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Abstract: Large, infrequent fires (LIFs) can have substantial impacts on both ecosystems and the
economy. To better understand LIFs and to better predict the effects of human management and
climate change on their occurrence, we must first determine the factors that produce them. Here,
we review local and regional literature investigating the drivers of LIFs. The emerging conceptual
model proposes that ecosystems can be typified based on climatic conditions that determine both
fuel moisture and fuel amount. The concept distinguishes three ecosystem types: (1) biomass-rich,
rarely dry ecosystems where fuel moisture rather than fuel amount limits LIFs; (2) biomass-poor,
at least seasonally dry ecosystems where fuel amount rather than fuel moisture limits LIFs; and
(3) biomass-poor, rarely dry ecosystems where both fuel amount and fuel moisture limit the
occurrence of LIFs. Our main goal in this paper is to discuss the drivers of LIFs and the three
mentioned ecosystem types in a global context. Further, we will discuss the drivers that are not
included within the ‘fuels’ versus ‘climate’ discussion. Finally, we will address the question: what
kinds of additional information are needed if models predicting LIFs are to be coupled with global
climate models? As with all generalizations, there are local deviations and modifications due to pro-
cesses such as disturbance interaction or human impact. These processes tend to obscure the
general patterns of the occurrence of LIFs and are likely to cause much of the observed
controversy and confusion in the literature.
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I Introduction
Large, infrequent fires (LIFs) can have sub-
stantial impacts on both ecosystems and
the economy (Viegas, 1998). In Indonesia, for
example, fires burned 3.6 million ha of scrub
and forest in 1982-83, causing economic
losses of approximately US$9 billion (Kinnaird
and O’Brien, 1998). In 1998, catastrophic wild-
fires had an estimated impact of 600-800 mil-
lion US$ in northeastern Florida (Butry et al.,
2001). Such events have increased the aware-
ness of LIFs ‘becoming more comparable to
the risk from other natural perils’ (American
Re’s Geoscience Department, 2003: 31).

LIFs have effects on ecosystems that are
out of proportion to their short duration; the
imprint they leave is large in area and may
persist for a very long time (Turner and Dale,
1998; Viegas, 1998; White and Jentsch, 2001;
Figure 1). For example, in the tropical rain
forests LIFs may eliminate thousands of
species (eg, ground-dwelling organisms with
limited ranges); thus the extensive fires in
Brazil and Indonesia in the 1980s and 1990s
might be among the largest biological selection
events in modern history (Ginsberg, 1998;
Kinnaird and O’Brien, 1998). However, one
should be careful when equating LIFs with
ecological catastrophes. Following the 1988
Yellowstone fires, for example, plant cover
and composition recovered by natural pro-
cesses relatively quickly and no extirpations
occurred (Romme and Turner, 2004). Turner
et al. (2003) concluded that LIFs may play a
key role for population structure, genetics and
evolution of long-lived clonal plant species,
and are an important source of landscape het-
erogeneity. The need of fire, including LIFs, to
maintain the health of fire-adapted forests
was also emphasized by Moritz and Odion
(2004).

In spite of their ecological and economic
importance, the factors allowing for the forma-
tion of LIFs are not well understood (Turner

and Dale, 1998). The discussion on the precon-
ditions for large wildfires is especially contro-
versial in North America in the context of fire
suppression and fuel management (eg, Minnich
and Chou, 1997; Keeley et al., 1999; Keeley
and Fotheringham, 2001la; 2001b; Minnich,
2001; Moritz, 2003; Turneret al., 2003; Moritz
et al., 2004; Schoennagel et al., 2004,
Stephens and Ruth, 2005). This discussion is
based on two contrasting concepts. The first
(a) implies that fuel is crucial and that fire sup-
pression has led to an increase in fuel load and
continuity causing larger and more severe
fires. Therefore, prescribed burning and other
fuel manipulations are considered an ade-
quate tool in reducing fire risk. The second
concept (b) implies that fire suppression has
not had any effect on fire size because fire
weather (fuel moisture) is the critical factor
allowing for LIFs. Therefore, prescribed burn-
ing is not considered to reduce the risk of LIFs
and may even have negative ecological
impacts due to increased fire frequency in
ecosystems that normally experience infre-
quent fires. Concept (a) was developed based
on observations in open Pinus ponderosa
forests in SW USA (Mutchet al., 1993; Arno
etal., 1995; Covingtonetal., 1997; Fuléet al.,
1997) while concept (b) originates from obser-
vations in the subalpine forests of the Canadian
Rocky Mountains (Johnson and Wowchuk,
1993; Bessie and Johnson, 1995).

Motivated by concept (a), prescribed
burning has been applied uncritically to dif-
ferent ecosystem types in order to reduce
the risk of LIFs (Johnson et al., 2001; Keeley
and Fotheringham, 2001b). But recently
some authors have argued that a more dif-
ferentiated view is necessary for ecological
reasons, to be able to reduce the risk to life
and economic values and in order to limit the
large expense of prescribed burning (Gutsell
et al., 2001; Johnson et al., 2001; Keeley
and Fotheringham, 2001b; Veblen, 2003;
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Figure 1

Impact of a large, infrequent fire in Colorado. This photograph was

taken by Michael Menefee in 2003, one year after the Hayman fire. The Hayman
fire was caused by arson. It burned from 8 June till 2 July 2002, was the largest
wildfire (c. 558 km2) ever recorded in Colorado and cost approximately US$39.9
million to suppress. The photograph shows an area that got burned by high
intensity — virtually all trees were killed. However, even the largest fires do not
burn the whole area within their fire perimeter with high intensity but rather

in a mosaic pattern. Thus almost half of the area within the perimeter of the
Hayman fire either did not burn, or burned with low intensity

Source: Michael Menefee (2006).

