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Abstract 

 The extraction and characterization of DNA from aquatic environmental samples offers an 

alternative, non-invasive approach for the detection of rare species. Environmental DNA, coupled 

with PCR and next-generation sequencing (“metabarcoding”), has proven to be very sensitive for the 

detection of rare aquatic species. Our study used a custom designed group-specific primer set and 

next-generation sequencing for the detection of three species at risk; (Eastern Sand Darter, 

Ammocrypta pellucida; Northern Madtom, Noturus stigmosus; and Silver Shiner, Notropis 

photogenis), one invasive species (Round Goby, Neogobius melanostomus) and an additional 78 

native species from two large Great Lakes tributary rivers in southern Ontario, Canada; the Grand 

River and the Sydenham River. Out of 82 fish species detected in both rivers using capture-based 

and eDNA methods, our eDNA method detected 86.2% and 72.0% of the fish species in the Grand 

River and the Sydenham River, respectively, which included our four target species. Our analyses 

also identified significant positive and negative species co-occurrence patterns between our target 

species and other identified species. Our results demonstrate that eDNA metabarcoding that targets 

the fish community as well as individual species of interest provides a better understanding of 

factors affecting the target species spatial distribution in an ecosystem than possible with only target 

species data. Additionally, eDNA is easily implemented as an initial survey tool, or alongside capture-

based methods, for improved mapping of species distribution patterns. 

 

Introduction 

The need to monitor aquatic species distributions without the using invasive capture 

methods has led to the development of alternative sampling approaches such as the analysis of 

environmental DNA (eDNA). In aquatic environments, the eDNA of species is derived from biological 

sources such as urine, shed skin cells, eggs and sperm, blood, and feces and may remain detectable 

in the system for extended periods of time (Ficetola et al. 2008; Taberlet et al. 2012; Thomsen et al. 

2012; Balasingham et al. 2016). The DNA can then be extracted from water samples using non-
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invasive sampling approaches established for eDNA analyses (Bohmann et al. 2014; Barnes & Turner 

2016). This is especially useful for species at risk (SAR) that are endangered, threatened, or 

extirpated in Canada according to the Species at Risk Act (SARA; SARA 2016) and are, thus, present 

at low abundances (i.e. rare). Several studies have employed eDNA methods for SAR detection 

successfully; for example, Chinook Salmon (Oncorhynchus tschawytscha) in the Upper Columbia 

River (Laramie et al. 2014), Japanese Giant Salamander (Andrias japonicus) in the Katsura River basin 

in Japan (Fukumoto et al. 2015), European Weather Loach (Misgurnus fossilis) in Jutland, Denmark 

(Sigsgaard et al. 2015), and Eastern Hellbender (Cryptobranchus alleganiensis) in North Carolina, USA 

(Spear et al. 2015) and in Pennsylvania (Pitt et al. 2017).  

 

With successful applications of eDNA analyses to species with low abundance, eDNA 

approaches have expanded to encompass invasive species early in their invasion (i.e. still few in 

number) to facilitate the implementation of early eradication or control programs (Anderson 2005; 

Hulme 2006). Recent work on invasive species detection using eDNA methods include the detection 

of American Bullfrog (Lithobates catesbeianus) in ponds throughout southern France (Dejean et al. 

2012), Bluegill (Lepomis macrochirus) in Japanese ponds (Takahara et al. 2013; Doi et al. 2015), Asian 

carps (Hypophthalmichthys spp.) in northern USA (Jerde et al. 2011; Mahon et al. 2013), New 

Zealand Mudsnail (Potamopyrgus antipodarum) in streams in Idaho, USA (Goldberg et al. 2013), and 

the spread of Ruffe (Gymnocephalus cernua) in the Great Lakes (Tucker et al. 2016). With increased 

detection sensitivity, less impact on the sampled ecosystem and ease of applicability, eDNA analysis 

provides an alternative, valuable sampling method for aquatic species. 

 

While eDNA has been used extensively for determining the distribution of target species, 

simple presence data does not provide an ecological context for conservation, management, and 

invasion risk assessments. Sampled water should contain DNA from all inhabitants in the system and 

could thus be utilized to characterize whole communities (Yamanaka & Minamoto 2016). Moreover, 
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gathering presence data for the whole community indirectly benefits ecosystem management as it 

monitors for unknown species (e.g. recently introduced species) as a “passive surveillance” of the 

system (Simmons et al. 2016). By targeting highly conserved regions that flank polymorphic regions 

(Thomsen & Willerslev 2015) for PCR primer design, NGS of the resulting amplicons can be used for 

metabarcoding of the whole community, with a high likelihood of detecting cryptic, elusive, or rare 

species that are often missed using capture or observation-based methods (Pompanon et al. 2011; 

Port et al. 2016; Evans et al. 2016; Valentini et al. 2016). This method of metabarcoding has also 

been shown to be semi-quantitative when using spiked samples and spiked communities (Diaz-Real 

2015; Pereira et al. 2017). 

 

 While eDNA analyses of target species distribution and community composition are 

powerful, the results must be interpreted with caution. eDNA quantity and quality is affected by 

biotic factors such as life stage (Maruyama et al. 2014; Fukumoto et al. 2015; Spear et al. 2015) and 

biomass (Pilliod et al. 2014; Klymus et al. 2015), and abiotic factors such as temperature (Strickler et 

al. 2015), turbidity (Diffey et al. 2002), flow rate and water chemistry (Takahara et al. 2012; Deiner & 

Altermatt 2014; Turner et al. 2015; Balasingham et al. 2016). eDNA detection sensitivity is also 

affected by sampling protocol (Bohmann et al. 2014; Renshaw et al. 2015; Turner et al. 2015) and 

DNA extraction methods (Matheson et al. 2010; McKee et al. 2015; Eichmiller et al. 2016); however, 

eDNA protocols continue to improve to produce reliable and sensitive eDNA analyses (Jerde et al. 

2011; Jerde et al. 2015; Dejean et al. 2012; Rees et al. 2014; McKee et al. 2015). 

 

 Effective management and conservation of aquatic ecosystems require data on the 

distribution of rare and invasive species. The inclusion of community composition data thus provides 

an ecological perspective on SAR spatial patterns in relation to the presence of other native or 

invasive species. In this study, we characterized the spatial distribution of three SAR, one invasive 

species, and common native species in two large Great Lakes tributary rivers, the Grand River and 
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the Sydenham River, using eDNA metabarcoding methods. We used a custom-designed group-

specific PCR primer for the CO1 mtDNA gene designed to target all known fishes in the Great Lakes 

basin (identified using historical capture-based survey data). We used NGS and intensive water 

sampling to maximize data gathered on the spatial relationships among SAR, invasive species, and 

the native fish community composition. Our use of combined eDNA and NGS methods 

(metabarcoding) is a powerful approach for analyzing community composition and co-occurrence to 

investigate important species interactions, including rare, invasive, and common native species. 

Future studies designed to detect the distribution of target species should use this metabarcoding 

with group-specific primers and custom reference species sequence databases for optimal detection 

of species of interest. Our approach to metabarcoding simultaneously generates critical information 

of shared habitats and potential ecological interactions of target species, especially in regard to SAR 

and invasive species.  

