� esp� (n � 3). Isolates within clonal types B, C, and L
contained variable virulence patterns. The allele purK-1, asso-
ciated with epidemic E. faecium clinical isolates (13), was de-
tected in river and sewage clones.

Antibiotic resistance, virulence profiles, and the presence of
the allele purK-1 in enterococcal isolates from SWD and river
estuary, but not in those from SWU samples, suggest a noso-
comial origin of these strains and thus a poor efficiency of
wastewater management, which is often observed in European
and American wastewater treatment plants (7, 11, 12, 25). The
persistence of particular VRE PFGE types in wastewater for at
least a 1-year period might reflect a better fitness of specific
clones able to survive under harmful conditions or a continu-
ous leaking of particular strains from health institutions, both
able to contribute to the spread of hospital-specific enterococ-
cal ecovars to the environment (13). The presence of E. faecalis
clone B in hospitals of three different Portuguese cities for a
7-year period (19) suggests a wide dissemination of particular
strains in the community which might be occasionally reintro-
duced in nosocomial institutions (14). In addition, the presence
of antibiotic-resistant enterococci, including VRE, in the estu-
ary area of the Douro River is indicative of fecal human con-
tamination from both community and hospitals. Since this zone
is used for bathing, recreation, and sport fishing and since
enterococci can survive for long periods in the algal mat (26),
shellfish (11, 28), and seagulls (5), the risk of acquisition by
humans of enterococcal genogroups of hospital origin from the
environment cannot be discarded (14).

The variable antibiotic and virulence profiles among isolates

of PFGE types B, L, and C suggest multiple horizontal gene
transfer events in sewage or release of particular clones carry-
ing different genetic elements available from local metage-
nomes (3, 19). A great heterogeneity of Tn1546 has been
observed among enterococcal isolates from different ecological
origins (27, 29), with some types being associated with specific
hosts or settings (19, 27, 29) while virulence traits are scarcely
found outside the nosocomial environment (6, 9, 10, 13). On
the other hand, differences in the transferability of specific
Tn1546 among vancomycin-resistant E. faecium isolates be-
longing to the same clone suggest that different transfer mech-
anisms may play a role in the dissemination of VRE. The
presence of mobile elements containing particular antibiotic
resistance genes or virulence determinants in the community
could trigger the dissemination of enterococcal isolates carry-
ing elements coding resistance and/or virulence determinants
(22) and enhance the risk to transmission to other environ-
mental bacterial as already reported (3, 22).

Our data suggest that both particular clones and mobile
elements carrying antibiotic resistance or virulence associated
to the clinical setting might be continuously contaminating the
community environment through wastewater. Reducing the
release of bacteria or genetic elements from the clinical setting
to the community is becoming a critical issue to avoid the
buildup of environmental reservoirs of antibiotic resistance.
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