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Abstract

Background

Stunting is an indicator of poor linear growth in children and is an important public health

problem in many countries. Both nutritional deficits and toxic exposures can contribute to

lower height-for-age Z-score (HAZ) and stunting (HAZ < -2).

Objectives

In a community-based cross-sectional sample of 97 healthy children ages 6–59 months in

Kampala, Uganda, we examined whether exposure to Pb, As, Cd, Se, or Zn were associ-

ated with HAZ individually or as a mixture.

Methods

Blood samples were analyzed for a mixture of metals, which represent both toxins and

essential nutrients. The association between HAZ and metal exposure was tested using

multivariable linear regression and Weighted Quantile Sum (WQS) regression, which uses

mixtures of correlated exposures as a predictor.

Results

There were 22 stunted children in the sample, mean HAZ was -0.74 (SD = 1.84). Linear

regression showed that Pb (β = -0.80, p = 0.021) and Se (β = 1.92, p = 0.005) were signifi-

cantly associated with HAZ. The WQS models separated toxic elements with a presumed

negative effect on HAZ (Pb, As, Cd) from essential nutrients with presumed positive effect

on HAZ (Se and Zn). The toxic mixture was significantly associated with lower HAZ (β =

-0.47, p = 0.03), with 62% of the effect from Pb. The nutrient WQS index did not reach statis-

tical significance (β = -0.47, p = 0.16).
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Discussion

Higher blood lead and lower blood selenium level were both associated with lower HAZ. The

significant associations by linear regression were reinforced by the WQS models, although

not all associations reached statistical significance. These findings suggest that healthy chil-

dren in this neighborhood of Kampala, Uganda, who have a high burden of toxic exposures,

may experience detrimental health effects associated with these exposures in an environ-

ment where exposure sources are not well characterized.

Introduction

Stunting, poor linear growth for age, is a major problem that affects children worldwide partic-

ularly in low- and middle-income countries. It has been associated with poor neurodevelop-

mental and health outcomes in childhood and into adulthood. It has been associated with

behavioral problems, cognitive deficits, and greater risk of hypertension and cardiovascular

disease later in life [1–5]. The most common causes of stunting include malnutrition, micro-

nutrient deficiencies and infection [5, 6]; however there is growing recognition of the contri-

bution of toxic environmental exposures including lead [7–9]. The negative effects of lead

exposure on growth and development are of particular concern because of the universal expo-

sure to children around the globe and disproportionately high exposures in low- and middle-

income countries [10, 11]. In countries without strong regulations on industrial use and dis-

posal of toxic substances, the health effects of exposure to growing children are likely increased

compared to those in more highly regulated countries. However the actual levels of exposure

and their health effects are often unknown due to lack of health surveillance programs and

research. The paradigm for understanding exposure sources of toxic metals, metalloids, and

metallic elements and the research on cognitive and health effects of these exposures occurs in

wealthier countries; yet due to vast differences in housing conditions, urban development and

zoning laws, drainage, sanitation, and home-based industry [12], there are likely very different

risk factors for exposure and more dangerous exposure patterns facing children in poorer

countries. Little is known about toxic metal exposures to young children in Uganda [13, 14] or

their effect on stunting in low-and middle-income countries in general [7].

There is rapidly growing interest in the health effects of exposure to mixtures of environ-

mental metals as opposed to those of single exposures because mixed exposure is a better

representation of reality. Furthermore, there is evidence that co-exposures to mixtures of

chemicals can have synergistically more harmful health effects than individual exposures, espe-

cially in the realm of neurodevelopmental effects [15–18]. For health outcomes including

stunting and linear growth, we anticipate that in addition to detrimental effects of single expo-

sures, there may be interactions between toxic metals such as lead and essential nutrients such

as zinc and selenium [8]. Statistical techniques for analysis of chemical mixtures have been

developed to better be able to understand the interactions between individual components of

mixtures, and to gain a more comprehensive picture of the health effects of toxicants in con-

cert. For simplicity, we refer to our mixture including lead (Pb), arsenic (As), cadmium (Cd),

selenium (Se), and zinc (Zn), as metals, although Zn is a semi-metallic element and Se is a

non-metallic element. To our knowledge, statistical techniques for mixtures have not been pre-

viously employed to study the effects of metal mixtures on linear growth of children in low

income countries.