 

Materials & Methods 

Study Area 

 The Sydenham River is a tributary of Lake St. Clair (Fig. 1), which historically had a high level 

of aquatic biodiversity; approximately 80 fish species (Staton et al. 2003; Marson & Mandrak 2009). 

Currently, 51 fish species have been reported (SCRCA 2013a; SCRCA 2013b) in the Sydenham River. 

The Sydenham River has two main branches, the North Sydenham River, which is approximately 70 

km long with a mean annual discharge of 16.9 m
3
·s

-1
, and the East Sydenham River which is 

approximately 100 km long with a mean annual discharge of 34.4 m
3
·s

-1
. The total catchment 

drainage area of both branches is 2 725 km
2
 (Metcalfe-Smith et al. 2003; Staton et al. 2003).  

 

The Grand River drains into Lake Erie (Fig. 1) and is in the largest watershed in southern 

Ontario, approximately 300 km long with catchment drainage area of 6800 km
2
 (Li et al. 2016). It has 

an annual mean discharge rate of approximately 64 m
3
·s

-1
 (Singer & So 1980). The watershed has 
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more than half of all freshwater fish species in Ontario (158 species; Mandrak & Crossman 1992), 

with 83 species present in Grand River in 1999 (Wright & Imhof 2001). 

 

Study Species 

 The four target species in this study include three SAR; Eastern Sand Darter (Ammocrypta 

pellucida), Northern Madtom (Noturus stigmosus), and Silver Shiner (Notropis photogenis), and one 

invasive species, the Round Goby (Neogobius melanostomus). The target SAR have overlapping 

historical or current distributions in at least one of the two study rivers. The invasive Round Goby is 

known to be present at high densities at many locations in both study rivers, with known 

detrimental impacts on many native and at-risk species (Poos et al. 2010; DFO 2011; DFO 2012).  

 

The Eastern Sand Darter (ESD) is a small (71 mm), benthic darter and the only member of 

the genus Ammocrypta found in Canada (COSEWIC 2009). It is listed as Threatened by SARA in 

Canada (SARA 2016). Its distribution in Canada is limited to Big Creek, Big Otter Creek (likely 

extirpated), Grand River, Lake Erie and its tributaries, Sydenham River, and Thames River (DFO 

2011). ESD populations in Grand River were deemed “good” and more than 735 individuals have 

been captured since 1987 when it was first reported (DFO 2011). Populations in Sydenham River 

were deemed “poor” with only 43 individuals recorded in the last two decades (DFO 2011) and only 

12 caught in a more recent study (Ginson et al. 2015). ESD inhabits lakes and shallow streams or 

rivers, with sandy bottoms for burrowing (COSEWIC 2009). Main threats to ESD populations are 

habitat degradation caused by eutrophication and pollution from agricultural practices and urban 

development, invasive species (including Round Goby), and disease (DFO 2011; Finch et al. 2013). 

 

The Northern Madtom (NMT) is a small (120 mm) benthic, cavity-nesting, catfish listed as 

Endangered under SARA in Canada (SARA 2016). It prefers big rivers with slightly turbid water and 

substrates comprised of sand, gravel, and silt for nesting (DFO 2012). The Canadian distribution is 
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restricted to the Detroit River, Lake St. Clair and its tributaries, St. Clair River, Thames River, and 

Sydenham River although it has not been collected in the Sydenham River since 1975 (COSEWIC 

2012; DFO 2012). NMT is not known to be present in the Grand River either currently or historically. 

The main threats to NMT include habitat degradation such as nutrient loading and habitat 

fragmentation, and competition with invasive species such as the Round Goby for food and habitat 

space (Edwards et al. 2012). 

 

The Silver Shiner (SS) is a small (143 mm) minnow with a Canadian distribution consisting of 

four known populations, in Bronte Creek, Grand River, Sixteen Mile Creek, and Thames River. It is 

assessed as Threatened by COSEWIC (COSEWIC 2011) but listed as Special Concern by SARA in 

Canada (SARA 2016). There are no current or historic populations of SS in the Sydenham River, 

although a single individual was reportedly caught in the east Sydenham River in 2003 (DFO 2013). A 

population in Grand River is considered “fair” with only a few individuals collected (DFO 2013). SS 

prefers fast-flowing systems with deep riffles and sand, clay and gravel substrates (McKee & Parker 

1982). The main threat to SS populations is habitat degradation via contamination from poor water 

management (i.e. nutrient and/or sediment loading), habitat fragmentation, and introduced species 

(DFO 2013).  

 

The Round Goby (RG) originally arrived to the Great Lakes via ballast water from Eastern 

Europe, with initial reports in Lake St. Clair in 1990 (Jude et al. 1992). It is a small (average body 

length is 100 mm (N’Guyen et al. 2016)), highly invasive, benthic species that has spread throughout 

the Great Lakes and is expanding rapidly upstream in tributaries (Poos et al. 2010; Bronnenhuber et 

al. 2011). RG burrow in rocky substrate or open crevices to lay eggs during the spawning season 

from April to September, directly competing with NMT and ESD for benthic habitat space (Kornis 

2011; Kornis et al. 2012; Edwards et al. 2012). It feeds on mussels (e.g. dreissenids), insect larvae, 

and young-of-the-year of native species such as NMT (DFO 2012; Burkett & Jude 2015). 
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Furthermore, RG feed nocturnally which also directly competes with NMT for foraging space 

(COSEWIC 2002; DFO 2012). The direct impacts of RG on SS is not currently known (DFO 2013). 

 

Water Sampling  

Water sampling was conducted by DFO via boat in September to early October 2013 in the 

Grand River and in mid to late October 2013 in the Sydenham River using a sampling protocol 

modified from Jerde et al. (2011). All field equipment was sterilized by soaking in 10% bleach for 10 

minutes and rinsed using double-distilled water (ddH2O). Water samples from 44 sites in the 

Sydenham River and 43 sites in the Grand River were collected in 500 mL Nalgene bottles and stored 

in the field in coolers containing ice. Surface samples were collected just under the surface, while 

samples collected at greater depths were characterized as bottom samples. Blank river site control 

samples (river controls) were included at a small subset of sample sites (3 from Sydenham River and 

4 from Grand River) by opening a 500 mL Nalgene bottle filled with ddH2O to expose the contents to 

the air, sealed, and stored in the cooler alongside the river water samples. The majority of samples 

collected at each site were replicated (2-3 bottom samples and 10-15 surface samples) and we used 

a subset of 2-5 samples per site for eDNA analysis. In total, we included 184 Sydenham River samples 

(109 surface, 72 bottom, and 3 river controls) and 170 Grand River samples (108 surface, 58 bottom, 

and 4 river controls). 