Schoennagel et al., 2004). Thus, knowing the
relative importance of the factors that cause
LIFs is essential.

Numerous authors have investigated the
role of either fuel or climate for the formation
of large wildfires in ecosystems worldwide on
different spatial and temporal scales. These
studies describe two major systems: first,
biomass-rich, rarely dry ecosystems where

large, infrequent fires (LIFs) are limited by
climate and second, biomass-poor, at least sea-
sonally dry ecosystems where LIFs are limited
by fuels. However, these studies do not
attempt to place the respective systems in a
global framework. Our main goal in this paper
is to discuss the drivers of LIFs in a global
context and to present a global framework.
Further, we will discuss the drivers that are not
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included within the ‘fuels’ versus ‘climate’ dis-
cussion. Finally, we will address the question:
what kinds of additional information are
needed if models predicting LIFs are to be cou-
pled with global climate models?

| LIFs: definition

Following Turner et al. (1998) and Turner and
Dale (1998), we define large, infrequent fires
(LIFs) as fires exceptional in their large spatial
size (Figure 2) relative to the fires that usually

affect the respective ecosystem. These usu-
ally occur infrequently (Turneret al., 1998). In
addition, in our literature review we assumed
that both ‘years with large annual area
burned’ and ‘years of widespread fire’ are re-
lated to LIFs. Although they only represent a
small number of all fires, they usually account
for the largest part of annual area burned
(Védzquez and Moreno, 1995; Grau, 2001;
Skinner et al., 2002). Thus, years with a large
area burned generally represent years with

Figure 2 Large, infrequent fire in Arizona. The image shows the Rodeo fire (right)
and Chedinski fire (left) on 21 June 2002. The two fires, which were started by arson
by a lost hiker on 18 June, merged into a single large fire — the Rodeo-Chedinski Fire —
over the course of two weeks and were not controlled until 7 July 2002. The Rodeo-
Chedinski fire finally burned c. 1,890 km?, costing more than US$30 million before it
was contained. [t was the largest and most expensive fire in Arizona’s known history.
The image was taken from the Landsat Enhanced Thematic Mapper Plus (ETM+) on

21 June 2002
Source: NASA/USGS (2002).
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large fire events, as has been shown for north-
ern Patagonia, the United States (Kitzberger
et al., 2001), Canada (Stocks et al., 2002),
central Australia (Griffin et al., 1990), Spain
(Morenoetal., 1998), Portugal (Viegas, 1998)
and California (Moritz, 1997). By considering
both ‘years with large annual area burned’
and ‘years of widespread fire’, we acknowl-
edge that climate can synchronize fire events
on regional scales during one year (Veblen
et al., 2003); eg, the Sydney bush fire in
January 2002 (Reuters Ltd, 2002), or the 1997
fires in Indonesia (Kinnaird and O’Brien,
1998). Economically, regional synchronization
of fire is relevant because it stretches man-
agement resources thinly, and because current
fire fighting technology cannot cope success-
fully with multiple fire events (Fernandes
and Botelho, 2003). The term ‘wildfire’ or ‘fire’
refers to uncontrolled fires. These often occur
in wildland areas but can also consume build-
ings or agricultural resources. They can be
natural or human induced.

In this review, we have not distinguished
LIFs by fire intensity, although to burn as an
LIF fires must achieve intensities sufficient for
self-propagation of the fire across some vari-
ability in fuel or environmental conditions. For
instance, in the ponderosa pine forests of
southwestern North America, original struc-
tures under frequent fire regimes were savan-
nas with abundant ground-level fine fuels
(Covington, 2000). With fire suppression and
succession, ingrowth in the understorey pro-
duces ‘ladder fuels’ which can carry fire into
the canopy. In theory, both structures can
support LIFs, but the savanna structure pro-
duces a lower-intensity fire than a stand with
dense understorey trees. The latter had
greater ecological impact.

Il The emerging conceptual model

for LIFs

The first and coarsest scale factors that con-
trol LIFs are ‘climate’ (sometimes referred to
as a ‘top-down’ factor for the control of fire)
and ‘fuel’ (sometimes referred to as a ‘bottom-
up’ control because ecosystem conditions are

paramount). We suggest that ‘climate’ and
‘fuel” are the endpoints of a gradient that is
determined by long-term (decadal) climatic
conditions. Further, for clarity, this discussion
should be viewed as ‘fuel moisture’ (rather
than climate) versus ‘fuel amount’ because
both fuel amount and fuel moisture are out-
comes of climatic conditions.

