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INTRODUCTION

Climate-related changes in the oceans appear to be

accelerating: oceans are becoming warmer and more

acidic, nutrient distributions are changing, and, in

some regions such as the Northeast Pacific, the fre-

quency and intensity of large storms are increasing

(e.g. Easterling et al. 2000, Behrenfeld et al. 2006,

Doney et al. 2009). Many marine ecosystems have

 displayed dramatic responses to recent fluctuations in

climate, and accumulating evidence suggests that

coastal marine ecosystems are especially vulnerable to

the effects of climate change (e.g. Harley et al. 2006,

Przeslawski et al. 2008, Hoegh-Guldberg & Bruno

2010). However, our understanding of how climate-
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ABSTRACT: Synthesizing long-term observations at

multiple scales is vital for understanding the environ-

mental drivers of ecosystem dynamics. We assessed

the role of several environmental drivers in explaining

temporal and spatial patterns in the abundance of

giant kelp Macrocystis pyrifera in the Santa Barbara

Channel between 1984 and 2009. We developed a

novel method for estimating the canopy biomass of

giant kelp from Landsat 5 Thematic Mapper satellite

imagery, which allowed us to examine the dynamics of

giant-kelp biomass on spatial scales ranging from 100s

of m2 to 100s of km2 and temporal scales ranging from

several weeks to 25 yr. Comparisons of changes in

canopy biomass with oceanographic and climatic data

revealed that winter losses of regional kelp canopy

biomass were positively correlated with significant

wave height (r2 = 0.50), while spring recoveries were

negatively correlated with sea surface temperature 

(r2 = 0.30; used as a proxy for nutrient availability). On

interannual timescales, regional kelp-canopy biomass

lagged the variations in wave heights, sea surface tem-

peratures, and the North Pacific Gyre Oscillation index

by 3 yr, indicating that these factors affect cycles of

kelp recruitment and mortality. Results from cluster

analysis showed that the response of kelp biomass to

environmental conditions varied among different sub-

regions of the Santa Barbara Channel. The dynamics

of kelp biomass in exposed regions were related to

wave disturbance, while kelp dynamics in sheltered

regions tracked sea surface temperatures more closely.

These results depict a high level of regional hetero-

geneity in the biomass dynamics of this important

foundation species.
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Canopy biomass of Macrocystis pyrifera (top) can be quanti-

fied from Landsat 5 imagery (bottom).
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induced changes in environmental conditions will affect

coastal marine ecosystems is limited. Data collection is

labor-intensive and there are relatively few long-term

(>20 yr) studies of change in coastal marine ecosys-

tems as compared to terrestrial systems (Rosenzweig et

al. 2008). Increasing the  number of long-term, large-

scale data sets of coastal ecosystems is needed to

 further our understanding of how they are likely to

respond to future changes in  climate.

Among coastal primary producers, forests of giant

kelp Macrocystis pyrifera are particularly sensitive to

climate change (Graham et al. 2007). Giant kelp is the

world’s largest alga and its numerous fronds extend

vertically in the water column and form a canopy at the

sea surface. The biomass of giant kelp is exceptionally

dynamic; short lifespans of both fronds and entire

plants (4 to 6 mo and 2 to 3 yr, respectively) combine

with rapid growth (~2% of total biomass d–1) to pro-

duce a standing biomass that turns over 6 to 7 times

yr–1 (Reed et al. 2008). Because of such rapid turnover,

the biomass dynamics of giant kelp responds quickly

to changes in environmental conditions.

Giant-kelp recruitment and growth are controlled by

abotic factors, including the availability of hard sub-

strate, solar radiation, and the supply of nutrients, as

well as the biotic effects of inter- and intra-species

competition for space, light and grazing (reviewed in

Graham et al. 2007). In southern California, growth is

fastest in winter and spring when nutrient levels are

high and competition for light and space is low (due to

low algal biomass), and slowest during summer when

nutrients are low and competition for light and space is

high due to well-developed algal canopies (Zimmer-

man & Kremer 1986, Reed et al. 2008). The relatively

low capacity of giant kelp to store nutrients (~30 d,

Zimmerman & Kremer 1986) causes populations to

respond rapidly to fluctuations in nutrient supply.

Much like growth, the recruitment of giant kelp in

southern California and elsewhere responds strongly

to fluctuations in nutrients and light as determined by

biotic and abiotic processes (Dayton et al. 1984, Reed &

Foster 1984, Reed et al. 2008). Giant kelp produces

spores throughout the year (Reed et al. 1996) and the

recruitment of new plants typically occurs whenever

favorable conditions of light and nutrients coincide

(Deysher & Dean 1986).

Giant-kelp mortality occurs in the form of senes-

cence, grazing, and wave-driven disturbance (Graham

et al. 2007). Reed et al. (2008) found that both frond

losses and plant mortality were correlated to wave

heights in kelp forests near Santa Barbara, California,

although correlations were stronger at the plant level.

High mortality can also result from prolonged con -

ditions of low nutrients such as those associated with

El Niño events (Dayton & Tegner 1990, Dayton et al.

1999, Edwards 2004). The biomass dynamics of giant

kelp reflect the interplay of these physical and bio -

logical forcings that control patterns of recruitment,

growth, and mortality.

The relative importance of resource availability (light

and nutrients) versus physical disturbance (waves)

in controlling the biomass dynamics of giant kelp

remains an open question. For example, Dayton et al.

(1999) found that large-scale, low-frequency changes

in nutrient availability had the largest effects on kelp

populations in San Diego; however, recent analyses of

kelp forests in central and southern California during

2001 to 2009 (a period lacking any major nutrient-poor

El Niño conditions) showed that wave disturbance ex -

plained more variability in kelp biomass and produc-

tion than either nutrient availability or grazing (Reed

et al. 2008, D. C. Reed et al. unpubl.). It is clear that the

apparent influence that each of these physical forcings

has on kelp populations is dependent on the spatial

and temporal scales of observation (Edwards 2004).

While a particular kelp forest may be nutrient-limited

at a given time, another forest in a more nutrient-rich

region may have its dynamics controlled by wave dis-

turbance. The vast majority of long-term kelp studies

have been made at the local scale (<500 m2) and so it

has been difficult to test how their conclusions apply to

larger areas (>1 km2). In the past, aerial and satellite

imagery have been used to examine giant kelp forests

at regional scales; however, these studies have gener-

ally been either short-term pilot studies (e.g. Deysher

1993, Stekoll et al. 2006) or limited to just a few years

(e.g. Donnellan 2004, Cavanaugh et al. 2010), too short

a period to examine interannual-to-decadal variability

in kelp biomass dynamics. Longer time series (e.g. Par-

nell et al. 2010) are needed to detect long-term trends

in kelp biomass as well as to determine how the roles

of various environmental controls change over time.

