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Environmental engineering for quantum energy transport
Chikako Uchiyama1,2, William J. Munro3,4,1 and Kae Nemoto1

Transport phenomena are ubiquitous throughout the science, engineering, and technology disciplines as it concerns energy, mass,
charge, and information exchange between systems. In particular, energy transport in the nanoscale regime has attracted
significant attention within the physical science community due to its potential to explain complex phenomena like the electronic
energy transfer in molecular crystals or the Fenna-Matthews-Olson (FMO)/light harvesting complexes in photosynthetic bacteria
with long time coherences. Energy transport in these systems is highly affected by environmental noise but surprisingly not always
in a detrimental way. It was recently found that situations exist where noise actually enhances the transport phenomena. Such
noise can take many forms, but can be characterised in three basic behaviors: quantum, correlation in time, or space. All have been
shown potential to offer an energy transport enhancement. The focus of this work is on quantum transport caused by stochastic
environment with spatio-temporal correlation. We consider a multi-site nearest neighbor interaction model with pure dephasing
environmental noise with spatio-temporal correlation and show how an accelerated rate for the energy transfer results especially
under negative spatial correlation (anti-correlation). Spatial anti-correlation provides another control parameter to help one
establish the most efficient transfer of energy and may provide new insights into the working of exciton transport in photosynthetic
complexes. Further the usage of spatio-temporal correlated noise may be a beneficial resource for efficient transport in large scale
quantum networks.
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INTRODUCTION

Energy transport is a fundamental primitive in our world operating
on length scales ranging from the atomic scale to cosmological
ones. It is at the core of natural life as well as our current
technology. Any, even slight, improvements in transport efficiency
can bring profound effects. In the natural world this can lead to a
species dominating another, while in the technological world it
can lead to lower energy consumption devices. Many of these
improvements in the technological arena have been achieved by
better device engineering reducing noise and imperfections.
While this seems a perfectly logical approach, recently however it
has been found, though nature already knew, that energy
transport can be enhanced by adding environmental noise. This
counter intuitive behavior has shed new light on the conventional
thinking that noises in transport phenomena should be removed,
and it was indeed triggered by energy transport discussions of
light harvesting complex of photosynthetic bacteria.1

The intensive research on four wave mixing in the light
harvesting complex, such as the Fenna-Matthews-Olson (FMO)
complex in green sulfur bacteria,2–4 light harvesting complex in
marine algae5 or molecular crystals,6 has given us clues to
understand the mechanisms for efficient quantum energy
transport. The striking long lived coherence observed in these
experiments strongly suggests the positive effect of environ-
mental noise. Extending this concept to the dynamics of exciton
motion with delta-correlated stochastic noise (white noise)
proposed by Haken and Strobl,7 a simple theoretical model using
pure dephasing was introduced to assist the excitation transport,
referred as the environment-assisted quantum transport (ENAQT)8

or dephasing-assisted transport.9 To describe the long-lived
coherence observations, the model was further extended to
include finite noise correlation times and lengths, including a
colored noise approach using dichotomic stochastic process,10 a
reservoir modeling with an infinite number of quantum harmonic
oscillators,11–15 and an analysis with finite correlation lengths.16–19

Positive spatial correlations were shown to reduce the environ-
mental effects, assisting the long-lived coherence. Both effects of
temporal and spatial correlation together20,21 were shown to be
beneficial, and recently an artificial realization of the ENAQT model
has been proposed.22,23 The long-lived coherence implies the
lasting energy exchange between sites, which however may affect
the efficiency on the energy transfer rate. If the long-lived
coherence can contribute to a higher transport efficiency, these
contradicting evidences need to be somehow resolved. Spatial
correlation might give us a solution to this.17–19,24,25 Cao and
Silbey17 extended the interaction between the sites to include a
phase relation and found the dependency of transfer efficiency on
the phase, while the spatial correlation by propagation of
environmental phonon modes24 and the application of the
extended ENAQT model with the spatial correlation to the
photosynthetic bacteria18,19 have been considered. Anti-
correlation in noise has also been taken into account as the
effects of anti-correlated (anti-phase) motion of two harmonic
oscillators were investigated,25 and the anti-spatial correlations
between the bacteriochlorophylls in the FMO complex could both
positively and negatively influence the energy transport.19 These
results imply that the phase relation can affect the quantum
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energy transport, which leads us to the natural question of what is
the best spatio-temporal correlation function.
In this manuscript, we consider a simple multi-site model for the