To determine the effect of exposure to environmental metal mixtures on height-for-age Z-

score (HAZ) in this under-studied population, we undertook this analysis of data collected as
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part of a community-based study [13] on metal exposure in Ugandan children living in the

Katanga urban settlement of Kampala. This study contributes to the understanding of metal

exposures to children in a poor neighborhood of Kampala, Uganda and, to our knowledge, it

is the first study to investigate the effects of exposure to metal mixtures on linear growth of

young children.

Material and methods

Study population

In May 2016 community-based cohort of 100 children age 6 to 59 months was recruited using

probability sampling method from the Katanga urban settlement near Mulago Hospital in

Kampala, Uganda. The community and recruitment procedures are described in detail else-

where [13]. In short, all children were from the same low-lying community of makeshift tem-

porary structures with poor drainage and garbage management. Inclusion criteria were age

6–59 months, being a permanent resident of the Katanga settlement, and having a caretaker

willing to bring the child to Mulago Hospital that day for a medical examination, blood draw,

and environmental questionnaire. Children were excluded from the study if they were found

to require urgent medical attention or if their caretaker did not speak English or Luganda. Any

child requiring urgent medical attention was transported immediately to Mulago Hospital for

care. All eligible children and their caretakers were escorted to Mulago Hospital where written

informed consent was obtained from the caretaker, a venous blood sample was collected from

each child into a metal-free vacutainer tube. A rapid diagnostic test for malaria was completed

for each child and positive results were followed up with a Giemsa blood smear. A physical

exam was then completed for each child and environmental questionnaire completed by the

child’s caretaker. The study protocol was approved by the Institutional Review Board of the

University of Minnesota, the Research & Ethics Committee of Makerere University School of

Biomedical Sciences, and the Uganda National Council for Science and Technology.

Laboratory analysis

Upon collection, whole blood samples were refrigerated at 4˚C and shipped to New York,

USA for analysis. Whole blood samples (1 ml) were acid digested using concentrated nitric

acid (2-ml) and hydrogen peroxide (1 ml) at room temperature for 48 hours prior dilution to

10-ml with deionized water and were analyzed using an Agilent 8800 ICP Triple Quad

(ICP-QQQ) (Agilent technologies, Inc., Delaware, USA) in MS/MS mode with appropriate

cell gases to eliminate molecular ion interferences. Using a method previously described, sam-

ples were analyzed for elements including antimony, arsenic, barium, cadmium, cesium, chro-

mium, cobalt, copper, lead, manganese, nickel, selenium, zinc using external calibration with

appropriate internal standards (yttrium, indium, tellurium and lutetium) at the Senator Frank

R. Lautenberg Environmental Health Sciences Laboratory at the Icahn School of Medicine,

Mount Sinai, NY[19, 20]. The limit of detection limits were: 0.013 ng/ml for As, 0.001 ng/ml

for Cd, 0.003 ng/ml for Pb, 0.07 ng/ml for Se and 0.1 ng/ml Zn.

Linear growth

Height and weight were measured during the physical exam for each child. Height-for-age Z-

score (HAZ) was calculated for each child using Epi Info version 3.5.1 from Centers for Dis-

ease Control and Prevention, which applies height and weight measurements against the Cen-

ters for Disease Control/World Health Organization 1978 growth references [21, 22]. Stunting
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was defined as height-for-age Z-score (HAZ) > 2 standard deviations below the reference

mean for the same sex and age.

