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ABSTRACT  23 

The recovery of marine ecosystems following a mass extinction event involves an 24 

extended interval of increasing biotic diversity and ecosystem complexity. The pace of 25 

recovery may be controlled by intrinsic ecosystem or extrinsic environmental factors. Here, 26 

we present an analysis of changes in marine conditions following the end-Permian mass 27 

extinction with the objective of evaluating the role of environmental factors in the protracted 28 
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(~5-Myr-long) recovery of marine ecosystems during the Early Triassic. Specifically, our 29 

study examines changes in weathering, productivity, and redox proxies in three sections in 30 

South China (Chaohu, Daxiakou, and Zuodeng) and one in northern India (Mud). Our results 31 

reveal: 1) recurrent environmental perturbations during the Early Triassic; 2) a general pattern 32 

of high terrestrial weathering rates and more intensely reducing marine redox conditions 33 

during the early Griesbachian, late Griesbachian, mid-Smithian, and (more weakly) the 34 

mid-Spathian; 3) increases in marine productivity during the aforementioned intervals except 35 

for the early Griesbachian; and 4) stronger and more temporally discrete intervals of 36 

environmental change in deepwater sections (Chaohu and Daxiakou) relative to shallow and 37 

intermediate sections (Zuodeng and Mud). Our analysis reveals a close relationship between 38 

episodes of marine environmental deterioration and a slowing or reversal of ecosystem 39 

recovery based on metrics of biodiversity, within-community (alpha) diversity, infaunal 40 

burrowing, and ecosystem tiering. We infer that the pattern and pace of marine ecosystem 41 

recovery was strongly modulated by recurrent environmental perturbations during the Early 42 

Triassic. These perturbations were associated with elevated weathering and productivity 43 

fluxes, implying that nutrient and energy flows were key influences on recovery. More regular 44 

secular variation in deepwater relative to shallow-water environmental conditions implies that 45 

perturbations originated at depth (i.e., within the oceanic thermocline) and influenced the 46 

ocean-surface layer irregularly. Finally, we compared patterns of environmental disturbance 47 

and ecosystem recovery following the other four “Big Five” Phanerozoic mass extinctions to 48 

evaluate whether commonalities exist. In general, the pace of ecosystem recovery depends on 49 

the degree of stability of the post-crisis marine environment. 50 
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 85 

Each major mass extinction event in the geologic record has been followed by an interval 86 

of restructuring of marine ecosystems, reflected in changes in clade dominance, ecological 87 

niche partitioning, and community organization (e.g., Erwin, 1998). Increased productivity 88 

among primary producers and consumers can generate ecological niches higher in the marine 89 

trophic system (Kirchner and Weil, 2000), allowing a progressive rebuilding of a stable, 90 

complex ecosystem structure (Chen and Benton, 2012). Although lacking a specific 91 

quantitative definition, “ecosystem recovery” is generally regarded as the reappearance of 92 

marine communities with a high biotic diversity and an integrated and complex structure that 93 

is stable at multimillion-year timescales (Harries and Kauffman, 1990). The progress of 94 

post-extinction recovery commonly has been evaluated using metrics related to overall 95 

biodiversity and/or species origination rates (e.g., Jacobsen et al., 2011; Payne et al., 2011). 96 

However, “ecosystem recovery” is not simply a return to pre-extinction levels of biodiversity 97 

but, rather, the expansion and re-integration of entire marine ecosystems or communities 98 

(Erwin et al., 2008; Chen and Benton, 2012) as reflected by metrics such as alpha diversity 99 

(i.e., within-community species richness; Bambach, 1977; Clapham et al., 2006) and 100 

ecological tiering (Twitchett, 1999; Fraiser, 2011). 101 

In the case of the Permian-Triassic (P-Tr) boundary mass extinction, an initial, aborted 102 

recovery occurred soon after the end-Permian crisis, during the Induan stage of the Early 103 

Triassic (Baud et al., 2008; Brayard et al., 2009; Stanley, 2009), and a more sustained 104 

recovery took place during the late Olenekian stage (Spathian substage) (Chen et al., 2011; 105 

Song et al., 2011; Payne et al., 2011), but full ecosystem recovery probably did not occur until 106 

the Middle Triassic (Erwin and Pan, 1996; Bottjer et al., 2008; Chen and Benton, 2012). The 107 

recovery of marine invertebrate ecosystems following the end-Permian crisis was apparently 108 

the most protracted of any major mass extinction (Bottjer et al., 2008), i.e., the “Big Five” 109 

Phanerozoic mass extinctions of Sepkoski (1984, 1986). An important unresolved issue is 110 

what controlled the long duration of the post-extinction recovery interval during the Early 111 

Triassic. At least three hypotheses have been advanced, linking the protracted recovery to: (1) 112 
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the intensity of the mass extinction (Sepkoski, 1984; Solé et al., 2002), (2) the persistence of 113 

harsh environmental conditions (Hallam, 1991; Isozaki, 1997; Payne et al., 2004; Erwin, 114 

2007), and (3) episodic occurrence of strong environmental disturbances during the recovery 115 

interval (Algeo et al., 2007, 2008; Orchard, 2007; Retallack et al., 2011) (Fig. 1). 116 

Examination of long-term records of Early Triassic marine environmental conditions has 117 

the potential to provide information relevant to these hypotheses. In this study, we (1) review 118 

existing literature on the recovery of marine ecosystems following the end-Permian mass 119 

extinction, (2) analyze changes in marine productivity and redox conditions at four locales in 120 

China and India from the latest Permian through the Spathian substage of the Early Triassic, 121 

(3) evaluate the importance of marine environmental changes during the Early Triassic as 122 

controls on the marine ecosystem recovery, and (4) compare the Early Triassic marine 123 

ecosystem recovery with those following other Phanerozoic mass extinctions. Our 124 

comparative analysis of recoveries following each of the ‘Big Five’ Phanerozoic mass 125 

extinctions is intended to identify general features or patterns of marine ecosystem recovery 126 

and their relationships to contemporaneous environmental changes. 127 

 128 

2. Background 129 

 130 

2.1. The end-Permian biotic crisis 131 

 132 

The end-Permian mass extinction was the most severe biocrisis of the Phanerozoic (Fig. 133 

2; Erwin et al., 2002; Irmis and Whiteside, 2011). It killed ~80-96% of marine invertebrate 134 

species and ~70% of terrestrial vertebrate species (McKinney, 1995; Benton and Twitchett, 135 

2003). There appear to have been two pulses of marine extinction (Yin et al., 2012; Song-HJ 136 

et al., 2013) and environmental disturbance (Xie et al., 2005, 2007), rather than a single event 137 

during this biocrisis (Rampino and Adler, 1998; Jin et al., 2000; Shen-SZ et al., 2011). As an 138 

example, foram species in South China exhibit a ~57% extinction rate during the latest 139 

Permian pulse and a ~31% extinction rate during the earliest Triassic pulse (Song-HJ et al., 140 
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2013). According to high-precision U-Pb dating in South China sections, the interval between 141 

these extinction pulses was 60±48 kyr (Burgess et al., 2014). The end-Permian mass 142 

extinction coincided with eruption of the Siberian Traps Large Igneous Province (Campbell et 143 

al., 1992; Renne et al., 1995; Reichow et al., 2009; Sobolev et al., 2011) as well as with major 144 

environmental changes including global sea-level rise (Hallam and Wignall, 1999), ocean 145 

anoxia (Wignall and Twitchett, 1996; Isozaki, 1997), global warming (Joachimski et al., 2012; 146 

Sun et al., 2012; Romano et al., 2013), and, possibly, marine acidification (Payne et al., 2010; 147 

Hinojosa et al., 2012; Kershaw et al., 2012). 148 

 149 

2.2. The Early Triassic marine ecosystem recovery 150 

 151 

The recovery of marine ecosystems during the Early Triassic was a multi-step process. 152 

There were several phases of incomplete or aborted recovery during the Induan, and recovery 153 

from the P-Tr boundary mass extinction is generally regarded as not having been completed 154 

until the Middle Triassic, ~5 Myr after the end-Permian crisis (Mundil et al., 2004; 155 

Ovtcharova et al., 2006; Lehrmann et al., 2006; Shen-SZ et al., 2011). Both benthic and 156 

planktonic cyanobacteria bloomed immediately after the end-Permian mass extinction (Fig. 2; 157 

Lehrmann, 1999; Wang et al., 2005; Xie et al., 2005; Luo et al., 2011). Cyanobacterial 158 

microbialites reappeared episodically in different regions throughout the Early Triassic but 159 

they largely disappeared by the early Middle Triassic (Baud et al., 2007; Xie et al., 2010). An 160 

Early Triassic “chert gap” (Beauchamp and Baud, 2002) was caused by the loss of biosilica 161 

deposits from radiolarians and siliceous sponges, although occurrences of thin chert beds in 162 

the late Griesbachian and Dienerian (Kakuwa, 1996; Takemura et al., 2007; Sano et al., 2010) 163 

document a temporary local early recovery of siliceous faunas. 164 

Some secondary consumers such as conodonts and ammonoids rebounded rapidly from 165 

the end-Permian mass extinction (Orchard, 2007; Brayard et al., 2009; Stanley, 2009). Their 166 

rapid recovery may have been assisted by a microphagous habit (Fischer and Bottjer, 1995), 167 

allowing them to benefit directly from increased biomass among primary producers. These 168 
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clades subsequently declined during biocrises at the end of Griesbachian, Smithian, and 169 

Spathian substages of the Early Triassic, although they tended to rediversify rapidly during 170 

the intervening intervals (Fig. 2; Brayard et al., 2009; Stanley, 2009). However, conodonts 171 

display a strong Lilliput effect during the Smithian/Spathian boundary crisis (Chen et al., 172 

2013). Compared to conodonts and ammonoids, recovery rates for benthic primary consumers 173 

such as foraminifers, gastropods, bivalves, brachiopods and ostracods were more gradual (Fig. 174 

2; Payne et al., 2011). Among foraminifers, a sustained diversity increase began in the early 175 

Smithian (early Olenekian) (Song et al., 2011) and accelerated during the Anisian (early 176 

Middle Triassic) (Payne et al., 2011). Similar recovery patterns are observed also among 177 

brachiopods (Chen et al., 2005) and ostracods (Crasquin-Soleau et al., 2007). The sizes of 178 

gastropod and bivalve shells were reduced across the P-Tr boundary and during the 179 

Griesbachian but returned to pre-extinction dimensions by the Anisian (Fig. 2; Fraiser and 180 

Bottjer, 2004; Payne, 2005; Twitchett, 2007). However, the high diversity, low dominance, 181 

and ecological complexity of mollusc fauna during the late Griesbachian and early Dienerian 182 

at Shanggan, South China (Hautmann et al., 2011) and on the Wasit Block in Oman (Krystyn 183 

et al., 2003; Twitchett et al., 2004) may represent an early recovery phase of these faunas.  184 

The meso-consumer trace-makers and reef-builders can shed light on the recovery of 185 

benthic marine ecosystems. Generally, trace-makers decreased during the end-Permian 186 

biocrisis and recovered slowly in the Early Triassic (Fig. 2; Pruss and Bottjer, 2004; Chen et 187 

al., 2011). Locally, trace-fossil diversity shows occasional peaks during the Griesbachian to 188 

Smithian (Twitchett and Wignall, 1996; Twitchett, 1999; Zonneveld et al., 2010; Chen et al., 189 

2011). However, small trace-fossil burrow size, low tiering levels, and low ichnofabric indices 190 

(bioturbation) generally persisted until the end of the Smithian substage, and the early 191 

Spathian is marked by a strong increase in trace-fossil diversity and complexity (Pruss and 192 

Bottjer, 2004; Chen et al., 2011). Nonetheless, Spathian ichnofaunas are less diverse than 193 

those of the Middle Triassic (Knaust, 2007). This pattern may suggest a stepwise recovery of 194 

trace-makers during Early to Middle Triassic (Twitchett and Barras, 2004). Furthermore, the 195 

recovery of trace-makers may have been diachronous, with a more rapid increase in 196 
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ichnodiversity at high northern paleolatitudes than in the equatorial region (Twitchett and 197 

Barras, 2004; Pruss and Bottjer, 2004). With regard to reef-builders, a new metazoan reef 198 

ecosystem formed by various sponges and serpulid worms associated with microbial 199 

carbonates and eukaryotic organisms developed in the early Smithian, latest Smithian, and 200 

early to middle Spathian on the eastern Panthalassic margin, in Utah and Nevada (Fig. 2; 201 

Brayard et al., 2011). These equatorial sponge-microbe reefs are found as early as 1.5 Myr 202 

after the P-Tr boundary and represent a temporary recovery at least regionally (Brayard et al., 203 

2011, Chen and Benton, 2012). However, the “reef gap”, as represented by the absence of 204 

heavily calcified corals, persisted through the Early Triassic (Payne et al., 2006).  205 

    As for the top trophic level in the marine ecosystem, predatory fish and reptiles 206 

displayed different recovery trajectories. Fishes were rare in the Griesbachian-to-Smithian 207 

equatorial ocean (Fig. 2; Fraiser et al., 2005; Tong et al., 2006; Zhao and Lu, 2007; Sun et al., 208 