Long-term climate influences both fuel
amount and fuel moisture in an ecosystem
(eg, Bond and van Wilgen, 1996; Grau and
Veblen, 2000). It influences the amount of
fuel (biomass) in ecosystems by influencing
primary productivity and decomposition, as
is obvious when considering the global distri-
bution of biomass (Chapin et al., 2002).
Long-term climate at a specific location also
implies a characteristic frequency, extent and
duration of fire weather and short-term (ie,
seasonal to annual) climatic conditions, eg,
drought or large-scale atmospheric circula-
tion anomalies, such as the El Nifio Southern
Oscillation (ENSQO). These mainly influence
fuel by lowering the fuel moisture content,
generally through increased temperature, low
precipitation, wind and/or low relative humid-
ity. Thus, long-term climate is the super-
ordinate mechanism determining whether (1)
fuel moisture, (2) fuel amount, or (3) the
interaction of both limits extreme fire events.
We therefore use this as the basis of our first
approximation of a general conceptual model:
that climatic patterns produce the observed
gradient in the importance of fuel moisture
versus fuel amount in the occurrence of LIFs.
This model has been developed in the North
American literature by Swetnam and Baisan
(1996), Johnson et al. (2001), Schoennagel
et al. (2004) and Gedalof'et al. (2005).

Using this conceptual model, an arbitrary
number of ecosystem types can be described
along the gradient. However, in order to keep
things simple we propose three types of
ecosystems prone to LIFs (Figure 3), two of
which (I and 2 below) represent the extremes
of the fuel moisture-fuel amount discussion
from North America and one of which is new.
These three types are: (I) biomass-rich,
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rarely dry ecosystems where fuel moisture
rather than fuel amount limits LIFs; (2)
biomass-poor, at least seasonally dry ecosys-
tems, in which fuel amount, rather than fuel
moisture limits LIFs; and (3) biomass-poor,
rarely dry ecosystems, in which both fuel
amount and fuel moisture are limiting, and
LIFs occur in dry years following wet years
with increased organic matter production.
The ends of the fuel moisture—fuel amount
gradient can also be used to describe the
two extremes in which LIFs do not occur:
biomass-rich, never dry ecosystems, in which
fuels are never dry enough to burn (the

Biomass rich,
never dry
a SCOsystems

Limit of LIFs

(1)
Biomass rich,
rarely dry ecosystems

high

Biomass rich,
always dry ecosystems
do not occur.

Limitation of LIFs by fuel moisture

rarely dry ecosystems

at least seasonally dry

wettest rain forests) and biomass-poor,
always dry ecosystems, in which fuel is never
continuous enough to carry a fire (sparse
deserts).

In terrestrial ecosystems, certain combi-
nations of fuel amount and fuel moisture
never occur (Figure 3). Places that have
abundant and continuous fuels cannot be
‘always dry’ because such dry conditions, in
the extreme, would prevent biomass accu-
mulation. Similarly, places that have sparse
and non-continuous fuels cannot be ‘never
dry’ because wet conditions would allow bio-
mass to become continuous and abundant

Biomass poor,
never dry ecosystems
do not occur.

s e

©)

Biomass poor,

ecosystems

)

Biomass poor, Biomass poor,

always dry

ecosystems ecosystems

low

Figure 3

Limitation of LIFs by fuel amount

1?"""""-'-'-""'-"-'-“_'-'-'-‘-‘—‘

high

Schematic representation of how the relative importance of fuel moisture

and fuel amount for the formation of large infrequent wildfires (LIFs) as determined by
long-term climate varies depending on the type of ecosystem considered. The three
circled ecosystem types are those that support LIFs (fires may occur outside the limits
of LIFs but do not become LIFs in these ecosystems if their conditions remain con-
stant). These three types are discussed more fully in the text and reviewed in Table 1
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(though some deep sands and certain bedrocks
may limit biomass production regardless of
moisture availability). We also note that the
combinations that lie outside the LIF box may,
in fact, sometimes experience fire; it is just
that these fires do not become LIFs (see Stott,
2000, and Ryan, 2002, for a general treat-
ment of the fuel and environmental condi-
tions for fire, of which the conditions for LIFs
are a subset). Within the distribution of LIFs,
conditions vary between three extremes:

(1) Biomass-rich, rarely dry ecosystems (due
to long-term climate) in which fuel mois-
ture rather than fuel amount limits LIFs.
Here, the occurrence of an extreme
drought or extreme fire weather (eg,
strong dry and hot winds) is sufficient to
allow LIFs to occur. Examples of this
ecosystem type are temperate rain
forests, subalpine forests, boreal forests
and tropical rain forests (Table 1).
Although in these ecosystems fuel struc-
ture and distribution might play a major
role for fire behaviour under fire weather
conditions that are not extreme, variation
in fuel is relatively unimportant for the
formation of LIFs as compared to fuel
moisture.

(2) Biomass-poor, at least seasonally dry
ecosystems, in which fuel amount rather
than fuel moisture is limiting LIFs. This
ecosystem type is generally situated in
dry climatic regions, where fuel is either
limited through low primary productivity
or due to a combination of relatively low
primary productivity and frequent small
fires (eg, dry and fertile savannas, forest-
steppe ecotones; Table 1). Fuel moisture
usually is not a critical factor because,
even during years of normal weather,
fuels are thoroughly desiccated during the
dry season.

(3) Biomass-poor, rarely dry ecosystems
(due to long-term climate) where both
fuel amount and fuel moisture limit the
occurrence of LIFs. This type of biomass-
poor ecosystem is often situated in cli-
matic regions where fuels are not dry and

continuous enough for the occurrence of
LIFs in average years (eg, Austrocedrus
woodlands, high-elevation Pinus aristata
forests). Here, LIFs can occur only when
dry years follow years of above-average
moisture availability and thus increased
primary productivity (Table 1).
On a secondary level, the three ecosystem
types where LIFs occur can be modified
through human impact or disturbance inter-
actions. In our opinion, this has caused much
confusion and has so far prevented the devel-
opment of a general concept at global scales.
This is especially the case for ecosystem
types one and two, eg, fragmentation and
windthrow in biomass-rich, rarely dry ecosys-
tems (type one) can create suitable condi-
tions for a subsequent large, infrequent fire by
indirectly lowering fuel moisture content over
large areas.