 

eDNA Extraction 

 Within 24 hours of collection, all water samples were filtered using Whatman® glass 

microfiber filter papers (47 mm diameter, 1.2 µm pore size; Whatman, Maidstone, UK). Prior to 

filtering each river sample, 500 mL of ddH2O was filtered on a separate filter to act as lab controls, 

followed by the filtration of the river sample on new filters (up to 4 filters for samples with high 

sediment load) using the same filtration apparatus. This allowed each sample to have its own lab 

control – we also included lab controls for the 7 river control samples. If any lab control tested 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

positive for target DNA during PCR amplification, the corresponding sample would be excluded due 

to potential contamination (i.e. false positives). Each filter was placed in a 15 mL Falcon tube and 

stored at -20 
o
C until DNA extraction.  

 

For DNA extraction, filters were cut into halves using sterile forceps and razor blades cleaned 

between each use using 95% ethanol. One half of the filter was stored and the second half was used 

immediately for DNA extraction. The half filters were cut into strips to help with digestion and 

placed into 2 mL screwcap tubes containing 400 µL of 1.0 mm glass beads packed dry (BioSpec Cat. 

No. 11079110), 400 µL of ddH2O, 400 µL of phenol-chloroform: isoamyl alcohol (25:24:1), and 400 µL 

of cetyl trimethylammonium bromide (CTAB) digestion buffer. The tubes were homogenized for two 

minutes at 3000 strokes per minute using Mini-Beadbeater-24 (Fisher Scientific LTD, BioSpec.) to 

allow complete cellular breakdown and protein digestion. The samples were centrifuged at 13 000 

rpm for 20 minutes, then the supernatant was transferred to a new 1.5 mL Eppendorf tube, and 

then vortexed with equal volumes of chloroform-isoamyl for a second phase separation. The mixed 

solution was centrifuged again, supernatant transferred to a new 1.5 mL Eppendorf tube, then 

mixed with an equal volume of isopropanol and one tenth volume of 3M sodium acetate (pH 5.2). 

The mixtures were left overnight at  

 

-20 
o
C. DNA was pelletized by centrifugation, washed once with 70% ice-cold ethanol, and re-

suspended in 30 µL of 10 mM TE Buffer and 1.0 µL of 20 mg·µL
-1

 RNase A to eliminate RNA present in 

the sample. All extracted eDNA was stored at -20 
o
C until further analysis. 

 

Primer Design 

 We designed a group-specific fish CO1 PCR primer set (PS1) developed to amplify our four 

target species and 114 additional species that potentially inhabit the two Great Lakes tributaries 

based on DFO catch data and FishMaP (McLaughlin et al. 2010; Meixler et al. 2011; see Supp. Table 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

S1). The PS1 primers were designed using COI sequences collected from NCBI Genbank and Barcode 

of Life Database (BOLD; Ratnasingham & Hebert 2007) for 118 fish species and aligned using 

Geneious v. 6.1 (Biomatters, www.geneious.com). The primers were synthesized with 5’ tails: Uni-A 

(forward) and Uni-B (reverse) for NGS library preparation (Table 1). NGS allowed us to identify both 

the target and non-target species sequences unambiguously as well as provide a semi-quantitative 

measure of signal strength (number of reads). We determined the primer-template match for each 

species from both rivers by DFO to estimate expected PCR amplification efficiency. Highly conserved 

regions surrounding polymorphic regions were selected for primer design, targeting a fragment size 

of ~250 bp. Degenerate base sites were avoided within 5 bp of the 3’ end to minimize mispriming 

(Kwok et al. 1990; Epp et al. 2012). Primer-BLAST (Ye et al. 2012) and Net Primer (Premier Biosoft, 

www.premierbiosoft.com/netprimer) were used to verify primer specificity, low self-

complementarity, uniform annealing temperatures, no secondary structure, and appropriate 

fragment length. PS1 efficiency was sensitivity tested for all four target species using a 10-fold 

dilution series and SYBR™ Green qRT-PCR with initial DNA template concentrations of 38.4 ng·µL
-1

 

for RG, 35.4 ng·µL
-1

 for SS, 46.4 ng·µL
-1 

for ESD, and 30.0 ng·µL
-1

 for NMT. The qRT-PCR conditions 

were set to an initial denaturation at 95 
o
C for 10 minutes, followed by 45 cycles of 95 

o
C for 15 

seconds and 60 
o
C annealing temperature for 60 seconds. A 10-fold serial dilution for each target 

species was used to estimate the lowest target DNA concentration that our PS1 primers could detect 

(Armbruster & Pry 2008; Kim et al. 2014). 

 

eDNA PCR 

 eDNA PCR reactions consisted of 2.5 µL of 10X Taq reaction buffer, 25 mM MgCl2, 0.5 µM of 

each forward and reverse PS1 primer, 0.2 mM of each dNTP, 0.2 mg∙mL
-1

 BSA, 0.1 units Taq 

polymerase, 1.0 µL of eDNA sample, and ddH2O for a total reaction volume of 25 µL. PCR conditions 

were set to an initial denaturation at 95 
o
C for 2 minutes, then 40 cycles of 30 seconds at 94 

o
C, 30 

seconds annealing temperature at 52 
o
C, 30 seconds at 72 

o
C for extension, final extension at 72 

o
C 
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for 10 minutes, and a final hold at 4 
o
C. Five PCR controls (4 target species benchmark DNA and a no-

template blank) were also included for each prepared mastermix. The river control samples (n = 7) 

were treated as river samples and included in the NGS library preparation described below; 

however, the lab control samples were DNA extracted and underwent the first round of PCR, as 

described above, and assessed for amplification by inspection on an agarose gel; they were not 

included in the NGS library.  

 

Next-Generation Sequencing Preparation 

After eDNA PCR amplification, the PS1 PCR products were cleaned using Agencourt AMPure 

XP (Beckman Coulter, Mississauga, ON, Canada) to remove primer dimer and fragments less than 

100 bp. Unique barcodes were ligated to the PCR amplicons using a second, short-cycle PCR for NGS 

library preparation; library preparation thus required two rounds of PCR. Second round PCRs 

consisted of 2.5 µL of 10X Taq reaction buffer, 25 mM MgCl2, 0.2 mM of each dNTP, 0.5 µM P1+Uni-

B adaptor (5’- CCTCTCTATGGGCAGTCGGTGATacgccaccgagc-3’), 0.5 µM A+barcode+key+Uni-A 

adaptor (5’- CCATCTCATCCCTGCGTGTCTCCGACTCAGxxxxxxGATacctgcctgccg), 0.1 units Taq 

polymerase, 10 µL of cleaned PCR product, and ddH2O for a total reaction volume of 25.5 µL. Short-

cycle PCR conditions started with a 2-minute denaturation at 95 
o
C followed by 6 cycles of 95 

o
C 

denaturation for 30 seconds, 60 
o
C annealing temperature for 30 seconds, 72 

o
C extension for 30 

seconds, and a final extension at 72 
o
C for 5 minutes. Second round PCR products with attached 

adaptors were purified again using Agencourt AMPure XP, 10 µL of each sample combined in a 1.5 

mL tube (72 samples per tube), and precipitated at -20 
o
C overnight using equal volumes of 

isopropanol and one tenth volume of 3M sodium acetate (pH 5.2). The combined PCR products (i.e. 

library) was centrifuged, isopropanol discarded, and the pellet was washed once with 70% ice-cold 

ethanol. The tubes were centrifuged again, ethanol discarded, and the library was eluted in 50 µL of 

ddH2O. Next, 20 µL of the library was gel extracted and bioanalyzed to determine final DNA 

concentration using Agilent High Sensitivity DNA chip on an Agilent 2100 Bioanalyzer (Agilent 
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Technologies, Germany). Finally, the library was diluted to a final concentration of 55 pmoL∙L-1
 and 

sequenced on a 318-chip using the Ion Chef
TM

 System (Life Technologies, USA).  