2012) but more common in the middle to late Spathian (Goto, 1994; Wang et al., 2001; 209 

Benton et al., 2013). High-latitude regions had a more abundant and diverse fish fauna in the 210 

Early Triassic than the equatorial ocean (Scheaffer et al., 1976; Stemmerik et al., 2001; Mutter 211 

and Neuman, 2006; Romano and Brinkmann, 2010; Benton et al., 2013). Globally, fish 212 

diversity recovered by the Middle Triassic (Jin, 2006; Zhang et al., 2010; Hu et al., 2011). 213 

Marine reptiles first reappeared in the Smithian in high-latitude regions (Cox and Smith, 1973; 214 

Callaway and Brinkman, 1989) but later, in the Spathian, in equatorial regions (Li et al., 2002; 215 

Zhao et al., 2008). A high level of diversity among marine reptiles was achieved by the 216 

Middle to Late Triassic (Zhang et al., 2009).  217 

    To summarize, animals that were low in the marine trophic system tended to recover 218 

faster than those at higher trophic levels (Fig. 2; cf. Chen and Benton, 2012). Pelagic and 219 

nektonic faunas recovered faster than benthos as shown by rapid increases to multiple 220 

biodiversity peaks for ammonoids and conodonts during the Early Triassic, versus a slow 221 

return to pre-crisis diversity levels by the Middle Triassic for most bottom-dwellers. In 222 

Olenekian time, offshore benthos like calcareous algae and Tubiphytes recovered faster than 223 

those in nearshore environments in South China (Song et al., 2011). High-latitude biotas 224 
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recovered faster than equatorial marine biota (Pruss and Bottjer, 2004). These differentiated 225 

responses may suggest that the pattern and intensity of environmental changes during the 226 

Early Triassic had an important influence on the pathways and tempo of marine ecosystem 227 

recovery. 228 

 229 

2.3. Environmental change during the Early Triassic recovery 230 

 231 

During the recovery interval following the end-Permian mass extinction, major changes 232 

in the environment related to volcanism, sea level, and paleoceanographic conditions took 233 

place. The eruption of the Siberian Traps large igneous province (LIP), which had begun at 234 

~252 Ma close to the P-Tr boundary, continued strongly for ~1.5 Myr and more weakly for 235 

several million years longer (Fig. 3). The eruption history of this LIP is delineated by U-Pb 236 

ages for gabbroic intrusive rocks of 252±4 Ma (Kuzmichev and Pease, 2007) and silicic tuff 237 

ages of 251.7±0.4 (Kamo et al., 2003), an Ar-Ar age of 250.3±1.1 Ma for the final stages of 238 

extrusive volcanism (Reichow et al., 2009), and younger Ar-Ar ages of 242.2±0.6 Ma for a 239 

basalt (Reichow et al., 2009). This range of dates documents activity of the Siberian Traps LIP 240 

from 252 Ma to 242 Ma with a main eruptive phase at ~252 to 250 Ma (Reichow et al., 2009). 241 

Altogether, the Siberian Traps degassed ~6300 to 7800 Gt sulfur, ~3400 to 8700 Gt chlorine, 242 

and ~7100 to 13600 Gt fluorine (Black et al., 2012). The high volatile contents increased the 243 

likelihood that volatiles reached the stratosphere and, thus, caused a drastic deterioration of 244 

global environments through direct toxicity and acid rainfall (Devine et al., 1984), ozone 245 

depletion (Johnston, 1980), and rapid climatic changes that may have included both global 246 

cooling (Sigurdsson et al., 1992; Wignall, 2001; Timmreck et al., 2010) and global warming 247 

(Ganino and Arndt, 2009). This interval coincided with a long-term eustatic rise from the Late 248 

Permian until the middle Late Triassic, with the most rapid rise during the Early Triassic (Fig. 249 

3; Haq et al., 1987; Haq and Schutter, 2008).  250 

Major changes in tropical sea-surface temperatures accompanied the P-Tr boundary 251 

crisis. Temperatures increased gradually from ~60 kyr prior to the mass extinction event and 252 
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then spiked rapidly at the time of this event (Joachimski et al., 2012; Burgess et al., 2014). 253 

During the Early Triassic, temperatures reached a maximum in the mid- to late Griesbachian 254 

(~36-40°C), cooled slightly during the latest Griesbachian to the early Smithian, and then 255 

reached a second peak of extreme warmth in the late Smithian (Fig. 3; Sun et al., 2012, 256 

Romano et al., 2013). A pronounced retreat from peak temperatures occurred in the early 257 

Spathian, an event resulting in a major turnover and geographic displacement of marine 258 

invertebrate faunas (Galfetti et al., 2007a,b; Stanley, 2009). A weak warming episode in the 259 

mid-late Spathian was followed by a second large cooling step around the Early-Middle 260 

Triassic boundary, yielding distinctly more moderate temperatures during the Anisian 261 

although still warmer than in the pre-extinction Late Permian (Sun et al., 2012; Romano et al., 262 

2013). 263 

Ocean redox conditions exhibit pronounced geographic and secular variation during the 264 

latest Permian and Early Triassic. More reducing conditions developed widely at mid-water 265 

depths (i.e., with the oceanic thermocline) during the pre-extinction late Changhsingian 266 

(Algeo et al., 2012; Shen et al., 2013; Feng and Algeo, 2014). The end-Permian crisis was 267 

marked by a transient expansion of anoxia into shallow-marine settings, especially in the 268 

Tethyan Ocean (Fig. 3; Horacek et al., 2007; Grice et al., 2005; Algeo et al., 2007, 2008; Bond 269 

and Wignall, 2010; Brennecka et al., 2011; Shen-Y et al., 2011), although some places (e.g., 270 

Oman, Iran) remained oxic (Krystyn et al., 2003; Richoz et al., 2010). Thereafter, the Early 271 

Triassic is characterized by a complex pattern of redox variation (Song et al., 2012; Grasby et 272 

al., 2013). The intensity of anoxia appears to have declined during the Spathian, and episodes 273 

of marine anoxia seem to have terminated around the Early-Middle Triassic boundary 274 

(Hermann et al., 2011; Song et al., 2012). 275 

Marine productivity can vary greatly during major biocrises (Kump and Arthur, 1999). 276 

Several factors during the P-Tr boundary crisis might have led to higher productivity: 1) 277 

phosphate liberated from sediments under anoxic conditions can stimulate productivity (Ingall 278 

and van Cappellen, 1990), and 2) intensified subaerial weathering can increase the flux of 279 

river-borne P to the oceans (Algeo and Twitchett, 2010; Algeo et al., 2011b). Variations in 280 
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marine productivity can be reconstructed using carbon isotopes or elemental data (Kump and 281 

Arthur, 1999; Algeo et al., 2013; Schoepfer et al., 2014). The ‘biological pump’ removes 282 

12C-enriched carbon from the ocean-surface layer and transfers it to the ocean thermocline, 283 

producing a vertical gradient in the δ13C of dissolved inorganic carbon (13CDIC). Changes in 284 

13CDIC can thus provide information about the intensity of the organic carbon sinking flux 285 

and, indirectly, primary productivity (Hilting et al., 2008). A large vertical δ13CDIC gradient in 286 

the Nanpanjiang Basin of South China was interpreted as evidence of elevated marine 287 

productivity during the Early Triassic (Fig. 3; Meyer et al., 2011), although this gradient has 288 

also been attributed to intensified water-column stratification (Song-HY et al., 2013; Luo et 289 

al., 2014). However, an analysis of marine productivity changes based on organic carbon 290 

burial fluxes suggested a productivity crash in Early Triassic seas of the South China craton 291 

(Algeo et al., 2013). The large carbon-isotope excursions of the Early Triassic (Payne et al., 292 

2004; Tong et al., 2007; Clarkson et al., 2013) were hypothesized to have been due to marine 293 

productivity fluctuations (Algeo et al., 2011b), an inference supported by patterns of 294 

13C-34S covariation (Song et al., 2014). The ultimate control on these fluctuations appears to 295 

have been temperature, with warm intervals associated with reduced productivity (Song et al., 296 

2014).  297 

Seawater pH values may have fluctuated during the P-Tr boundary crisis, as shown by 298 

analysis of calcium isotopes (Payne et al., 2010; Hinojosa et al., 2012). Calcium isotopic 299 

fractionation caused by the precipitation of carbonate minerals results in 40Ca-rich marine 300 

sediments and 44Ca-rich in seawater (Skulan et al., 1997; De La Rocha and DePaolo, 2000; 301 

Fantle and DePaolo, 2005; Tang et al., 2008). Abrupt negative excursions of δ44/40Ca in both 302 

bulk carbonate and conodont apatite, representing a shift in seawater δ44/40Ca, occurred 303 

synchronously with the end-Permian biocrisis (Fig. 3; Payne et al., 2010; Hinojosa et al., 304 

2012). The underlying cause of this change may have been eruption of the Siberian Traps, 305 

which injected a large amount of CO2 into the atmosphere-ocean system, causing seawater 306 

acidification and increased riverine 40Ca-rich calcium input owing to accelerated terrestrial 307 
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weathering of carbonates (Payne et al., 2010; Blätter et al., 2011). Ocean acidification during 308 

Permian-Triassic transition may lead to the preferential extinction of heavily calcified marine 309 

organisms (Knoll et al., 2007; Kiessling and Simpson, 2011; Clapham and Payne, 2011) and 310 

could explain the abrupt transition on carbonate platforms from skeletal to microbial and 311 

abiotic carbonate factories described by Kershaw et al. (2011).  312 

To summarize, eruption of the Siberian Traps during the Late Permian to Early Triassic 313 

resulted in a major perturbation of the atmosphere-ocean system. Environmental changes 314 

linked to early phases of the eruption appear began slowly during an interval of at least ~60 315 

kyr preceding the main mass extinction, but accelerated sharply at the end of the Permian. 316 

Major environmental effects related to continuing eruption of Siberian Traps flood basalts 317 

persisted for ~1.5 to 2.0 million years during the Early Triassic, with some effects continuing 318 

until the Early-Middle Triassic boundary, nearly 5 million years after the end of the Permian. 319 

The main phase of the eruption, coinciding with the Induan Stage of the Early Triassic, 320 

coincided with highly disturbed marine ecosystems, sea-level rise, seawater acidification, and 321 

widespread oceanic anoxia. These relationships show that environmental instability coincided 322 

with, and probably caused or contributed to, the delayed recovery of marine ecosystems 323 

during the Early Triassic.  324 

 325 

3. Study sections 326 

 327 

    Three of the sections chosen for this study are from the South China craton, which was 328 

located in the eastern Paleotethys Ocean during the Permian-Triassic transition. The Chaohu 329 

section was deposited in a deep ramp setting on the northeastern (paleo-northwestern) margin 330 

of this craton, Daxiakou on the mid-ramp of the same margin, and Zuodeng on a shallow 331 

carbonate platform within the Nanpanjiang Basin on the southwestern (paleo-southeastern) 332 

margin of this craton (Fig. 4A). These sections were widely separated, with a distance of ~650 333 

km between Chaohu and Daxiakou, and a distance of ~950 km between the latter and 334 

Zuodeng. The fourth study section is Mud, from the Spiti Valley of northern India, which was 335 
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located in the south-central Neotethys Ocean during the Permian-Triassic transition (Fig. 4B). 336 

We collected a total of 794 samples from 167 m of section at Chaohu, 302 samples from 71 m 337 

of section at Daxiakou, 351 samples from 109 m of section at Zuodeng, and 135 samples from 338 

26.5 m of section at Mud. Average sample spacing thus ranges from 20 to 31 cm for the four 339 

study sections, which equates to an average temporal interval of ~4 to 10 kyr between 340 

samples (see Supplementary Table 1 for the geologic timescale used in this study, and the 341 

Supplementary Information for age-depth models of the study sections). 342 

 343 

3.1. Chaohu, Anhui Province, China 344 

 345 

The Chaohu section is located in proximity to Chaohu city in Anhui Province (Fig. 4A). It 346 

is a composite section comprising sections at West Majiashan, West Pingdingshan, and South 347 

Majiashan, all of which are located within a ~1-km2 area (Tong et al., 2003). These sections 348 

contain, respectively, the narrow P-Tr boundary interval, the Griesbachian to Smithian, and 349 

the Spathian (Fig. 5), according to conodont biostratigraphic data (Zhao et al., 2007). The top 350 

of the South Majiashan section coincides approximately with the Spathian-Anisian 351 

(Early-Middle Triassic) boundary (Zhao et al., 2007). During the Early Triassic, the Chaohu 352 

area was on the deep lower margin of a ramp about 300 km to the north (paleo-west) of the 353 

Cathaysia Oldland (Fig. 4A; Tong et al., 2003). Estimated depositional water depths in the 354 

Chaohu area were ~300-500 m (Song-HY et al., 2013). However, relative sea-level elevations 355 

began to decrease during the Spathian (Tong et al., 2001, 2007b; Chen et al., 2011) as a 356 

consequence of a collision between the North China and South China blocks that culminated 357 

in the late Middle Triassic (Li, 2001). 358 

This section has been subject to detailed analysis of conodont and ammonoid 359 

biostratigraphy (Zhao et al., 2007), sequence stratigraphy (Tong, 1997; Li et al., 2007), carbon 360 

isotopes (Tong et al., 2007a), and paleomagnetic polarity (Tong et al., 2003), permitting 361 

development of a high-resolution geochronological framework for this study. The West 362 