Not all factors that control LIFs can be
subsumed in the categories used in the first
approximation conceptual model (‘fuel amo-
unt’ and ‘fuel moisture’). A fuller model must
include microclimate, fuel characteristics, and
variability (including seasonality and inter-
annual variation) in climate. For example,
Swetnam and Baisan (1996) suggest that ‘a
combination of micro-environmental and fuel
characteristics’ is decisive for the contribution
of fuel versus climate to LIFs in the low eleva-
tion Pinus ponderosa dominated forests to
higher-elevation mixed conifer forests in the
southwestern United States (Arizona, New
Mexico, Texas and Sonora Mexico). Similarly,
Schoennagel et al. (2004) point out that in the
low-elevation Pinus ponderosa dominated
forests to subalpine forests across the Rocky
Mountains fuel characteristics determine
whether climate or fuels play the key role. In
addition, they point to the role of fire weather
frequency (Schoennagel et al., 2004). The role
of ecological characteristics of forests (eg, fuel
structure and microclimate) in modifying the
impact of climate is also proposed by Gedalof
et al. (2005) for the dry to mesic forests in the
American Northwest (Washington, Oregon
and Idaho). Concerning the relative importance
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Table 2 Examples of how climate can influence fuel moisture and thus fire (various

timescales)

Fire parameter and related climate parameter

Study area

Authors

Annual timescale

Annual area burned from 1905 to 1990 varied with an index
of the intensity of the Southern Oscillation (SOI);
see also Figure 4

Annual area burned fluctuates significantly from year to
year, primarily driven by the frequency and geographical

extent of extreme fire weather/danger conditions

Direct association between extreme warm and cold phases
of ENSO and fire danger; relationship being
strongest in southeast and central Australia

Large numbers of monthly acres burned in January
through May are related to periods of below mean sea
surface temperature (SST) in the central and eastern

Pacific (El Nifia conditions) causing below-average

precipitation in Florida

15 of the 17 largest fire years (1940-98) occurred
during or just after El Nifio episodes due to slightly
warmer but significantly drier winter conditions in the
Alaska interior and increased lightning activity in summer

Large Sydney wildfires of January 2004 occurred after a very
dry year 1993, and in association with strong, dry winds

Link between circulation anomalies in the mid-troposphere
and large-fire years

Seasonal and shorter timescales

Association between extreme fire danger and dry, turbulent
winds or foehn type winds such as the ‘Mistral’ in Southern
France and the “Tramontana’ in Northern Italy

Association between extreme fire hazard and extremely
warm, dry easterly coastal ‘foehn’ and ‘chinook’ winds

Years with persistent high-pressure systems exhibited
larger fires, higher fire intensities and rates of spread
than other years due to above-average temperature and
below-average precipitation allowing for extreme fuel
drying

Most large fires occurred in years with an increased number
of days with extreme fire weather conditions

Large-fire events correspond with seasonal climate patterns
at regional scales

Association between synoptic-scale weather patterns
and extreme fire weather situations

American Southwest

Canada

Australia

Florida

Alaska

Sydney region,
Australia

Canada, American
Northwest (Oregon,
Washington, Idaho)

Mediterranean
region

American Northwest

Subalpine forests of
the Rocky Mts

Subalpine forests of
the Rocky Mts

Northern and
Southern Rocky
Mts, USA

Northern Territory
of Australia

Swetnam and
Betancourt
(1990)

Stocks et al.
(2001)

Williams and
Karoly
(1999)

Brenner (1991)

Hess et al.

(2001)

Speer et al.
(1996)

Skinner et al.
(1999; 2002);

Gedalof'et al.
(2005)

Viegas (1998)

Gedalof'et al.
(2005)

Johnson and
Wowchuk
(1993)

Bessie and
Johnson
(1995)

Rollins et al.
(2001)

Tapper et al.
(1993)
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of climate versus fuel for LIFs in the boreal
and subalpine forests in North America,
Johnson et al. (2001) highlight the strength of
variation in those two parameters as being
decisive. They suggest that weather variation
among fire seasons is more decisive than fuel
variation with stand age because fuel moisture
varies more widely than fuel load (Johnson et
al., 2001). One of the attractions of the emerg-
ing general conceptual model is the potential
for the variables, both derived from climate, to
be coupled with climate change models in
order to predict changes in the incidence of
LIFs. Throughout our review we will discuss
additional kinds of information that are
needed if we are to predict LIFs from climate
change models. After having introduced the
three ecosystem types in which LIFs occur,
we now review scientific evidence promoting
the model with a special emphasis on adding
international examples to the general frame-
work emerging in North America.

| Ecosystem type I: fuel moisture as the
limiting factor for large, infrequent fires

(LIFs) in biomass-rich ecosystems

In biomass-rich ecosystems fuel amount is
usually not limiting LIFs. Additionally, short-
term climatic conditions favourable for
burning (eg, prolonged droughts or extreme
fire weather conditions) only occur rarely.
Thus, in these ecosystems, fuel moisture is
limiting LIFs. This has been shown by many
studies investigating fire—short-term climate
relationships in various ecosystems and

100

regions of the world (see Tables | and 2;
Figure 4).