In the present study, we introduce a new kelp

canopy biomass data set possessing unprecedented

spatial and temporal resolution and extent that was

created using multispectral imagery from the Landsat

5 Thematic Mapper (TM) sensor. These observations

enabled the assessment of giant-kelp canopy biomass

at 30 m resolution across the entire Santa Barbara

Channel every 1 to 2 mo for 25 yr (1984 to 2009). We

compared these novel observations of giant-kelp

forests with oceanographic and climate observations to

assess resource- and disturbance-driven controls on

giant-kelp biomass at multiple spatial and temporal

scales. Our objectives were to determine (1) the rela-

tive importance of nutrients and wave disturbance

in driving both seasonal and interannual cycles of

regional kelp biomass in the Santa Barbara Channel

and (2) how the roles of these forcing processes vary

spatially within the channel. We hypothesized that the
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negative effects of wave disturbance and nutrient

 limitation on giant-kelp biomass vary greatly in space

and time due to the highly dynamic environmental

conditions of the Santa Barbara Channel. We showed

that kelp biomass was  significantly negatively related

to wave heights and sea surface temperatures (SST;

a proxy for nutrient levels) at seasonal timescales.

Interannual relationships were more complex as kelp

biomass lagged wave heights, SST, and the North

Pacific Gyre Oscillation (NPGO) climate index by 3 yr.

We also demonstrated that these dependencies varied

between distinct subregions within the Santa Barbara

Channel.

MATERIALS AND METHODS

Study site. We tracked giant-kelp canopy biomass

across the entire Santa Barbara Channel from 1984 to

2009. The study area included the coastline from Pismo

Beach, CA to Oxnard, CA and each of the northern

Channel Islands (Fig. 1). Giant kelp in this region is

found primarily on shallow rocky reefs that are distrib-

uted in patches. The light-attenuation properties of the

waters in the channel limit giant kelp to depths <30 m.

The Santa Barbara Channel experiences pronounced

seasonal cycles in SST, nutrient conditions, and wave

energy (Harms & Winant 1998, Otero & Siegel 2004).

During the winter, large storms in the North Pacific

create large northwesterly swells (>4 m) that enter the

Santa Barbara Channel. Wave energy from these

storms is a major source of giant-kelp mortality in the

region (Reed et al. 2008). Nutrient levels are relatively

high (~3 µmol l–1 nitrate, Fram et al. 2008) in the winter

as a deepening of the mixed layer entrains nutrients

into surface waters (McPhee-Shaw et al. 2007). SST

and nutrients (specifically nitrate and nitrite) are

inversely correlated in the Santa Barbara Channel (r2 =

0.87, Fram et al. 2008) and elsewhere in southern Cal-

ifornia. Studies done to date indicate that the growth of

giant kelp in southern California is more commonly

limited by low nutrients than by high SST (Clenden-

ning & Sargent 1971, North & Zimmerman 1984).

Spring represents a period of transition in surface

wave conditions as the frequency of large northwest-

erly wave events decreases, giving way to smaller

southerly swells (2 to 3 m) that are characteristic of

summer months (Adams et al. 2008). Nitrate levels

in the nearshore regions generally reach maximums

(>10 µmol l–1, McPhee-Shaw et al. 2007; Fram et al.

2008) during spring months due to coastal upwelling.

During the summer and fall, vertical stratification

increases, creating warmer temperatures and lower

nitrate levels (<1 µmol l–1, Fram et al. 2008). Less

intense southerly swells are common in the summer

months and can affect exposed south-facing coastlines.

The seasonal cycles in resource availability and

physical disturbance are super-imposed on longer

period cycles driven by El Niño-Southern Oscillation,

Pacific Decadal Oscillation (PDO), and NPGO events.

These lower-frequency climate cycles alter seawater

temperatures, nutrient levels, and storm patterns, and

can have dramatic effects on kelp populations (Dayton

et al. 1999, Edwards 2004).

The Santa Barbara Channel also experiences a great

deal of spatial variability in oceanographic conditions.

The region is located at the convergence of the equa-

torward-flowing California Current and the recirculat-

ing Southern California Eddy and Inshore Counter -

current (Hickey 1979). Strong upwelling north of

Point Conception creates cool, nutrient-rich conditions

through out most of the year, while regions in the east-

ern portion of the channel experience warmer, more

nutrient-limited conditions during summer months

(Otero & Siegel 2004). While there is spatial variability

in the SST of the Santa Barbara Channel, the vast

majority of the region’s temporal variability is homoge-

neous across the entire channel (Otero & Siegel 2004,

see ‘Materials and methods–regional physical and cli-

mate data sets’).

Even more dramatic is the spatial variability in wave

exposure. Again, Point Conception represents a natural

boundary: the coastline north of Point Conception is

3

Fig. 1. Landsat 5 Thematic Mapper image displaying study

area; Point Arguello, Harvest, and Harvest platform buoys;

and Long Term Ecological Research (LTER) diver transects at

the Arroyo Quemado (AQUE) and Mohawk (MOHK) kelp 

forests
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exposed to both powerful winter northwest swells as

well as weaker summer southern swells while the

coastline south of Point Conception is sheltered from

northern swells by Point Conception and from south-

ern swells by the Channel Islands (O’Reilly & Guza

1993). The Channel Islands themselves present a myr-

iad of exposures, but in general the north sides of the

islands are exposed to northwest swells and sheltered

from southern swells, while the opposite is true for the

south-facing sides of the islands. Note that while these

descriptions depict wave exposure in general, the pre-

cise spatial distribution of wave energy along the coast

of our study area depends on the specific direction of a

given swell (Adams et al. 2008). As with SST and nutri-

ents, large, long-period swells affect the entire chan-

nel, but to varying degrees due to the large amount of

spatial variability in wave exposure. Clearly, subtidal

ecosystems of the Santa Barbara Channel such as giant

kelp forests experience physical conditions that vary

sub stantially in space and time.

Satellite estimation of giant-kelp canopy biomass.

Giant kelp forms a dense floating canopy at the sea

surface that is distinctive when viewed from above. In

our study area, giant kelp is the only canopy-forming

macrophyte in water depths from 5 to 30 m. This

greatly simplifies its quantification from satellite

imagery. The spectral signature of a giant-kelp canopy

is similar to that of photosynthetically active terrestrial

vegetation, namely a high near-infrared and signifi-

cantly lower visible reflectance (Jensen et al. 1980,

Cavanaugh et al. 2010). Water absorbs almost all in -

coming near-infrared energy so kelp canopy is easily

dif ferentiated using its near-infrared reflectance signal.