Pingdingshan section is a candidate for the Global Stratotype Section and Point (GSSP) of the 363 
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Induan-Olenekian boundary (Tong et al., 2003). Conodonts are found in abundance in the 364 

upper Griesbachian through Dienerian-Smithian boundary, the middle Smithian, and lower 365 

Spathian but are rarer in other stratigraphic intervals (Tong et al., 2003; Zhao et al., 2007). 366 

Foraminifers are found in the Induan stage (Song et al., 2011), ammonoids are particularly 367 

abundant around the Smithian-Spathian boundary, and some marine vertebrate fossils are 368 

found in the Olenekian (Tong et al., 2003).  369 

The carbonate fraction of the sediment shows an increase upsection at Chaohu, from 370 

~30% around the P-Tr boundary to ~40-70% in the Griesbachian and Dienerian, ~75% in the 371 

Smithian (except for a local decline to ~20% in the mid-Smithian), and ~87% in the Spathian 372 

(Fig. 5, Supplementary Table 2). Chert, which is probably mainly of biogenic origin, 373 

decreases upsection, from ~28% around the P-Tr boundary to ~5% in the Spathian. 374 

Clay-mineral content shows a similar upsection decrease, from ~50% around the P-Tr 375 

boundary to ~8% in the Spathian. These mineralogic changes are reflected in an upsection 376 

shift in lithology from cherty mudrock with minor limestone interbeds around the P-Tr 377 

boundary to thin-bedded marls with mudrock interbeds in the Griesbachian and Dienerian, 378 

dominant mudrock with marlstone interbeds in the Smithian, and thick-bedded limestone with 379 

marlstone interbeds in the Spathian (Fig. 5; Tong et al., 2003, 2007a; Guo et al., 2008).   380 

 381 

3.2. Daxiakou, Hubei Province, China 382 

 383 

 The Daxiakou section is located in Xingshan county, Yichang city, in the Yangtze Gorge 384 

area of Hubei Province (Fig. 4A). During the Early Triassic, it was located in a deep-ramp 385 

setting on the northern margin of the South China Block (Tong and Yin, 2002; Zhao et al., 386 

2005), ~850 km from the Kangdian Oldland (Fig. 4A). Conodont biostratigraphy shows that 387 

the section spans the early Changhsingian through mid-Smithian interval (Zhao et al., 2005). 388 

Fossils of ammonoids, conodonts, and bivalves, among others are found in particular 389 

abundance in upper Dienerian to lowermost Smithian strata (Li et al., 2009), implying 390 

relatively high primary productivity at that time (Tong, 1997). Estimated depositional water 391 
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depths in the Daxiakou area were ~200-300 m (Song-HY et al., 2013). 392 

The carbonate component is high (>80%) throughout the section except for the P-Tr 393 

boundary interval and in Dienerian to lower Smithian strata (Fig. 5, Supplementary Table 3). 394 

In the P-Tr transition, average carbonate, chert, and clay-mineral contents are ~30%, ~20%, 395 

and 50%, respectively, and strata consist of thin-bedded, dark-gray to black cherty shales (cf. 396 

Wu et al., 2012). In the Dienerian to lower Smithian, average carbonate, chert, and 397 

clay-mineral contents are ~60%, ~10%, and ~30%, respectively, and strata consist of 398 

marlstones with mudrock intercalations.  399 

 400 

3.3. Zuodeng, Guangxi Province, China 401 

 402 

The Zuodeng section is located in Zuodeng county, Tiandong city, in Guangxi Province. 403 

During the Early Triassic, this section was located on a carbonate platform (the Debao 404 

Platform) within the Nanpanjiang Basin (Fig. 4A), a deep-marine embayment on the 405 

southwestern (paleo-southeastern) margin of the South China Block that existed from the Late 406 

Paleozoic to the Late Triassic (Enos et al., 1997). The Debao Platform was one of many 407 

isolated, shallow carbonate platforms within this basin, the largest being the Great Bank of 408 

Guizhou (Lehrmann et al., 2007). The Nanpanjiang Basin was adjacent to a subduction-zone 409 

volcanic arc along the South China-Indochina plate margin (Cai and Zhang, 2009), where 410 

volcanism was more intense than on the northern margin of the South China Block (e.g., Xie 411 

et al., 2010). This section ranges from the upper Changhsingian through the lower Spathian, 412 

as shown by conodont biostratigraphy (Yang et al., 1986; Tong et al., 2007a). Abundant 413 

gastropods and ostracods are found in the upper Griesbachian (Wang et al., 2001) and prolific 414 

ammonoids, conodonts, and fishes in the lowermost Smithian (Yang et al., 1986). Estimated 415 

depositional water depths in the Zuodeng area were ~30-50 m based on the energy subtidal 416 

feature of the Lower Triassic limestones for the Debao isolated platform (next to the Pingguo 417 

isolated platform, Lehrmann et al., 2007).  418 

Carbonate content at Zuodeng is much higher than for the other study sections, averaging 419 
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~95% in upper Changhsingian to Spathian strata with a small decrease to ~80% in the upper 420 

Smithian (Fig. 5, Supplementary Table 4). This section consists mainly of thin- to 421 

thick-bedded lime mudstone (cf. Wang et al., 2001). The lack of data around the P-Tr 422 

boundary is due to this interval being covered at the time of sample collection. 423 

 424 

3.4. Mud, Spiti Valley, India 425 

 426 

   The Mud section is located in the Spiti Valley, which is part of the district of Lahul 427 

and Spiti, a central area of the western Himalaya in northern India. Lower Triassic strata are 428 

well exposed in this area. During the Early Triassic, the study area was located at 429 

mid-southern latitudes (~30-35⁰S) on the northern Gondwanan margin (Fig. 4B; Krystyn et al., 430 

2007). Middle Permian rifting (Stampfli et al., 1991; Garzanti et al., 1996) resulted in the 431 

formation of the Neo-Tethys Ocean (Stampfli et al., 1991; Garzanti et al., 1996), and the 432 

surface uplift of the rift shoulders resulted in widespread non-deposition, erosion and the 433 

unconformities in the stratigraphic record (Stampfli et al., 1991; Garzanti et al., 1996). The 434 

study section was deposited in a mid-shelf setting having a gentle slope, as implied by the 435 

modest water depths of deposition (~50-70 m) despite the distal location of the section 436 

(Krystyn et al., 2007). 437 

    The base of this section consists of Wuchiapingian to lower Changhsingian strata that are 438 

overlain by an unconformity (or highly condensed interval) spanning the upper 439 

Changhsingian and lower Griesbachian (Bhargava et al., 2004). The main part of the study 440 

section consists of a conformable succession of mid-Griesbachian to lowermost Spathian 441 

strata. Ammonoids are common in the upper Griesbachian to lower Smithian interval 442 

(Krystyn and Orchard, 1996; Krystyn et al., 2007). Average ammonoid shell size decreases 443 

from large in the lower Smithian to small in the middle Smithian (Krystyn et al., 2007), 444 

suggesting the development of more hostile environmental conditions at that time. Current 445 

bedforms are consistent with a well-oxygenated watermass during the earliest Smithian 446 

(Krystyn et al., 2007). The Mud section is a candidate GSSP for the Induan-Olenekian 447 
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boundary, which was formerly placed at the Bed 12/13 contact (Krystyn et al., 2007) but has 448 

been revised downward to approximately the Bed 9/10 contact (Brühwiler et al., 2010). 449 

The Wuchiapingian to lower Changhsingian strata are composed of siliceous shale, with 450 

a ~25% chert fraction (Fig. 5, Supplementary Table 5). A sharp change in lithology occurs at 451 

the P-Tr unconformity, with Lower Triassic strata consisting dominantly of carbonates. 452 

However, low carbonate content is found in limited intervals of the Dienerian and lower 453 

Spathian, which consist mainly of marlstones (cf. Krystyn et al., 2007). For most of Lower 454 

Triassic strata, it consists of thin-bedded argillaceous limestone with shale intercalation (e.g., 455 

Krystyn et al., 2007) and the average carbonate, shale and chert are ~78%, ~16% and ~6%, 456 

respectively (Fig. 5). 457 

 458 

4. Results 459 

 460 

 We report raw values for geochemical proxies for terrestrial chemical weathering, marine 461 

productivity, and marine redox conditions in Sections 4.1 to 4.3. We then used an 462 

age-thickness model for each study section (see Supplementary Information for details) in 463 

order to calculate fluxes for the same proxies (Sections 4.4 to 4.6). All raw chemostratigraphic 464 

data and calculated flux values for the four study sections are given in Supplementary Tables 465 

2 to 5. 466 

 467 

4.1. Weathering proxies 468 

 469 

We used Al and Fe concentrations as well as the chemical index of alteration (CIA) to 470 

evaluate terrestrial weathering changes during the Early Triassic. In predominantly carbonate 471 

successions such as those of the present study, increases in Al and Fe (which are present 472 

mainly in clay minerals) can be due to climatically controlled fluctuations in subaerial 473 

weathering rates (cf. Sageman et al., 1997). CIA was calculated as Al2O3 / (Al2O3 + K2O + 474 

Na2O) (see Supplementary Information for details). It is a widely used proxy in reconstructing 475 
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paleoclimate since it is interpreted as a measure of the extent of conversion of feldspars 476 

related to the weathering (Young and Nesbitt, 1998; Price and Velbel, 2003). Note that the 477 

CIA results for each study section are described in conjunction with weathering fluxes 478 

(Section 4.4). 479 

At Chaohu, Al ranges from <0.1 to 15.0%, with an average value of 4.6% (Fig. 6A). It 480 

shows generally high values from the P-Tr boundary to the Smithian, followed by generally 481 

lower values in the Spathian. Fe ranges from <0.1 to 14.9%, with an average value of 2.7%. 482 

Fe shows a similar pattern to Al throughout the study section.  483 

At Daxiakou, Al ranges from <0.1 to 18.1%, with an average value of 2.3% (Fig. 6B). It 484 

shows lower values in the early Griesbachian and the early Smithian and higher values from 485 

the late Griesbachian through the Dienerian with a short interlude of relatively low values in 486 

the early Dienerian. Fe ranges from <0.1 to 9.0%, with an average value of 1.5%. Fe shows a 487 

similar pattern to Al within the Induan stage. 488 

At Zuodeng, Al ranges from <0.1% to 14.3%, with an average value of 0.8% (Fig. 6C). It 489 

shows relatively higher values from the late Dienerian to the early Smithian, in the late 490 

Smithian, and in the middle Spathian but very low values in other intervals. Fe ranges from 491 

<0.1 to 5.0%, with an average value of 0.6%. Fe shows a similar pattern to Al throughout the 492 

study section except for the late Griesbachian, where the Al profile shows several peaks that 493 

the Fe profile does not. 494 

At Mud, Al ranges from <0.1 to 11.4%, with an average value of 3.5% (Fig. 6D). It 495 

shows high values from the end of the Griesbachian to earliest Smithian and at the end of the 496 

Smithian but low values during most of the Smithian. Fe ranges from 0.4 to 20.7%, with an 497 

average value of 2.8%. Fe shows high values from the late Griesbachian to earliest Dienerian 498 

and in the early Smithian but low values during most of the Dienerian and Smithian. The Fe 499 

and Al profiles show rather different patterns in this section. 500 

 501 

4.2. Productivity proxies 502 

 503 
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We used TOC, phosphorus (P), and excess barium (Baxs) concentrations to evaluate 504 

marine productivity fluxes during the Early Triassic. Baxs was calculated as the amount of 505 

non-detrital barium (see Supplementary Information for details). These are widely used 506 

proxies for paleomarine productivity since their accumulation depends on organic matter 507 

abundance and preservation (Tribovillard et al., 2006; Calvert and Pedersen, 2007). A method 508 

to estimate actual paleomarine productivity values was developed by Schoepfer et al. (2014, 509 

this issue), who established regression equations to evaluate primary and export production as 510 

a function of TOC and P mass accumulation rates (MARs) using published data from 511 

Cenozoic sediment cores. 512 

At Chaohu, TOC ranges from 0.02 to 5.17%, with an average value of 0.28% (Fig. 7A). 513 

It shows high values at the P-Tr boundary and in the mid Spathian, and moderately high 514 

values from the late Griesbachian to early Dienerian, the late Dienerian to earliest Smithian, 515 

and the mid to late Smithian. In contrast, it shows low values in the mid-Griesbachian, early 516 

Smithian, and most of the Spathian. P ranges from ~0 to 0.52%, with an average value of 517 

0.03%. Baxs ranges from 0.29 to 2992 ppm, with an average value of 176 ppm. Both P and 518 

Baxs show patterns of variation that are similar to that of TOC, although Baxs exhibits 519 

relatively higher values in the late Griesbachian and mid to late Smithian.  520 

At Daxiakou, TOC ranges from 0.06 to 4.65%, with an average value of 0.30% (Fig. 7B). 521 

