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Environmental Efficiency Assessment of U.S. Transport Sector: A 
Slack-based Data Envelopment Analysis Approach 

 
 

ABSTRACT 
 

Sustainable development initiatives address the issues related to economic growth and mobility, 
and environmental conservation. Sustainable transportation in the U.S. is an essential component 
of these initiatives.  In this context, since the U.S. is a federally governed country, the needs for 
policy making can be different from one state to another, which requires state-by-state focus prior 
to sustainability assessment projects. This study aims to contribute to the scholarship by proposing 
a slack-based measurement data envelopment analysis (SBM-DEA) model with non-radial 
approach. This study assesses environmental efficiency of U.S states’ transportation sectors from 
2004 to 2012. In addition to the environmental efficiency measurement, carbon efficiency, and 
potential carbon reduction were estimated for the states of the U.S. SBM-DEA provided more 
comprehensive analysis that combines economic and environmental indicators. This approach also 
captures the excess input and undesirable output (CO2), and shortfall of desirable output. The 
findings of this study revealed that the states’ transportation sectors are environmentally inefficient 
showing that on average states had an environmental efficiency score below 0.64. Therefore, the 
states need to substantially reduce carbon emissions to improve environmental efficiency of 
transportation.  
 

Key words: Environmental Efficiency, Slack based Data Envelopment Analysis, U.S. Carbon 
emission, Sustainable Transportation 
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1. INTRODUCTION 
The transportation sector has  great influence on the economy of the United States (U.S.). 

However, one of the most serious issues arising from transportation and economic growth is the 
environmental deterioration across the country, especially the carbon emissions stock (Chang, 
2013).  “Sustainable development is development that meets the needs of the present without 
compromising the ability of future generations to meet their own needs” (WCED, 1987, Chapter 
2, Section IV). Transportation consumes a high amount of energy (Zhou, 2014), and the 
sustainability of transportation is of great importance to the world which hinges on the ability to 
maximize transportation environmental performance and to minimize adverse impacts 
(Hendrickson, 2006).  The transportation sector accounted for approximately 10% of  the U.S. 
Gross Domestic Product (GDP) in 2014 (RITA, 2014).  The same sector was found to be the 
second largest source of greenhouse gas (GHG) emissions accounting for 27% of total U.S. GHG 
emissions, following the power generation industry (US EPA, 2014). As an additional critical 
environmental impact, energy consumption by the transportation sector is expected to increase 
dramatically in the next quarter century (Frey and Kuo, 2007). In this context, President Obama 
initiated a climate action plan that seeks to reduce 17 percent of total carbon dioxide (CO2)  by 
2020 (Leggett, 2014). 

With the increasing concerns over the recent environmental issues related to transportation 
activities, sustainable development initiatives have become a central element of public policy 
making along with the dramatically increased environmental consequences of industrial activities 
worldwide (Egilmez and Park, 2014). Therefore, transporting goods and services in a more 
sustainable way has become an essential topic of discussion. These discussions and projects are 
expected to contribute to the overall objective of sustainable development (Benjaafar and 
Savelsbergh, 2014; Choi et al., 2015). Therefore, it is  essential to study the relationship between 
economic growth and environment performance of transportation activities from a holistic 
viewpoint towards realizing sustainable development in the transportation sector of a country or a 
region (Goldman and Gorham, 2006). Recognizing the importance of reducing GHG emission and 
energy consumption and evaluating the environmental efficiency in U.S, several studies have 
addressed these issues, but they focused on the environmental efficiency of the industrial sector 
(Egilmez et al., 2013), freight transportation from manufacturing perspective (Egilmez and Park, 
2014; Park et al., 2015), cross country comparison (Zhou et al., 2006; Simsek, 2014),  and  the 
electricity sector (Barba-Gutiérrez, 2009). No study in the literature has been conducted on the 
overall environmental performance of the U.S’s transportation sector by state.   

In this context, the main objective of this study is to analyze changes of environmental 
efficiency in U.S’s state-level transportation sector over a 9-year period (2004 to 2012) using a 
slack-based non-radial data envelopment analysis (SBM-DEA), and to estimate the potential 
reduction of  transportation CO2 emission. We first measure the environmental efficiency of the 
transportation sectors in all 50 U.S states through the SBM model by incorporating undesirable 
output (CO2) (Chang et al., 2013).  More specifically, we estimate carbon efficiency (CE) , 
potential carbon reduction (PCR) and excess of inputs and shortfall of output of U.S’s 
transportation sector. The paper is organized as follows: section 2 reviews the literature; section 3 
provides the methodology of this study and data description; section 4 presents the results of the 
analysis and discussion. Finally, section 5 provides the conclusion and policy implications, and 
suggests direction for future research.   
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2. LITERATURE 

Various approaches for measuring environmental efficiency have been proposed in the 
literature. First of all, Pittman (1983) extended the study by Caves et al. (1982)  by incorporating 
undesirable outputs (e.g. CO2, NOx) into a multilateral productivity index. The problem with 
Pittman’s approach is the difficulty of measuring the shadow price of undesirable outputs (Chang, 
2013; Zhou et al., 2007). Another widely used method is Data Envelopment Analysis (DEA). DEA 
has become one of the most used approaches in measuring environmental efficiency due to its 
robustness in finding optimal efficiency scores for different problems and datasets (Chang, 2013).   
Other approaches include stochastic frontier analysis (Cullinane and Song, 2006; Cook and Seiford, 
2009) and the free disposal hull model (Cook and Seiford, 2009), but these methods are limited to 
measuring productivity and efficiency and are typically complicated for modeling undesirable 
outputs.   

As the primary approach, Charnes et al. (1978) proposed the constant returns to scale data 
envelopment analysis (CCR-DEA). DEA is a non-parametric approach and measures the relative 
efficiency of decision making units (DMUs) by comparing multiple inputs with outputs (Cooper 
et al., 2007). Banker et al. (1984) extended CCR-DEA to variable returns to scale DEA (BCC-
DEA). Since then, DEA has been a widely used approach to identify the best management practice 
within a set of DMUs and to measure efficiency in frontier analysis. The conventional output-
oriented DEA assumes that all outputs have to be maximized for a given input set. However, when 
an environmental pollutant is present in the model, the efficiency assessment becomes a 
challenging task (Chang, 2013). Various methods for modeling undesirable outputs in DEA have 
been proposed in the literature. One approach involves the translation of original data and 
utilization of the traditional DEA model (Seiford and Zhu, 2002; Lovell et al., 1995). Another 
treatment is to consider it as an input variable. The concepts of weak disposability and strong 
disposability of undesirable outputs are proposed by Zhou et al. (2007). Under the weak 
disposability property, a reduction in undesirable outputs will result in a reduction of desirable 
outputs, while strong disposability assumes that it is possible to reduce the desirable output without 
changing the undesirable outputs (Watanabe and Tanaka, 2007). However, recent studies preferred 
using a slack-based measurement model (Tone, 2001; Cook and Seiford, 2009; Hu and Wang, 
2006; Lozano and Gutiérrez, 2011; Chang, 2013) and non-radial DEA (Zhou et al., 2007) to handle 
undesirable outputs.       