ENAQT using spatio-temporal correlated stochastic noise pro-
cesses and show how we can engineer the environment to
enhance quantum energy transport. The fundamental difference
with the conventional treatment is to exploit the negative
parameter regime (anti-correlation) of the spatial correlation as
well as including finite temporal correlations with exponential
decay. For the two site model, using the 2nd order of time-
convolutionless (TCL) master equation, we analytically find that
the time evolution of the population under negative spatial
correlation is significantly faster than uncorrelated and positively
correlated spatial noise. Extending the spatial correlations to
include anti-correlations provides another control parameter to
find efficient energy transfer regimes. Using two independent
measures for transfer efficiency, we find a significant improvement
in transported quantity and elapsed time for negative spatial-
correlation compared to noise with delta-correlation both in space
and time as in the original ENAQT model. Extending to the three
site model, we find that the negative spatial correlation between
every other site shows the best transfer efficiency, while the
negative correlation between the next nearest neighbors is worse.

RESULTS

Model

Let us begin by describing a simple multi-site model for the
ENAQT whose energy level diagram we schematically depict in
Fig. 1. For N sites, the total Hamiltonian can be written as H tð Þ ¼
H0 þ εH1 tð Þ with

H0 ¼ �h
X

N

n¼1

ωn nj i nh j þ h
X

n<m

Vnm mj i nh j þ nj i mh jð Þ (1)

H1 tð Þ ¼ �h
X

N

n¼1

fn tð Þ nj i nh j; (2)

where ε is the cumulant expansion parameter of the time-
convolutionless master equation with |n〉 being the n-th excitation
site, ωn the n-th site Larmor frequency, Vnm the transition
frequency between the n-th and m-th site, and fn(t) the fluctuating
frequency on the n-th site which we consider as a stochastic
process. We assume that the average of the frequency fluctuation
for each site n is zero as 〈fn(t)〉= 0, and the correlation function

〈fn(0)fm(t)〉 of these fluctuations can for convenience be described
by a simple exponential decay as

fn 0ð Þfm tð Þh i ¼ cn;mΔ
2
n;mexp � tj j=τc;fn;mg

� �

; (3)

where to allow for both positive and negative (anti) spatial
correlations we introduce the quantity cn,m with
n;m ¼ 1; 2¼Nf g. It is defined over the range by −1 ≤ cn,m ≤ 1
with the extremal values −1 (+1) corresponding to perfectly anti-
correlated (correlated) noise respectively. Δn,m is the amplitude of
the fluctuation, whereas τc;fn;mg is the correlation time of the
fluctuation. We also include damping with the rate κ at the end of
the linear chain to trap the system in its ground state.17 This
corresponds to the excitation leaving the chain. Now averaging
the density operator over the fluctuation using a time-
convolutionless decomposition approach, we obtain the master
equation

d

dt
ρ tð Þ ¼ �iL0ð Þh iρ tð Þ

þ

Z t

0

�iL̂1 0ð Þ
� �

�iL̂1 �τð Þ
� �D E

� �iL̂1 0ð Þ
� �D E

�iL̂1 �τð Þ
� �D E� �

dτρ tð Þ;

(4)

where L0X � 1
�h
H0; X½ � and L1 tð ÞX � 1

�h
H1 tð Þ; X½ � for an arbitrary

operator X with L̂1 tð Þ ¼ eiL0tL1 tð Þe�iL0t . The master equation
given by (4) is inherently non-Markovian and incorporates both
spatial and temporal correlations. In the limit that such correla-
tions vanish, it reduces to a Markovian master equation (see
“Methods”). Let us now consider a simple example.