It shows high values at the P-Tr boundary but relatively low values from the Griesbachian to 522 

early Smithian. P ranges from ~0 to 2.23%, with an average value of 0.03%. It exhibits a 523 

different pattern from TOC, showing relatively high values at the P-Tr boundary and in the 524 

late Griesbachian to early Smithian and low values in the mid-Griesbachian and early to 525 

mid-Smithian. Baxs ranges from 1.51 to 895 ppm, with an average value of 78 ppm. It shows a 526 

slightly different pattern, with high values at the P-Tr boundary and from the 527 

end-Griesbachian to the early Smithian and relatively lower values in the mid-Griesbachian 528 

and mid-Dienerian.  529 

At Zuodeng, TOC ranges from 0.06 to 1.52%, with an average value of 0.15% (Fig. 7C). 530 

It shows generally low values for the entire Early Triassic, although with a small increase 531 
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during the late Griesbachian-early Dienerian and the early Smithian. P ranges from ~0 to 532 

0.30%, with an average value of 0.01%. It exhibits a different pattern from TOC, with 533 

generally high values during the late Smithian and Spathian (punctuated by peaks in the 534 

end-Smithian and mid-Spathian) and low values from the Griesbachian to mid-Smithian. Baxs 535 

ranges from 0.39 to 920 ppm, with an average value of 40 ppm. It shows low values (<30 536 

ppm) through most of the Early Triassic but two peaks in the mid-Dienerian and 537 

mid-Spathian.  538 

At Mud, TOC ranges from 0.07 to 2.71%, with an average value of 0.49% (Fig. 7D). It 539 

shows high values in the Dienerian and low values in the late Griesbachian, Smithian, and 540 

early Spathian. P ranges from 0.01 to 0.85%, with an average value of 0.07%. It shows a 541 

gradual upsection decrease. Baxs ranges from 0.1 ppm to 1723 ppm, with an average value of 542 

166 ppm. It shows high values in the Dienerian and late Griesbachian, and low values in the 543 

Smithian and early Spathian. 544 

     545 

4.3. Redox proxies 546 

 547 

We used Mo, U, and V concentrations to evaluate ocean redox changes during the Early 548 

Triassic. Redox-sensitive trace elements typically become enriched in marine sediments under 549 

reducing conditions (Algeo and Maynard, 2004; Algeo and Lyons, 2006; Tribovillard et al., 550 

2006; Algeo and Tribovillard, 2009). Reducing conditions, characterized by low O2 and/or 551 

high H2S concentrations in bottomwaters, are produced by some combination of decreased 552 

ventilation, commonly due to sluggish watermass circulation, and high respiratory oxygen 553 

demand, commonly due to a high sinking flux of organic matter (Pedersen and Calvert, 1990).  554 

At Chaohu, Mo ranges from ~0 to 149 ppm, with an average of 3.4 ppm (Fig. 8A). U 555 

ranges from ~0 to 52 ppm, with an average of 3.5 ppm. V ranges from <1 to 2892 ppm, with 556 

an average of 110 ppm. For all three proxies, high values are observed at the P-Tr boundary 557 

and in the late Griesbachian, Dienerian, and late Smithian. In addition, the V profile exhibits 558 

enrichment in the mid-Smithian, and both the Mo and V profiles show a short episode of 559 
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somewhat higher values in the early Spathian. 560 

At Daxiakou, Mo ranges from ~0 to 604 ppm, with an average of 7.3 ppm (Fig. 8B). U 561 

ranges from ~0 to 39 ppm, with an average of 2.9 ppm. V ranges from <1 to 1326 ppm, with 562 

an average of 53 ppm. For all three proxies, high values are observed at the P-Tr boundary 563 

and in the Dienerian, and V shows an additional peak in the late Griesbachian that is not seen 564 

in the Mo and U profiles. 565 

At Zuodeng, Mo ranges from ~0 to 102 ppm, with an average of 3.8 ppm (Fig. 8C). U 566 

ranges from ~0 to 68 ppm, with an average of 6.8 ppm. V ranges from ~0 to 162 ppm, with an 567 

average of 14.0 ppm. For all three proxies, high values are observed in the late Dienerian and 568 

Smithian, with additional enrichment of V in the early Spathian. 569 

At Mud, Mo ranges from <1 to 24 ppm, with an average of 2.4 ppm (Fig. 8D). U ranges 570 

from 0.3 to 7.3 ppm, with an average of 2.0 ppm. V ranges from 10 to 528 ppm, with an 571 

average of 132 ppm. For all three proxies, high values are observed in the Dienerian.  572 

 573 

4.4. Weathering fluxes 574 

     575 

 At Chaohu, the Al flux ranges from <0.1 to 36 g m-2 y-1, with an average of 6.4 g m-2 y-1 576 

(Fig. 9A). The Fe flux ranges from <0.1 to 25 g m-2 y-1, with an average of 3.9 g m-2 y-1. Both 577 

fluxes increase sharply at the P-Tr boundary and show peak values during the Griesbachian 578 

and Smithian, with a smaller increase in the early Spathian. The CIA ranges from 0.47 to 0.99, 579 

with an average of 0.75. High CIA values are found at the P-Tr boundary and in the 580 

Griesbachian and Smithian.  581 

At Daxiakou, the Al flux ranges from <0.1 to 33 g m-2 y-1, with an average of 3.8 g m-2 y-1 582 

(Fig. 9B). The Fe flux ranges from <0.1 to 18 g m-2 y-1, with an average of 2.7 g m-2 y-1. Both 583 

fluxes increase sharply at the P-Tr boundary and show peak values during the Griesbachian 584 

and Smithian. The CIA ranges from 0.50 to 0.96, with an average of 0.80. High CIA values 585 

are found at the P-Tr boundary and in the late Griesbachian and Smithian, with significantly 586 

lower values in the mid-Griesbachian and Dienerian.  587 
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At Zuodeng, the Al flux ranges from <0.1 to 11.7 g m-2 y-1, with an average of 0.46 g m-2 588 

y-1 (Fig. 9C). The Fe flux ranges from <0.1 to 3.7 g m-2 y-1, with an average of 0.37 g m-2 y-1. 589 

The Fe flux is relatively larger during the late Griesbachian, whereas the Al flux is greater 590 

during the late Dienerian; both fluxes exhibit higher values during the Smithian and early 591 

Spathian. The CIA ranges from 0.39 to 0.99, with an average of 0.81. Relatively higher CIA 592 

values are observed in the Griesbachian and Smithian. 593 

At Mud, the Al flux ranges from <0.1 to 6.2 g m-2 y-1, with an average of 1.1 g m-2 y-1 (Fig. 594 

9D). The Fe flux ranges from <0.1 to 3.7 g m-2 y-1, with an average of 0.8 g m-2 y-1. Both 595 

fluxes are large during the late Griesbachian and late Smithian, and Fe additionally shows a 596 

peak around the Dienerian-Smithian boundary. The CIA ranges from 0.40 to 0.98, with an 597 

average of 0.72. High CIA values are observed in the late Griesbachian and Smithian.  598 

Summarizing patterns of variation in the weathering proxies, high Al and Fe 599 

concentrations are observed mainly at the P-Tr boundary and in the late Griesbachian, 600 

Dienerian, and mid to late Smithian (Fig. 6). With regard to fluxes, the main peaks in the Al 601 

and Fe profiles are at the P-Tr boundary and in the late Griesbachian and mid to late Smithian 602 

(Fig. 9). Thus, these intervals were probably associated with enhanced inputs of terrestrial 603 

detrital material to the marine study areas. The similar trends of these geochemical proxies 604 

despite differences in lithology among the four study sections suggest that lithologic variation 605 

did not exert a strong influence on these proxies. CIA values show essentially the same 606 

patterns of secular variation as the Al and Fe fluxes. This is a significant observation because 607 

CIA is independent of secular variation in bulk-sediment fluxes and, thus, serves to confirm 608 

patterns of secular variation in the other weathering proxies. 609 

 610 

4.5. Productivity fluxes 611 

 612 

At Chaohu, the TOC flux ranges from 0.01 to 3.9 g m-2 y-1, with an average of 0.36 g m-2 613 

y-1 (Fig. 10A). The P flux ranges from 0.1 to 658 mg m-2 y-1, with an average of 48.5 mg m-2 614 

y-1. The Baxs flux ranges from ~0 to 451 mg m-2 y-1, with an average of 27 mg m-2 y-1. All three 615 
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proxies show a similar pattern of secular variation, with peak fluxes in the mid to late 616 

Griesbachian and the Smithian, and smaller increases around the P-Tr boundary and in the 617 

early Spathian. 618 

At Daxiakou, the TOC flux ranges from <0.01 to 2.1 g m-2 y-1, with an average of 0.32 g 619 

m-2 y-1 (Fig. 10B). The P flux ranges from 0.5 to 6395 mg m-2 y-1, with an average of 64.6 mg 620 

m-2 y-1. The Baxs flux ranges from 0 to 350 mg m-2 y-1, with an average of 10 mg m-2 y-1. All 621 

three proxies show a similar pattern of secular variation, with peak fluxes in the Griesbachian 622 

and Smithian.  623 

At Zuodeng, the TOC flux ranges from 0.03 to 0.93 g m-2 y-1, with an average of 0.09 g 624 

m-2 y-1 (Fig. 10C). The P flux ranges from 0.1 to 169.5 mg m-2 y-1, with an average of 5.7 mg 625 

m-2 y-1. The Baxs flux ranges from ~0 to 61 mg m-2 y-1, with an average of 2 mg m-2 y-1. The 626 

TOC and Baxs profiles show similar patterns of secular variation characterized by peak values 627 

in the late Griesbachian to early Dienerian, with low values through the remainder of the 628 

section. In contrast, the P profile shows peak values in the late Smithian to early Spathian, 629 

with low values through the remainder of the section.  630 

At Mud, the TOC flux ranges from 0.01 to 1.5 g m-2 y-1, with an average of 1.1 g m-2 y-1 631 

(Fig. 10D). The P flux ranges from 1.9 to 183 mg m-2 y-1, with an average of 20.3 mg m-2 y-1. 632 

The Baxs flux ranges from ~0 to 115 mg m-2 y-1, with an average of 6 mg m-2 y-1. Patterns of 633 

secular variation differ among the three productivity-proxy fluxes. The P flux profile most 634 

closely matches secular variation in the South China sections, with high values in the late 635 

Griesbachian and Smithian, and low values in the Dienerian. In contrast, the TOC flux profile 636 

for Mud peaks in the Dienerian and shows low values in the Griesbachian and Smithian, and 637 

the Baxs flux profile peaks in the mid to late Smithian and shows low values through the 638 

remainder of the section. 639 

Summarizing patterns of variation in the productivity proxies, high TOC, P and Baxs 640 

concentrations are found mainly at the P-Tr boundary and in the late Griesbachian, Dienerian, 641 

and mid to late Smithian, with a smaller peak in the early Spathian (Fig. 7). With regard to 642 

fluxes, the main peaks in the TOC, P and Baxs profiles are in the late Griesbachian and mid to 643 
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late Smithian (Fig. 10). Thus, these intervals were probably associated with elevated rates of 644 

marine productivity relative to the remainder of the Early Triassic. In contrast to the 645 

weathering proxies, the productivity proxies exhibit low values around the P-Tr boundary, 646 

suggesting a decline in marine productivity during the end-Permian crisis interval. 647 

 648 

4.6. Redox fluxes 649 

 650 

At Chaohu, the Mo flux ranges from 0.01 to 11 mg m-2 y-1, with an average of 0.29 mg 651 

m-2 y-1 (Fig. 11A). The U flux ranges from 0.01 to 3.0 mg m-2 y-1, with an average of 0.38 mg 652 

m-2 y-1. The V flux ranges from the 0.1 to 174 mg m-2 y-1, with an average of 11 mg m-2 y-1. All 653 

three proxies show similar patterns of secular variation, with peak fluxes in the Griesbachian 654 

and Smithian. The Mo and U profiles also show a peak around the P-Tr boundary, and the Mo 655 

and V profiles show another peak in the early Spathian.  656 

At Daxiakou, the Mo flux ranges from 0.01 to 2.1 mg m-2 y-1, with an average of 0.19 mg 657 

m-2 y-1 (Fig. 11B). The U flux ranges from 0.01 to 2.6 mg m-2 y-1, with an average of 0.27 mg 658 

m-2 y-1. The V flux ranges from 0.01 to 73 mg m-2 y-1, with an average of 5.9 mg m-2 y-1. All 659 

three proxies show similar patterns of secular variation, with peak fluxes in the Griesbachian 660 

and Smithian. The Mo and U profiles also show a peak around the P-Tr boundary.  661 