Climate anomalies such as El Nifio and
associated prolonged droughts can allow for
LIFs even in the humid tropics (Goldammer,
1993; Ginsberg, 1998; Nepstad et al., 1999;
Stott, 2000). This is hypothesized to have
been the case several times during the past
6000 years in the Upper Rio Negro region,
Amazonia (Sanford et al., 1985; Meggars,
1994), and during the past 2200 years in
Guiana (Hammond and ter Steege, 1998).

A link between circulation anomalies in the
mid-troposphere and large-fire years has been
proposed for subalpine forests of the southern
Canadian Rocky Mountains (Johnson and
Wowchuk, 1993). Years with persistent high-
pressure systems exhibited larger fires, higher
fire intensities and rates of spread than other
years due to above-average temperatures and
below-average precipitation, allowing for
extreme fuel drying (Johnson and Wowchuk,
1993).

On a secondary level, the long-term cli-
matic effect on fuel moisture in biomass-rich
ecosystems can be modified and sometimes
even overridden through disturbance interac-
tion. The interaction of various types of dis-
turbances such as fragmentation, insect pests,
windthrow and frost can create suitable con-
ditions for a subsequent large, infrequent fire
by indirectly lowering fuel moisture content
over large areas. In biomass-rich ecosystems,
fire risk and size can be increased by fragmen-
tation, as has been shown for tropical rain

4 La Nina
<> El Nino

-
o
™

Acres Burned
=
(=]
-

1920 1930 1940 1950 1960 1970 1980 1990 2000

Figure 4 Relationship between El Nifio and La Nifia events and area burned in all
federal state and private lands in Arizona and New Mexico (1905-94). Note the

logarithmic scale on the y-axis
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forests in the Amazon basin (Cochrane, 2001;
Cochrane and Laurance, 2002). Here, frag-
mentation changes the understorey humidity
of a stand by increasing wind speed and the
amount of direct sunlight on the forest floor,
allowing for the heating and desiccation of
surface fuels (Nepstad et al., 1998). Likewise
selective logging over large areas predisposes
tropical rain forest to large forest fires (Uhl and
Buschbacher, 1985; Ginsberg, 1998; Nepstad
etal., 1998; Cochrane et al., 1999; Stott, 2000).
Insect-caused tree mortality can increase the
likelihood and severity of subsequent forest fire
(McCullough et al., 1998; Fleming et al., 2002;
Hummel and Agee, 2003). This has been dis-
cussed for subalpine (Baker and Veblen, 1990),
subboreal (McCullough, 2000) and boreal
forests (Fleming et al. 2002) in Northern
America. Frosts in non-adapted ecosystems,
eg, in the cerrado (savannas) of Brazil (Cou-
tinho, 1990) or large-scale windthrow through
hurricanes (Myers and van Lear, 1998), can
increase the fuel availability by killing living
plant biomass. Following Hurricane Hugo in
South Carolina in 1989, the risk of uncontrol-
lable, catastrophic wildfires was quickly rec-
ognized (Haymond et al., 1996).

To sum up, long-term climate is the super-
ordinate mechanism of action determining
that LIFs in biomass-rich, rarely dry ecosys-
tems are usually limited by fuel moisture and
thus only occur under extreme fire weather.
However, on a secondary level, disturbance
interaction may allow for LIFs under less
extreme fire weather by lowering the fuel
moisture content.

2 Ecosystem type 2: fuel amount as the
limiting factor for large, infrequent fires (LIFs)
in biomass-poor and at least seasonally dry
ecosystems

Fires, which spread contagiously through a
landscape, are critically dependent on the
nature of the ecosystems through which they
spread (Minnich, 1983; Walker, 1985; Turner
etal., 1989). In biomass-poor, at least season-
ally dry ecosystems, LIFs are usually con-
strained by the amount and continuity of fuels
rather than by fuel moisture status, because

even during years of normal weather, fuels
are well desiccated during the dry season
(Kitzberger et al., 1997; Veblen et al., 1999).
In this ecosystem type, fuel is limited either
through low primary productivity or due
to a combination of relatively low primary
productivity and frequent small fires or
removal of fuels through other disturbances
such as grazing.

The relevance of fuel bed continuity and
fuel amount for fire size has been observed in
semi-arid Pinus ponderosa forests and Pifion-
Oak juniper woodlands (Pinus edulus Engelm-
ann, Juniperus deppeana Steud., J. monosperma
Engelmann, and Quercus spp.) of the south-
western United States (Rollins et al., 2002)
and the Sonoran Desert (Rogers and Vint,
1987). This has also been reported from
anthropogenically modified landscapes such
as the longleaf pine savannas of the south-
eastern United States (Frost, 1993) and the
savannas of South Africa (Manry and Knight,
1986), where habitat fragmentation has pro-
duced smaller fire compartment sizes. For a
discussion of the relevance of fuel continuity
for fire propagation in the context of pre-
scribed burning, see Fernandes and Botelho
(2003).

An increase in biomass due to above-
average moisture availability in the season or
years preceding LIFs has been found to be a
usual prerequisite for LIFs in dry savannas of
Africa (Frost, 1985), xeric Austrocedrus wood-
lands (Kitzberger et al., 1997) and grasslands
(Veblenet al., 1999) of northern Patagonia, as
well as grasslands in the Intermountain West
USA (Knapp, 1998), and grasslands and coastal
sage scrub in Southern and Baja California
(Minnich, 1983; see Table 1).