Two-site model

As the description of our multi-site model has been completed, we
will now consider the simplest situation, N= 2. In the two-site
model, when initially only the site 1 is fully excited, the time
evolution of the probability of finding the second site excited is
shown in Fig. 2. Figure 2a represents the case where the
fluctuation has no cross correlation between sites cn;m ¼ δn;m

� �

with the inset showing the short-time behavior. The uncorrelated
situation (Fig. 2a) shows that there is an optimum time to
transport the excitation to the second site depending on τc, where
we set the amplitude and correlation time of fluctuation at each
site to be the same as Δn,n= Δ and τc; n;nf g ¼ τc for n= {1,2}. As the
correlation time τc increases, the change of fluctuation carries a
longer time memory effect and the optimum time decreases. Next
in Fig. 2(b) we consider the situation where the fluctuation is anti-
correlated between sites 1 and 2 by setting c1;2 ¼ c2;1 ¼ �1.
Assuming that the amplitude and correlation time of the
fluctuation of each and between sites are the same, Δn,m= Δ

and τc; n;mf g ¼ τc for n,m= {1, 2}, we show in Fig. 2b that the
transport finishes faster as the correlation time becomes longer.
Comparing Fig. 2a with b, we find that the anti-correlation
between the sites makes transport to finish faster than the
uncorrelated case. This is not unexpected when one examines the
two time noise correlation function given by
ϕ tð Þ ¼ f1 0ð Þ � f2 0ð Þð Þ f1 �τð Þ � f2 �τð Þð Þh i. For uncorrelated noise
this simplifies to f1ð0Þf1 �τð Þh i þ f2 0ð Þf2 �τð ÞÞh i ¼ 2 f1 0ð Þf1 �τð Þh i if
the noise is the same for each site, while for the anti-correlated
noise, the quantity becomes, ϕ tð Þ ¼ 4 f1 0ð Þf1 �τð Þh i, to be twice
the size of the uncorrelated case.
To quantify this improvement in more details, let us examine

two independent measures: (1) average trapping time and (2)
ratio of transported quantity. The average trapping time is defined
by17

th i ¼
X

n

τn ¼
X

n

Z 1

0

dtρnn tð Þ: (5)

The average trapping time indicates how long the population of
the initial excitation remains in the system. Since the excitation

Fig. 1 Schematic energy level diagram of our multi-site system
illustrates the case of three sites. Each site n has an associated
excited state |n〉 with Larmor frequency ωn, and the excited state at
each site fluctuates with the frequency fluctuation fn(t) around a
fixed level. Each site has a transition frequency Vij between the
adjacent sites i= n and j= n+ 1. The final site in the chain, i.e., site n
= 3 in this illustration, includes a decay channel with rate κ to trap
the system in its ground state. This corresponds to the excitation
leaving the chain
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trapping only at the second site with rate κ leads to
R1
0 dtρ22 tð Þ ¼ κ�1, we focus on the average trapping time 〈t〉

minus an offset as κ−1. This is drawn in Fig. 3a for varying degree
of spatial correlation c1;2 ¼ c2;1 ¼ c. This indicates that the
transport feature depends on the correlation between sites.
Especially, as c approaches to −1, the average trapping time
decreases, i.e., the transport finishes faster. Moreover, the
quantum yield becomes larger as c approaches to ~1, since the
average trapping time is found to be inversely related to the
quantum yield17 given by q � 1= kd th i þ 1ð Þ where kd is the decay
rate of recombination (see “Methods”).
Next, we introduce a quantity η to define an integrated

probability that the excitation has been transported to the second
site upto a time tu as

η ¼ κ

Z tu

0

ρ22 t0ð Þdt0: (6)

Since the trapping rate κ is given by
R1
0 ρ22 t0ð Þdt0 ¼ κ�1, η

indicates the ratio of transported quantity between upto a finite
time tu and completion of the transport. In Fig. 3b, we chose tu to
be 2000Δ when the transport to the second site is 98% completed
for α= 1 and c=−1. We used it for all other evaluation in the
figure. It is straightforward to observe from Figs. 2 and 3 the
dependence of the energy transfer on both the degree of spatial
correlation c and temporal correlation time α ¼ Δ � τc . In both

measure, there is a clear monotonic dependence on the degree of
spatial correlation, with the best results occurring as we approach
perfect anti-correlation (ϕ(t) is larger in this case). We also observe
a non-monotonic dependence of the populations time evolution
and the measures of transfer efficiency for temporal correlations.
This indicates that there will be a condition for optimal energy
transfer on the correlation time. For small and decreasing α, the
energy transfer takes longer time due to the fact that fluctuation
becomes too fast making it difficult for the energy gaps to be
close and the transition probability between sites becomes
smaller (this moves us towards the Markovian limit). For α larger
than the optimal value, the correlation time becomes larger
making the transition probability smaller again. Thus for the best
performance one should operate near this optimal value. Now
what happens when we have more sites?