At Zuodeng, the Mo flux ranges from 0.01 to 7.4 mg m-2 y-1, with an average of 0.24 mg 662 

m-2 y-1 (Fig. 11C). The U flux ranges from 0.01 to 3.7 mg m-2 y-1, with an average of 0.41 mg 663 

m-2 y-1. The V flux ranges from 0.01 to 6.4 mg m-2 y-1, with an average of 0.83 mg m-2 y-1. The 664 

three proxies show similar patterns of secular variation, although with minor differences. Peak 665 

values are in the late Dienerian and Smithian for the Mo flux profile, in the mid-Griesbachian, 666 

late Dienerian, and Smithian for the U flux profile, and in the Griesbachian, early Dienerian, 667 

late Dienerian, and Smithian for the V flux profile.  668 

At Mud, the Mo flux ranges from 0.01 to 0.35 mg m-2 y-1, with an average of 0.06 mg m-2 669 

y-1 (Fig. 11D). The U flux ranges from 0.01 to 0.41 mg m-2 y-1, with an average of 0.07 mg m-2 670 

y-1. The V flux ranges from 0.49 to 20 mg m-2 y-1, with an average of 3.5 mg m-2 y-1. The three 671 
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proxies show similar patterns of secular variation, with peak values in the late Smithian. The 672 

Mo and V profiles exhibit a second, but somewhat smaller, peak in the Dienerian.  673 

Summarizing patterns of variation in the redox proxies, high Mo, U and V concentrations 674 

are found mainly at the P-Tr boundary and in the late Griesbachian, Dienerian, and mid to late 675 

Smithian (Fig. 8). With regard to fluxes, the main peaks are in the Griesbachian and Smithian, 676 

although modest increases are found also at the P-Tr boundary and in the early Spathian (Fig. 677 

11) and at Mud during the Dienerian. Thus, these intervals were probably associated with 678 

more reducing conditions in marine environments than the remainder of the Early Triassic. 679 

Secular variation in the redox proxies broadly mirrors that seen for the weathering and 680 

productivity proxies, suggesting close connections between all three environmental 681 

parameters. 682 

 683 

5. Discussion 684 

 685 

5.1. Relationship of weathering, productivity, and redox variation to Early Triassic global 686 

events 687 

 688 

The results above document major secular changes in weathering, productivity, and 689 

redox fluxes during the Early Triassic. In the following discussion, we consider relationships 690 

of these environmental proxies to coeval global events, in order to explore potential controls 691 

on the protracted recovery of Early Triassic marine ecosystems. Our analysis begins with the 692 

end-Permian mass extinction and proceeds through the Spathian, thus covering the full Early 693 

Triassic recovery interval. 694 

The end-Permian crisis is generally regarded as having been triggered by the onset of 695 

massive eruptions of the Siberian Traps Large Igneous Province (Renne et al., 1995; Korte et 696 

al., 2010). It was marked by a general collapse of marine ecosystems, as reflected in 697 

biodiversity, trace fossil, and ecological tiering data (Erwin et al., 2002; Erwin, 2005; Fig. 12). 698 

This event was accompanied by an extreme climatic warming of >10⁰C (Joachimski et al., 699 
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2012; Sun et al., 2012), a major expansion of oceanic anoxia globally (Brennecka et al., 2011), 700 

an abrupt incursion of sulfidic waters into the ocean-surface layer (Grice et al., 2005; Algeo et 701 

al., 2007, 2008), and large inputs of terrestrial material to shallow-marine areas (Ward et al., 702 

2000; Sephton et al., 2005; Xie et al., 2007; Algeo and Twitchett, 2010), all of which are 703 

likely to have contributed to the biocrisis. Strong warming led to intensified stratification of 704 

the oceanic water-column, as reflected in a large vertical gradient of 13CDIC (Song-HY et al., 705 

2013), and thus to a strongly reduced nutrient supply via upwelling, contributing to a sharp 706 

decline in marine productivity. The study sections exhibit only limited evidence for these 707 

major environmental changes, however, as the end-Permian and P-Tr boundary are 708 

characterized by, at most, a small increase in terrestrial weathering fluxes (Fig. 9) and a 709 

transient shift toward more reducing conditions (Fig. 11; cf. Grice et al., 2005; Cao et al., 710 

2009). The muted response of the terrestrial weathering and marine redox proxies in the study 711 

sections may be due to their distance from continental sources of siliciclastics and locations in 712 

areas with only limited local redox changes. Marine productivity exhibits a more visible 713 

change, declining sharply particularly across the South China craton (Fig. 10), a pattern 714 

possibly related to a productivity crash (Algeo et al.,2013) or to a shift in dominance from 715 

eukaryotic algae to bacterioplankton (Luo et al., 2014). 716 

During the Griesbachian, the development of a hyper-greenhouse climate resulted in 717 

tropical sea-surface temperatures that were persistently >35⁰C (Fig. 12; Sun et al., 2012). This 718 

warming contributed to expansion of marine anoxia (Fig. 11) through lowering of the 719 

solubility of dissolved oxygen in seawater and increasing the flux of river-borne nutrients to 720 

shallow-marine areas via enhanced chemical weathering (Fig. 9; Algeo and Twitchett, 2010). 721 

A consistently positive relationship is seen between redox conditions and marine productivity 722 

(Fig. 12), suggesting that organic carbon sinking fluxes controlled the expansion of oceanic 723 

oxygen-minimum zones (Algeo et al., 2011a). High seawater temperatures and widespread 724 

reducing conditions probably operated in tandem to keep benthic biotas under stress and to 725 

delay marine ecosystem recovery. As a result, benthic biotas were dominated by opportunistic 726 
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lineages of eurytopic bivalves, gastropods, and ostracods (Erwin, 1998). Relatively high 727 

productivity levels during the Griesbachian (Fig. 10) offered adequate food resources for 728 

nekton, resulting in a transient diversification among conodonts and ammonoids (Stanley, 729 

2009). High productivity may reflect dominance of bacterioplankton (Xie et al., 2010; Luo et 730 

al., 2014), which would have enhanced recycling of nutrients in the ocean-surface layer and 731 

reduced the organic carbon sinking flux (D’Hondt et al., 1998) and, thus, account for a 732 

decrease in the vertical gradient of 13CDIC (Song-HY et al., 2013). However, at the end of 733 

Griesbachian, extreme warmth (Sun et al., 2012) and more widespread oceanic anoxia (Fig. 734 

11) destroyed this surface-ocean ecosystem, resulting in a second-order mass extinction 735 

among conodonts and ammonoids (Brayard et al., 2006; Orchard, 2007; Stanley, 2009) and 736 

further depressing the benthic ecosystem. Expansion of the oceanic oxygen-minimum zone at 737 

this time would have resulted in a contraction of the ecospace available to planktic and nektic 738 

organisms (Fig. 13A). 739 

The Dienerian was characterized by a warm climate, although one that was slightly 740 

cooler (~32-35⁰C) than that of the late Griesbachian (Fig. 12; Sun et al., 2012). As a 741 

consequence of this relative cooling, terrestrial weathering fluxes were reduced (Fig. 9). In the 742 

marine environment, the Dienerian was characterized by lower marine productivity (Fig. 10) 743 

and a shift toward more oxidizing (or less reducing) conditions (Fig. 11). This substage was 744 

associated with a small negative excursion of δ13Ccarb (Tong et al., 2007a) and intermediate 745 

and relatively stable vertical 13CDIC gradients (Song-HY et al., 2013), which are consistent 746 

with reduced marine productivity as well as a modest weakening of oceanic water-column 747 

stratification. With regard to marine biotas, the Dienerian exhibits increasing diversity among 748 

conodonts and ammonoids (Stanley, 2009) and other marine fauna (Tong et al., 2007a) and an 749 

increase in trace-fossil size (Twitchett, 1999; Chen et al., 2011; Fig. 2). Lower levels of 750 

oceanic productivity were probably associated with a greater proportion of eukaryotic 751 

plankton relative to bacterioplankton, which favored relatively greater export of organic 752 

carbon and nutrients from the ocean-surface layer (cf. D’Hondt et al., 1998). Comparatively 753 
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cooler climatic conditions and contraction of the oceanic oxygen-minimum zone would have 754 

resulted in an expansion of the ecospace available to conodonts and ammonoids in the surface 755 

ocean (Fig. 13B). Thus, somewhat less severe environmental conditions in the Dienerian 756 

(relative to the Griesbachian) triggered a limited marine ecosystem recovery, although the 757 

brief interval since the end-Permian mass extinction (~0.5 Myr) may have insufficient for a 758 

complete recovery of marine ecosystems (e.g., Kirchner and Weil, 2000).  759 

The Dienerian-Smithian boundary was characterized by a transient temperature 760 

minimum (~30-32⁰; Sun et al., 2012) and a large positive excursion (ca. +6‰) of δ13Ccarb 761 

globally (Payne et al., 2004; Tong et al., 2007a; Fig. 12). Positive δ13C excursions are 762 

commonly associated with elevated marine productivity (Kump and Arthur, 1999). All four 763 

study sections show a substantial increase in terrestrial weathering fluxes at this time (Fig. 9), 764 

with two (Chaohu and Daxiakou) also showing evidence of increased marine productivity 765 

(Fig. 10). This pattern suggests that the increase in marine productivity may have been driven 766 

by enhanced riverine nutrient fluxes, possibly with an additional stimulus from upwelling of 767 

nutrient-rich deep waters owing to more vigorous thermohaline circulation as a consequence 768 

of climatic cooling and a steeper latitudinal temperature gradient. A concurrent shift toward 769 

somewhat more reducing conditions (Fig. 11) may have been driven by high O2 demand 770 

associated with an enhanced sinking flux of organic matter. With regard to marine biotas, this 771 

interval witnessed the maximum diversification of conodonts and ammonoids during the 772 

Early Triassic (Stanley, 2009; Fig. 12), and a limited increase in the diversity of echinoderms, 773 

brachiopods, and forams (Chen et al., 2005; Chen and McNamara, 2006; Song et al., 2011), 774 

suggesting improvements in both the ocean-surface and benthic ecosystems. Cooler 775 

temperatures and a contraction of oceanic oxygen-minimum zones resulted in an expansion of 776 

the ecospace available to marine faunas, and high productivity offered rich food resources for 777 

this ecosystem (Brayard et al., 2006; Orchard, 2007; Stanley, 2009). Enhanced oceanic 778 

overturning circulation generally results in improved ventilation of the global ocean (resulting 779 

in more ecospace availability), while simultaneously intensifying anoxia in limited areas of 780 

active upwelling (owing to greater nutrient fluxes to the ocean surface layer). The 781 
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Dienerian-Smithian boundary thus represents an episode of significantly ameliorated marine 782 

environmental conditions prior to the onset of the Smithian crisis, and it may have laid a 783 

foundation for more rapid ecosystem recovery at the beginning of the Spathian, ~0.5 Myr 784 

later (e.g., Erwin, 2008; Chen and Benton, 2012).  785 

The Smithian coincided with a major environmental and biotic crisis within the Early 786 

Triassic. It was characterized by development of a second hyper-greenhouse, with peak 787 

temperatures >38⁰C (Sun et al., 2012; Romano et al., 2013), a large negative excursion of 788 

δ13Ccarb (Payne et al., 2004; Tong et al., 2007), and a maximum vertical gradient in the δ13C of 789 

DIC (Song-HY et al., 2013; Fig. 12). The negative shift in δ13Ccarb is likely to reflect a strong 790 

decline in marine productivity, and the large vertical δ13C gradient an intensification of 791 

oceanic water-column stratification, both in response to extreme warming of the 792 

ocean-surface layer. In the study sections, the Smithian exhibits a large increase in terrestrial 793 

weathering fluxes (Fig. 9), reflecting stronger chemical weathering due to warming, and 794 

intensified marine anoxia (Fig. 11), due to a combination of riverine nutrient inputs and 795 

stronger water-column stratification. Productivity levels appear to have increased at this time 796 

in two of the study sections (Chaohu and Daxiakou; Fig. 10), although it is possible that these 797 

deep-water sections are recording enhanced organic matter preservation as a consequence of 798 

OMZ expansion rather than actual increases in surface-water productivity. Warming and other 799 

environmental stresses resulted in a major extinction event among conodonts and ammonoids 800 

at the end of the Smithian (Brayard et al., 2006; Orchard, 2007; Stanley, 2009; Fig. 12). 801 

Expansion of the oceanic oxygen-minimum zone at this time would have resulted in a 802 

contraction of the ecospace available to planktic and nektic organisms (Fig. 13C). 803 

The Spathian marks the onset of a sustained recovery of marine ecosystems that was 804 

completed in the Middle Triassic (Bottjer et al., 2008; Chen and Benton, 2012). It was 805 

characterized by a pronounced climatic cooling from the hyper-greenhouse conditions of the 806 

preceding ~2 Myr, with tropical sea-surface temperatures falling to ~30-32⁰C (Sun et al., 807 

2012; Romano et al., 2013; Fig. 12). In the study sections, it is marked by large declines in 808 
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terrestrial weathering fluxes, marine productivity, and the intensity of marine anoxia (Figs. 809 

9-11). The decline in productivity can be attributed to a reduced supply of nutrients from 810 

riverine sources following climatic cooling and stabilization of terrestrial landscapes (Looy et 811 

al., 1999, 2001; Hermann et al., 2011) and from upwelling sources following a flushing out of 812 

the deep-ocean nutrient inventory as a result of re-invigorated thermohaline circulation at the 813 