The influence of disturbance interaction or
human impact on fuel amount can become a
crucial factor under the general conditions of
biomass limitation in at least seasonally dry eco-
systems. Evidence for fuel effects in biomass-
poor ecosystems includes: (1) fire suppression
enhancing fuel buildup and fuel continuity; (2)
prescribed burning removing fuel and fuel
continuity; (3) land-use history and past dis-
turbances affecting fuel amount and continuity;
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Table 3 Examples illustrating the modification of the amount of biomass in an
ecosystem through disturbance interaction and/or human impact

Ecosystem type or region

Authors

Increase in fuel amount due to fire suppression

Pinus ponderosa forests Effective fire suppression
of western North has led to unprecedented
America increases in stand densities

and fuel accumulations

Fire protected areas of the Effective fire suppression has
cerrado (savannas) led to unprecedented
of Brazil increases in stand densities

and fuel accumulations

Increase in fuel continuity and/or load due to changes in land use,

land-use history and past disturbances
Around Patagonian coastal Abandonment of ranches and

cities associated lack of grazing has

permitted recovery of

vegetation and accumulation

of fine and medium-sized

dead fuels

Ecosystems where herbaceous Removal of herbivores has
material represents the major led to increased fuel loads
part of the fuel load; eg, a) arid and thus to increased
savannas, b) floodplains of’ burning and larger fire sizes
Kakadu National Park in
monsoonal northern Australia

Large parts of the montane zone Today’s forest structure
of the Colorado Front Range (extensive, roughly similar

aged post fire stands) is the
legacy of widespread,
stand-replacing fire in the
mid-nineteenth century due
to both Euro-American
settlement and increased
climatic variability
Nothofagus-Austrocedrus forests Extensive burning of mesic
in Northern Patagonia forests in the 1890s to
1920s resulted in vast
areas of even-aged stands
Central Spain Tendency of fires to
homogenize landscapes
even when burning different
vegetation types

Mutch et al. (1993);
Covington and Moore
(1994); Arno et al. (1995);
Swetnam and Baisan
(1996); Covington et al
(1997); Fulé et al. (1997);
Keeley and Fotheringham
(2001b); Fernandes and
Botelho (2003)

Mistry (1998)

Dentoni et al. (2001)

a) Walker (1985); van Wilgen
and Scholes (1997)

b) Russell-Smith et al.
(1997)

Hadley and Veblen (1993);
Veblen et al. (2000)

Veblen et al. (1999)

Pérez et al. (2003)
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and (4) fuel removal through disturbance
interaction, for example through avalanches
or grazing. These arguments associate the
occurrence of LIFs with temporal fuel suc-
cession and accumulation in relation to fire
return period, or with spatial fuel continuity in
relation to fire spread.

In some ecosystems, humans have length-
ened fire-free intervals by suppressing natural
fires to protect resources and human lives.
This may alter fuel conditions and can lead to
increased fire intensity and fire spread due
to reduced landscape heterogeneity and
increased fuel loads (Agee, 1993; Covington
and Moore, 1994; Mistry, 1998; Covington,
2000; Keeley and Fotheringham, 2001b; see
Table 3), as has been observed mainly in eco-
systems that formerly were characterized by
frequent surface fires such as the Pinus pon-
derosa forests in the southwestern USA,
northwestern Durango, Mexico (Fulé et al.,
1997), the forest-grassland ecotones in the
Patagonian Austrocedrus woodlands-steppe
(Veblen et al., 1992), the ponderosa-pine-
forest-grassland boundary in the Colorado
Front Range, USA (Mastet al., 1997), and the
cerrado (savannas) of Brazil (Mistry, 1998).

As opposed to fire exclusion, prescribed
burning has been shown to be an effective tool
to prevent the occurrence of large wildfires by
limiting fuel buildup in some ecosystems, such
as in the cerrado (savannas) of Brazil (Mistry,
1998), in the African savannas (Walker, 1985),
in the open forest/woodland type of monso-
onal northern Australia (Russell-Smith et al.,
1997), and in mixed-conifer ecosystems of
Yosemite National Park (Stephens, 1998) and
the Sierra Nevada of California (van Wagten-
donk, 1996). However, the duration of the eff-
ect of prescribed burning on the probability of
large wildfires depends among others on the
intensity and spatial configuration of the pre-
scribed burn, the fuel type and on the primary
production of the ecosystem influencing the
fuel reaccumulation rate (Minnich, 1998;
Fernandes and Botelho, 2003).

Land-use history and the history of past
disturbances can alter the frequency and

magnitude of current disturbances (Baker,
1995; White and Jentsch, 2001) by influenc-
ing vegetation structure, and thus fuel conti-
nuity and fuel load (see Table 3). For example,
in the northern Mediterranean Basin, ‘under-
utilization of species’ due to rural depopulation
led to an increase of insect pests due to vast
areas of even-aged stands and the accumula-
tion of litter, thus allowing for large wildfires
(Barberoet al., 1990). In the spinifex grasslands
of central Australia, the cessation of traditional
aboriginal burning practices, which formerly
increased landscape heterogeneity and
reduced fuel loads, has allowed for the occur-
rence of LIFs (Allan and Baker, 1990; Griffin
et al., 1990). In other ecosystems, extensive
burning during certain historical periods has
left a legacy of dense, even-aged stands over
large areas that today represent a hazardous
fuel source increasing the potential for cata-
strophic fires (Veblen et al., 2000; see Table 3).