 

Next-Generation Sequencing Filtering 

NGS data was processed using Quantitative Insights into Microbial Ecology (QIIME) software 

(Caporaso et al. 2010) to remove sequences that were smaller than 200 bp, de-replicate sequences, 

remove sequences with more than three primer-template mismatches, or that do not meet the 

default minimum average quality score of 25 (corresponds to an average error rate of 1% in 

accepted reads). We used the fish species COI sequences previously used for PS1 primer design to 

create a custom reference database for each river. The filtered NGS sequences were compared 

against the custom database using BLASTn with default parameters changed from an expected (E) 

value of 10 to 10
-60

 and percent identity from 0% to 96% to ensure high confidence in the returned 

species identification. We classified a species as “present” at a site only if it returned at least three 

eDNA sequence matches in a sample. Disregarding one hit (singletons) or two hits (doubletons) 

avoids diversity overestimation produced by PCR or sequence artefacts, but accepting eDNA 

matches of three allows rare sequences to be counted; an important consideration for rare species 

(Zhan et al. 2014). 

 

Community and Species Occurrence Analysis 

The eDNA presence data for the target SAR and invasive species were mapped to display 

their spatial distribution. Specific Aquatic Ecosystem Classification (AEC) values (which define 

habitats along water systems based on environmental characteristics such as soil type, climate, and 

geology (Melles et al. 2013) were included to show how species occurrence patterns may be 

associated with habitat type along the two rivers. 

We also compared the eDNA presence data with the data from capture-based methods used 

by DFO in 2010 to 2013 during June, July and August for the Grand River, and from 2010 to 2012 
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during June, August, and September for the Sydenham River. The species occurrence results from 

the two sampling methods were combined to determine the percent of species detected using eDNA 

methods.  

Whole-river community analysis of species co-occurrences was completed using R Studio v. 

0.99.892 (RStudio Team 2015) with the package “cooccur” (Veech 2013; Griffith et al. 2016) to 

determine positive, negative, and random (i.e. no significance) spatial co-occurrence distribution 

relationships between species, using the default settings of the package. We also kept the default 

threshold (thresh = TRUE), which removed any species pairs that do not share any sites; this removes 

species pairs that have insufficient co-occurrence information (Veech 2013). We performed species 

co-occurrence analyses using the DFO capture-based data and our eDNA-based data separately to 

determine if the same patterns of species co-occurrences were identified.  While we report all 

detected species co-occurrences, we focus on our target species. We performed the co-occurrence 

analyses for both sampled rivers at sites that were sampled using capture-based methods and e-DNA 

methods. 

 

Semi-Quantitative eDNA Analysis 

Additionally, eDNA detections for our four target species were visualized semi-quantitatively 

as the number of eDNA sequences for a target species at a specific site divided by the total number 

of eDNA sequences returned at the same site. This method illustrates the abundance of target 

species signal at a given site based on its concentration of eDNA sequences out of all eDNA 

sequences obtained at the site as a proportion. If a species occurs in high abundance in a particular 

area, samples collected in those areas should reflect a higher proportion of eDNA sequence returns 

for the species as a measure of relative signal strength. 
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Results 

Primer Design 

 Our group-specific primer PS1 was designed to have minimum mismatch for all species 

found in the Grand River and the Sydenham River. Figure 1 shows the level of forward and reverse 

primer mismatch, with 0 total mismatch for majority (68.3%) of the species, 24.4% had a mismatch 

in only one of the primers, and 8.5% mismatched in both primers. Only 9.8% of fishes had a 

mismatch within 5 bp of the 3’ end for either the forward or reverse primer, but there were no 

mismatches within 5 bp of the 3’ end for both primers for our four target species. PS1 amplified DNA 

for all four of our target species across the dilution series qRT-PCR test. Detection sensitivity 

plateaued at approximately 10
-5

 template dilution, which reflects the PS1 primer approximate 

detection limit (Figure 2).  

 

Next-Generation Sequence Data 

Our next-generation sequencing produced 6.5 million raw reads. A total of 2 430 736 reads 

were returned for 354 (170 Grand River and 184 Sydenham River) samples with an average of 7107 

sequences per sample (range = 1 to 50 607 reads/sample). After BLASTing against the custom fish 

COI sequence database, one out of seven river controls (site S20) was contaminated and returned a 

total of 5 sequence reads, all were RG; however, the corresponding lab control was negative for fish 

DNA (no PCR amplification). We thus concluded that field contamination was low, although we did 

remove the one site that returned 5 RG sequences from further analyses. None of the 354 lab 

control samples produced visible PCR amplification using our group-specific primers (PS1), indicative 

of low lab-based contamination level. 

After removing species or samples that returned < 3 eDNA sequences from further analysis 

(and removing sequences that did not match any of the fish sequences in our custom database), 954 

811 fish sequences were returned: 75.5% matched RG (721 267 sequences), 0.28% matched SS (2 

720 sequences), 0.22% matched ESD (2 079 sequences) and 0.18% matched NMT (1 683 sequences) 
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(Table 2). The remaining 23.8% sequence reads (227 062 sequences) matched 61 co-occurring native 

species (Supp. Table S2A and Supp. Table S2B). Grand River had a total of 344 725 returned eDNA 

sequence reads from 43 sites comprising 50 fish species from 50 bottom and 90 surface samples (8 

bottom and 18 surface samples removed). Sydenham River resulted in a total of 610 087 eDNA 

sequence reads from 43 sites comprising 54 fish species from 65 bottom and 101 surface samples (7 

bottom and 8 surface samples removed).  

RG was detected in 277 samples in total from both rivers (113 Grand River and 164 

Sydenham River samples); this corresponds to the majority of sampled sites. The number of RG 

eDNA sequence reads per site varied widely, with a mean of 1 842 eDNA sequences per sample in 

the Grand River (range = 3 to 13 729 reads/sample) and a mean of 3 128 sequences per sample in 

the Sydenham River (range = 4 to 25 734 reads/sample). RG was not found at one Sydenham River 

site (S28) and five Grand River sites (G15, G17, G18, G19, and G24; Fig 3). ESD were detected in four 

Grand River sites (5 samples total) with a mean of 192 sequences per sample (range = 59 to 485 

reads/sample), and four Sydenham River sites (4 samples total) with a mean of 280 sequences per 

sample (range = 184 to 489 reads/sample). SS was only detected in Grand River at three sites (G7, 

G10, and G40) with a mean of 701 eDNA sequences (range = 10 to 1 044 reads/site). NMT was 

detected in one Grand River site (G6) in a surface sample with 48 eDNA sequence matches. NMT was 

also detected at seven sites in Sydenham River (S4, S8, S14, S15, S21, S30, and S41) with a mean of 

281 sequences (range = 3 to 1 160 reads/site) (Fig. 3). Finally, ESD had higher sequence reads in 

surface samples than bottom samples, NMT had greater eDNA read count in surface samples, and SS 

had greater eDNA read count in bottom samples (Table 3). 