Smithian-Spathian boundary (Zhang et al., 2014). Improved ocean ventilation and reduced 814 

organic carbon sinking fluxes were responsible for a shift toward less reducing conditions 815 

globally (Fig. 12). These environmental changes coincided with a gradual rediversification of 816 

pelagic organisms, rapid rediversification among benthic organisms and trace-makers, and 817 

higher-level integration of marine trophic systems (Chen et al., 2005; Orchard, 2007; Stanley, 818 

2009; Song et al., 2011; Chen et al., 2011; Chen and Benton, 2012). The more sustained 819 

ecosystem recovery of the Spathian relative to the Dienerian can be attributed to several 820 

factors, including a longer time interval, a cooler climate, less widespread marine anoxia, and 821 

generally more stable environmental conditions (Fig. 13D). 822 

 823 

5.2. Spatial variation in Early Triassic marine environmental conditions 824 

 825 

 Although the four study sections generally show similar patterns of secular variation in 826 

weathering, productivity, and redox proxies, some differences exist among the sections that 827 

are probably controlled by paleogeographic location, water depth, and local bathymetry. First, 828 

the deep-ramp sections (Chaohu and Daxiakou) show peak weathering fluxes that are ~3X 829 

greater than for the mid-shelf section (Mud) and ~10X greater than for the shallow-platform 830 

section (Zuodeng; Fig. 9). These differences reflect relative proximity to sources of detrital 831 

siliciclastics and local bathymetry (e.g., the relative isolation of the shallow-platform section 832 

from detrital influx). Second, average CIA values are somewhat higher in the peri-equatorial 833 

South China sections (~0.75-0.80) relative to the mid-latitude Mud section (0.72), a difference 834 

that is attributable to variations in weathering intensity as a function of climate. Third, 835 

productivity proxy fluxes show some variation among the study sections (Fig. 10). Fluxes are 836 
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similar for Chaohu, Daxiakou, and Mud but lower for Zuodeng, suggesting diminished 837 

marine productivity on shallow-platform tops relative to open-marine ramp and shelf settings. 838 

Fourth, redox proxy fluxes differ significantly among the study sections, with Chaohu 839 

exhibiting comparatively large fluxes, Daxiakou and Zuodeng intermediate fluxes, and Mud 840 

small fluxes (Fig. 11). These differences appear to be related to both water depth and 841 

paleogeographic location. Chaohu was the deepest section, with water depths of ~300-500 m 842 

putting it within the ocean thermocline and, thus, subject to influence by an expanding 843 

oxygen-minimum zone. However, the higher redox proxy fluxes for all South China sections 844 

relative to Mud suggest that the eastern Paleo-Tethys Ocean was subject to generally more 845 

strongly reducing conditions than the southern Neo-Tethys Ocean during the Early Triassic 846 

(Fig. 4B). Finally, all types of proxies exhibit a better-defined pattern of secular variation in 847 

the deep-ramp sections (Chaohu and Daxiakou) than elsewhere (Figs. 9-11). We attribute this 848 

relationship to differences in depositional water depth, which was >200 m for the deep-ramp 849 

sections but <100 m for the mid-shelf and shallow-platform sections (Section 3). With 850 

increasing water depths, sections were under greater influence by the oceanic 851 

oxygen-minimum zone, expansion of which occurred over discrete time intervals (Feng and 852 

Algeo, 2014). In contrast, the study sections located within the ocean-surface layer (<100 m) 853 

may have experienced more irregular secular variation in environmental conditions. 854 

 855 

5.3. Influences on weathering, productivity, and redox fluxes 856 

     857 

Modeling of geochemical proxy fluxes suggests a close relationship of changes in 858 

terrestrial weathering intensity, marine productivity rates, and ocean redox conditions 859 

throughout the Early Triassic (Figs. 9-11). Our interpretation, as presented above, is that this 860 

covariation reflects real relationships among these environmental parameters. Specifically, 861 

higher weathering intensities tend to result in increased riverine nutrient fluxes, leading to 862 

enhanced marine productivity (at least in coastal areas), and thus to intensified marine anoxia 863 

(again, possibly focused in coastal areas) (cf. Algeo et al., 1995, 2011a). These relationships 864 
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are natural consequences of strong climate warming, as occurred repeatedly during the Early 865 

Triassic (Fig. 12; Joachimski et al., 2012; Sun et al., 2012; Romano et al., 2013). We 866 

recognize, however, that the relationships among these environmental parameters may vary in 867 

detail and can have alternative linkages. For example, expansion of marine anoxia can 868 

potentially lead to enhanced organic carbon burial fluxes in the absence of any change in 869 

marine productivity. We also recognize that the patterns exhibited by the four study sections 870 

inherently represent local marine environmental conditions (Fig. 13) that may or may not 871 

mirror contemporaneous global oceanographic changes. However, the strong similarities 872 

among some of the study sections, particularly those deposited at deeper water depths (i.e., 873 

Chaohu and Daxiakou), suggest that our results have probably captured some aspect of global 874 

marine environmental changes during the Early Triassic. 875 

An additional important influence on the proxy fluxes is sediment bulk accumulation rate 876 

(BAR). These fluxes represent the multiplicative product of raw proxy concentrations and 877 

BAR (Supplementary Information), so an increase in either input variable can lead to higher 878 

calculated fluxes. The observation that, for each study section, the concentration profiles (Figs. 879 

6-8) and flux profiles (Figs. 9-11) tend to exhibit similar features reflects the influence of raw 880 

concentrations on calculated fluxes. However, a degree of auto-correlation among the various 881 

proxy fluxes results from the use of a common age-thickness model for each study section 882 

and is unavoidable in studies of this type. The analysis of four widely separated sections (note 883 

that the three Chinese sections cover >1500 km of the South China craton) helps to 884 

compensate for this situation and serves as a test of the validity of results because each study 885 

section makes use of an independent, site-specific age-thickness model (e.g., Section 5.2). 886 

Moreover, our use of CIA also provides a check on the degree of procedural auto-correlation 887 

of results because CIA is a proxy that is completely independent of BAR. CIA shows 888 

unambiguous positive covariation with BAR-based weathering proxies (i.e., Al and Fe) in the 889 

Chaohu, Daxiakou, and Mud sections (Fig. 9), in which CIA exhibits maxima at the PTB or 890 

early Griesbachian, the late Griesbachian, the Dienerian-Smithian boundary or early Smithian, 891 

and the Smithian-Spathian boundary. The weathering proxies in general do not show a 892 
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coherent pattern of secular variation in the third study section (Zuodeng), possibly because its 893 

paleodepositional setting (i.e., a shallow-marine carbonate platform) was not conducive to 894 

recording weathering fluxes. 895 

  896 

5.4. Recovery patterns following other Phanerozoic mass extinctions 897 

  898 

The marine ecosystem recovery following the end-Permian mass extinction is regarded 899 

as having been longer than those following other major Phanerozoic biocrises (Bottjer et al., 900 

2008; Chen and Benton, 2012), although a detailed comparison with other recovery events 901 

has been lacking to date. In the following analysis, we examine patterns of marine ecosystem 902 

recovery following the other four “Big Five” Phanerozoic mass extinctions and consider their 903 

relationship to contemporaneous environmental conditions. This analysis reveals both 904 

commonalities and dissimilarities in the ecosystem recoveries following different mass 905 

extinction events. 906 

The Cretaceous-Paleogene (K-Pg; formerly the Cretaceous-Tertiary, or K-T) boundary 907 

mass extinction at 66.0 Ma (Renne et al., 2013) is the most thoroughly investigated to date. It 908 

killed off ~50% of marine genera and ~70% of species (Jablonski and Chaloner, 1994; 909 

Sepkoski, 1998; Alroy et al., 2008), with high extinction rates among marine reptiles, 910 

ammonoids, rudist bivalves, planktonic foraminifera, and calcareous nanofossils (Pospichal, 911 

1994; Marshall and Ward, 1996; Arenillas et al., 2000; Bown, 2005; Fastovsky and Sheehan, 912 

2005; Fig. 14A). The coincidence in timing between the Chicxulub bolide impact and the 913 

K-Pg boundary extinction suggests that the impactor was the major cause of this mass 914 

extinction (Jolley et al., 2010; Renne et al., 2013), although the lethality of the impact may 915 

have been enhanced by long-term environmental stresses associated with the Deccan Traps 916 

eruptions (Courtillot et al., 1986; Courtillot et al., 1988; White and Saunders, 2005; Chenet et 917 

al., 2007). 918 

Algal primary productivity may have recovered very rapidly, in less than a century 919 

following the K-Pg boundary impact (Fig. 14A, Sepúlveda et al., 2009). However, 920 
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redevelopment of an integrated marine ecosystem with extended trophic chains took longer 921 

and proceeded in two stages: a rapid initial phase and a delayed second phase (Coxall et al., 922 

2006). The initial phase took about 1 Myr (Sepúlveda et al., 2009; Hull et al., 2011; Alegret, 923 

2012) and involved recovery of planktonic organisms such as dinoflagellates (Brinkhuis et al., 924 

1998; Hildebrand-Habel and Streng, 2003), planktic foraminifera (Coccioni and Luciani, 2006; 925 

Hull et al., 2011), and radiolarians (Hollis et al., 2003), as well as coralline red algae (Aguirre 926 

et al., 2007). The delayed second phase of recovery lasted for ~4 Myr following the boundary 927 

crisis (Coxall et al., 2006) and culminated in a new diversity peak among planktic 928 

foraminifera (Olsson et al., 1999) and re-establishment of reef communities (Baceta et al., 929 

2005).  930 

The nutrient status of the early Danian ocean remains controversial, with some studies 931 

inferring high nutrient levels (Alegret and Thomas, 2009; Alegret et al., 2012) and others low 932 

nutrient levels (Coxall et al., 2006; Fuqua et al., 2008). Warmer conditions (as documented by 933 

a 18O shift; Fig. 14A) caused the oceanic oxygen-minimum zone to expand, decreasing the 934 

ecospace available to pelagic organisms. These adverse conditions abated 3-4 Myr after the 935 

K-Pg boundary crisis, stimulating an increase in pelagic biodiversity and full redevelopment 936 

of the marine food web (Coxall et al., 2006; Yamamoto et al., 2010). The post-K-Pg-boundary 937 

recovery can be traced through carbon cycle changes in the early Paleocene (Fig. 14A). The 938 

vertical (shallow-to-deep) δ13C gradient in seawater DIC increased in two steps, 939 

corresponding to the two stages of ecosystem recovery (Coxall et al., 2006, Fig. 14A). The 940 

first step is marked by an increase in 13Cvert from 0 to ~1‰ within 1 Myr of the crisis, and 941 

the second step by an increase to ~2‰ within 3 million years of the crisis. The latter value is 942 

similar to the 13Cvert observed in modern marine systems and, thus, marks the 943 

re-establishment of an efficient biological pump by the late Danian, that is, less intense 944 

recycling of organic matter in the ocean-surface layer resulted in more export to the 945 

chemocline and deep ocean (D’Hondt et al., 1998; Coxall et al., 2006). 946 

The Triassic-Jurassic (Tr-J) boundary mass extinction resulted in the demise of ~53% of 947 
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marine genera (Sepkoski, 1996) and ~80% of species (Sepkoski, 1994). It eliminated 948 

conodonts and severely affected brachiopods and gastropods (McRoberts et al., 1997; 949 

Tomašových and Siblík, 2007), as well as ammonoids, bivalves, corals and ostracods 950 

(McRoberts and Newton, 1995; Kiessling, 2001, 2005; van de Schootbrugge et al., 2007; 951 

Mander and Twitchett, 2008; Fig. 14B). Eruption of the Central Atlantic magmatic province 952 

(CAMP) and the resulting global warming were the major causes of this mass extinction 953 

(Marzoli et al., 1999; McElwain et al., 1999; Hesselbo et al., 2002; van de Schootbrugge et al., 954 

2009; Schoene et al., 2010; Ruhl et al., 2011). 955 

Marine ecosystem recovery began rapidly in the Early Jurassic, within 120 k.y. (Ruhl et 956 

al., 2010) to 290 k.y. of the extinction event (Bartolini et al., 2012). Recovery was marked by 957 

increases in diversity during the earliest Hettangian among pelagic carbonate producers 958 

(radiolarians, calcareous nanofossils) (Clémence et al., 2010), molluscs (McRoberts et al., 959 

1997), ammonoids (Hesselbo et al., 2002; Guex et al., 2012), and brachiopods (Tomašových 960 

and Siblík, 2007). This initial recovery (Fig. 14B) was followed by a second extinction event 961 

among ammonoids during the early Hettangian (Guex et al., 2004, 2012). A second, longer 962 

(~2-3-Myr) recovery phase (Fig. 14B) is evidenced by more diverse radiolarian assemblages 963 

in the mid to late Hettangian (Longridge et al., 2007), rediversification of ammonoids in the 964 

late Hettangian (Guex et al., 2012), and increases in the diverse of gastropod and coral faunas 965 

in the early Sinemurian (Seuß et al., 2005).  966 

A large (~5‰), rapid negative carbon isotope excursion occurred at the end of Triassic 967 