The Landsat 5 TM sensor has acquired 30 m spatial

resolution multispectral imagery nearly continuously

from 1984 to the present on a 16 d repeat cycle

(Markham et al. 2004). TM obtains data in 7 spectral

bands: blue (450 to 520 nm), green (520 to 600 nm), red

(630 to 690 nm), near-infrared (760 to 900 nm), short-

wave infrared (1500 to 1750 and 2080 to 2350 nm), and

longwave (thermal) infrared (10 400 to 12 500 nm)

(http://landsat.gsfc.nasa.gov/about/tm.html). TM data

is stored as 8-bit encoded radiance, with 256 possible

‘brightness values’ representing the range of radiance

for each band. The kelp near-infrared (Band 4) radi-

ance signal, while elevated compared to that of water,

spans only the lowest ~40 brightness values detectable

by TM. Each Landsat scene covers an area 170 × 180 km;

the scene we used for the present study included the

entire study area described above (‘Study site’) (Fig. 1).

During preprocessing, Landsat images were geometri-

cally corrected using ground control points and a digi-

tal elevation model to achieve a scene-to-scene regis-

tration accuracy <7.3 m (Lee et al. 2004). We selected

209 relatively cloud-free images that provided us with

coverage of the study area approximately every 2 mo

from April 1984 to September 2009 (http:// glovis. usgs.

gov/).

We developed an automated classification and quan-

tification process in order to consistently and effi-

ciently transform the 209 TM images into maps of

kelp canopy biomass. First, a single orthorectified TM

image was atmospherically corrected to apparent

 surface reflectance using an atmo spheric transmission

model (MODTRAN4; Berk et al. 1998). We used this

corrected image as a reference and standardized the

radiometric signals from all other images to this refer-

ence using 50 targets that were assumed to be spec-

trally stable across the time series (i.e. airport runways,

highways, sand dunes, lakes; Furby & Campbell 2001,

Baugh & Groeneveld 2008). Outliers were manually

removed to reduce the effects of temporal changes in

target reflectance. This ‘target matching’ procedure

accounted for all atmospheric, sensor, and processing

differences between the scenes and created a time-

series of standardized TM imagery.

We estimated kelp canopy abundance from the cali-

brated TM reflectance data using multiple endmember

spectral mixture analysis (MESMA). Spectral mixture

analysis models the fractional cover of 2 or more ‘end-

members’ within a pixel. Each endmember represents

a pure cover type, and endmembers are assumed to

combine linearly (Adams et al. 1993). Standard spec-

tral mixture analysis uses a uniform set of endmembers

for the entire image. One challenge in the near-shore

marine zone is that the ‘water’ reflectance is influ-

enced by e.g. sun glint, breaking surface waves,

phytoplankton blooms, dissolved organic matter, and

sediment runoff. Since water reflectance is highly

 variable in space and time, a single water endmember

cannot be used (Fig. 2A).

Roberts et al. (1998) developed MESMA to allow

endmembers to vary on a per-pixel basis. By selecting

from multiple endmembers for 1 or more cover types,

MESMA can better capture the spectral variability of

the cover type within an image and through time.

MESMA has been extensively used for mapping ter-

restrial vegetation, including aridland vegetation (Okin

et al. 2001), shrublands (Dennison & Roberts 2003a),

forests (Youngentob et al. 2011), and salt marsh (Li et

al. 2005).

We modeled pixel reflectance as the linear mixture

of reflectance of 2 endmembers: kelp and water. Thirty

water endmembers were selected from  non-kelp-

covered areas within each TM scene using the end-

member selection technique described by Dennison

& Roberts (2003b). A single kelp endmember was

selected by extracting kelp-covered pixel spectra from

each image and finding the single spectrum that fit the

entire library of kelp spectra with the lowest root mean

4
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square error (RMSE) (Dennison & Roberts 2003b). The

pixels in each TM image were then modeled as a 2-

endmember mixture of kelp and each of the 30 water

endmembers. The final model (out of 30) chosen for

each pixel was the model that minimized RMSE when

fit to the spectrum of that pixel. The result of this pro-

cess was a measure of the relative fraction of each

pixel that was covered by kelp canopy (Fig. 2B). We

used a kelp fraction minimum threshold of 0.13 to auto-

mate the identification of ‘kelp-covered’ pixels. The

multiple endmember process successfully delineated

kelp canopy extent under a variety of conditions. Fig. 2

provides examples of how our technique retrieved

kelp fractions from images under optimal conditions

(2 October 2004) and for scenes that were contami-

nated by large amounts of sediment runoff (23 Febru-

ary 2005) and high levels of sun glint (4 July 2006).

The retrieved kelp fractions were then compared to

giant-kelp canopy biomass observations that were col-

lected by divers at permanent plots maintained by the

Santa Barbara Coastal Long Term Ecological Research

(SBC LTER) project at the Arroyo Quemado and Mo -

hawk kelp forests (Fig. 1). The data and the methods

used to measure giant-kelp canopy biomass from diver

surveys are described in detail in Rassweiler et al.

(2008). Briefly, divers measured the length of all fronds

along 5 transects (40 × 1 m) within a plot (40 × 40 m)

and converted these lengths to biomass using validated

length-to-weight regressions. Each plot was over -

lapped by four 30 m TM pixels. For each TM image, we

compared the mean kelp fraction of these pixels to the

diver-measured canopy biomass of each plot with a

model II reduced major axis linear regression (Legendre

& Legendre 1998) because both variables contain error.

Regional physical and climate data sets. Pearson cor-

relation coefficients between the satellite-derived time

series of kelp canopy biomass and physical and climate

data that represented first-order controls of growth

 (nutrients) and disturbance (waves) were calculated on

both seasonal and interannual timescales. Kelp canopy

biomass was log10-transformed to meet assumptions of

normality. SST was used as a proxy for ambient nitrate

concentrations to investigate the effect of nutrient

availability on changes in canopy biomass. Hourly SST

measurements were collected from the National Data

Buoy Center’s Point Arguello buoy for the period 1984

to 2009 (Fig. 1). Otero & Siegel (2004) performed tem-

poral principal components analysis on 4 yr (October

1997 to June 2001) of satellite-derived SST within our

study area and found that 91% of the temporal variance

was explained by the first mode of variability, which

was positively correlated with all parts of the study

area. Hence, a single point measurement of SST should

be a reliable indicator of the regional temporal varia -

bility in SST and, by extension, nutrient concentration.