The theory and methodology of slack-based measure (SBM) was first proposed by Tone  
(2001). SBM captures the input excess and output shortfall of the DMUs while conventional CCR-
DEA and BCC-DEA models deal with a proportional reduction or expansion of inputs and outputs 
(Chang, 2013).  Based on the principle of a non-radial model, the primary purpose of the SBM is 
to locate the DMUs on the efficient frontier, and the objective function of the SBM is to be 
minimized by finding the maximum slacks (all slacks are zero) (Tone, 2001). Non-radial efficiency 
SBM-DEA  is found to be very appropriate compared to traditional DEA models (Zhou et al 2006; 
Hernández-Sancho, 2011).  Zhou et al. (2006) found that it has a higher discriminatory power 
when compared to the conventional  radial efficiency measures. Another advantage of non-radial 
efficiency SBM-DEA is that the efficiency indicator for each variable can be identified to increase 
the efficiency level of the DMU being studied.   

The non-radial efficiency SBM-DEA model was applied by Zhang et al. (2008) to the 
industrial systems in China. The authors measured industrial eco-efficiency by considering the 
pollutants chemicals’ oxygen demand, nitrogen, soot, dust and solid waste as inputs and value 
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added of industries as a desirable output. Besides the pollutants, material and energy consumption 
were incorporated as inputs in the model as well.  

As one of the up-to-date benchmark studies to the current study, Chang et al. (2013) applied 
a non-radial efficiency SBM-DEA model to measure the environmental efficiency of the 
transportation sector in China. They used CO2 emission as an undesirable output. This approach 
provided more comprehensive efficiency measures by estimating the economic and environmental 
performances through capturing the slack values of input and undesirable output as well as the 
shortfalls of desirable output. Another recent study by Zhou et al. (2014) performed an energy 
efficiency assessment of the regional transport sectors in China from 2003 to 2009. Some other 
studies associated with transportation such as a passenger airlines (Merkert and Hensher, 2011), 
airports (Lin and Hong, 2006), global airlines (Scheraga, 2004), and ports (Chang, 2013) are found 
in the literature. The only study using the DEA model to assess eco-efficiency of U.S transportation 
was conducted by Egilmez and Park (2014).  The authors only considered the environmental and 
economic impacts of transportation from a manufacturing perspective, and the environmental 
impact was incorporated as the input while the economic outputs was considered as the output for 
assessing eco-efficiency. The literature shows that environmental impacts are considered as inputs 
or outputs depending on the type of models used, and mostly traditional DEA frameworks are 
preferred which lack the aforementioned properties. There is only a handful of works available in 
the literature that use the slack-based measurement DEA with a non-radial approach for assessing 
environmental efficiency including environmental efficiency assessment of OECD countries 
(Zhou, 2006) and environmental efficiency of transportation activities in China and Korean ports 
(Chang, 2013). Therefore, this study intends to contribute to the literature by applying the slack-
based measurement DEA model with a non-radial approach to analyze environmental efficiency 
of state-by-state tansportation sector in the U.S.  
 
3. METHODOLOGY 

3.1 Slack-based measure model description 

The aim of this study is to develop a framework to measure the environmental efficiency and 
potential CO2 reduction of the transportation sector in the U.S. Following Zhou et al. (2006) and 
Chang (2013),  this paper presents a DEA framework based on the slack-based measure (SBM) by 
adding the undesirable output into the objective function and the constraint function (Tone, 2001). 
We assume that reducing input resources relative to producing more outputs is a criterion for 
efficiency measurement. 

When considering an undesirable output in the model, it should be noted that efficiency 
can be formed with more desirable output and less undesirable output relative to less input 
resources (Chang, 2013). Suppose that there are j = {1, …, n} DMUs and that each j uses m inputs 
to produce p1 desirable outputs and generate p2 undesirable outputs (CO2 emissions). The vectors 
of inputs, desirable outputs and undesirable outputs for DMUi, are given by xj ∈ Rm , yj ∈ R p1 and 
cj ∈ Rp2, respectively.  
Thus, for n DMU’s,  we define the input, desirable output and undesirable output matrices  as X = 
[x1,…,xn] ∈ Rm*n, Y as  Y = [y1,…,yn] ∈ Rp1*n,  C as C = [c1,…,cn] ∈ Rp2*n.  All data on X, Y and 
C are positive. The production possibility set (PPS) can be described as follows: 
P(x) = {(y, c) | x can produce (y, c), x ≥ Xλ, y ≤ Yλ, c ≤ Cλ, λ ≥0},                                      (1) 
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where λ denotes the non-negative intensity vector, and  the production technology in (1)  exhibits 
constant returns to scale (CRS). From the concept of slacks, the efficiency of DMUs must be 
measured with consideration of how much input waste can be reduced to a given level of output, 
and how much output can increase for a given level of input (Tone, 2001). But this original 
approach developed by Tone (2001) did not consider the presence of any undesirable output in the 
model. Therefore this study uses a SBM specification by incorporating an undesirable output into 
both the objective function and a constraint function. The SBM-DEA model can thus be expressed 
in Model 1 below: 

e0∗  =  
1− 1m  ∑ Si0−xi0mi=1  1+ 

1p1+p2  
 ( ∑ Sr10yyr20p1r1=1   + ∑ Sr20ccr20  

p2r2=1 )

                                                                                                        (2)                                                                                        

s.t. 

x0 = Xλ + S0−                                                                                                                                                  (3)                                                                                                                                   

y0 = Yλ - S0y                                                                                                                                                   (4)                                                                                                                                    

c0  =   Cλ +S0c                                                                                                                                                   (5)                                                                                                                                   

S0− ≥ 0, S0y ≥ 0, S0c ≥ 0, λ ≥ 0,                                                                                                         (6) 

 

where, 

i = Index of inputs (1,2…,m); 

m= Number of inputs; 