Community and Species Co-Occurrence 

All Grand River sample sites were dominated by cool, turbid water with slow flow (AEC = 

MTS (moderate, turbid, slow)). Sydenham River sample sites were also dominated by cool, turbid, 

slow water (AEC = MTS) in lower and upper East Sydenham River segments, and warm, turbid, slow-

flowing water in the North Sydenham River segment (AEC = LTS (low, turbid, slow); Fig. 3).  
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Overall, the eDNA method detected 82.6% and 62.5% of the species that capture-based 

methods detected in Grand River and the Sydenham River, respectively (Table 4). For all species 

detected using both methods, eDNA detected 86.2% and 72.0% of the total in the Grand River and 

the Sydenham River, respectively (Table 4).  

Species co-occurrence was analyzed using presence data from capture-based and eDNA and 

methods, producing results for positively co-occurring species pairs (occur together more often than 

expected, P < 0.05), negatively co-occurring species pairs (occur together less often than expected, P 

< 0.05), and randomly co-occurring species pairs (occurrences not different from that expected by 

chance, P > 0.05). Using presence/absence data from capture-based methods in the Grand River, our 

species co-occurrence analysis included 47 species across 29 sites (that were present in the eDNA 

sampling), producing 1 081 species pair combinations of which 710 (65.7%) were removed. Species 

pairs that were removed due to insufficient co-occurrence data. Co-occurrence analysis for the 

remaining 371 species pairs resulted in 13 positive, 11 negative, and 347 random species co-

occurrences (Fig.4A, Supp. Table S3A) in the Grand River, based on DFO capture-based data. In the 

Sydenham River, 56 species across 17 sites were analyzed producing 1 540 species pairs of which 

959 (62.3%) pairs were removed and 581 pairs were analyzed for species co-occurrence. There were 

49 positive, 7 negative, and 492 random species pairs (Fig.4A, Supp. Table S3B).  

For eDNA-based detection in the Grand River, a total of 1 225 species pairs were analyzed 

for 50 detected species across 43 sites. A total of 947 (77.3%) species pairs were removed and 278 

species pairs were analyzed further. There were 42 positive, 0 negative, and 236 random co-

occurrences (Fig. 4B, Supp. Table S3C). In the Sydenham River, 1 431 species pairs were analyzed for 

54 species across 43 sites, in which 1 137 (79.5%) were removed, and 294 species pairs remained for 

further analysis. There were 65 positive, 0 negative, and 229 random co-occurrences (Fig.4B, Supp. 

Table S3D). For NMT, ESD, and SS there were no significant negative or positive co-occurrences. RG 

had one positive co-occurrence with Common Carp (Cyprinus carpio) in the Grand River. 
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Semi-Quantitative eDNA Data 

 Figure 5 illustrates the proportion of eDNA NGS reads for each target species relative to the 

total number of fish-assigned NGS reads arranged from upstream to downstream sites. The three 

target SAR species had very low eDNA detection proportions (< 10%; Fig. 5A, Supp. Table S2B) across 

the majority of the sites where the species was detected, except for ESD in site G01 (30.9%) and 

NMT in site S21 (30.3%). In site G01, a total of 375 eDNA sequences were collected, 116 belonging to 

ESD and the remaining identified as RG and Brindled Madtom (Noturus miurus) (162 and 87 

sequences respectively). In Site S21, 3 712 eDNA sequences were obtained and 1 124 belonged to 

NMT and the remaining identified as Golden Redhorse (Moxostoma erythrurum) and RG (11 and 2 

577 sequences respectively). Downstream eDNA percent detection of RG in the Grand River reflects 

an oscillating pattern, whereas detection proportions in the Sydenham River increase when moving 

downstream (Fig. 5B, Supp. Table S2B).  

 

Discussion 

Detection of Species at Risk 

By using a PCR primer set designed to amplify a broad range of fish species, followed by 

metabarcoding using a custom sequence-database, we not only detected our species of interest, but 

we also gathered distributional data for the fish community that allowed species co-occurrence 

analysis. Across both watersheds, we detected 65 of 82 fishes known to inhabit the two rivers using 

eDNA and NGS analysis; these detections included all four of our target SAR and invasive species. We 

show that our combined eDNA/NGS approach with community-specific primers was able to provide 

information on the distribution of invasive, native, and rare species in flowing freshwater systems, 

and allowed us to make comparisons of habitat use and potential species interactions without the 

need to physically capture individuals. 

ESD was detected mainly in the lower East Sydenham River using capture-based methods, 

but we detected high eDNA sequence read numbers (> 100) farther upstream in the upper East 
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Sydenham River and in North Sydenham River. The eDNA-based distribution may be indicative of 

movement of individuals upstream or perhaps the discovery of new populations; however, it is not 

consistent with the hydrological flow of the eDNA signal and is thus unlikely an artifact. Capture-

based methods detected ESD in several sites throughout Grand River whereas eDNA detections were 

isolated to the upper Grand River. Lack of ESD eDNA detections downstream could also indicate that 

there are fewer individuals located downstream, resulting in weaker eDNA concentrations in 

downstream samples. Fewer individuals in a larger river system can also lead to rapid dilution of 

target eDNA. Since eDNA has the potential for downstream flow in lotic systems, eDNA signals can 

reflect DNA sources upstream from the site of detection (Thomsen & Willerslev 2015); however, 

there is no mechanism for downstream eDNA sources to be detected upstream. SS was detected 

only in Grand River using eDNA, and this distribution agrees with DFO capture data (DFO 2013).  

 

NMT was detected in Sydenham River and returned 48 eDNA sequence matches at one 

Grand River site (G6). In both cases, the eDNA detections do not agree with DFO capture records and 

historical reports of NMT presence. Although NMT have not been reported in the Sydenham River 

since 1975 (Edwards et al. 2012), the high number of eDNA sequence matches coupled with 

detection in at least four independent sites (Fig. 5A) suggests that there is a source of NMT eDNA in 

Sydenham River, perhaps missed by capture-based methods due to low abundance and cryptic 

behaviour (COSEWIC 2002). Furthermore, our eDNA sequences had a 96%-99% identity match to 

NMT COI sequences in our custom database, and 90-92% sequence match for Stonecat (Noturus 

flavus) or Brindled Madtom (Noturus miurus), the most closely related species that co-occurs with 

our target species. An alternative possibility is that we detected residual eDNA dating to their known 

presence in the 1970’s; however, such a long residence time for residual eDNA is highly unlikely 

(Thomsen et al. 2012; Balasingham et al. 2016), especially as we detected NMT eDNA in surface 

water samples. While the detection of NMT at one Grand River site was based on 48 recovered 

sequence reads, the fact that it was at a single upstream site indicates it is, at best, a signal of a very 
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few, isolated individuals. Although eDNA sample contamination is a possibility, lab controls for this 

region of the Grand River did not produce amplification for any fish species (although there was no 

river control taken at this specific site). Previous work has shown that eDNA has a higher detection 

sensitivity, especially for rare or cryptic species, than capture-based methods, and has extended the 

known range of a variety of species, including invertebrates (Tréguier et al. 2014), fishes (Janosik & 

Johnston 2015; Sigsgaard et al. 2015; Boothroyd et al. 2016) and amphibians (Pierson et al. 2016). 