Three-site model

The two-site model has shown how spatial correlations are
potentially an important resource for efficient energy transfer. The
natural question which follows to this would be whether this is
true for when the system has more than two sites. We extend the
model to three-site linear chain under the nearest neighbor
interaction with the interaction strengths given by V12= V21= V23
= V32= V and V13= V31= 0. In Fig. 4 we illustrate the time
evolution of the population of the third (final) site ρ33 ~tð Þ for
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Fig. 2 Time evolution of ρ22 ~t ¼ Δ � tð Þ between energy fluctuation is shown in a with spatially-uncorrelated noise, cn,m= δn,m and is shown in
b with spatially-anti-correlated noise, cn,m=−1, for an initial condition ρ11 0ð Þ ¼ 1. Each plots corresponds to a different correlation time, α=
Δ·τc as 0.1,0.3,1 and 10: the dashed lines corresponds to α= 0.1, dotdashed lines to α= 0.3, solid lines to α= 1 and dotted lines to α= 10. The
system parameters are set as ε2 ¼ 0:1;ω1=Δ ¼ 1:5;ω2=Δ ¼ 0:5; V12=Δ ¼ 0:1; κ=Δ ¼ ~κð Þ ¼ 0:005. The spatially-anti-correlated noise shows the
acceleration of energy transport compared with the spatially-uncorrelated case
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Fig. 3 Two-site transport properties and their dependence on the degree of spatial correlation. In a, we show the average trapping time ~t
� 	

minus ~κ�1 indicating the average time for the excitation trapped in the system, i.e., in the site 1 for the two-site model. In b, we show the ratio
of transported probability. In both situations, we find a monotonic dependence on degree of spatial correlation parameter c, which indicates
that transport is mostly accelerated for the anti-correlated energy fluctuations. The dependence of both measures on the correlation time is
shown with α=Δ·τc as 0.1,0.3,1 and 10. The dashed lines corresponds to α ¼ 0:1, dotdashed lines to α ¼ 0:3, solid lines to α ¼ 1 and dotted
lines to α ¼ 10. Focusing on the uncorrelated case, as α increases up to 1, the average trapping time (ratio of transported quantity) decreases
(increases). However, for α ¼ 10, the former (the latter) increases (decreases), which shows that a suitable correlation time of fluctuation can
accelerate the transport. While the average trapping time (ratio of transported quantity) increases (decreases), for the positive degree of
correlation, the acceleration of transport becomes negative. Other parameters are the same as in Fig. (2)
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spatially-uncorrelated noise and two spatially-anti correlated noise
cases. Figure 4a corresponds to the uncorrelated case with cn;m ¼
δn;m for n,m= {1, 2, 3}, while Fig. 4b represents the case for the
anti-correlated noise between the nearest neighbor sites with c1,2
= c2,1= c2,3= c3,2=−1 and correlated between the end sites c1,3
= c3,1= 1. Finally, Fig. 4c represents the case for the anti-
correlated noise between the sites 1 and 3, and the sites 2 and
3, with c1,3= c3,1= c2,3= c3,2=−1 and correlated noise between
the sites 1 and 2, c1,2= c2,1= 1. In each sub-figure, we find that the
dependence of the dynamics on the correlation time for the two-
site model remains for the three-site case: transport finishes faster
as the correlation time becomes longer particularly in the short
correlation time regime, αt1. Comparing Fig. 4a–c, we find that
the anti-correlated between the nearest neighbor sites typically
shows the most efficient transport.
To explore these features systematically, we evaluate the

average trapping time 〈t〉. In Fig. 5, we show the contour plot of
the dependence of th i � κ�1 on the degree of correlation cn,m.
Comparing Fig. 5a, b, we find that “anti-ferromagnetic” correlation
where the fluctuation is anti-correlated between the adjoint site
shows the most efficient transport. The origin of the efficient

transport lies at the higher transition probability between the
adjoint cites with anti-correlation, which in the three site model
corresponds to the“anti-ferromagnetic” correlation. There the
average trapping time th i � κ�1 for the uncorrelated case is
~12% longer than the “anti-ferromagnetic” case. This clearly
shows the acceleration in the energy transport occurs with “anti-
ferromagnetic” correlations, while the difference is smaller as α