Subscript ‘0’ = The DMU, whose efficiency is being estimated in the current model; 

r1= Index of good outputs (1,2…,S1) 

r2= Index of bad outputs (1,2…,S2) 

p1 = Number of good outputs; 

p2 = Number of bad outputs; 

S0−= Slack variables of inputs; 

S0y= Slack variables of good outputs; 

S0c= Slack variables of bad outputs; 

The DMU is efficient if e0∗   is equal to 1, which implies all the slack variables 𝑆𝑆0− , 𝑆𝑆0𝑦𝑦,  and 𝑆𝑆0𝑐𝑐  are equal to 0. But this model is not a linear function. Therefore a transformed model 
incorporating the undesirable output into the objective and constraint functions such as an 
equivalent linear programming (LP) model can be established as Model 2 (Tone 2001): 
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r0∗ = min t – 1m  
∑ Si0−xi0mi=1    

     = t + 1p1+p2  
[ ∑ Sr10yyr20 +  ∑ Sr20ccr20S2r2=1  ]S1r1=1                                                                               (7) 

s.t. 

x0t = Xß + S0−                                                                                                                                (8)  

y0t = Yß − S0y                                                                                                                                (9) 

c0 t =   Cß +S0c                                                                                                                               (10) 

S0− ≥ 0, S0y ≥ 0, S0c ≥ 0, ß ≥ 0, t > 0,                                                                                              (11) 

The optimal solution of the LP model (7) – (11) can be solved, and let the optimal solution be (r*, 
t*, ß*, S-*, Sy*, Sc*)  where e0∗ = r0∗, λ* = ß∗t∗ , S-* = S−∗t∗ , Sy* = Sy∗t∗ , Sc*= Sc∗t∗  from Model (2). The solution 
of t*, ß*,Sc, Sy, can be generated through Model 2 with t* > 0. 

In this paper, carbon efficiency (CE) of each state is estimated based on the method proposed by 
Hu and Wang (2006) where the index of total-factor energy efficiency was introduced using DEA-
generated optimal energy input level, and by Zhou and Ang (2008)’s approach of evaluating 
energy efficiency with undesirable output . The carbon efficiency (CE) can be estimated as follows 
(Chang et al., 2013):  

CE = Target carbon emission/ Real carbon emission =  C0t−S0c  C0t ,                                                  (12) 

where, C0t  is real carbon emission input, and S0c is slack of carbon emission, therefore  C0t − S0c is 
the target carbon emission input. Additionally, the potential carbon reduction (PCR) of each state 
is estimated by the slack variable S0c  as it is the excess variable of undesirable output (carbon 
emission). Finally, performance of improvement for each input and output indicator was evaluated 
in terms of percent.  

3.2 Data description 
In order to analyze the environmental efficiency of the U.S transportation sector, this study 
investigates the whole of U.S. states. By using the related literature, panel data of 50 U.S. state is 
collected from 2004 to 2012. The data includes capital expense, energy consumption, and amount 
of labor in the transport sector as input variables. In many empirical studies, capital, energy and 
labor are considered three major inputs in production, and gross domestic product (GDP) is a 
common indicator in measuring overall economic output. Therefore, this study treats the 
aforementioned inputs and output in the same way, because all inputs can be reduced without 
reducing desirable output levels. Additionally, undesirable outputs such as CO2 that is generated 
by energy consumption are also taken into account as a byproduct of producing desirable outputs 
(Simsek, 2014). The labor and capital input data was collected from the U.S Bureau of Labor 
Statistics and the U.S Census Bureau. The data on the volume of energy consumed in the 
transportation sector were collected from the U.S. Energy Information Administration.  In the case 
of the output, a state’s transportation value added (GDP) was considered a desirable output (Chang, 
2013; Zhou et al., 2014), and the data was collected from the Bureau of Economic Analysis. The 
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data on CO2 emissions was available from the U.S Energy Information Administration (U.S. EIA). 
The data descriptions are provided in Table 1.  

 

TABLE 1.  Input and output variables and data sources, 2004-2012 

 Variables Unit Sources 

Input Capital expenses 

Energy use 

Labor 

In thousands 

Trillion Btu 

In thousands (person)  

U.S Census Bureau 

U.S. Energy Information Administration 

U.S Bureau of Labor Statistics 

Output  Desirable output: Value added (GDP) 

Undesirable output: CO2 emission 

Million dollars 

Million metric tons 

Bureau of Economic Analysis 

U.S. Energy Information Administration 

 

4. RESULTS AND DISCUSSION 

4.1 Input and output indicators 

Table 2 shows the descriptive statistics of the state-level data from 2004 to 2012. The capital 
expenditure of U.S states’ transportation sectors averaged  4.76 billion dollars for 2004 - 2012. 
The average state transportation sector consumed 599 trillion Btu of energy, employed 167 
thousand people, produced 8.09 billion dollars in GDP (value-added) and emitted 38 million metric 
tons of CO2. There is a much larger difference in capital expenditure, energy input, and GDP across 
the states as can be seen from the standard deviations in Table 2. On the other hand, relatively 
small differences can be found in labor input and CO2 emissions. The correlation matrix of inputs 
and outputs in Table 3 are analyzed to see if there is a significant relationship between the input 
and output variables. From the results in Table 3, we can see a significantly high correlation exists 
between the input and the output variables in that the correlation coefficients are all above 0.600.  

 

 
TABLE 2.  Descriptive statistics of input and output, 2004- 2012 

 
 Variable N Minimum Maximum Mean Std. Dev 
Capital 450 3,812.00 30,312,557.00 4,762,591.61 5,301,744.99 
Energy 450 19.60 3387.30 599.48 697.83 
Labor 450 7.00 951.00 167.65 178.55 
GDP (value- added) 450 298.00 53443.00 8,090.03 8982.55 
CO2 450 1.07 238.14 37.94 41.57 
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TABLE 3.  Correlation matrix of inputs and outputs 

 Capital Energy Labor CO2 GDP 
Capital Pearson Correlation 1 .674** .842** .808** .832** 

Sig. (2-tailed)  .000 .000 .000 .000 
N 450 450 450 450 450 

Energy Pearson Correlation .677** 1 .801** .835** .808** 
Sig. (2-tailed) .000  .000 .000 .000 
N 450 450 450 450 450 

Labor Pearson Correlation .842** .804** 1 .962** .970** 
Sig. (2-tailed) .000 .000  .000 .000 
N 450 450 450 450 450 

CO2 Pearson Correlation .808** .835** .962** 1 .964** 
Sig. (2-tailed) .000 .000 .000  .000 
N 450 450 450 450 450 