(Korte et al., 2009; Schoene et al., 2010; Bartolini et al., 2012), and was followed a positive 968 

excursion (~3%) in the lower Hettangian (Williford et al., 2007; Korte et al., 2009; Schoene et 969 

al., 2010; Bartolini et al., 2012; Fig. 14B), suggesting an extreme carbon cycle disturbance at 970 

the T-J boundary. Paleobotanical data provide evidence of a rapid global warming at the T-J 971 

boundary (McElwain et al., 1999; Ruhl et al., 2011), and a subsequent cooling resulted from 972 

high marine productivity and enhanced organic matter burial (Korte et al., 2009). A long-term 973 

negative carbon isotope excursion during the early and middle Hettangian coincided with a 974 

greenhouse climate and widespread oceanic anoxia (Ruhl and Kürschner, 2011; Richoz et al., 975 
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2012; Bartolini et al., 2012), hindering the recovery of marine ecosystems until the 976 

Hettangian-Sinemurian boundary (Bartolini et al., 2012; van de Schootbrugge et al., 2013), 977 

when the carbon cycle stabilized (Bartolini et al., 2012; Guex et al., 2012). The initial 978 

recovery of pelagic and benthic organisms during the early Hettangian was impeded first by 979 

large climate fluctuations and then by a long-term global warming that resulted in marine 980 

environmental stresses including warming, seawater acidification, and anoxia (Richoz et al., 981 

2012; van de Schootbrugge et al., 2013). These factors contributed to an extinction event 982 

among ammonoids in the mid-Hettangian and a protracted recovery among many elements of 983 

the marine nekton and benthon during the Hettangian (Guex et al., 2004, 2012). Falling 984 

atmospheric pCO2 by the late Hettangian resulted in a cooler climate and ameliorated marine 985 

environmental conditions, leading to a second stage of recovery among plankton (Bartolini et 986 

al., 2012) and benthon (Seuß et al., 2005) during the Sinemurian stage. Thus, the Early 987 

Jurassic marine ecosystem recovery tracks contemporaneous environmental changes very 988 

well. 989 

The Late Devonian mass extinction comprised a series of crises during an interval of ~20 990 

Myr, of which the largest were at the Givetian-Frasnian (G-F), Frasnian-Famennian (F-F), and 991 

Devonian-Carboniferous (D-C) boundaries (Walliser, 1996, House, 2002; Morrow et al., 2011; 992 

Fig. 14C). Collectively, these crises killed ~50-60% of marine genera and ~82% of species 993 

(Jablonski, 1991; McGhee, 1996). Many clades of marine invertebrates suffered multiple 994 

declines, including brachiopods, trilobites, corals, and stromatoporoids (Copper, 1986; Stearn, 995 

1987), and most colonial rugose corals went extinct at the F-F boundary (Fig. 14C, Copper, 996 

2002; Shen and Webb, 2004). The F-F mass extinction evidenced a collapse of the metazoan 997 

reef ecosystem after the mid-late Devonian acme of metazoan reefs and a replacement by 998 

microbial reefs (Copper, 2002). 999 

The immediate cause of the Late Devonian crisis appears to have been rapid changes in 1000 

seawater temperatures and redox conditions (Joachimski et al., 2004; Chen et al., 2005). For 1001 

example, the F-F cooling event severely affected the tropical-marine ecosystem, especially 1002 

reef metazoans and, thus, is the probable cause of this mass extinction (Copper, 1986, 2002). 1003 
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However, the ultimate cause of the Late Devonian crisis is likely to have been the spread of 1004 

higher land plants and consequent changes in nutrient cycling (Algeo et al., 1995, 2001; 1005 

Algeo and Scheckler, 1998). A progressive expansion of terrestrial floras during the Devonian 1006 

resulted in intensified chemical weathering of land areas, releasing more nutrients that 1007 

stimulated algal blooms and a consequent expansion of anoxia in epicontinental seas. These 1008 

paleobotanical developments resulted in a long-term decline in atmospheric pCO2 owing to an 1009 

increase in both organic carbon burial and silicate weathering, resulting in strong global 1010 

climatic cooling (Algeo et al., 1995). The Late Devonian was a time of transition from the 1011 

Middle Paleozoic greenhouse to the Late Paleozoic icehouse (Fig. 14C; Isaacson et al., 2008). 1012 

Each of the Late Devonian crises coincided with a major global cooling event, the episodes at 1013 

the F-F and D-C boundaries being particularly pronounced (Joachimski et al., 2004; Buggisch 1014 

and Joachimski, 2006; Kaiser et al., 2006, 2008). It is not certain whether the spread of higher 1015 

land plants was gradual and merely created background conditions for the development of 1016 

episodic marine biocrises, or whether it actively triggered each crisis through pulses of 1017 

expansion (Algeo and Scheckler, 2010). 1018 

Because of the multi-episode nature of the crisis, there was at least a partial recovery of 1019 

marine ecosystems following each extinction event. For example, brachiopods and ostracods 1020 

underwent a modest recovery during early Famennian, following the F-F boundary event, 1021 

although they remained low in diversity (Casier and Lethiers, 1998; Baliński, 2002; Sokiran, 1022 

2002, Fig. 14C), and stromatoporoids began to recover during the early and middle 1023 

Famennian but went extinct at the D-C boundary (Metherell and Workman, 1969; Stearn, 1024 

1987; Webb, 1998). A permanent recovery did not begin until after the D-C boundary crisis. 1025 

Bryozoans recovered to their pre-extinction level of diversity during the Early Carboniferous 1026 

(Bigey, 1989). Some corals (e.g., Pseudouralinia, Siphonophyllia) and brachiopods (e.g., 1027 

Eochoristites, Martiniella) recovered in the middle Tournaisian of the Early Carboniferous 1028 

(Liao, 2002). The extinction of colonial rugose corals at the F-F boundary resulted in 1029 

replacement of metazoan reefs by small microbial patch reefs (Pickett and Wu, 1990; Webb, 1030 

1998; Morrow et al., 2011), with regrowth of large barrier reefs delayed until the Visean (Dix 1031 
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and James, 1987; Webb, 1998, 1999; Wahlmann, 2002; Fig. 14C). Loss of large metazoans 1032 

during this crisis permitted the establishment of novel ecologies dominated by microbial 1033 

communities (Wood, 2004). However, the final marine ecosystem recovery required the 1034 

high-trophic-level ecosystem community establishment (e.g., Chen and Benthos, 2012).  1035 

The Late Ordovician (Hirnantian) mass extinction (Fig. 14D) eliminated ~24% of 1036 

families and 85% of species of marine invertebrates (Jablonski, 1991; Sepkoski, 1996; 1037 

Brenchley et al., 2001; Sheehan, 2001). It was particularly severe among trilobites, 1038 

brachiopods, molluscs (Sepkoski, 1984; Adrain et al., 2000; Harper and Rong, 2008), and 1039 

graptolites and conodonts (Brenchley et al., 2001; Sheehan, 2001; Fan and Chen, 2007; 1040 

Rasmussen and Harper, 2011a,b). The immediate cause of this extinction was the Hirnantian 1041 

glaciation (Brenchley et al., 1995; Gibbs et al., 1997; Sheehan, 2001; Sutcliffe et al., 2006). A 1042 

second extinction, ~1 Myr later, decimated the cool-adapted ‘Hirnantian fauna’ and was 1043 

caused by a rapid termination of glaciation (Sheehan and Coorough, 1990). The Early Silurian 1044 

(Llandovery epoch) was a transitional interval from the Late Ordovician icehouse to a middle 1045 

Paleozoic greenhouse (Kaljo and Martma, 2000; Brand et al., 2006). Warming conditions, the 1046 

killing factor in the second extinction, prevailed during the Llandovery, although interrupted 1047 

by two brief glaciations during the Aeronian stage (Caputo, 1998; Azmy et al., 1998, 1999; 1048 

Delabroye et al., 2011; Finnegan et al., 2011; Fig. 14D).  1049 

Marine ecosystems began to recover following the end-Ordovician extinctions, although 1050 

climate fluctuations during the Aeronian stage complicated the recovery pattern. Microbialite 1051 

resurgence in the immediate aftermath of the Late Ordovician extinction coincided with an 1052 

interval of low-diversity megafaunal communities (Sheehan and Harris, 2004). 1053 

Diversification of brachiopods and trilobites proceeded during the Rhuddanian, the first stage 1054 

of the Early Silurian (Krug and Patzkowsky, 2004; Owen et al., 2008; Huang et al., 2012), 1055 

representing the initial recovery of marine faunas (Fig. 14D). Crinoids and coral began to 1056 

diversify from the Rhuddanian in the Early Silurian (Kaljo, 1996; Ausich and Deline, 2012). 1057 

Climate fluctuations during the Llandovery resulted in a delay in the recovery of marine 1058 

ecosystems (Copper, 2001; Gouldey et al., 2010). Full recovery of reef ecosystems took place 1059 
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by the mid-Aeronian stage, ~4 Myr after the end-Ordovician crisis (Copper, 2001). 1060 

 1061 

5.5. Evaluation of hypotheses regarding controls on marine ecosystem recovery  1062 

 1063 

 Three hypotheses have been advanced for the apparent delay in recovery of marine 1064 

ecosystems following the end-Permian mass extinction, linking the duration of the recovery 1065 

interval to: (1) the intensity of the mass extinction (Sepkoski, 1984; Solé et al., 2002), (2) the 1066 

persistence of harsh environmental conditions (Hallam, 1991; Isozaki, 1997; Payne et al., 1067 

2004; Erwin, 2007), and (3) episodic occurrence of strong environmental disturbances during 1068 

the recovery interval (Algeo et al., 2007, 2008; Orchard, 2007; Retallack et al., 2011; Fig. 1). 1069 

Our analysis above of four Lower Triassic sections (Chaohu, Daxiakou, Zuodeng, and Mud) 1070 

demonstrates unambiguously that there were large fluctuations in marine environmental 1071 

conditions during the Early Triassic, and these disturbances were linked to transient 1072 

biodiversity crises among coeval marine faunas and relapses in marine ecosystem complexity 1073 

and integration. We conclude that episodic environmental disturbances were integral to the 1074 

pattern and pace of marine ecosystem recovery during the Early Triassic. 1075 

 Is it possible to draw general inferences about controls on marine ecosystem recovery 1076 

following mass extinctions? With regard to duration, there is considerable variation among 1077 

the recovery intervals following the “Big Five” Phanerozoic mass extinctions. If defined on 1078 

the basis of (1) re-attainment of biodiversity equal to or exceeding pre-crisis levels, and (2) 1079 

re-development of stable, well-integrated trophic systems, then the duration of the recovery 1080 

interval was ~4 Myr for the end-Ordovician crisis, ~10 Myr for the F-F crisis, ~5 Myr for the 1081 

end-Permian crisis, ~2.5 Myr for the end-Triassic crisis, and ~3 Myr for the end-Cretaceous 1082 

crisis (Fig. 14). These durations are closely linked to the interval of disturbed environmental 1083 

conditions that followed each extinction event. The shortest recovery interval, ~2.5 Myr after 1084 

the end-Triassic crisis, was associated with rapid cooling with minimal climate fluctuations 1085 

during the earliest Jurassic (Korte et al., 2009), suggesting that amelioration of marine 1086 

environmental conditions proceeded quickly following the CAMP eruptions (Marzoli et al., 1087 
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1999; McElwain et al., 1999; Hesselbo et al., 2002; Schoene et al., 2010; Ruhl et al., 2011). 1088 

The ~3-Myr-long interval of recovery following the end-Cretaceous crisis was also associated 1089 

with comparatively stable environmental conditions during the early Paleogene (Coxall et al., 1090 

2006). In contrast, the longest recovery interval, ~10 Myr after the F-F crisis, was interrupted 1091 

by two glaciation episodes (Joachimski et al., 2004; Kaiser et al., 2006, 2008; Isaacson et al., 1092 

2008) during which environmental conditions deteriorated and marine ecosystem recovery 1093 

was halted or reversed (Chen et al., 2005). The second-longest recovery interval, ~5 Myr after 1094 

the end-Permian crisis, was also associated with repeated environmental disturbances (Algeo 1095 

et al., 2007, 2008; Retallack et al., 2011). Thus, unsettled environmental conditions following 1096 

the main extinction crisis appear to be a strong control on the pattern and pace of marine 1097 

ecosystem recovery. 1098 

Various types of environmental perturbations can contribute to destabilization of 1099 

recovering marine ecosystems. First, temperature is clearly important, as most marine 1100 

creatures are adapted to live within a relatively narrow temperature range (Brenchley and 1101 

Harper, 1998). Extreme temperatures were a major factor in delayed ecosystem recovery 1102 

during the Early Triassic (Sun et al., 2012; Romano et al., 2013), and strong climate 1103 

fluctuations were important during other recovery intervals, e.g., the Late Devonian 1104 

(Joachimski et al., 2004; Buggisch and Joachimski, 2006; Isaacson et al., 2008) and the Early 1105 

Silurian (Finney et al., 1999; Gouldey et al., 2010; Finnegan et al., 2011). Second, nutrient 1106 

inventories and patterns of nutrient cycling can be important. Changes related to shifts from 1107 

eukaryotic to microbial primary production following the end-Cretaceous (D’Hondt et al., 1108 