increases (5% for α= 0.5). The question follows is how robust this
efficiency in energy transport.
The most important feature is the stability against inhomo-

geneity in coupling between adjoint cites. To see this, we deviate
V23/Δ from 0.1 to be 0.15 and 0.3, keeping V12=Δ ¼ 0:1 in the
three site model. The average trapping time decreases for any
spatial correlation as increasing V23/Δ, due to the stronger
coupling strength accelerating the energy transfer. The difference
of the average trapping time 〈t〉 between uncorrelated and “anti-
ferromagnetic” case decreases from ~12% to ~8.5% for V23/Δ=
0.15 and ~4% for V23/Δ= 0.3. This indicates a significant
robustness in the acceleration mechanism, yielding the robustness
around ~10% with the inhomogeneous coupling upto 150%.
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Fig. 4 Time evolution of ρ33 ~t ¼ Δ � tð Þ for the three-site model under different degrees of spatial correlation: In a, we show the case for energy
fluctuations with spatially-uncorrelated noise (cn;m ¼ δn;m for n, m= {1, 2, 3}) while b shows the anti-correlated between nearest neighbor site
case where c1;2 ¼ c2;1 ¼ c2;3 ¼ c3;2 ¼ �1 and positively correlated for site 1 and 3 c1;3 ¼ c3;1 ¼ 1. (c) illustrates the case of anti-correlated
between the site 1 and 3, and site 2 and 3, with c1;3 ¼ c3;1 ¼ c2;3 ¼ c3;2 ¼ �1 and correlated between the site 1 and 2 c1;2 ¼ c2;1 ¼ 1. The
dashed lines corresponds to α= 0.1, dotdashed lines to α= 0.3, solid lines to α= 1 and dotted lines to α ¼ 10. The inset in each figure shows
the short-time behavior. Comparing the behaviour between the different case, we find that the “anti-ferromagnetic” correlation (case b)
accelerates the transport most. We have set the paramters as, ω1=Δ ¼ 1:5;ω2=Δ ¼ 1:2;ω3=Δ ¼ 1:0; V=Δ ¼ 0:1 and κ=Δ ¼ ~κð Þ ¼ 0:005 while
other parameters are the same as in Fig. (2)

Fig. 5 Average trapping time ~t
� 	

� ~κ�1 for three-site transport depending on the degree of spatial correlation for α= 0.3. a Shows this
quantities dependency onc2;3 ¼ c3;2

� �

and c1;2 ¼ c2;1
� �

while setting c1;3 ¼ c3;1 ¼ c2;3c1;2 . Similarly b shows our quantities dependency on
c1;3 ¼ c3;1
� �

and c1;2 ¼ c2;1
� �

while setting c2;3 ¼ c3;2 ¼ c1;3c1;2. Other parameters are the same as in Fig. 4. The shorter values of average
trapping time occurs at the left hand bottom side corner in (a) and right hand bottom side corner in (b). This means the “anti-ferromagnetic”
correlation case is the best choice for acceleration of transport in this case
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DISCUSSION AND CONCLUSION

Energy transport in molecular complexes/light harvesting complexes
in photosynthetic bacteria has raised many fundamental questions
on how our nature operates and our understanding of noise effects
in such processes has been challenged. The recent research indicates
that noise can enhance transport rates through temporal correla-
tions11–15 or spatial correlations.18 In this work we have considered
the transport of excitation for a multi-site linear chain model whose
energy levels are affected by spatio-temporal correlated stochastic
noise processes.16,17 We find that the energy transport can be
accelerated by extending the spatial correlation into the negative
region (anti-correlation). In the two-site model, our numerical analysis
showed the significant acceleration in the energy transfer with the
negative spatial correlation. By extending the model to three sites,
we numerically demonstrated that the optimal efficiencies can be
obtained with the “anti-ferromagnetic” correlation. The difference in
transport with anti-correlated and uncorrelated noises in the four site
model becomes even larger. For the temporal correlation depen-
dencies, we explored the energy transfer dependence by changing
the parameter α ¼ Δ � τc . A non-monotonic dependence on both the
population time evolution and the transfer efficiency measures were
observed, and hence the correlation time needs to be chosen to
achieve the optimum energy transport. These results show new
possibilities to understand efficient energy transport in nature and
engineer it to our technologies.