Significant wave height observations, the mean height

of the one-third largest waves over a given period,

were acquired from the National Data Buoy Center’s

Harvest buoy and Harvest platform sites (Fig. 1). The

Harvest platform measured significant wave height

every 3 h from January 1987 to April 1999 and the

 Harvest buoy has collected data twice per hour from

March 1998 to the present. We combined these data

sets to create a single time series of daily mean signifi-

cant wave height from 1987 to 2009, using the Harvest

buoy data when both the buoy and platform were

operational. Overlapping data from the 2 were nearly

identical (regression slope = 0.96, bias = 0.18, r2 = 0.97).

Both the Harvest buoy and Harvest platform were

located ~30 km west of the Santa Barbara Channel in

offshore locations exposed to long-period northwest

and south swells. Giant kelp is predominantly affected

by large wave events and powerful, long-period swell

(>12 s) is more important than short-period sea in caus-

ing kelp mortality (Utter & Denny 1996). Since long-

period swell affects the entire channel, we accepted a

point measurement as a valid characterization of the

re gional wave environment with the understanding

that there would be significant spatial variability in

wave heights for a given swell measured by the Har-

vest buoys. Currently there is no spatially explicit data

set of nearshore wave heights that matches the spatial

resolution and temporal extent of our kelp data. Note

that operational swell wave models for the Southern

California Bight are parameterized using the same

Harvest buoy data we used in the present study (see

http:// cdip.ucsd.edu).

The Harvest buoy also collects data on wave direc-

tion as well as height and period. For the period that

the Harvest buoy was operational (1998 to present),

seasonal histograms of wave direction were calculated

for all swell events with periods ≥12 s in order to

 capture the seasonal variability in swell direction.

Directional wave data were used to identify sections of

the coast that represented strong gradients in wave

exposure.

The kelp time series was also compared to the

indices of 3 climate cycles known to affect oceano-

graphic conditions in the Santa Barbara Channel: the

Southern Oscillation Index or SOI (www. cpc. noaa. gov/

data/indices/soi), PDO (http:// jisao. washington. edu/

pdo/), and NPGO (www. o3d. org/ npgo/ data/ NPGO. txt).

By convention, positive anomalies in the PDO repre-

sent warmer, nutrient-poor conditions in the Santa

Barbara Channel, while positive anomalies in the SOI

and NPGO represent increased upwelling, nutrient,

and chlorophyll a levels. We reversed the sign of the

SOI and NPGO for all figures and analyses so that pos-

itive deviations in all climate indices plotted represent

warmer, nutrient-poor conditions.
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Subregional dynamics. Spatial heterogeneity in the

responses of local kelp populations to regional physical

forcings cannot be captured by a regional comparison.

Clustering analysis was used to gain insight into how

the relationships between physical variables and kelp

canopy dynamics varied in space. First, the coastline

was divided into 1 km segments and each pixel of kelp

canopy was assigned to the closest coastline segment.

Segments where kelp did not appear in at least 25% of

the images were removed from analysis. Because the

amount of kelp in each coastline segment varied, the

1 km segment biomass values were standardized as

the proportion of that segment’s maximum biomass

over the entire time series. The data were then normal-

ized across segments by subtracting the regional mean

and dividing by the regional standard deviation of

each date. Each segment’s degree of wave exposure

was calculated using an exposure index based on

Baardseth (1970). A circle with a radius of 100 km was

placed at the center of each 1 km section of coastline

and divided into 40 sectors, each of which had an angle

of 9°. Sectors were given a score of 0 if they intersected

land and 1 if they were free of land. The exposure

index is the sum of sector scores; 0 represents complete

shelter and 40 represents maximum exposure.

k-means clustering was used to identify subregions

with similar temporal dynamics (e.g. Huth 1996). The

k-means classification is an unsupervised classification

technique that requires the number of clusters to be

specified beforehand. The data were clustered using 2

to 7 clusters to examine the robustness of the results.

The kelp canopy biomass of each subregion was then

log10-normalized and compared to the physical and

 climate data described in ‘Regional physical and cli-

mate data sets’ above.

RESULTS

Landsat estimation of kelp canopy biomass

A strong positive linear relationship was found

between the Landsat-derived kelp fraction index and

giant-kelp canopy biomass (r2 = 0.64, p << 0.001, df = 94;

Fig. 3). We restricted our comparisons to canopy bio -

mass rather than total biomass because near-infrared

remote sensing only detects floating kelp. Generally,

canopy biomass is highly correlated to total biomass

(r2 = 0.92; D. C. Reed unpubl. data); however, the rela-

tionship between TM kelp fraction and canopy bio-

mass was stronger than between kelp fraction and

total biomass (r2 = 0.49, p << 0.001, df = 94). This dis-

crepancy was driven by a few data points where the

ratio of canopy to total biomass was unusually low.

Neither tidal nor current fluctuations had any effect on

the kelp fraction-canopy biomass relationship (p = 0.65

and 0.25 when the residuals of the fraction-biomass

relationship were compared to local tides and currents

for the time of Landsat data collection, respectively).

This result agrees with our previous work (Cavanaugh

et al. 2010) showing that the relatively weak tidal fluc-

tuations and current speeds in this area do not affect

remote sensing estimates of kelp biomass as they do in

other locations (e.g. Britton-Simmons et al. 2008).

Regional dynamics

The regionally averaged giant-kelp canopy biomass

calculated using the relationship between satellite-

derived kelp fraction and diver-measured canopy bio-

mass is shown in Fig. 4A. The long-term (1984 to 2009)

mean regional giant-kelp canopy biomass was 46 000 t

(wet), but there was an extremely high amount of vari-

ability about this mean, as evidenced by a temporal

coefficient of variation calculated over all 209 images

of 91%. Changes in regional kelp biomass were rapid,

and order of magnitude increases and de creases in

regional mean biomass routinely occurred over a span

of <4 mo. Most years displayed a seasonal cycle, with

biomass minimums occurring in the winter followed by

rapid growth in the spring and early summer leading

to maximums in late summer or early fall; however, the

amplitude and timing of this cycle varied substantially.