GDP Pearson Correlation .832** .808** .970** .964** 1 
Sig. (2-tailed) .000 .000 .000 .000  
N 450 450 450 450 450 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

4.2 U.S. States’ environmental efficiency performance 

As mentioned in Section 3, the environmental efficiency (EE) score in the transportation sector is 
evaluated by the e0∗ , because it includes the slack variable of all input and output variables.  Then, 
the carbon efficiency (CE) score is estimated by equation (12), and finally potential carbon 
reduction (PCR) is calculated by the slack variable 𝑠𝑠0𝑐𝑐.  Tables 4 and 5 show the results of EE and 
CE indicators for each U.S state from 2004 to 2012.  The overall average EE performance from 
2004 to 2012 of the transportation sector in the U.S indicates that only four states of fifty (Alaska, 
Illinois, Nebraska and Vermont) were found to be (relatively) environmentally efficient as scores 
of EE in the four states are 1. In terms of CE, five states (the four states previously mentioned and 
texas) were found to be (relatively) carbon efficient states. The EE scores for inefficient states 
ranged from 0.341 to 0.965 (average = 0.640), with Texas ranking first and Alabama ranking last 
among the inefficient states.  CE scores for inefficient states ranged from 0.307 to 0.975 (average 
= 0.638) with Rhode Island ranking first and South Carolina ranking last among the inefficient 
states. The ranking is consistent between EE and CE scores over the states. 
 The results of the SBM model indicated that, after accounting for output, input and 
pollutant slacks, approximately 40% of the states have an above-average EE and CE score 
suggesting that most of the states’ transportation sectors were not environmentally efficient during 
the 9-year study period, as states use massive amounts of input resources in order to produce more 
outputs.  Therefore, there is great potential to improve the EE and CE score in each state. The 
states on the average could accomplish a 36% improvement in EE and 36.2% in CE if all states 
operate at the frontier of production technology. In addition, there was no significant change in the 
EE and CE scores from 2004 to 2012. This empirical result might be attributed to the fact that 
there was no significant growth in carbon emission. But there was a slight decrease in carbon 
emissions from 2005 to 2008, followed by an increase thereafter. The average EE and CE have the 
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same trend as the rate of CO2 emissions in the U.S transportation sector (EPA, 2013). In a future 
study, the most recent data should be added to further analyze the efficiency of states.  

As the results of EE and CE indicate, most of the states  are not performing  efficiently in 
the transportation sector, leading to conclusion that there is  great potential to reduce carbon 
emissions in each state, which is also a necessity. We can see in Table 6 that the U.S. transportation 
sector can reduce a great deal of carbon emissions ranging from at least 0.03 million metric tons 
to 23.40 million metric tons. The average PCR was found to be 7.10 million metric tons. As shown 
in the last column of Table 6, on average, 46 U.S. states’ transportation sectors showed excessive 
CO2 emissions that need to be reduced.  Among the states, Florida shows the highest potential for 
carbon reduction with 23.40 million metric tons followed by Louisiana with 23.18 million metric 
tons and North Carolina with 20.33 million metric tons. Compared to Louisiana and North 
Carolina; Florida had a relatively higher EE score but larger PCR. This suggests that the 
inefficiency in Florida’s transportation can be explained in large part by the presence of 
environmental impact slack. On the other hand, North Dakota, Tennessee, Delaware and Rhode 
Island were found to have only a small amount of excess CO2 emissions, showing 0.62, 0.61, 0.29 
and 0.03 million metric tons of PCR, respectively.  

In spite of that, there are only four environmentally efficient states and most EE scores are 
quite low. Therefore, it is imperative for us to examine the slack values of inputs and outputs in 
the model. The purpose of measuring the relative efficiency is to determine the amount of excess 
inputs and the shortfall of output so that the DMUs can identify the best management practices for 
sustainable transportation. The estimated slack values and the associated improvements are 
presented in the parentheses in Table 7.  
 Combining Tables 4,5,6, and 7, it was found that low-ranked environmentally inefficient 
states have extremely high slack values and high slack percentage in input variables. This pattern 
suggests that the input levels need to be lowered by the suggested amount in order to achieve 100% 
efficiency. For example, among the environmentally inefficient states, Alabama has a higher 
excess in the input variables, including capital, energy, labor, and CO2, while producing  
insufficient goods and services (GDP) related to the transportation sector. Other problematic states 
such as Maryland, Mississippi, Colorado and South Carolina, also show much waste in input 
variables and have high shortfalls in GDP as well. In addition, the third-best state among the 
inefficient states, California, has extremely high excess values in capital, energy, and labor, as well 
as a shortfall in GDP. Florida and Louisiana show the greatest excess in undesirable output (CO2). 
The percentage of excess of inputs shows that, on average,  capital investment has the highest 
percentage slack at 31.3%, CO2 has the second highest in slack at 21.9%,  and labor has the third 
highest in slack at 14%, while energy input has  relatively less slack at 2.4%. The results indicate 
that the federal government and state agencies should focus on capital investment that state 
policymakers can reduce unnecessary investment in the transportation system, and force more 
efficient use of labor in the transportation sector in order to improve environmental efficiency.  
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TABLE 4.  Environmental efficiency based on SBM, 2004-2012 