Disturbance interaction can mean that one
disturbance delays or limits another due to fuel
removal. In the Colorado Rocky Mountains,
Veblen and others found that in subalpine
forests avalanche scars limited fire size by
restricting fire spread (Veblen et al., 1994). In
Wyoming, Romme (1982; see also Romme
and Knight, 1981; Romme and Despain, 1989)
showed that high-intensity fires were spaced
by centuries because they burn fuels that take
centuries to reaccumulate.

In some ecosystems, grazing reduces fuel
and thus fire spread and size. For example, this
has been reported for herbivore consumption
in the arid and fertile savanna systems of
southern Africa (Walker, 1985; van Wilgen
and Scholes, 1997) as well as for livestock graz-
ing in the coastal sage scrub vegetation of Baja
California (Minnich, 1998) and for dry pine-
oak forests and grasslands in Durango, Mexico
(Fulé and Covington, 1999).

To sum up, long-term climate is the super-
ordinate mechanism of action determining
that in biomass-poor, at least seasonally dry
ecosystems LIFs are usually limited by fuel
amount. Therefore, secondary processes such
as human impact and disturbance interaction
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may lead to LIFs due to fuel buildup and fuel
continuity.

3 Ecosystem type 3: fuel amount and fuel
moisture as limiting factors for large,
infrequent fires (LIFs) in biomass-poor,

rarely dry ecosystems

In some ecosystems only a combination of
short-term climatic impacts on fuel amount
and fuel moisture over periods of several
years allows for the occurrence of LIFs (Table 1;
see, for example, Veblenet al., 1999; Donnegan
et al., 2001). This is the case in biomass-poor
ecosystems, where average years are not dry
enough to allow for large wildfires (Table 1).
Both fuel and climate limit LIFs in these
ecosystems.

Examples are high-elevation Pinus aristata
forests and low-elevation Pinus ponderosa
forests in central Colorado (Donnegan et al.,
2001), the northern Colorado Front Range
(Veblen et al., 2000) and southwestern USA
(Arizona, Texas, New Mexico, Sonora Mexico;
Swetnam and Baisan, 1996). Other evidence
comes from Mediterranean-type ecosystems
in Portugal where Viegas (1998) found that
the total annual area burned increases with
the amount of precipitation in the winter
—spring season (up to a certain threshold) and
is associated with extreme meteorological
conditions. Similar findings are reported from
the eastern Iberian Peninsula (Mediterranean
Basin), where the areas burned were higher
two years after summers of above-average
rainfall and in dry summers (Pausas, 2004).

In the literature, we have not found any
examples for processes such as human impact
or disturbance interaction modifying the long-
term climatic effect on both fuel amount and
fuel moisture in ecosystems. However, one
can imagine that these secondary processes
could modify either fuel amount or fuel mois-
ture in this ecosystem type as well.

Il Discussion

We have proposed a simple conceptual model
for LIFs in which climate patterns underlie the
gradient from fuel moisture control to fuel

amount control. We now elaborate on several
complexities in the application of this model.

One potential problem occurs when the
relative importance of fuel amount versus fuel
moisture varies on multiple timescales. For
example, fuel moisture may become unusu-
ally important in biomass-poor, at least sea-
sonally dry ecosystems, when a series of wet
years causes unusually high biomass produc-
tion (Kitzberger et al., 2001). Decadal to even
longer-term variation can be related to ENSO
events or other long-term atmospheric circu-
lation features (Villalba, 1994; Veblen et al.,
1999; Daniels and Veblen, 2000; Hess et al.,
2001; Kitzberger et al., 2001). And long-term
temperature shifts on decadal- to centennial
timescales can change the biomass status of
an ecosystem, as has been reported for giant
Sequioa groves in the southwestern USA
(Swetnam, 1993).

Other uncertainties are introduced in the
spatial domain, when local conditions override
or modify regional climate controls (Swetnam,
1993; Heyerdahl et al., 2002; Gedalof et al.,
2005). Factors such as topography may interact
with fuel and fire weather and thus may change
their relative importance. In areas with very
steep climatic gradients, such as in
Mediterranean regions (Bond et al., 2005), fun-
damentally different systems can be found in
close neighbourhood. In such areas, studies with
different spatial resolutions (scale effects) or dif-
ferent locations (zoning effects: Openshaw and
Taylor, 1979) may come to contradictory results
(Minnich, 1983; Viegas and Viegas, 1994; Davis
and Michaelsen, 1995; Moritz, 1997; Viegas,
1998; Keeley et al., 1999; Keeley and
Fotheringham, 2001a; Minnich, 2001; Moritz et
al., 2004; Pausas, 2004; see Table 1).

A third factor that may obscure the relative
importance of fuel moisture versus fuel
amount is anthropogenic ignition. In some
regions, such as today’s subtropical and tropi-
cal savannas of Africa or tropical forests of
India, fire size mostly depends on human
manipulation (van Wilgen and Scholes, 1997;
Stott 2000; van Wilgen et al., 2000). In some
studies, direct ignition has even been
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considered as one of the major drivers for fire
regimes (eg, for the Iberian Peninsula —
Venevsky et al., 2002; or many Mediterranean
countries — Moreno et al., 1998).