This seasonal cycle was superimposed on a cycle with

a 12 to 13 yr period. In this longer cycle relatively low
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Fig. 3. Macrocystis pyrifera. Validation of Landsat satellite

biomass estimates. Model II linear regression between

 Landsat kelp fractions and diver-measured canopy biomass

(kg m–2) measurements for the Arroyo Quemado and

 Mohawk (n = 96) transects. The gray lines represent 95%

confidence intervals for the relationship
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periods of canopy biomass in 1984–1990 and 1994–

2003 were separated by high biomass periods in 1990–

1995 and 2003–2009. The length of this cycle matches

the 11 to 13 yr period of the NPGO (our Fig. 4A; Di

Lorenzo et al. 2008). We plotted the kelp and NPGO

time series together in Fig. 4A to emphasize this match

in periods. There were no long-term trends in the

regional canopy-biomass time series.

Both SST and wave height displayed the pronounced

seasonal cycles characteristic of this region (Fig. 4B,C).

SST typically reached its annual minimum between

February and March and its maximum between

August and October, and we can infer that nitrate

showed the opposite pattern. Significant wave height

maxima occurred in the winter months, corresponding

with the timing of increased storm activity in the North

Pacific. Between 1987 and 2009, the annual maximum

winter (December to February) wave height averaged

4.9 m while the annual maximum summer (June to

August) wave height averaged 3.26 m. During our study

period, annual mean significant wave heights increased

significantly at the pace of 0.02 m yr–1 (F1, 22 = 25.9, p <

0.001). This positive trend in wave height agrees with

other observations of increasing wave heights in the

Northeast Pacific over the last 60 yr (Bromirski et al.

2003, Ruggiero et al. 2010).

The oscillations of the 3 climate cycles ranged from

3–7 yr (SOI) to 11–13 yr (NPGO) to 20–30 yr (PDO)

(Fig. 4A,D). All climate indices experienced both positive

and negative extremes during our study period. The

1990s saw a number of positive El Niño anomalies and

the 1997–1998 El Niño was one of the strongest ever

recorded. La Niña conditions were present in 1998–

1999, 2001, and 2008. The NPGO cycled fairly consis-

tently with positive (nutrient-poor) anomalies in the early

1990s and mid-2000s, separated by negative anomalies

in the early 2000s. The PDO displayed mostly positive

anomalies from the beginning of the time series until the

early to mid-2000s, when negative anomalies became

more prevalent; this change may represent a shift of the
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Fig. 4. Macrocystis pyrifera. (A) Santa Barbara Channel regional mean time series of giant-kelp canopy biomass and North Pacific

Gyre Oscillation (NPGO) anomalies. Kelp canopy biomass was summed across the entire study area shown in Fig. 1. One-month

running mean of (B) sea surface temperature (SST) and (C) significant wave height (Hs) from Point Arguello buoy, Harvest plat-

form, and Harvest buoy data. (D) Monthly Southern Oscillation Index (SOI) and Pacific Decadal Oscillation (PDO) anomalies. As-

terisks in (A) represent strong El Niño events, with the 2 asterisks in 1997–1998 identifying the strongest El Niño on record, while 
z represent strong La Niña events (as classified by Smith & Sardeshmukh 2000)
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PDO from the warm phase that began in the late 1970s

(Mantua et al. 1997, Peterson & Schwing 2003). All

 climate indices were positively correlated with SST

(and hence negatively correlated with nitrate) (Table 1).

The NPGO was weakly negatively correlated with

higher wave heights; there was no significant relation-

ship between either SOI or PDO and waves.

Seasonal relationships to physical and climate

variables

We examined the relationships between physical

and climate variables and monthly variability in kelp

biomass by calculating Pearson correlation coefficients

between log10-transformed regional kelp-canopy bio-

mass and each of the physical and climate variables.

Univariate correlation analyses indicated that there

were significant but weak negative relationships

between kelp canopy biomass and both SST and wave

height on monthly timescales (Table 1). The failure of

SST and wave height to explain much variation in kelp

canopy biomass at this scale is not surprising given the

high level of month-to-month variability in the kelp

time series as well as the large spatial scale over which

regional kelp biomass was evaluated. The PDO was

the only climate index with a significant correlation to

kelp biomass; the relationship was negative but again

weak. While the SOI index was not significantly corre-

lated with kelp biomass, strong El Niño events in the

winters of 1997–1998 and 2002–2003 corresponded

with massive regional kelp-canopy losses (regional

kelp biomass dropped to almost zero). In addition,

strong La Niña events in late 1988 and 2008 marked

large increases in regional kelp biomass.

We further investigated the relationship between

physical forcings and seasonal kelp variability by iso-

lating winter canopy losses and spring recoveries and

comparing them to our physical forcing variables. Win-

ter loss was defined as the percent change in regional

kelp-canopy biomass from the fall (August to Novem-

ber) maximum to the winter (December to March) min-

imum of each year; the specific time frame varied from

year to year depending on the timing of kelp maxi-

mums and minimums. We compared the percent

decrease in kelp biomass to the maximum wave height

over the same time period and found a strong positive

polynomial relationship between the 2 that appeared

to saturate between wave heights of 6 to 7 m (Fig. 5A).

9

Table 1. Macrocystis pyrifera. Pearson correlation coefficients

for regional giant kelp and climatic forcing data calculated

on (A) monthly and (B) annual timescales. For the monthly

comparisons, log10-normalized regional kelp-canopy biomass

from each image date was correlated to the mean of the phys-

ical and climate data from 30 d before the image date. For the

annual comparisons, the annual mean of kelp was compared

to the annual means of sea surface temperature (SST), South-

ern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO),

and North Pacific Gyre Oscillation (NPGO) and the annual

maximum of wave height. Bold values are significant at the 

99% confidence level

log
10

(kelp) NPGO PDO SOI Waves

(A) Monthly
SST –0.26 0.23 0.08 0.18 –0.35
Waves –0.30 –0.24– 0.04 0.00
SOI –0.09 0.32 0.44
PDO –0.22 0.41
NPGO –0.01

(B) Annual
SST –0.10 0.60 0.53 0.62 –0.40
Waves –0.27 –0.39– 0.10 –0.16–
SOI 0.16 0.60 0.60
PDO –0.25 0.54
NPGO 0.08

Fig. 5. Macrocystis pyrifera. Regression analysis between (A)

winter kelp canopy biomass losses and maximum significant

wave height and (B) spring-summer kelp canopy biomass re-

covery and mean sea surface temperature (SST). Winter

losses were calculated as the percent change in kelp canopy

biomass from the fall (September to November) maximum to

the winter-spring (December to May) minimum. Recovery

represents the log10 change in kelp canopy biomass from the

winter-spring (December to May) minimum to the summer

(June to August) maximum. Maximum wave height and mean 

SST for each year were calculated over the same periods
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Only the extreme wave events appeared to control

regional kelp biomass; we did not find significant rela-

tionships between waves and kelp losses for other

times of the year when waves were smaller. There was

no significant relationship between winter canopy loss

and nutrient levels as measured using SST (r2 = 0.00,

p = 0.75). Among the climate indices we found a weak

but significant positive relationship between winter

PDO and kelp loss (r2 = 0.19, p = 0.03) and between

winter SOI and kelp loss (r2 = 0.16, p = 0.05) but no

 significant relationship between NPGO and kelp loss

(r2 = 0.05, p = 0.31). Winters with a positive SOI have

been shown to produce stronger storms that take more

southerly tracks across the North Pacific (Seymour

1998); wave events during some of these years may

explain the positive relationship between the SOI and

winter kelp loss.