For example, Sigsgaard et al. (2015) detected the European Weather Loach (Misgurnus fossilis) using 

eDNA at a site where it had not been detected by capture-based methods for 17 years. Pierson et al. 

(2016) found that eDNA had 20X the detection probability for Patch-Nosed Salamander (Urspelerpes 

brucei) than traditional leaf litterbag surveys. Janosik and Johnston (2015) showed that traditional 

seining and netting identified the rare Slackwater Darter (Etheostoma boschungi) in one out of 49 

sampled sites whereas eDNA identified it in 23 of the sites. Boothroyd et al. (2016) detected Spotted 

Gar (Lepisosteus oculatus) eDNA in Thames River where it had previously been thought to be 

extirpated for over 50 years. Hence, while our eDNA detection of SAR did not directly correspond to 

capture detections, the differences are likely attributable to the higher detection sensitivity of eDNA 

methods and the potential for target species movement between the time of the capture surveys 

and the water sampling. Overall, our results highlight the potential for eDNA to be used alongside 

capture-based methods, or as a stand-alone detection methodology for monitoring and mapping 

target SAR. 

 

Detection of Invasive Species 

The spread of aggressive invasive species such as the RG can cause detrimental changes to 

local habitat and negatively impact native biodiversity via competition and direct predation 

(Thompson & Simon 2014; Burkett & Jude 2015). Not surprisingly, a large portion (76.1%) of our 

eDNA sequence reads matched RG DNA, with detections in 93% of all sampled sites across both 

rivers. The RG is a known aggressive invader, with high-density capture-based detections in both the 
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Sydenham River and Grand River since its secondary invasion of Great Lakes tributaries (Poos et al. 

2010). eDNA analysis detected RG in nine Grand River and five Sydenham River sites where no 

individuals were captured using capture-based methods. The new Grand River RG sites were 

upstream of past RG captures sites, indicating that it had likely moved upstream from the time that 

capture-based methods were used to when eDNA sampling occurred, or possibly missed when in 

low abundance at the invasion front. The new Sydenham River sites were also upstream from past 

capture records, however two extra sites with RG eDNA detections were downstream of past 

capture data, hence downstream migration of RG eDNA may have contributed to those detections.  

 

Interestingly, sites in upper Grand and East Sydenham rivers had an overall higher number of 

detected fish species (≥ 10 species) including the three target SAR (Fig. 3), indicating that those areas 

may be localized hotspots for fish biodiversity. The use of appropriate, non-invasive management of 

RG to limit its numbers while maintaining the relatively higher biodiversity in the upper reaches of 

these two large Great Lakes tributaries should be considered. For example, RG pheromone traps 

designed to attract only RG would be ideal (Kornis et al. 2012; Smith 2014). Curiously, the few sites 

that did not produce positive RG eDNA detections had been sites where RG were captured 

previously. Thus, RG was present at those sites and the failure of our eDNA analysis to detect them is 

likely due to lower eDNA quality/quantity (or PCR inhibition) in those samples. This is supported by 

the overall low number of eDNA sequence reads for all other species at those sites (range = 1 to 136 

reads/species; Supp. Table S2A). The impact of false negatives using eDNA methods can be high 

when monitoring the spread of invasive species. However, in this study, eDNA had higher detection 

rates for the invasive RG relative to capture-based methods, and eDNA extended the RG range 

farther upstream in both rivers, as would be expected given that our sampling ranged from 1-3 years 

after the capture-based surveys, indicating potential movement of the invasion front upstream with 

few individuals contributing eDNA. At the sites where capture-based methods did not detect RG, RG 

were captured at neighbouring sites in low numbers. Our eDNA detection showed RG in all of those 
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sites, demonstrating that false negative detections occur using both capture-based and eDNA 

detection methods. Thus, the ideal approach to fish community characterization is a combination of 

both eDNA and capture-based methods, especially in critical early invasion monitoring. 

 

Species Co-Occurrence and Community Composition 

Co-occurrence data help to explain patterns in target species spatial distribution and 

potentially allows the identification of critical fish community interactions for SAR and invasive 

species. Capture-based methods identified statistically significant positive and negative co-

occurrences in both rivers, albeit many fewer species pairs were detected than with the eDNA 

methods (Fig. 4A). For example, using the capture presence data, Spotfin Shiner (Cyprinella 

spiloptera) negatively co-occurred with Channel Catfish (Ictalurus punctatus) in the Grand River, but 

showed no evidence of negative co-occurrence in the Sydenham River (Fig. 5A, Supp. Table S2C). 

Hence, while both species were found in these rivers, they were not detected together at individual 

sites. In the Sydenham River, both Channel Catfish and Spotfin Shiner were caught in sites in the 

lower and East Sydenham River where the water was warm, turbid, and slow moving (AEC = LTS), 

but the habitat utilized by these two species in the Grand River was of type MTS (cool, turbid, and 

slow flowing). The cooler water in the Grand River may be driving habitat differentiation between 

the Channel Catfish and Spotfin Shiner, as the Channel Catfish was found mostly in downstream sites 

where some tributaries have warmer water. Hence, despite habitat homogeneity being fairly high in 

both the Grand River and the Sydenham River, the few negative co-occurrences may represent 

highly divergent resource or habitat use between species pairs, potential resource competition, or 

differences in dispersal patterns.  

 

The majority of species co-occurrences detected using eDNA were as expected based on our 

knowledge of fish species interactions. Overall, our eDNA data identified statistically significant 

positive species co-occurrences in both rivers (Fig. 4B). Only the RG eDNA data showed one positive 
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co-occurrence with Common Carp in the Grand River, a species that is also fairly common 

throughout the river and was also observed to feed on dreissenids, the diet of RG (Ruetz III et al. 

2012).  