METHODS

An open systems approach
As shown in Fig. 1 our multi-site model contains fluctuating excited state
energy levels as well as an energy trap on the last site (energy decay). In
principle this means an open systems approach must be used—especially
as our energy level fluctuations are stochastic in nature. It would thus be
natural to write down a master equation in Lindblad form26,27 (which can
easily handle the last site energy decay), which would force us to use a
white noise model where the fluctuations are not correlated in time.
However in this case we want to examine temporal and spatial correlation
effects. This means the typical master equation is not appropriate, however
a master equation can be derived using time-convolutionless decomposi-
tion techniques.28–36

Derivation of the time convolution type of master equation
The master equation given by Eq. (4) is obtained by extracting the time
evolution of the excitations in each site from the one of the total system
which is written by the Liouville–von Neuman equation as

d

dt
W tð Þ ¼ �iL tð ÞW tð Þ; (7)

where W(t) is the density operator for the total system and L tð Þ is the
Liouville operator defined as L tð ÞX ¼ 1

�h
H tð Þ; X½ � for an arbitrary operator X.

In such a case, the extraction averages W(t) over the stochastic process of
the fluctuation. Our purpose is to obtain the time evolution of the reduced
density operator 〈W(t)〉(≡ρ(t)) where we denote the average operation as
h� � �i. For this purpose, it is convenient to use the projection operator
method.28–36 Introducing a projection operator, P, which is an idempotent
operator with a property as P2 ¼ P, we describe the reduced density
operator as PW tð Þ � W tð Þh i ¼ ρ tð Þð Þ. To obtain the time evolution of
PWðtÞ, we use the formal solution of Eq. (7) as W tð Þ ¼ Uþ t; t0ð ÞW t0ð Þ with

Uþ t; t0ð Þ ¼ Tþexp �i
R t

t0
L τð Þdτ

h i

where T+ is an increasing time ordering

operator from the right to the left. The procedure to obtain the master
equation, Eq. (4), is roughly divided into the following six steps:

1. First we define the relevant P part and the irrelevant Qð� 1� PÞ

part of the time evolution operator Ûþðt; t0Þ as

x tð Þ � PÛþ t; t0ð Þ; y tð Þ � QÛþ t; t0ð Þ; (8)

where we use interaction picture with the definition as Ûþ t; t0ð Þ ¼

e�iL0 t�t0ð ÞUþ t; t0ð Þ ¼ Tþexp �
R t

t0
dt0iL̂1 t0ð Þdt0

h i

and

L̂1 tð Þ ¼ eiL0 t�t0ð ÞL1 tð Þe�iL0 t�t0ð Þ .

2. Then we derive simultaneous differential equations for x(t) and y(t)
as

d

dt
x tð Þ ¼ P �iL̂1 tð Þ

� �

x tð Þ þ P �iL̂1 tð Þ
� �

y tð Þ; (9)

d

dt
y tð Þ ¼ Q �iL̂1 tð Þ

� �

x tð Þ þ Q �iL̂1 tð Þ
� �

y tð Þ: (10)

3. Next the formal solution of the irrelevant Q part can be written as,

y tð Þ ¼

Z t

t0

V̂þ t; τð ÞQ �iL̂1 τð Þ
� �

x τð Þdτ þ V̂þ t; t0ð ÞQ: (11)

with V̂þ t; τð Þ ¼ Tþexp �i
R t

τ
QL̂1 τ0ð Þdτ0

h i

.

4. We then rewrite x(τ) in Eq. (11) with x(t) and y(t) using the relation

x τð Þ ¼ PÛþ τ; t0ð Þ ¼ PÛ� t; τð Þ x tð Þ þ y tð Þð Þ; (12)

where Û� t; t0ð Þ ¼ T� exp i
R t

t0
L̂1 τ0ð Þdτ0

h i

with T
−
an increasing time

ordering operator from the left to the right. The formal solution of y
(τ) has the form

y tð Þ ¼ θ tð Þ�1 1� θðtÞð Þx tð Þ þ V̂þ t; t0ð ÞQ
� �

; (13)

where we define

θðtÞ ¼ 1�

Z t

t0

V̂þðt; τÞQð�iL̂1ðτÞÞPÛ�ðt; τÞdτ � 1� σðtÞ: (14)