Fourth, the conceptual model only consid-
ers fuel moisture and fuel amount in an ecosys-
tem as determined by long-term climate and
does not consider variation in fuel structure,
distribution or flammability. For example, this
model does not take into account live—dead
fuel ratios, large—fine fuel ratios or annual-total
biomass ratios as Minnich (1998) does in his
more detailed conceptual model for southern
Californian chaparral, shrub and grasslands.
The model also neglected variations of flam-
mability of fuel — a parameter the importance
of which has been pointed out to need further
investigation by Venevsky et al. (2002) and
Bond et al. (2005). In many ecosystems (eg,
ponderosa pine under fire suppression), accu-
mulation of fuel is accompanied by a radical
change in fuel structure (Covington and
Moore, 1994). With the development of so-
called ‘ladder fuels’ (understorey trees in for-
merly savanna-like forests with abundant fine
fuels along the forest floor), fires can carry into
the flammable forest canopy.

Finally, we note that LIFs can reach inten-
sities that cause fuels to dry quickly (Stott,
2000; Ryan, 2002). Thus, one way an LIF
propagates is by influencing fuel moisture. A
fire that begins under conditions suitable for
an LIF in one location, can burn across stands
that vary considerably in fuel amount and
fuel moisture after it has reached a critical
intensity (Johnson et al., 2001). Patterns of
wind and weather can underlie the conver-
sion of'a non-LIF fire to an LIF (Ryan, 2002).

Nonetheless, reducing parameters influ-
encing area burned to fuel amount and fuel
moisture is attractive precisely because of its
simplicity. The global fire model Glob-FIRM
(Thonicke et al., 2001) has shown promising
results for several sample regions in the world.
This study relies on the same limiting parame-
ters, fuel amount and fuel moisture. It also
supports our hypothesis that the contribution
of fuel amount and fuel moisture to LIFs varies

with the biomass amount in an ecosystem as
determined by long-term climate. Further-
more, the results of the Glob-FIRM model
suggest that in some regions disturbance inter-
action (eg, grazing) and human impact (eg, fire
suppression) render accurate area burned pre-
dictions difficult (Thonicke et al., 2001). This
supports our reasoning concerning the impact
of disturbance interaction and human impact
on fuel amount in some areas, especially the
biomass-poor ecosystems.

IV Conclusion
The emerging conceptual model proposes
that ecosystems can be typified on a superor-
dinate level based on long-term climatic con-
ditions that determine both fuel moisture and
fuel amount. The concept can be used to dis-
tinguish three ecosystem types as expressions
of'a gradient in the importance of fuel moisture
versus fuel amount for LIFs: (1) biomass-rich,
rarely dry ecosystems where fuel moisture
rather than fuel amount limits LIFs; (2)
biomass-poor, at least seasonally dry, ecosys-
tems where fuel amount rather than fuel
moisture limits LIFs; and (3) biomass-poor,
rarely dry ecosystems where both fuel amount
and fuel moisture limit the occurrence of
LIFs. The two ends of the gradient are repre-
sented by two ecosystem types in which LIFs
do not occur, biomass-rich, never dry ecosys-
tems (wettest rain forests) and biomass-poor,
always dry ecosystems (deserts). As with all
extensive generalizations, there are local
deviations and modifications due to processes
such as disturbance interactions or human
impact. In addition, fuel structure, flammabil-
ity, variability in moisture, and self-promoting
conditions created by fire itself play vital roles.
Knowledge of the factors limiting LIFs is
crucial when it comes to predicting the conse-
quences of direct human impact and global cli-
mate change. We hope that the emerging
conceptual model will contribute to a better
understanding of the observed patterns.
Nonetheless, an empirical calibration of the
model (precise analysis of biomass accumula-
tion and fuel moisture versus environment)
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would increase the value of this approach to
predicting changes in LIFs in the future.
Further work should also examine global cor-
relations between total environmental water
supply (eg, from precipitation) and variability in
water supply because correlations among
these factors will influence how we map LIF
risk. Incorporating fuel structure and flamma-
bility will be challenging because of the unique
effects of individual species on these charac-
teristics but is also an important area for con-
tinued research. These extensions would also
allow us to parameterize the conceptual model
proposed here to further assess its usefulness.

The proposed distinction of ecosystems has
some management implications. In biomass-
rich, rarely dry ecosystems (ecosystem type
one), fire suppression is unlikely to have a
major impact on fuel amount and fire size
since fuel moisture and thus fire weather is
the limiting factor. In this ecosystem type, cli-
mate change effects on fuel moisture are
likely to influence fire sizes (eg, due to pro-
longed periods without precipitation, increase
in summer temperature, stronger winds). In
biomass-poor, at least seasonally dry ecosys-
tems (ecosystem type two), fire suppression
or removal of herbivores can lead to in-
creased fuel loads and larger fires. On the
other hand, prescribed burning might be an
effective tool for reducing fire size. Here, cli-
mate change effects on fire size are related to
parameters influencing primary productivity
and decomposition and thus the amount of
fuel. In biomass-poor, rarely dry ecosystems
(ecosystem type three), fire suppression can
lead to higher fuel loads, increasing the chance
for large wildfires since only one more prereq-
uisite — low fuel moisture — is necessary.
Therefore, prescribed burning might be
an effective tool to reduce fire size. In this eco-
system type, climate change effects on either
fuel moisture or fuel amount (see above) or on
both increase the likelihood for LIFs.
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