State 2004 2005 2006 2007 2008 2009 2010 2011 2012 Mean 
Alaska 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Illinois 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Nebraska 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Vermont 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Texas 1.000 1.000 1.000 0.686 1.000 1.000 1.000 1.000 1.000 0.965 
Wyoming 0.838 0.984 1.000 0.818 1.000 1.000 1.000 1.000 1.000 0.960 
California 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.825 0.776 0.956 
Hawaii 1.000 1.000 1.000 0.758 0.748 0.820 0.911 0.842 1.000 0.898 
Rhode Island 0.797 0.841 0.851 0.868 0.844 1.000 0.873 1.000 1.000 0.897 
New Jersey 0.832 0.861 0.779 1.000 1.000 1.000 0.832 0.771 0.790 0.874 
Tennessee 1.000 1.000 1.000 0.302 1.000 0.896 0.720 0.854 1.000 0.864 
Delaware 0.747 0.734 0.789 1.000 0.719 0.764 1.000 0.879 0.834 0.830 
Georgia 0.869 0.774 0.677 0.708 0.846 0.890 0.676 1.000 1.000 0.827 
North Dakota 0.737 0.813 1.000 0.713 0.812 0.917 0.811 0.849 0.745 0.822 
New York 0.739 0.791 0.726 0.666 0.820 0.831 1.000 0.813 0.799 0.798 
Montana 0.683 0.728 0.709 0.644 0.672 0.740 0.747 0.742 0.712 0.709 
South Dakota 0.700 0.711 0.746 0.659 0.672 0.684 0.700 0.662 0.626 0.684 
Ohio 0.650 0.713 0.652 0.527 0.742 0.742 0.781 0.661 0.662 0.681 
Pennsylvania 0.760 0.703 0.627 0.548 0.699 0.695 0.683 0.656 0.650 0.669 
Florida 0.620 0.653 0.600 0.554 0.708 0.747 0.613 0.706 0.669 0.652 
New Hampshire 0.645 0.715 0.680 0.580 0.588 0.618 0.595 0.674 0.695 0.643 
Idaho 0.574 0.596 0.596 0.593 0.547 0.577 0.691 0.579 0.602 0.595 
Maine 0.529 0.538 0.567 0.519 0.577 0.605 0.743 0.598 0.595 0.586 
Virginia 0.520 0.504 0.535 1.000 0.500 0.585 0.514 0.526 0.534 0.580 
Indiana 0.582 0.609 0.595 0.623 0.553 0.561 0.513 0.550 0.569 0.573 
Nevada 0.565 0.568 0.531 0.501 0.554 0.597 0.553 0.642 0.631 0.571 
Connecticut 0.506 0.535 0.530 0.619 0.571 0.580 0.588 0.592 0.579 0.567 
Arkansas 0.538 0.572 0.580 0.624 0.519 0.525 0.569 0.535 0.561 0.558 
Washington 0.575 0.591 0.547 0.465 0.516 0.557 0.569 0.578 0.587 0.554 
Kentucky 0.583 0.672 0.544 0.677 0.436 0.509 0.504 0.500 0.516 0.549 
New Mexico 0.475 0.453 0.444 0.410 0.467 0.482 1.000 0.569 0.547 0.539 
Kansas 0.502 0.526 0.517 0.601 0.505 0.520 0.558 0.548 0.569 0.538 
Missouri 0.568 0.589 0.555 0.459 0.558 0.550 0.545 0.468 0.505 0.533 
Utah 0.565 0.602 0.549 0.528 0.492 0.513 0.497 0.499 0.492 0.526 
Louisiana 0.454 0.432 0.469 0.603 0.553 0.569 0.507 0.470 0.541 0.511 
Michigan 0.568 0.549 0.496 0.432 0.486 0.463 0.453 0.526 0.553 0.503 
Minnesota 0.582 0.567 0.467 0.591 0.438 0.438 0.424 0.461 0.461 0.492 
West Virginia 0.458 0.462 0.480 0.431 0.478 0.486 0.558 0.517 0.495 0.485 
Arizona 0.459 0.516 0.466 0.581 0.367 0.410 0.469 0.483 0.503 0.473 
Iowa 0.487 0.464 0.459 0.542 0.441 0.451 0.471 0.452 0.453 0.469 
Massachusetts 0.405 0.404 0.388 1.000 0.367 0.403 0.405 0.412 0.429 0.468 
Wisconsin 0.540 0.540 0.493 0.449 0.395 0.436 0.422 0.415 0.427 0.457 
North Carolina 0.479 0.487 0.454 0.391 0.429 0.483 0.383 0.430 0.466 0.445 
Oregon 0.491 0.472 0.449 0.417 0.423 0.421 0.357 0.445 0.474 0.439 
Oklahoma 0.454 0.452 0.436 0.353 0.353 0.368 0.596 0.408 0.410 0.426 
Maryland 0.427 0.416 0.386 0.484 0.356 0.375 0.408 0.396 0.365 0.402 
Mississippi 0.359 0.399 0.349 0.339 0.334 0.387 0.405 0.373 0.367 0.368 
Colorado 0.347 0.396 0.368 0.418 0.340 0.351 0.337 0.342 0.389 0.365 
South Carolina 0.317 0.337 0.343 0.434 0.342 0.375 0.364 0.337 0.347 0.355 
Alabama 0.340 0.338 0.336 0.357 0.329 0.329 0.354 0.337 0.344 0.341 
Mean 0.637 0.652 0.635 0.629 0.622 0.645 0.654 0.638 0.645 0.640 
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TABLE 5.  Carbon efficiency based on SBM, 2004-2012 