5. Next we substitute the formal solution of y(t) into Eq. (9) and
multiply W(t0) from the right on the both hand sides of Eq. (9),

d

dt
ρ̂ tð Þ ¼ P �iL̂1 tð Þ

� �

ρ̂ tð Þ þ Ξ t; t0ð Þρ̂ tð Þ þ I t; t0ð ÞW t0ð Þ; (15)

with ρ̂ðtÞ ¼ e�iL0ðt�t0ÞρðtÞ, Ξðt; t0Þ ¼ Pð�iL̂1ðtÞÞð1� θðtÞ�1Þ and

Iðt; t0Þ ¼ Pð�iL̂1ðtÞÞθðtÞ
�1V̂ðt; t0ÞQ.

6. Eq. (15) is then expanded with using the relation as

θ tð Þ�1¼
P1

n¼0 σ tð Þn . This gives

d

dt
ρ̂ tð Þ ¼ P �iL̂1 tð Þ

� �

ρ̂ tð Þ þ P �iL̂1 tð Þ
� �

X

1

n¼1

σ tð Þnρ̂ tð Þ þ Iðt; t0ÞW t0ð Þ;

(16)

7. Expansion of Eq. (16) up to the second order of cumulant for L1 tð Þ
with using an assumption as fm tð Þh i ¼ 0 and QW t0ð Þ ¼ 0 and
transformation into the original picture from the interaction picture
gives Eq. (4).

Now let us consider the specific example, two site model.

TCL type master equation for the 2-site model
The concrete form of the master equation for the two-site model is written
as

d
dt ρ11 tð Þ ¼ �iV12 �ρ12 tð Þ þ ρ21 tð Þð Þ;
d
dt ρ12 tð Þ ¼ �i V12 �ρ11 tð Þ þ ρ22 tð Þð Þ þ ðω1 � ω2Þρ12 tð ÞÞf g

�ε2 F1 ω1;ω2; V12; tð Þ ρ11 tð Þ � ρ22 tð Þð Þ þ F2 ω1;ω2; V12; tð Þρ12 tð Þf g;
d
dt ρ21 tð Þ ¼ �i V12 ρ11 tð Þ � ρ22 tð Þð Þ � ω1 � ω2ð Þρ21 tð Þð Þ

�ε2 F�1 ω1;ω2; V12; tð Þ ρ11 tð Þ � ρ22 tð Þð Þ þ F2 ω1;ω2; V12; tð Þρ21 tð Þ
� �

;
d
dt ρ22 tð Þ ¼ �iV12 ρ12 tð Þ � ρ21 tð Þð Þ � κρ22 tð Þ;

where ρnm tð Þ is the (n, m) element of the reduced density operator ρ tð Þ, κ
is the trap frequency at the 2nd site and we Fn ω1;ω2; V12; tð Þ for n= 1,2 are
defined as

F1 ω1;ω2; V12; tð Þ ¼ �

Z

t

0

dτ
V12 ω1 � ω2ð Þ

μ2
1� cos μτð Þð Þ � i

V12
μ

sin μτð Þ


 �

ϕ τð Þ;

(17)

F2 ω1;ω2; V12; tð Þ ¼

Z t

0

dτ
ω1 � ω2ð Þ

μ


 �2

þ 1�
ω1 � ω2ð Þ

μ


 �2
 !

cos ðμτÞð Þ

 !

ϕ τð Þ;

(18)
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with

μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1 � ω2ð Þ2þ4V2
12

q

; (19)

ϕ tð Þ ¼ f1 0ð Þ � f2 0ð Þð Þ f1 �tð Þ � f2 �tð Þð Þh i: (20)

In Eq. (20), fn 0ð Þfm �τð Þh i with n;m ¼ 1; 2f g is the correlation function of
the fluctuation of the frequency. The obtained master equation shows that
the transport is controlled by adjusting correlation function of the
fluctuation on each site as well as the one between the fluctuation on
the different cite such as f1 0ð Þf2 �τð Þh i. Assuming that the amplitude and
correlation time of the fluctuation of each and between site are the same,
Δn;m ¼ Δ and τc; n;mf g ¼ τc for n;m ¼ 1; 2f g, ϕ(t) in Eq. (20) is given by
ϕ tð Þ ¼ 4 f1 0ð Þf1 �tð Þh i for anti-correlated case (c=−1) and ϕ tð Þ ¼
2 f1 0ð Þf1 �tð Þh i for the uncorrelated case (c= 0).
The dynamics described by time convolutionless(TCL) type of master

equation is compared to the one by hierarchical equations of motion
(HEOM) for the spin-boson system in37 where they find that the second
order and fourth order of TCL equation and HEOM shows almost the same
dynamics for weak coupling case.