A similar analysis was performed between the recov-

ery of canopy biomass in spring and nutrient levels as

approximated by SST. Spring recovery was defined as

the increase in canopy biomass between the winter

(December to March) minimum and the spring-summer

(April to July) maximum of each year. Biomass in -

creases were log10-transformed to meet assumptions

of normality for the linear regression. There was a

weaker (as compared to kelp loss vs. waves) but

still significant negative linear relationship between

spring recovery of regional kelp biomass and mean

SST (Fig. 5B). There was no significant relationship

between spring recovery and wave heights or any of

the lower frequency climate indices.

Interannual relationships between biomass and

environmental variables

To investigate regional drivers of interannual varia -

bility in kelp canopy biomass, we calculated the  cross-

correlations between annual mean canopy biomass for

the entire Santa Barbara Channel and the annual means

of SST and the 3 climate indices, and annual maximums

of significant wave height. Each of these correlations was

investigated at time lags ranging from 0 to 6 yr. On inter-

annual timescales, annual mean regional kelp-canopy

biomass was not directly related (i.e. time lag = 0) to any

of the physical or climate variables (Table 1B). However,

a lagged correlation analysis revealed strong significant

relationships between kelp canopy biomass and SST,

waves, and NPGO when these environmental variables

were lagged 3 yr (Fig. 6); biomass was negatively related

to SST (r = –0.48), positively related to wave height (r =

0.48), and negatively related to the NPGO index (r =

–0.50). These lagged relationships are likely due to envi-

ronmental controls of recruitment and juvenile growth

(see ‘Discussion’). There was no significant relationship

between kelp canopy biomass and SOI or PDO for any

time lag.

Subregional dynamics

The clustering analysis divided the Santa Barbara

Channel into 4 subregions along wave exposure and

nutrient gradients. The clustering results were robust
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Fig. 6. Macrocystis pyrifera. Cross-correla-

tion analysis (at lags of 0 to 6 yr) of climate

indices and physical variables with annual

mean kelp canopy biomass. Annual mean

kelp biomass was compared to mean

sea surface temperature (SST; lower left

panel), Southern Oscillation Index (SOI;

upper right panel), Pacific Decadal Oscilla-

tion (PDO; upper central panel), and North

Pacific Gyre Oscillation (NPGO; upper left

panel) and maximum wave height (lower

right panel) for each year. Black bars are 

significant at the 95% level
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to varying the number of clusters used in the k-means

algorithm: all solutions separated the mainland coast-

line at Point Conception and separated the north and

south sides of the Channel Islands (Fig. 7). Increasing

the number of clusters simply further separated these 4

‘major’ subregions into smaller groups. Bonferroni-

adjusted paired t-tests demonstrated that the mean

exposures of the 2 ‘exposed’ subregions (A and B)

were not significantly different from each other, but

each was significantly different from the 2 ‘sheltered’

regions (C and D) (p < 0.01, Table 2). Note that the

exposure index measures potential exposure and does

not take into account the direction of swells. Because

the largest swells in the Santa Barbara Channel come

from the northwest (Fig. 7), the index may overesti-

mate the realized exposure of regions that are shel-

tered from northwest swells but exposed to swells from

other directions (i.e. Subregion B).

Temporal dynamics of the 4 subregions were rela-

tively similar (mean pairwise r = 0.61, Fig. 8); however,

upon closer inspection it was possible to identify differ-

ences that tracked wave exposure. Kelp-canopy bio-

mass dynamics of the exposed subregions were sig -

nificantly negatively correlated to maximum wave

heights, but not SST, while the dynamics of sheltered

subregions were negatively correlated to SST, but not

with wave heights (Table 2). In addition, the strength

of seasonal cycles increased with increasing exposure

(Fig. 9). As the strength of the seasonal cycle de -

creased with decreasing wave exposure, the strength

of the longer 12 to 13 yr period cycle increased, sug-

gesting a closer connection between the NPGO and

sheltered regions (Fig. 8). For example, the extended

periods of low regional canopy biomass in 1984–1990

and 1994–2003 reflected a near-complete lack of re -

covery in the sheltered regions while the exposed

regions maintained relatively high levels of biomass

during these years.

DISCUSSION

Remote sensing of kelp forests

Our Landsat 5 TM data set represents the first high-

resolution, local- to regional-scale assessment of giant-

kelp canopy biomass on monthly-to-decadal time scales.

This data set is itself a significant accomplishment as it

provides a novel view into kelp-forest dynamics across

a wide range of scales. Previous studies have demon-
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Fig. 7. Macrocystis pyrifera. Results

from k-means cluster analysis (N = 4

clusters) on monthly canopy bio-

mass data binned into 1 km sections

of coastline. Subregions are labeled

A to D in order of decreasing expo-

sure. Histograms of significant wave

height (Hs) and direction for swells

with periods >12 s are provided

for winter (December to February)

and summer (June to August) from

Harvest platform. Coastlines are

colored to differentiate subregions

and are not related to the color key 

for the wave histograms

Table 2. Macrocystis pyrifera. Mean exposure index and cor-

relation to physical data for each subregion (A to D) identified

in Fig. 7. Subregional kelp canopy biomass levels from each

image date were log10-normalized and correlated to the mean

of the physical and climate data from 30 d before the image

date. Bold values are significant at the 99% level. SST: sea 

surface temperature

Subregion

A B C D

Exposure index 11.8– 11.6– 6.2 4.5

SST correlation –0.08 –0.17 –0.34 –0.31

Wave correlation –0.48 –0.29 –0.13 0.01
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strated the feasibility of measuring kelp canopy cover

and biomass with aerial and satellite imagery (Jensen

et al. 1980, Deysher 1993, Stekoll et al. 2006, Cavan -

augh et al. 2010); however, these studies have not had

the extended temporal coverage that is presented

here. Parnell et al. (2010) examined annual-to-decadal

variability in giant-kelp cover near San Diego using

aerial surveys, but they used maximum annual canopy

area and so did not measure seasonal variability. While

Landsat provides unmatched temporal resolution and

coverage, it has a coarser spatial resolution than the

sensors used in some of these previous studies (30 m

with Landsat, as compared to ~1 m in Stekoll et al.