State 2004 2005 2006 2007 2008 2009 2010 2011 2012 Mean 
Alaska 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Nebraska 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Illinois 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Vermont 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Texas 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Rhode Island 0.942 0.955 0.950 1.000 0.932 1.000 1.000 1.000 1.000 0.975 
California 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.913 0.856 0.974 
Wyoming 0.767 0.980 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.972 
Tennessee 1.000 1.000 1.000 0.735 1.000 0.871 0.777 0.870 1.000 0.917 
New York 0.852 0.967 0.838 0.929 0.895 0.924 1.000 0.931 0.872 0.912 
Delaware 0.860 0.822 0.832 1.000 0.787 0.831 1.000 0.915 0.903 0.883 
Hawaii 1.000 1.000 1.000 0.916 0.665 0.705 0.929 0.724 1.000 0.882 
New Jersey 0.714 0.783 0.619 1.000 1.000 1.000 0.835 0.806 0.833 0.843 
North Dakota 0.731 0.781 1.000 0.926 0.754 0.893 0.908 0.765 0.758 0.835 
Georgia 0.774 0.772 0.587 0.792 0.716 0.902 0.736 1.000 1.000 0.809 
Pennsylvania 0.713 0.769 0.650 0.692 0.703 0.720 0.794 0.704 0.701 0.716 
South Dakota 0.734 0.737 0.737 0.842 0.682 0.673 0.741 0.629 0.599 0.708 
Montana 0.665 0.638 0.634 0.691 0.623 0.666 0.857 0.671 0.736 0.687 
Ohio 0.600 0.774 0.615 0.645 0.643 0.641 0.716 0.582 0.600 0.646 
Nevada 0.561 0.550 0.516 0.537 0.544 0.636 0.794 0.791 0.835 0.640 
New Hampshire 0.599 0.657 0.668 0.754 0.567 0.584 0.668 0.586 0.611 0.633 
Idaho 0.601 0.609 0.580 0.822 0.572 0.588 0.684 0.564 0.587 0.623 
Florida 0.562 0.637 0.564 0.614 0.643 0.674 0.687 0.586 0.570 0.615 
Indiana 0.512 0.637 0.507 0.726 0.495 0.502 0.543 0.573 0.582 0.564 
Maine 0.547 0.510 0.524 0.638 0.550 0.541 0.655 0.533 0.565 0.563 
Washington 0.535 0.570 0.510 0.495 0.498 0.536 0.629 0.573 0.565 0.546 
Connecticut 0.441 0.463 0.485 0.538 0.530 0.544 0.608 0.607 0.668 0.543 
Kansas 0.512 0.537 0.506 0.514 0.497 0.485 0.593 0.567 0.637 0.539 
Arkansas 0.493 0.492 0.487 0.821 0.445 0.439 0.547 0.502 0.561 0.532 
Utah 0.523 0.527 0.479 0.519 0.482 0.510 0.593 0.528 0.596 0.529 
Wisconsin 0.588 0.615 0.543 0.522 0.437 0.471 0.525 0.515 0.498 0.524 
West Virginia 0.471 0.467 0.472 0.536 0.512 0.508 0.646 0.530 0.531 0.519 
Missouri 0.525 0.610 0.493 0.490 0.478 0.486 0.501 0.455 0.511 0.506 
Michigan 0.511 0.621 0.441 0.464 0.426 0.411 0.486 0.560 0.556 0.497 
Kentucky 0.488 0.590 0.472 0.453 0.427 0.440 0.510 0.510 0.506 0.488 
Minnesota 0.552 0.539 0.442 0.466 0.434 0.446 0.503 0.508 0.482 0.486 
Iowa 0.488 0.472 0.465 0.470 0.440 0.465 0.527 0.486 0.554 0.485 
Colorado 0.449 0.482 0.400 0.781 0.395 0.416 0.482 0.470 0.479 0.484 
New Mexico 0.382 0.393 0.384 0.442 0.409 0.409 1.000 0.443 0.461 0.480 
Virginia 0.431 0.482 0.430 0.425 0.422 0.471 0.592 0.491 0.557 0.478 
Arizona 0.405 0.442 0.406 0.706 0.372 0.408 0.515 0.496 0.498 0.472 
Oregon 0.446 0.440 0.425 0.423 0.403 0.399 0.476 0.467 0.524 0.445 
North Carolina 0.454 0.535 0.417 0.404 0.373 0.412 0.510 0.425 0.453 0.442 
Massachusetts 0.405 0.382 0.366 0.370 0.340 0.380 0.444 0.432 0.449 0.396 
Maryland 0.388 0.371 0.365 0.370 0.351 0.357 0.450 0.437 0.465 0.395 
Louisiana 0.280 0.312 0.297 0.367 0.409 0.485 0.490 0.420 0.469 0.392 
Oklahoma 0.342 0.320 0.312 0.530 0.293 0.304 0.421 0.382 0.416 0.369 
Alabama 0.283 0.285 0.283 0.524 0.282 0.289 0.347 0.316 0.344 0.328 
Mississippi 0.303 0.305 0.286 0.310 0.282 0.297 0.383 0.327 0.338 0.315 
South Carolina 0.270 0.289 0.275 0.501 0.260 0.256 0.325 0.283 0.307 0.307 
Mean 0.614 0.642 0.605 0.674 0.599 0.620 0.689 0.638 0.661 0.638 
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TABLE 6.   Potential carbon reductions based on SBM, 2004-2012 

State 2004 2005 2006 2007 2008 2009 2010 2011 2012 Mean 
Florida 21.53 18.48 48.46 44.11 7.39 4.53 29.60 13.86 22.64 23.40 
Louisiana 27.01 24.56 26.27 19.02 23.62 23.13 14.46 27.64 22.90 23.18 
North Carolina 17.22 18.94 18.58 14.79 28.59 24.14 17.49 22.72 20.49 20.33 
Michigan 16.40 17.32 18.75 12.93 23.26 24.55 15.19 18.67 19.06 18.46 
Virginia 19.82 22.21 20.05 15.67 23.99 19.93 7.22 17.12 19.91 18.43 
Alabama 16.19 15.99 16.31 8.50 24.11 23.11 11.99 23.01 21.34 17.84 
South Carolina 15.98 14.16 15.73 4.79 22.69 23.11 13.78 22.17 19.44 16.87 
Oklahoma 10.13 12.13 12.83 7.54 22.86 21.50 5.04 19.74 18.87 14.52 
Mississippi 11.52 11.38 13.11 5.83 18.42 17.44 12.39 16.61 14.77 13.50 
Massachusetts 8.32 9.33 9.05 0.00 22.07 19.06 8.21 17.58 16.99 12.29 
Indiana 10.73 10.58 10.51 4.58 15.78 15.51 8.88 16.14 15.51 12.02 
Arizona 10.00 10.26 10.32 5.40 21.58 18.98 0.00 14.79 14.46 11.76 
Ohio 12.73 8.52 18.73 16.59 5.89 5.62 16.82 8.66 11.43 11.67 
Missouri 8.06 9.17 9.00 3.47 16.53 16.32 5.34 18.53 17.66 11.56 
Maryland 7.56 8.78 8.95 1.72 19.90 20.39 0.52 16.48 16.00 11.14 
Minnesota 4.73 6.35 7.77 4.42 17.90 16.75 3.22 14.18 15.60 10.10 
Washington 8.77 9.07 9.56 7.71 15.65 13.44 0.03 10.20 11.58 9.56 
Colorado 4.46 4.40 6.24 1.16 18.25 17.12 0.00 15.32 14.98 9.10 
Kentucky 6.11 4.57 5.25 0.74 17.53 17.18 0.02 15.49 14.04 8.99 
Oregon 3.39 3.71 4.43 0.56 13.60 13.64 6.04 11.24 9.36 7.33 
Wisconsin 1.16 0.92 1.66 0.00 16.46 14.77 2.85 13.51 14.11 7.27 
Iowa 1.43 2.14 2.33 0.12 12.07 11.21 2.51 11.15 8.88 5.76 
New Mexico 5.90 5.71 6.22 3.51 8.43 8.03 0.00 7.74 6.08 5.73 
Arkansas 1.22 1.26 1.37 0.31 11.39 11.30 0.21 10.03 7.76 4.98 
Georgia 3.93 9.58 17.90 9.92 0.14 2.02 0.28 0.00 0.00 4.86 
Pennsylvania 0.00 1.46 17.15 13.96 0.00 0.00 7.97 0.00 2.87 4.82 
California 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.81 25.29 4.79 
New Jersey 5.20 8.08 16.64 0.00 0.00 0.00 0.00 5.95 5.81 4.63 
Kansas 0.54 0.00 0.75 0.00 9.59 10.08 0.00 8.22 6.41 3.95 
Utah 0.40 0.35 2.04 0.00 8.83 7.90 0.36 8.17 5.68 3.75 
Connecticut 3.47 2.70 1.90 0.00 7.89 7.34 0.00 6.15 4.20 3.74 
West Virginia 3.02 3.35 3.34 0.19 5.39 5.33 0.51 5.16 4.13 3.38 
Maine 2.29 3.06 2.80 0.36 3.69 3.64 2.54 3.75 3.14 2.81 
Nevada 0.00 0.00 0.52 0.00 7.46 5.27 0.00 2.74 2.04 2.00 
Idaho 1.02 1.01 1.49 0.23 3.76 3.30 0.37 3.83 2.91 1.99 
New Hampshire 1.64 0.90 0.84 0.08 3.15 2.69 1.55 2.76 2.52 1.79 
New York 0.00 0.00 8.80 3.73 0.00 0.00 0.00 0.00 0.00 1.39 
South Dakota 0.59 0.55 0.59 0.52 1.93 1.82 1.54 2.26 2.68 1.39 
Montana 0.21 0.60 0.64 0.72 3.14 2.62 1.05 2.27 1.07 1.37 
Hawaii 0.00 0.00 0.00 0.32 3.25 2.72 0.23 2.82 0.00 1.04 
North Dakota 0.30 0.17 0.00 0.53 1.49 0.06 0.64 1.55 0.87 0.62 
Tennessee 0.00 0.00 0.00 3.40 0.00 1.41 0.00 0.65 0.00 0.61 
Delaware 0.01 0.28 0.19 0.00 1.07 0.54 0.00 0.17 0.35 0.29 
Rhode Island 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.00 0.03 
Texas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Wyoming 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Nebraska 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Vermont 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Illinois 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Alaska 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Mean 5.46 5.64 7.54 4.35 9.78 9.15 8.98 9.14 8.88 7.10 
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TABLE 7.  Summary of average excess in inputs and shortfall in outputs, 2004-2012 