In the Grand River, all samples were collected at sites with high groundwater flow and fast 

channel flow with cool, turbid water (AEC = MTS), highlighting the relatively homogenous riverine 

habitat throughout our study area. This likely explains the lack of statistically significant negative co-

occurrences, since the habitat type was similar throughout the study area, increasing the likelihood 

that most significant co-occurrences are based on species preferring similar habitat resources. In the 

North Sydenham River segment, the study area was dominated by low groundwater flow and low 

channel flow with warm, turbid waters, whereas the lower and upper East Sydenham River 

segments were dominated by MTS stream types. The general lack of significant co-occurrences with 

our target SAR is likely due to their low sample size which limits the ability to detect significant 

spatial patterns with other co-occurring species. Similarly, no significant co-occurrences were found 

with our target invasive species as the RG was detected in virtually every sample site in both rivers 

and, thus, does not display any spatial limitations, or strong ecological interactions relative to other 

co-occurring species. This also highlights the broad range of habitats that are exploitable by the 

highly invasive RG. The greater number of significant negative species co-occurrences obtained using 

capture-based presence data is likely due to higher detection thresholds for capture-based 

techniques such that low-density species are missed (Shaw et al. 2016). Conversely, eDNA can settle, 

degrade, or migrate downstream which may result in biased species co-occurrence patterns, and the 

variation in eDNA detection rates among species due to varying rates of DNA release into the habitat 

may also affect fine-scale eDNA species distribution patterns (Davy et al. 2015). Additionally, the use 

of a group-specific primer may result in primer bias and poor amplification of low abundance species 

in certain sites. However, NGS read count in meta-barcoding studies is generally found to 

correspond linearly with target species DNA concentration. For example, Pereira et al. (2017) tested 

a universal primer targeting Legionella pneumophila V4 and V5 16S rRNA regions in spiked drinking 
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and nuclease-free water in 10-fold dilutions for comparative NGS analysis. The authors found NGS 

reads of eDNA mock communities (a mixture of six different Legionella sp. Including the spiked L. 

pneumophila) was quantitative of L. pneumophila abundance for each dilution with a strong 

correlation (R
2
 = 0.88 for nuclease-free water and R

2
 = 0.89 for drinking water). Diaz-Real et al. 

(2015) also used NGS and COI degenerate primers to measure abundance of two bird feather mites 

(Proctophyllodes clavatus and P. sylviae) in different abundance ratios and found that NGS read 

count increased linearly with individual species abundance in mock communities.  Nevertheless, we 

suggest that future eDNA studies should spike field-collected eDNA samples with all target species’ 

DNA and compare the PCR efficiency against replicates spiked with individual target species’ DNA to 

better visualize primer bias and amplification efficiency. We also suggest future studies incorporate 

multiple marker loci, as this approach has been shown to increase species detection sensitivity 

through reducing primer bias (Wilcox et al. 2013; Miya et al. 2015; Evans et al. 2016; Shaw et al. 

2016). 

 

eDNA Signal Strength 

NGS data provides a semi-quantitative metric for species abundance, thus we visualized our 

eDNA presence data for each species as semi-quantitative proportions of the total number of eDNA 

reads produced per site for each species (Fig. 5, Supp. Table S2B). This eDNA sequence read 

proportion metric provides a semi-quantitative measure of signal strength and can, thus, be used as 

a proxy for detection confidence (stronger signal indicates greater confidence) or, more indirectly, 

species abundance (Amend et al. 2010; Carew et al. 2013; Elbrecht & Leese 2015). For example, RG, 

which generally produced higher eDNA reads per site than other species, had similar eDNA 

proportions in neighbouring sites in both rivers, indicating that the eDNA semi-quantitative 

abundance data are consistent with the expected relationship between species abundance and 

favourable habitats. For the three SAR, eDNA proportions were generally less than 10%, which is 

expected as they are at very low densities and would contribute to little the eDNA in the water 
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collected samples. In the cases where SAR eDNA proportions were high (approximately 30%), those 

samples only included amplified DNA from three species, thus providing a greater chance for a high 

proportion of rare eDNA. 

Conclusion 

Overall, our eDNA-based species-detection approach identified at least 70% of the known 

species present in both the Grand and Sydenham rivers (86.4% and 72.4% respectively). 

Conservation and management programs require detailed information on the spatial distribution of 

SAR to facilitate the preservation of critical habitat or to develop spatially explicit management 

plans. In the past, the distribution of fish species was determined using the physical capture and 

identification of individuals, but those methods are logistically difficult, expensive, unintentionally 

harmful to target and co-occurring species, harmful to the ecosystem, and may exhibit low detection 

sensitivity for species that are rare, cryptic, or inhabit difficult to sample areas. Our study 

demonstrates that a one-time sampling effort for water from two very large Great Lakes tributaries 

can successfully detect the majority of the contemporary fish community, including SAR, which were 

detected in several sites not identified using capture-based methods. Moreover, our eDNA analysis 

also detected the invasive RG at sites not identified in the DFO capture-based fish inventory 

program. eDNA analysis coupled with NGS also provides the opportunity to passively assess 

community structure and, thus, determine important species co-occurrence or interactions, since 

eDNA samples contain template DNA from all species inhabiting the same environment. Community 

assessment identifies key species interactions and overall species distribution across sites. While 

eDNA community characterization has limitations, such data can be used to screen for critical 

habitat (e.g. biodiversity hotspots) and can, thus, focus management assessment in ways not 

possible based on presence data for individual target species. As eDNA methods continue to be 

refined, future studies should employ eDNA analysis and NGS together with capture-based methods, 

for large-scale monitoring of whole community structure and important interspecific relationships 

with critical target species.   
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Data Accessibility 
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Tables 
 
Table 1.  

Group-specific primer (PS1) set sequences developed in this study for the detection of rare, invasive, and 

common native fish species from environmental DNA. Associated average melting temperature (TM), and 

amplicon size (bp). Annealing temperature used for the primer set was 52
o
C. 

Primer Name Sequence 5’-3’ Fragment 
Size (bp) 

TM (oC) 

PS1-F 

PS1-R 

ACCTGCCTGCCGTATTTGGYGCYTGRGCCGGRATAGT 

ACGCCACCGAGCCARAARCTYATRTTRTTYATTCG 

247 85.0 

62.3 

Note: Uni-A tail attached to 5’ end of forward primers. Uni-B tail attached to 5’ end of reverse primers. 
 

 
Table 2.  
Summary of eDNA NGS data for primer PS1 for samples with ≥ 3 eDNA sequence matches to target fish species. 

In total, 170 Grand River samples (108 surface, 58 bottom, 4 river controls) from 43 sites and 184 Sydenham 

River samples (109 surface, 72 bottom, 3 river controls) from 43
a
 were analyzed. 

a
 total sites reduced to 43 

from 44 due to exclusion of site S20 because of possible DNA contamination. 

 Eastern Sand Darter 
(Ammocrypta  

pellucida) 

Silver Shiner 
(Notropis 

photogenis) 

Northern Madtom 
(Noturus 

stigmosus) 

Round Goby 
(Neogobius 

melanostomus) 

Grand River     

No. of eDNA sequences 961 2 720 48 208 167 

No. of Bottom Samples 1 3 0 43 

No. of Surface Samples 4 1 1 70 

No. Sites 4 3 1 38 

Sydenham River     

No. of eDNA sequences 1 118 0 1 635 513 100 

No. of Bottom Samples 2 0 4 65 

No. of Surface Samples 2 0 3 99 

No. Sites 4 0 7 42 
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Table 3.  
Number of eDNA sequences detected in bottom and surface samples for each target fish species at risk in 

detected sites.  