2006 and 10 m in Cavanaugh et al. 2010). In addition,

Landsat has a relatively low radiometric resolution,

which limits its ability to differentiate small changes in

reflectance between pixels. One consequence of the

reduced spatial and radiometric resolution of Landsat

is higher levels of uncertainty when comparing satel-

lite data to transect-scale diver-measured biomass (the

r2 between Landsat and diver-measured canopy bio-

mass was 0.64, compared to 0.77 for Cavanaugh et al.

2010 and 0.84 for Stekoll et al. 2006). Nevertheless, the

Landsat-measured and diver-measured canopy bio-

mass relationship was still strong and highly signifi-

cant and provides a path for assessing regional satel-

lite canopy biomass variations. As the availability of

imagery with higher spatial and radiometric resolu-

tions increases, more accurate remotely sensed time

series of kelp biomass can be developed using tech-

niques similar to the one we have presented here.

However, not all species of kelp are amenable to

remote sensing by this method, which relies on near-

infrared reflectance that is rapidly attenuated by water.

Consequently, the usefulness of satellite imagery in

studying the dynamics of marine vegetation is at pre-

sent limited to species that produce a dense, floating

canopy of an appropriate spatial scale.

Regional dynamics

We did not find a significant long-term trend in the

25 yr record of kelp canopy biomass of the Santa Bar-

bara Channel. Long-term trends in giant kelp are diffi-

cult to identify because canopy biomass varies across

orders of magnitude over short time periods. Large dis-

turbance events (i.e. strong El Niño events) cause dra-

matic large-scale reductions in canopy biomass; how-

ever, recoveries can be almost as rapid (Figs. 4 & 8).
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Fig. 8. Macrocystis pyrifera. Time series of total kelp canopy biomass for each subregion (A to D) identified in Fig. 7
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There is an upper limit on the amount of kelp that the

region can support that is based simply on the avail-

ability of suitable habitat. However, it seems difficult to

identify a regional equilibrium for giant-kelp canopy

due to its highly dynamic nature. If the global extent of

kelp is changing, then it will likely be difficult to detect

in regions such as the Santa Barbara Channel that

are at the center of the giant kelp’s hemispherical

range. While we did not observe a long-term direc-

tional trend in kelp canopy biomass, we did find that

regional-scale kelp biomass oscillated on cycles with

periods of 1 and 12–13 yr. The annual cycles were dri-

ven by losses related to winter storm activity and, to a

lesser extent, recovery linked to nutrient levels (Fig. 5).

While physical storm-driven mortality was direct and

immediate, the effect of nutrients on kelp growth were

likely delayed and complicated by a number of other

factors, including the availability of light and unoccu-

pied hard substrate, and spore settlement and recruit-

ment; hence, a weaker relationship was observed.

While these  winter losses and spring recoveries char-

acterized the annual cycle in general, there was sub-

stantial variability in the amplitude and timing of these

cycles among years.

Interannual relationships between kelp canopy bio-

mass and physical drivers were less clear. Recovery of

kelp populations can be extremely rapid. Thus annual

means and maximums can be decoupled from the

 previous winter’s wave disturbance. This may help

explain why past studies using annual observations

made in the summer or fall failed to find a relationship

between waves and kelp population metrics (Tegner

et al. 1996). The longer period cycles in kelp biomass

corresponded to the NPGO, waves, and nutrient levels

(as inferred from SST), but lagged these variables by

3 yr (Fig. 6). This 3 yr lag is somewhat counterintuitive

in light of the rapid turnover of the fronds that create

kelp canopies. We suspect that the lagged relation-

ships are related to the recruitment and mortality of

entire plants. While losses of fronds on extant plants

occur continuously throughout the year, mortality of

entire plants occurs more episodically and is related to

large wave events (>1 m in Reed et al. 2008). Excep-

tionally large wave events can clear space and allow

for dramatic spikes in recruitment (Graham et al.

1997). Previous work has shown that environmental

conditions at the time of recruitment and juvenile

growth of kelp cohorts can have long-lasting effects on
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Fig. 9. Macrocystis pyrifera. Box-and-whisker plots of the seasonal cycle in canopy biomass for each subregion (A to D) identified

in Fig. 7. For each year between 1984 and 2009, the proportion of that year’s maximum biomass was calculated for each month.

Boxes represent the lower quartile, median, and upper quartile of the proportion of annual maximum biomass, and whiskers ex-

tend to the lower and upper extremes of the data. Longer boxes represent months with higher variability in their relative canopy

biomass levels. Boxes whose notches (not whiskers) do not overlap have significantly different medians at a 95% confidence level
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population dynamics and community structure (Teg-

ner et al. 1997, Dayton et al. 1999). For example, Teg-

ner et al. (1997) compared succession after 2 large dis-

turbances under contrasting oceanographic regimes

and found that nutrient-rich conditions led to high den-

sities and competitive dominance of giant kelp that

lasted for the life of the cohort (~5 yr). This result

agrees with the lagged negative relationship we found

between SST (and by extension, nutrients) and kelp

canopy biomass. Together, large waves and high nutri-

ent levels in a given year promote the recruitment and

growth of a new cohort of giant-kelp plants (Fig. 10).

This cohort matures over the next 2 to 3 yr, developing

high levels of canopy biomass in the absence of severe

storms. We found that severe storms with long-period

wave events >5.5 m occurred at an average frequency

of 1 every 2 to 4 yr, thus allowing populations to ex -

pand their areal extents until the cycle is repeated or

all available habitat is utilized.

Many studies have linked massive declines in kelp

populations to severe El Niño conditions and have

observed rapid recovery of kelp populations during

nutrient-rich La Niña events (Dayton & Tegner 1990,

Dayton et al. 1992, 1999, Edwards 2004). In addition,

Parnell et al. (2010) found that the response of kelp

populations to El Niño events is modulated by  low-

frequency changes in the PDO: the importance of

nutrient control in the San Diego area increased after

the PDO switched to a warm phase in the late 1970s.