Statistical analyses

Initial descriptive statistics are reported for the whole study population and groups stratified

by stunting status. A chi-square test compared the stunted and non-stunted groups for dichot-

omous population characteristic variables (sex, mother’s education, and whether the child had

been admitted to the hospital). The Mann-Whitney U test was used for continuous variables

(sex and HAZ). Predictors included five metals and metallic elements: lead (Pb), arsenic (As),

cadmium (Cd), selenium (Se), and zinc (Zn). Metal data were log2 transformed because of

right-skewness for comparability. We tested for differences in the untransformed metal con-

centrations in the stunted and non-stunted children using a Wilcoxan rank sum test. Analysis

by multivariable linear regression modeled HAZ as a continuous outcome. Metals and metallic

elements were selected based upon previously described association with stunting (Pb, Se, Zn)

[7–9, 23–26], known developmental toxicity (Pb, As, Cd) [27–29] or nutritional importance

for healthy growth and development (Se, Zn) [8, 30, 31]. Two subjects were excluded for miss-

ing height measurements, and one subject was excluded for errors in heavy metals measure-

ments, resulting in a final sample size of 97 children.

Multivariable linear regression was done to identify which metals may have a significant

association with HAZ score. We identified the correlation structure with Pearson’s coefficients

and we plotted it using a heatmap. Metals were divided into those with expected negative (Pb,

As, Cd) and positive effects (Se, Zn) on growth. Associations between these mixtures and HAZ

score were analyzed by Weighted Quantile Sum (WQS) regression, using the gWQS package in

R. The WQS method analyzes high-dimensional datasets such as environmental exposure mix-

tures through a weighted index estimating the mixed effect of all predictor variables on the out-

come. We tested the relationship between HAZ and a WQS index estimated from ranking

exposure concentrations in quintiles (q = 5) for parameter estimation. The weight of each com-

ponent of the mixture reflects the contribution of that component to the overall effect. We ana-

lyzed the mixture of all 5 metals together and for the mixtures based on the presumed direction

of association with stunting. We constrained the effect of the mixture to be either positive or

negative based upon preliminary analyses and literature. We assumed a linear relationship

between exposure and growth. All presented models used 40% of the dataset for training and

60% of the dataset for validation. We assigned 100 bootstrapping steps in each model. All analy-

ses were conducted in R version 3.5.1. All data is available in supporting information (S1 Data).

Covariates

Maternal educational level was determined by the child’s caretaker who answered all question-

naire questions. It was assessed on a six-level scale that was collapsed into two levels (com-

pleted primary school or less vs. completed secondary or more) to preserve statistical power.

Caretakers also answered whether the child had ever been hospitalized for an illness (yes/no)

as a marker of history of major medical illness in the child. Models were not adjusted for child

sex or age because the outcome HAZ is generated through a sex and age-specific algorithm.

Questionnaires were administered by study staff in Luganda or English.

Results

Population characteristics

The final sample included 97 children, and included slightly more boys (n = 51) than girls

(n = 46). More than 1 in 5 children were stunted; mean HAZ was below zero and fairly
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normally distributed with outliers at -6.31 and -8.68. After careful review, these outliers were

determined to be accurate observations and were included in the sample. The age range was

6.1 months to 59.9 months (Table 1). Questionnaires were answered by the child’s primary

caretaker, who was the mother for the majority (n = 89, 91.8%) of children, a grandparent for

6.2% (n = 6) of children, and the father for 2.1% (n = 2). There were no statistically significant

differences between the stunted and non-stunted groups.

Exposures

All children in our sample had detectable blood lead levels, and 65% (n = 63) of children had

blood lead levels�5 ug/dL. Untransformed metal exposures are shown in Table 2; there were

no significant exposure differences between children with stunting and with no stunting.

Exposure means (S1 Table) and correlations are included in supplemental materials (S1 Fig).

Table 1. Demographics of study population.