1998) and end-Permian mass extinctions (Grice et al., 2005; Xie et al., 2010) probably 1109 

influenced rebuilding of marine trophic systems (e.g., Chen and Benton, 2012). Third, ocean 1110 

redox conditions, which are linked to temperature and nutrient cycling, influence the 1111 

availability of ecospace for metazoans (e.g., Fig. 13). Development of reducing conditions 1112 

leads to hypercapnia and hypoxemia, which are lethal to most marine invertebrates (Pörtner, 1113 

2001). Fourth, ocean acidification, which is commonly linked to elevated atmospheric pCO2, 1114 

impedes the growth of calcifying organisms. A possible transient increase in seawater acidity 1115 
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during the Early Triassic (Payne et al., 2010; Hinojosa et al., 2012) and early Paleocene 1116 

(Alegret et al., 2012) are thought to have influenced the rate of recovery of some faunal 1117 

components of marine ecosystems. 1118 

Other potential influences on rates of marine ecosystem recovery, i.e., persistently harsh 1119 

environmental conditions (Hallam, 1991; Isozaki, 1997; Payne et al., 2004; Erwin, 2007) or 1120 

magnitude of the extinction event (Sepkoski, 1984; Solé et al., 2002), may play a role as well. 1121 

Although environmental conditions exhibit a tendency to fluctuate strongly following a 1122 

biocrisis rather than remaining persistently harsh, at least some crises were followed by 1123 

protracted intervals of generally inhospitable conditions. The best-documented example is the 1124 

Early Triassic, during which tropical sea-surface temperatures remained persistently high 1125 

(>32⁰C) for at least 2 Myr following the end-Permian crisis (Sun et al., 2012; Romano et al., 1126 

2013). The Late Devonian may provide another example, owing to the persistence of strongly 1127 

oxygen-depleted conditions in shallow-marine seas for intervals of millions of years 1128 

following the G-F and F-F crises (Algeo et al., 1995). In both cases, conditions fluctuated 1129 

during these extended intervals of environmental deterioration, yielding no distinct dividing 1130 

line between persistently harsh conditions and recurrent environmental disturbances. With 1131 

regard to the influence of magnitude of the extinction event, there appears to be no strong 1132 

correlation with the duration of the recovery interval (e.g., Kirchner and Weil, 2000; Erwin, 1133 

2001). There are intrinsic limits to how quickly ecosystems are capable of recovery that 1134 

depend on rates of biotic evolution and, thus, re-occupation of vacated ecological niches 1135 

(Sepkoski, 1998; Kirchner and Weil, 2000). However, it appears that such rates are at least an 1136 

order-of-magnitude faster than the durations of even the shorter marine ecosystem recoveries 1137 

(Hairston et al., 2008). 1138 

 1139 

6. Conclusions 1140 

 The overriding control on the pattern and pace of marine ecosystem recovery following a 1141 

mass extinction event is environmental stability or lack thereof. An analysis of environmental 1142 

variation following the end-Permian mass extinction demonstrates that the protracted (~5-Myr) 1143 
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interval of recovery of Early Triassic marine ecosystems was due to recurrent environmental 1144 

perturbations. These perturbations were associated with high terrestrial weathering fluxes, 1145 

elevated marine productivity, and more intensely reducing oceanic redox conditions, and they 1146 

appear to have been triggered by episodes of strong climatic warming, possibly linked to 1147 

stages of increased magmatism in the Siberian Traps Large Igneous Province. The main 1148 

perturbations following the end-Permian extinction occurred during the early Griesbachian, 1149 

late Griesbachian, mid-Smithian, and (more weakly) the mid-Spathian. These episodes were 1150 

stronger and more temporally discrete in deepwater sections (Chaohu and Daxiakou) relative 1151 

to shallow and intermediate sections (Zuodeng and Mud), probably because warming and 1152 

attendant effects were felt most strongly in the oceanic thermocline region. The observed 1153 

relationships between weathering and productivity fluxes imply that nutrient and energy flows 1154 

were key influences on the pattern and pace of marine ecosystem recovery. Comparison with 1155 

recovery patterns following the other four “Big Five” Phanerozoic mass extinctions suggests 1156 

that marine ecosystem recovery in general depends on the stability of the post-crisis marine 1157 

environment. Persistent environmental stresses may also play a role in the pace of ecosystem 1158 

recovery, but there is no clear correlation to the magnitude of mass extinction event. 1159 
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FIGURE CAPTIONS 2092 

 2093 

Figure 1.  Three hypotheses to account for the protracted recovery of Early Triassic marine 2094 

ecosystems, linking it to (A) the intensity of the mass extinction (Solé et al., 2002); (B) the 2095 

persistence of harsh environmental conditions (Hallam, 1991; Isozaki, 1997; Payne et al., 2096 

2004); and (C) the episodic recurrence of major environmental perturbations (Orchard, 2007; 2097 

Stanley, 2009; Algeo et al., 2011a; Retallack et al., 2011). The heavy solid line represents a 2098 

general biodiversity trend (cf. Tong et al., 2007b), and the shaded lines represent extinction 2099 

intensity (A) or environmental stresses (B and C). PTB: Permian-Triassic boundary. ET: Early 2100 

Triassic. MT: Middle Triassic. 2101 

 2102 

Figure 2.  General patterns of biodiversity and ecological change during the 2103 

Permian-Triassic transition and Early Triassic. Gr. = Griesbachian; Dien. = Dienerian; Sm. = 2104 

Smithian; SWI = sediment-water interface. For the tiering column, positive and negative 2105 

values are elevations in centimeters relative to the sediment-water interface (SWI). 2106 

Biodiversity data: conodont (Orchard, 2007; Stanley, 2009), ammonoid (Stanley, 2009; Yuri 2107 

and Abnavi, 2013), radiolarian (Racki and Cordey, 2000), foraminifera (Song et al., 2011; 2108 

Payne et al., 2011a), brachiopod (Chen et al., 2005; Yuri and Abnavi, 2013), and echinoderm 2109 

(Chen and McNamara, 2006). Trace fossils: diameter (Twitchett, 1999; Chen et al., 2011) and 2110 

ichnodiversity (Chen et al., 2011). Lilliput effect: maximum gastropod size (Payne, 2005) and 2111 

mean foraminifer size (Payne et al., 2011b; Rego et al., 2012). Tiering data (Twitchett, 1999) 2112 

and alpha diversity data (Hofmann et al., 2013, 2014). Recovery stages 1 and 2 are defined in 2113 

this study. The timescale is a modified version of that of Algeo et al. (2013) (see 2114 

Supplementary Table 1). 2115 

 2116 

Figure 3.  Volcanic and oceanic environmental changes during the Permian-Triassic 2117 

transition and Early Triassic. Abbreviations as in Figure 2. iming of Siberian Traps eruptions 2118 
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is interpretative. Data sources: 13Ccarb (Payne et al., 2004), sea-level elevations (Haq et al., 2119 

1987; Haq and Schutter, 2008), vertical 13C of DIC (Song-HY et al., 2013), bioapatite 18O 2120 

(Sun et al., 2012; Romano et al., 2013), 34Ssulf (Song et al., 2014), 44/40Ca (Payne et al., 2010; 2121 

Hinojosa et al., 2012), and ocean redox (Kakuwa, 2008; Wignall et al., 2010; Song et al., 2012; 2122 

Grasby et al., 2013). 2123 

 2124 

Figure 4.  Permian-Triassic paleogeography of (A) South China (modified from Tong et al., 2125 

2007a), and (B) the world (modified from Algeo et al., 2013). Am = Amuria; Kz = 2126 

Kazakhstan; NC = North China; SC = South China; Tm = Tarim.  2127 

 2128 

Figure 5.  Stratigraphic variation in lithology of the four study sections. Lithologies 2129 

calculated per Eqs. 1-3 in Supplementary Information. The timescale at left is plotted relative 2130 

to thickness in the Chaohu section and is non-linear; note the different thickness scales for the 2131 

four sections. 2132 

 2133 

Figure 6.  Chemostratigraphic profiles of weathering proxies (Al and Fe) for the four study 2134 

sections. Vertical scales are identical to those in Figure 5. 2135 

 2136 

Figure 7.  Chemostratigraphic profiles of productivity proxies (TOC, P, and Baxs) for the 2137 

four study sections. Vertical scales are identical to those in Figure 5. 2138 

 2139 

Figure 8.  Chemostratigraphic profiles of redox proxies (Mo, U, and V) for the four study 2140 

sections. Vertical scales are identical to those in Figure 5. 2141 

 2142 

Figure 9.  Profiles of weathering fluxes and CIA (chemical index of alteration) for the four 2143 

study sections.  2144 

 2145 
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Figure 10.  Profiles of productivity proxy fluxes for the four study sections. 2146 

 2147 

Figure 11.  Profiles of redox proxy fluxes for the four study sections. 2148 

 2149 

Figure 12.  Generalized patterns of marine environmental, biodiversity, and ecosystem 2150 

change in the four study sections during the Early Triassic. The weathering, productivity, and 2151 

redox profiles are based on Figures 9-11. Data sources: sea-surface temperatures (SST) (Sun 2152 

et al., 2012); δ13Ccarb and generic diversity (Tong et al., 2007a); fossil abundance (Yang et al., 2153 

1986; Wang et al., 2001; Tong et al., 2003; Zhao et al., 2007; Krystyn et al., 2007; Li et al., 2154 

2009; Song et al., 2011); trace fossil burrow size, ichnodiversity, and tiering (Chen et al., 2155 

2011); and alpha diversity (Hofmann et al., 2013, 2014). 2156 

 2157 

Figure 13.  Integrated model showing relationships between environmental change, 2158 

shallow-marine ecospace, and marine ecosystem recovery during the Early Triassic. The 2159 

Griesbachian (A) and Smithian (C) are generally characterized by stronger volcanism, 2160 

enhanced weathering and riverine nutrient fluxes, an expanded OMZ, more intense 2161 

water-column stratification, weaker upwelling, and limited ecospace. In contrast, the 2162 

Dienerian (B) and Spathian (D) are generally characterized by weaker volcanism, decreased 2163 

weathering and riverine nutrient fluxes, a contracted OMZ, less intense water-column 2164 

stratification, stronger upwelling, and expanded ecospace.  2165 

 2166 

Figure 14.  Patterns of environmental change and marine ecosystem recoveries following 2167 

other major mass extinctions: (A) Cretaceous-Paleogene (K-Pg) boundary, (B) 2168 

Triassic-Jurassic (Tr-J) boundary, (C) Late Devonian, and (D) Ordovician-Silurian (O-S) 2169 

boundary. Data sources: (A) volcanism (Renne et al., 2013; Keller, 2003), impacts (Keller, 2170 

2003), δ13Ccarb (D’Hondt et al., 1998; Coxall et al., 2006), δ18O (D’Hondt and Zachos, 1993; 2171 

Norris, 1996; Birch et al., 2012), planktic foraminifera diversity (Keller, 2003; Coxall et al., 2172 

2006; Gallala et al., 2009), nanoplankton diversity (Hull et al., 2011), algal productivity 2173 
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(Sepúlveda et al., 2009; n.b., S/(S+H) = sterane/(sterane+hopane) ratio), nektonic carnivore 2174 

alpha diversity (Sessa et al., 2012), ecological tiering at the sediment-water interface (Sessa et 2175 

al., 2012); (B) CAMP volcanism (Olsen et al., 2002; Deenen et al., 2010; Blackburn et al., 2176 

2013; Guex et al., 2012; Deenen et al., 2010; Ruhl et al., 2010), δ13Corg (Ruhl et al., 2011; 2177 

Bartolini et al., 2012; Williford et al., 2007), δ18O (Korte et al., 2009), warm and cool 2178 

intervals (Schoene et al., 2010), sea-level elevations (Haq et al., 1987), diversity of bivalves, 2179 

ammonites, brachiopods, and reefs (Hallam, 1996); (C) sea-level elevations (Johnson et al., 2180 

1985; Algeo et al., 2007; Isaacson et al., 2008), δ13Ccarb (Buggisch and Joachimski, 2006), 2181 

climatic oscillations (Isaacson et al., 2008), tropical sea surface temperatures (SSTs) 2182 

(Joachimski et al., 2004), R-CO2(atm) (Berner, 1994; n.b., RCO2 = ratio of atmospheric CO2 in 2183 

past to “modern” value of ~300 ppmv), stromatoporoid diversity (Stearn, 1987; Webb, 1998; 2184 

Morrow et al., 2011), reef-building coral diversity (Webb, 1998); and (D) sea-level elevations 2185 

(Johnson et al., 1991; Couto et al., 2013); δ13Ccarb (Finney et al., 1999; Cramer et al., 2011; 2186 

Kaljo and Martma, 2000; Gouldey et al., 2010; Delabroye et al., 2011), 87Sr/86Sr (Azmy et al., 2187 

1999; Gouldey et al., 2010), tropical SSTs (Finnegan et al., 2011), glaciations (Caputo, 1998; 2188 

Azmy et al., 1998; Delabroye et al., 2011), crinoid diversity (Ausich and Deline, 2012), 2189 

graptolite diversity (Fan and Chen, 2007), coral diversity (Kaljo, 1996), brachiopod recovery 2190 

stage (Rong and Harper, 1999). 2191 
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