Relation with the traditional Lindblad master equation
The TCL master equation given by Eq. (4) in a specific limit reduces to the
typical Lindblad master equation. In such a case we set the upper integral
limit t ! 1 giving

d

dt
ρ tð Þ

¼ �iL̂0

� �D E

ρ tð Þ

þ

Z

1

0

�iL̂1 0ð Þ
� �

�iL̂1 �τð Þ
� �D E

� �iL̂1 0ð Þ
� �D E

�iL̂1 �τð Þ
� �D E� �

dτρ tð Þ;

(21)

where all of the coefficients are time-independent. This is the Born-Markov
approximation.30,31,36 For example, the time-dependent coefficients of the
two site model ignoring spatial correlation (c= 0) can be approximated as

F1 ω1;ω2; V12;1ð Þ ¼ �2Δ2 V12 ω1�ω2ð Þτ3c
1þμ2τ2c

� i
V12τ

2
c

μ2τ2cþ1

� �

F2 ω1;ω2; V12;1ð Þ ¼ 2Δ2 τc
1þμ2τ2c

þ ω1�ω2ð Þ
μ

� �2
μ2τ3c

1þμ2τ2c


 �

;
(22)

Taking the limit of the correlation time τc to approach zero with
maintaining Δ

2τc finite,
31 we obtain

lim

τc ! 0

F1 ω1;ω2; V12;1ð Þ ¼ 0; lim

τc ! 0

F2 ω1;ω2; V12;1ð Þ ¼ 2
Δ
2τc

1þ μ2τ2c
;

(23)

Defining lim
τc ! 0

F2 ω1;ω2; Γ12;1ð Þ � γ, our master equation given by
Eq. (4) reduces to the Lindblad form:26,27

d

dt
ρ tð Þ ¼ �

i

h
H0; ρ tð Þ½ � þ

γ

2

X

m

2Amρ tð ÞAym � AymAmρ tð Þ � ρ tð ÞAymAm
� �

;

(24)

where Am ¼ jmihmj. We find that Eq. (24) is the same as the master
equation obtained in8 for the Haken-Strobl model. Moreover, when we
substitute the stationary value of ρ12 tð Þ into the differential equation, we
obtain the same differential equation as in.17 Besides the above, let us note
that, by using the time convolutionless type of master equation, we need
only to take long-time limit as the approximation procedure, which is
much simpler than using the time-nonlocal (time-convolution) type of
master equation.30

Numerical methods
The effect of the fluctuation on the time evolution of the density operator
is described with the time dependent coefficient of the second term in the
right hand side of the time-convolutionless type of master equation given
by Eq. (4). To obtain the time evolution of the density operator, we
numerically solved the master equation by evaluating the time dependent
coefficient and iterating the equation step by step with the coefficient. In
the evaluation, we scaled the time variable and parameters with the
strength of fluctuation Δ.

Quantum yield
The quantum yield is defined as

q ¼

P

n kt;nτn
P

n kt;nτn þ
P

n kd;nτn
; (25)

where kd;n is the the decay rate at the n-th site by recombination, kt;n is the
one by trap and τn ¼

R1
0 ρnn tð Þdt in.17 q indicates the ratio of trapped

quantity to the total loss by recombination and trap. Cao and Silbey
showed that the decay rate by recombination is necessary to be much
smaller than the trapping rate, kd;n � kt;n to obtain a high quantum
yield.17 In such situation, the dependence of τn on kd;n can be neglected to
give

P

n kt;nτn kd;n ¼ 0
� �

� 1. Thus

q �
1

1þ
P

n kd;nτn kd;n ¼ 0
� � ¼

1

1þ kd th i
; (26)

where the last form is obtained by setting the values of kd;n to be the same
as kd for all of the state n and with th i ¼

P

n τn , which is called as the
average trapping time.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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