Study Population Characteristics All n (%) or mean ± SD Stunted n (%) or mean ± SD Not Stunted n (%) or mean ± SD p-value
Observations (n) 97 22 75

Child sex 0.1544

Female 46 (47.4) 7 (31.8) 39 (52.0)

Male 51 (52.6) 15 (68.2) 36 (48.0)

Stunting

Yes 22 (22.7)

No 75 (77.3)

Mother’s education 0.613

Primary school or less 62 (65.3) 13 (59.1) 51 (68.0)

Secondary school or greater 33 (34.7) 9 (40.9) 24 (32.9)

Child ever admitted to hospital 1.0

Yes 19 (19.6) 4 (18.2) 15 (20.0)

No 78 (80.4) 18 (81.8) 60 (80.0)

Child’s age (months) 28.0 ± 14.9 30.7 ± 15.0 27.3 ±14.9 0.3156

Child’s height-for-age Z-score (HAZ) -0.74 ± 1.84 -3.12 ± 1.58 -0.04 ± 1.23 <0.0001

Study population characteristics for the entire study group and subgroups stratified by stunting status. Reported p-value for Chi-Square test for dichotomous variables

(sex, mother’s education, and whether the child had ever been admitted to the hospital), and for Mann-Whitney U test for continuous variables (age and HAZ).

https://doi.org/10.1371/journal.pone.0233108.t001

Table 2. Exposures.

All Stunted Not Stunted

Metal Median (IQR) Median (IQR) Median (IQR) p-value

Pb (μg/dL) 5.78 (4.50–7.70) 6.32 (5.63–7.69) 5.64 (4.42–7.61) 0.145

As (μg/L) 0.23 (0.15–0.33) 0.25 (0.17–0.36) 0.22 (0.14–0.32) 0.395

Cd (μg/L) 0.084 (0.038–0.130) 0.084 (0.040–0.120) 0.084 (0.037–0.140) 0.860

Se (μg/dL) 12.20 (10.69–15.02) 11.53 (9.65–12.13) 13.05 (10.9–15.49) 0.0583

Zn (mg/L) 3.53 (3.02–4.24) 3.50 (3.09–4.15) 3.53 (3.02–4.28) 0.617

Metal exposures for the study population (n = 97), and for the stunted (n = 22), and not stunted (n = 75) subgroups.

The reported p-value is for a Wilcoxan rank sum test comparing metals exposures in stunted and not stunted

populations. All p-values are not significant.

https://doi.org/10.1371/journal.pone.0233108.t002
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Full results of metals analysis and the environmental questionnaire are published previously

[13].

Multivariable linear regression

A multivariable model including all five metals and covariates (mother’s educational level and

whether the child had ever been admitted to the hospital) was used to predict child’s HAZ.

There was a negative association between Pb and HAZ (β = -0.80, p = 0.021), and a positive

association between Se and HAZ (β = 1.92, p = 0.005) (Fig 1).

Weighted Quantile Sum regression

Metals were categorized into two groups by direction of the presumed effect on stunting: toxic

metals (Pb, As, Cd) and essential nutrients (Se, Zn). The WQS index for toxic metals, assuming

a negative association between exposure and HAZ, was statistically significant (β = -0.47,

p = 0.03), with 62% of the effect attributed to Pb (Fig 2). The essential nutrient WQS index,

assuming a positive association between exposure and HAZ, showed that the association was

driven by Se, but did not reach statistical significance (β = 0.31, p = 0.16) (Fig 3).

A WQS model including all metals and assuming a negative correlation with HAZ did not

show a significant association; the relative weights of each component of the mixture showed

that the association was driven by Pb and As (S2 Fig). When a positive correlation was

assumed using the same mixture, there was a significant association between the WQS index

and HAZ (p = 0.027). The relationship was driven primarily by Zn and Se (S3 Fig).

Discussion

These findings suggest that elevated Pb and lower Se in young children in the Katanga settle-

ment of Kampala, Uganda are associated with decreased HAZ. We demonstrate the novel use

of the WQS method to analyze the influence of a mixture of toxic and essential metals and

metallic elements as a predictor of HAZ in a low-resource setting, a step in expanding the con-

cept of expososme research to important health outcomes in low resource settings.

Fig 1. Effect estimates for individual metals and height-for-age Z-score by multivariable linear regression model.