 
State 

Inputs (Excess) Undesirable 
Output (Excess) 

Desirable  
Output (Shortfall) 

Capital 
($) 

Slack  
(%) 

Energy 
(Btu) 

Slack  
(%) 

labor 
(Person)  

Slack  
(%) 

CO2 
(Ton) 

Slack  
(%) 

GDP 
($) 

Slack  
(%) 

Alabama 960010.8 (-21.3) 1.6 (0.0) 30.5 (-14.4) 17.8 (-52.0) 2107.9 (32.9) 
Alaska 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 
Arizona 2002066.5 (-43.2) 9.5 (-1.7) 24.3 (-14.3) 11.8 (-33.8) 209.6 (1.2) 
Arkansas 664862.4 (-24.5) 0.3 (-0.1) 22.7 (-19.5) 5.0 (-24.4) 51.9 (0.8) 
California 9333921.1 (0.0) 25.3 (0.0) 144.0 (0.0) 4.8 (-2.2) 2134.7 (0.0) 
Colorado 1894182.3 (-46.8) 2740.2 (-86.5) 16.4 (-13.3) 9.1 (-30.5) 62.3 (0.5) 
Connecticut 995853.6 (-38.7) 6.7 (-3.3) 16.3 (-25.3) 3.7 (-21.9) 63.8 (0.5) 
Delaware 668498.0 (-20.9) 0.7 (-0.4) 6.9 (-9.5) 0.3 (-6.0) 86.3 (3.0) 
Florida 8996813.9 (-29.2) 6.1 (-0.3) 119.9 (-4.1) 23.4 (-21.6) 1438.4 (3.9) 
Georgia 1679037.6 (-11.1) 1.1 (0.0) 73.6 (-3.3) 4.9 (-7.4) 77.3 (0.0) 
Hawaii 103764.6 (0.0) 0.0 (0.0) 0.0 (0.0) 1.0 (-9.2) 0.0 (0.0) 
Idaho 656505.5 (-34.7) 0.6 (-0.8) 14.2 (-32.1) 2.0 (-22.0) 301.9 (27.7) 
Illinois 4432319.3 (0.0) 6.0 (0.0) 110.8 (0.0) 0.0 (0.0) 0.0 (0.0) 
Indiana 1393073.0 (-28.4) 4.0 (-0.3) 67.9 (-26.2) 12.0 (-27.5) 315.7 (4.0) 
Iowa 1714996.1 (-48.7) 2.0 (-0.7) 45.4 (-40.1) 5.8 (-26.9) 162.9 (6.0) 
Kansas 1602683.8 (-50.0) 3.2 (-1.8) 12.5 (-18.6) 4.0 (-20.7) 0.0 (0.4) 
Kentucky 1636427.3 (-36.2) 2.2 (-0.3) 30.6 (-15.8) 9.0 (-27.1) 95.4 (2.7) 
Louisiana 554242.0 (0.0) 0.2 (0.0) 2.3 (0.0) 23.2 (-46.2) 791.9 (0.0) 
Maine 648567.3 (-28.0) 0.5 (-0.5) 11.3 (-22.3) 2.8 (-32.3) 406.1 (50.3) 
Maryland 3132041.5 (-56.9) 8.7 (-2.1) 19.9 (-16.4) 11.1 (-36.0) 255.8 (2.3) 
Massachusetts 2618724.1 (-52.4) 8.9 (-1.9) 28.5 (-16.9) 12.3 (-38.1) 246.3 (3.2) 
Michigan 2491423.2 (-38.4) 15.8 (-1.9) 75.8 (-24.8) 18.5 (-35.2) 534.6 (4.7) 
Minnesota 3663932.0 (-59.2) 9.5 (-2.0) 24.6 (-12.3) 10.1 (-29.3) 69.0 (0.4) 
Mississippi 1002122.2 (-31.7) 2.2 (-0.5) 10.7 (-13.2) 13.5 (-52.7) 1337.2 (37.5) 
Missouri 1949786.2 (-37.2) 2.5 (-0.2) 44.5 (-21.6) 11.6 (-28.4) 456.3 (7.4) 
Montana 1145352.6 (-43.4) 0.9 (-0.7) 1.5 (-4.9) 1.4 (-16.5) 79.5 (16.7) 
Nebraska 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 
Nevada 4848524.0 (-60.1) 1.3 (-0.8) 14.7 (-23.3) 2.0 (-12.7) 0.0 (0.3) 
New Hampshire 920129.6 (-32.3) 0.9 (-0.8) 7.7 (-16.3) 1.8 (-24.6) 188.8 (39.2) 
New Jersey 1286622.8 (-8.5) 3.4 (0.0) 33.6 (-0.5) 4.6 (-7.0) 8.7 (0.0) 
New Mexico 630779.4 (-25.9) 2.2 (-0.9) 6.3 (-16.5) 5.7 (-38.8) 755.6 (39.2) 
New York 10321008.7 (-45.6) 20.4 (-0.5) 175.5 (-20.6) 1.4 (-1.9) 0.0 (0.0) 
North Carolina 4344011.3 (-44.0) 5.6 (-0.6) 82.3 (-21.0) 20.3 (-39.8) 1038.6 (9.9) 
North Dakota 1249116.5 (-31.2) 3.2 (-2.0) 1.0 (-1.4) 0.6 (-8.9) 95.8 (8.8) 
Ohio 2854580.2 (-31.9) 8.1 (-0.5) 138.8 (-26.5) 11.7 (-17.0) 62.4 (2.1) 
Oklahoma 761736.8 (-22.9) 3.5 (-0.8) 5.4 (-8.7) 14.5 (-46.1) 559.4 (6.8) 
Oregon 2970890.4 (-50.9) 2.1 (-0.6) 24.5 (-23.3) 7.3 (-32.2) 141.9 (2.4) 
Pennsylvania 6901247.5 (-54.7) 9.8 (-0.4) 159.6 (-27.2) 4.8 (-7.0) 0.0 (1.0) 
Rhode Island 765612.9 (-17.3) 1.9 (-0.3) 11.5 (-20.2) 0.0 (-0.7) 68.1 (0.0) 
South Carolina 813063.1 (-19.7) 1.1 (-0.1) 23.2 (-6.9) 16.9 (-53.9) 1602.3 (42.8) 
South Dakota 1128334.9 (-47.3) 1.4 (-1.4) 2.5 (-5.0) 1.4 (-21.9) 179.0 (34.0) 
Tennessee 943627.2 (-19.0) 1.1 (-0.2) 18.3 (-1.5) 0.6 (-1.4) 0.0 (0.0) 
Texas 5494902.7 (0.0) 8.8 (0.0) 74.1 (0.0) 0.0 (0.0) 882.7 (0.0) 
Utah 1542717.3 (-48.8) 0.9 (-0.6) 18.8 (-24.7) 3.7 (-21.8) 106.7 (3.2) 
Vermont 878603.2 (0.0) 0.4 (0.0) 4.4 (0.0) 0.0 (0.0) 149.8 (0.0) 
Virginia 2891505.3 (-43.3) 6.8 (-0.7) 24.4 (-9.1) 18.4 (-34.7) 758.3 (3.3) 
Washington 4156807.1 (-55.9) 1.7 (-0.1) 43.4 (-11.0) 9.6 (-22.1) 168.1 (3.3) 
West Virginia 1274187.0 (-52.8) 4.9 (-3.3) 15.4 (-32.8) 3.4 (-28.4) 251.7 (29.2) 
Wisconsin 3656673.2 (-62.2) 3.0 (-1.1) 78.0 (-37.0) 7.3 (-24.1) 0.0 (0.0) 
Wyoming 329295.6 (-11.3) 2.1 (-0.2) 1.1 (0.0) 0.0 (0.0) 0.0 (0.0) 
Mean 2338103.7 (-31.3) 59.1 (-2.4) 38.4 (-14.0) 7.1 (-21.9) 366.1 (8.6) 
Note: Slack (% ) = (Target-Actual) / Actual × 100 
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5. CONCLUSION 