However, the relationship between kelp and the

NPGO has largely been neglected. We observed that

strong El Niño events in 1987, 1997, and 2003 coin-

cided with large regional mortality events (Fig. 4);

however, the long (12 to 13 yr) period cycles in regional

kelp biomass were better correlated with the NPGO,

again at a 3 yr lag. The NPGO is driven by regional

variations in wind-driven upwelling and horizontal

advection and corresponds closely with correlates of

ecosystem productivity such as nutrient levels and

chlorophyll concentrations (Di Lorenzo et al. 2008).

Therefore, the NPGO appears to influence decadal

variations in kelp canopy biomass though large-scale,

low-frequency changes in nutrient availability that in

turn affect recruitment and growth of giant kelp.

While no long-term trends were evident in the kelp

time series, we did see a statistically significant long-

term increase in mean and maximum significant wave

heights over our study period. Other studies have

observed similar trends in the Eastern Pacific (Bro -

mirski et al. 2003, Ruggiero et al. 2010), and many cli-

mate models predict that the frequency and possibly

the intensity of large storms will continue to increase in

this region (Easterling et al. 2000, Meehl et al. 2000,

2007). This has the potential to increase the effects of

wave events on the coastlines of southern California,

leading to higher annual winter losses. Reed et al.

(2008) found that  biomass at the start of the growth

year (after winter storm disturbances) explained 63%

of the annual net primary productivity of giant kelp at

3 sites along the mainland shore of the Santa Barbara

Channel. Therefore, in creased winter-time wave

losses would likely lead to decreased annual produc -

tivity by giant kelp in this region. These types of

threats to the  productivity of habitat structuring kelps

are not rest ricted to our study area; Wern-

berg et al. (2010) demonstrated how

increases in wave disturbance and ocean

temperatures can act synergistically to

reduce the resilience of populations of the

subsurface canopy-forming kelp Ecklonia

radiata in Australia. In addition, the impli-

cations of in creased levels of physical dis-

turbance span trophic levels as repeated

kelp loss due to waves has been linked to

lower diversity and complexity of kelp-

forest food webs (Byrnes et al. 2011).

Subregional dynamics

Environmental conditions vary substan-

tially within the Santa Barbara Channel.

As a result, the regional comparison of

kelp biomass to physical variables may be

confounded by subregions that are con-

trolled by different physical forcings. We

found that subregions with different wave
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Fig. 10. Macrocystis pyrifera. Conceptual model of factors that influence re-

gional giant-kelp canopy biomass. NPGO: North Pacific Gyre Oscillation.

‘+’ and ‘–’ represent positive and negative relationships between the variables 

inside the boxes
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exposures responded differently to variations in wave

heights and SST (Table 2). The dynamics of the rela-

tively sheltered mainland coastline south of Point Con-

ception (Subregion D) were  significantly negatively

correlated with SST, but not  maximum wave height.

Tegner et al. (1996) observed similar behavior in the

Point Loma kelp forest near San Diego: a measure of

canopy density was significantly negatively correlated

with SST but not wave heights. Also, in many years,

minimum canopy biomass levels occurred in late sum-

mer-early fall for Subregion D (Fig. 9). This is generally

a time of relatively low wave energy and low nutrient

levels, suggesting that senescence unrelated to waves

is causing these annual minimums. The large variation

in the timing of annual maximums and minimums for

Subregion D results from variability in the timing of

storms large enough to affect this sheltered region as

well as temporal variability in nutrient conditions each

year.

Our results indicate that Point Conception marks a

major biogeographic boundary for the seasonal dy -

namics of giant-kelp forests in California. Changes in

kelp biomass along the exposed coastline north of

Point Conception were well-correlated with wave

height, but not SST as high storm mortalities were

observed each winter. This created a pronounced and

predictable seasonal cycle with lower interannual vari-

ability than the more sheltered subregions to the south

(Fig. 9). The high variation in canopy biomass ob -

served in October and November (e.g. long boxes in

Fig. 9A) reflect variability in the timing of the onset of

the winter storm season. Relatively high nutrient con-

ditions in this subregion likely allowed for consistent

spring and summer recovery each year (Jackson 1987).

This result agrees with those of Donnellan (2004), who

found that seasonal canopy dynamics of exposed cen-

tral Californian kelp beds were highly regular and pre-

dictable. The subregions containing the Santa Barbara

Channel Islands represented a combination of more

complex exposure and nutrient conditions. Seasonality

of kelp biomass in Subregion B was similar to that of

the exposed Subregion A, but Subregion B displayed a

higher variability in the timing of annual minimums

that was likely due to the higher variability of expo-

sures contained in this subregion. Subregion B showed

consistent spring recovery each year, probably reflect-

ing the fact that biomass dynamics of this subregion

are rarely limited by nutrients. Like the coastline north

of Point Conception, the south sides of the 2 western-

most Channel Islands are typically bathed in nutrient-

rich water (Otero & Siegel 2004, McPhee-Shaw et al.

2007).

Previous studies have shown fluctuations in kelp

abundance on cycles of 3 to 5 yr and have suggested

that these fluctuations result from seasonal forcings

such as wave disturbance (Dayton et al. 1984, Graham

et al. 1997). Nisbet & Bence (1989) developed a family

of 2-stage kelp population models (juvenile and adults)

that reproduced 3 to 5 yr cycles as well as shorter-

period 1 yr cycles. Their models were based on the

idea that population dynamics are driven by recruit-

ment events, which are in turn controlled by tem -

perature, bottom irradiance, and unknown stochastic

factors. Their models predicted that larger seasonal

fluctuations in surface irradiance and adult mortality,

such as those driven by wave disturbance, should lead

to more regular annual recruitment as mortality of

adults each year frees up space and resources (i.e.

light) for new recruits. On a regional scale, we found

that exposed coastlines experienced more regular

annual cycles of winter mortality and spring recovery

than did sheltered regions. Our observation of greater

regularity of the annual cycles in exposed regions is in

contrast to that observed by Graham et al. (1997) in

central California and may reflect differences in the

spatial scales over which kelp was measured in the 2

studies (i.e. m2 in Graham et al. 2007 vs. km2 in the

 present study). The dynamics of giant kelp at field-

transect scales do not always reflect dynamics at the

forest or regional scales (Cavanaugh et al. 2010).

The present work represents the most spatially and

temporally comprehensive analysis of the drivers of

giant-kelp biomass to date. We have shown that there

is a large amount of regional heterogeneity in the

response of kelp biomass to different environmental

factors, demonstrating that conclusions drawn from

local studies cannot always be applied to regional

scales. The roles of environmental drivers of kelp bio-

mass also vary in time, making it difficult to predict the

response of this system to future changes in environ-

mental conditions. Continued large-scale and long-

term observations are needed to better our under-

standing of how ecosystems may behave differently in

a future climate.
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