 

Northern Madtom Eastern Sand Darter Silver Shiner 

Sites Bottom Surface Sites Bottom Surface Sites Bottom Surface 

G6  48 G1  116 G7 1 700  

   G9  113 G10 1 011  

   G10  673 G40  9 

   G23 59     

Total 0 48 Total 59 902 Total 2 711 9 

S4 107  S4  206    

S8 14  S29  489    

S14  9 S39 184     

S15  3 S40 239     

S21  1 124       

S27 363        

S41 15        

Total 499 1 136 Total 423 695 Total 0 0 

 

 

Table 4.  

Comparison of the number of species detected (yes) and not detected (no) between eDNA and capture-based 

methods for the Grand River and the Sydenham River. The total number of species (82) is the sum of detected 

species using both methods across both rivers. 

Grand River  eDNA       Sydenham River  eDNA  

  Yes No Total   Yes No Total 

Capture-Based  

Methods 

Yes 38 8 46      Capture-Based 

     Methods 

Yes 35 21 56 

No 12 24 36 No 19 7 26 

 Total 50 32 82  Total 54 28 82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

Figures 
 

 
Figure 1. The number of PS1 primer mismatches (base pairs, bp) for forward primer (dark grey) and reverse primer (light grey) for the eDNA detected 

species. Black circles joined by the solid line indicate the total number of primer mismatches.  The ‘x’ above certain species indicate a primer mismatch for 
species within 5 bp of the 3’ end for either forward or reverse primer mismatch. N = 82 species detected from both eDNA and capture-based methods (out 

of 118 species in custom database).
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Figure 2. Sensitivity analysis of the group-specific COI PCR primer (PS1) designed to amplify Great 

Lakes fish species. The X-axis shows the 10-fold PCR template DNA dilution series used for qRT-PCR 

with PS1. Mean CT (± SEM) is shown for each dilution (qRT-PCR done in triplicate), including the no-

template-control shown as zero (box on Y-axis). Initial DNA template concentrations were 38.4 

ng·µL
-1

 for Round Goby, 35.4 ng·µL
-1

 for Silver Shiner, 46.4 ng·µL
-1

 for Eastern Sand Darter, and 30.0 

ng·µL
-1

 for Northern Madtom. Shaded region represents the plateau of the dilution curve and hence 

the limit of detection.  
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Figure 3. The spatial distribution based on the eDNA detection of three species at risk (Eastern Sand 

Darter (Ammocrypta pellucida), Northern Madtom (Noturus stigmosus), Silver Shiner (Notropis 

photogenis)) and the invasive Round Goby (Neogobius melanostomus) in Sydenham River (44 sites) 

and Grand River (43 sites) in southern Ontario. Stream class and characteristics are shown in colour 

shading of the rivers and follow AEC protocol (Melles et al. 2013). 
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Figure 4. Species co-occurrence matrix for significant co-occurrences (P < 0.05) for (A) capture-based 

methods and (B) eDNA. Positive interactions (dark grey squares) are species that co-occur more 

often than expected, and negative interactions (black squares) are species that co-occur less often 

than expected. All other species interactions are random co-occurrences (light grey squares and do 

not differ from random expectations (P > 0.05; see Supp. Tables S3A, S3B, S3C, and S3D for species 

co-occurrences values). * Indicates target species. 
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Figure 5. The percent total of eDNA next-generation sequences recovered from sites in the Grand 

River (G--) and the Sydenham River (S--) for target species. Panel (A) Species at Risk; Ammocrypta 

pellucida, Notropis photogenis, and Noturus stigmosus, and Panel (B) invasive Neogobius 

melanostomus in eDNA sample sites. Graphs display sites arranged from upstream to downstream.  
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Supplementary Information 
 
Supplementary Table S1. List of fish species used in creating the custom COI database. 

 
Supplementary Table S2A. Fish species currently or historically known to inhabit the Grand River 

and the Sydenham River (N = 82 species total) based on FishMaP. * Indicates specific target species 

in this study. Values given are the total number of eDNA sequences returned for the species at the 

sample site (G = Grand River, S = Sydenham River). Blank cells indicate no detection or number of 

eDNA sequences < 3. Site S20 removed due to eDNA contamination. 

 
Supplementary Table S2B. Fish species currently or historically known to inhabit the Grand River and the 

Sydenham River (N = 82 species total) based on FishMaP. * Indicates specific target species in this study. 

Values given are the proportion of eDNA sequences returned for the species at the sample site (G = Grand 

River, S = Sydenham River), calculated as the number of eDNA sequences for a species divided by the total 

number of eDNA sequences obtained for the sample site. Blank cells indicate no detection or number of 

eDNA sequences < 3. Site S20 removed due to eDNA contamination. 

 

Supplementary Table S2C. Fish species currently or historically known to inhabit the Grand River and the 

Sydenham River (N = 82 species total) based on FishMaP. * Indicates specific target species in this study. 

Values given are the number of live individuals caught at the sample site (G = Grand River, S = Sydenham 

River), using capture-based methods. Blank cells indicate no live individuals captured. Sites included overlap 

with eDNA sample sites. 

 

Supplementary Table S3A. Statistically significant species co-occurrences (24 pairs; P < 0.05) using 

presence/absence data for 47 species detected using capture-based methods for the Grand River (R Studio 

v.0.99.892, package "cooccur"). 
a
 is the probability that the species pair co-occurs less often than observed 

(negative co-occurrence) and 
b
 is the probability that the species pair is likely to co-occur more often than 

observed. Number of species pairs (N) analyzed was 371.  Nrandom = 347, Npositive = 13, and Nnegative = 11. 

 

Supplementary Table S3B. Statistically significant species co-occurrences (56 pairs; P < 0.05) using 

presence/absence data for 56 species detected using capture-based methods for the Sydenham 

River (R Studio v.0.99.892, package "cooccur"). 
a
 is the probability that the species pair co-occurs less 

often than observed (negative co-occurrence) and 
b
 is the probability that the species pair is likely to 

co-occur more often than observed. Number of species pairs (N) analyzed was 581.  Nrandom = 492, 

Npositive = 49, and Nnegative = 7. 

 

Supplementary Table S3C. Statistically significant species co-occurrences (42 pairs; P < 0.05) using 

presence/absence data for 50 species detected using eDNA for the Grand River (R Studio v.0.99.892, 

package "cooccur"). 
a
 is the probability that the species pair co-occurs less often than observed (negative 

co-occurrence) and 
b
 is the probability that the species pair is likely to co-occur more often than observed. 

Number of species pairs (N) analyzed was 278.  Nrandom = 236, Npositive = 42, and Nnegative = 0. 

 
Supplementary Table S3D. Statistically significant species co-occurrences (65 pairs; P < 0.05) using 

presence/absence data for 54 species detected using eDNA for the Sydenham River (R Studio v.0.99.892, 

package "cooccur"). 
a
 is the probability that the species pair co-occurs less often than observed (negative 

co-occurrence) and 
b
 is the probability that the species pair is likely to co-occur more often than observed. 

Number of species pairs (N) analyzed was 294.  Nrandom = 229, Npositive = 65, and Nnegative = 0. 
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