Sustainable development in U.S. transportation is essential for economic growth and 
mobility, but also for the environment. However, no study has been conducted on the 
environmental efficiency of the U.S. transportation sector. This study uses a non-radial SBM-DEA 
model with an undesirable output (CO2) to measure the environmental efficiency of the U.S 
transportation sector from 2004 to 2012. Using the SBM-DEA model, environmental efficiency 
(EE), carbon efficiency (CE) and potential carbon reduction (PCR) are calculated for each state, 
and we measure the size of slack input resources and excess CO2 emissions as well as the shortfall 
of desirable output (GDP).  
 According to the results we draw the following conclusions: 1) Most states had an average 
EE below 0.64 during 2004-2012, meaning that these states had considerable room for 
improvements in transportation environmental efficiency; 2) among the 50 U.S states, four states 
were found to be environmentally efficient (Alaska, Illinois, Nebraska and Vermont), the 
remaining 46 were inefficient with Alabama, South Carolina, Colorado and Mississippi being the 
most inefficient with  average EE and CE scores below 0.4; 3)  during the 2004-2012 study period, 
the trend of EE and CE slightly decreased between 2005 and 2008 and then began to increase; this 
is consistent with the rate of CO2 emissions in the U.S transportation sector during the same time 
period; 4) there was a  large PCR for most of U.S  states; the average PCR was found to be 7.10 
million metric tons; 5) the slack analysis showed that most states had high excess in capital 
expenses, labor use, and CO2, and shortfall in GDP. 
  The findings provide policy insights as well as an overview of U.S. transportation sector’s 
environmental performance towards the development of a sustainable transportation industry in 
the U.S. First of all, the slack analysis shows the potential improvement of states’ environmental 
efficiency performances in the transportation sector through reducing input and environmental 
slacks. Second, the policy should adopt the goal and strategy of encouraging energy conservation 
to reduce CO2 emissions in the transportation sector. The DEA benchmarking results of this study 
show that state policymakers could learn and adopt the best practices in eco-efficient states to 
enhance transportation environmental efficiency. Finally, the U.S could improve technological 
innovation and the current fuel economy standards to produce a more environmentally efficient 
transportation system. 
 Although this study provided an overall understanding of environmental performance of 
the U.S. transportation sector, limitations exist, which can be further investigated. First of all, 
individual states’ performances were compared with other states in the country, and the results 
may be sensitive to the number of inputs and outputs as well as the levels of aggregation in the 
data. Also, this study used GDP as the only good output, but different states have different ways 
of generating GDP and in many cases serve as complements to each other. Therefore, a potential 
for future research would be to break GDP (or some other indicator) down by market segment to 
try to capture the relative efficiencies of the states doing different things to generate GDP. 
Furthermore, the panel data over the years for multiple DMUs can also be analyzed using 
stochastic frontier analysis to compare the eco-efficiency scores. Lastly, more up-to-date data 
should be collected in the future to analyze current changes in environmental efficiency in the U.S 
transportation sector.  
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