A multivariable linear regression model including 5 metals shows a significant negative association between Pb

exposure and HAZ score, and a significant positive association between Se exposure and HAZ score. The model was

adjusted for level of educational attainment of the child’s mother and for a binary variable indicating whether the child

had ever been admitted to the hospital.

https://doi.org/10.1371/journal.pone.0233108.g001
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These findings, the first to examine the effect of metal exposure on linear growth in this

population in Uganda, are consistent with previously observed associations between lead expo-

sure and stunting in other populations. In a two-site study of 618 children 20–40 months of

age in rural Bangladesh, concurrent blood lead level was associated with increased odds of

stunting [7]. The population in this study had a higher prevalence of stunting, at 52.4%, com-

pared to our urban population in Uganda (22.7%) and a lower median blood lead level at

4.2 μg/dL (IQR: 1.7–7.6) vs 5.8 μg/dL (4.5–7.7) in our Ugandan population. Another Bangla-

deshi study of 729 children under age 2 years in an urban slum environment, of which 39%

were stunted and 86.6% had an elevated blood lead level (�5μg/dL), found no difference in

blood lead levels between children who were stunted and those who were not [32]. In addition

to childhood concurrent Pb level, prenatal Pb exposures have been associated with decreased

Fig 2. Weighted Quantile Sum regression for the toxic metal mixture with negative association with HAZ. a.

Results of the regression model for the WQS index of the toxic metals (Pb, As, Cd). b. A locally estimated scatterplot

smoothing (LOESS) fit showing the association between the WQS index and HAZ. c. Relative weight of each metal in

the mixture.

https://doi.org/10.1371/journal.pone.0233108.g002

Fig 3. Weighted Quantile Sum regression for the nutrientmixture with positive association with HAZ. a. Results of

the regression model for the WQS index of the essential nutrients (Se, Zn). b. A locally estimated scatterplot smoothing

(LOESS) fit showing the association between the WQS index and HAZ. c. Relative weight of each nutrient in the

mixture.

https://doi.org/10.1371/journal.pone.0233108.g003
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stature. Higher third trimester blood lead levels in mothers was associated with lower HAZ (β-

0.10; 95% CI -0.19, -0.01) in a Mexican population of children age 4–6 years [33].

Selenium has a U-shaped toxicity dose-response curve with negative health effects at both

deficient and toxic levels. Reported reference ranges vary by population, and prevalence of

deficiency and toxicity vary widely based on Se content of the local soil and quality of diet [34,

35]. Our analysis used Se as a continuous variable; we were unable to determine Se deficiency

using our measure of Se in whole blood. However, the whole blood Se levels in our population

were slightly higher than those reported in 2012 from a population of the same age in Kin-

shasa, DRC (median 10.7 μg/dL, compared to 12.2 μg/dL in our population), likely due to dif-

ferences in local Se concentration in soil and drinking water [36]. Low Se is commonly

associated with cognitive effects, reduced immune function and other adult diseases related to

inflammation; however, it is not commonly associated with childhood growth impairment.

Mechanistic plausibility for this association comes from animal studies which have shown that

Se deficiency is associated with growth retardation secondary to impaired bone metabolism

[23]. There is a need for more research on Se deficiency and its effect on child growth and

development [37].

Zn deficiency is more widely recognized to have a negative association with childhood

growth and stature [38], although nutrient supplementation trials have had mixed results [39].

In addition to a direct association with stature, recent studies have shown that Zn status may

interact with Pb in its effect on linear growth. In a population of 291 Mexican children aged

1–2 years, Zn adequacy was shown to attenuate the negative effect of lead on HAZ [8].

Although it is reasonable to suspect a high prevalence of Zn deficiency in our study population

based on local diet and previous studies in similar populations [40–42], whole blood Zn cannot

be used to diagnose deficiency so we were unable to determine rates of Zn deficiency in this

study. The whole blood Zn levels in our study (median = 3.53 mg/L) were comparable but

slightly lower than a population of the same age in Kinshasa, DRC (median = 5.0 mg/L) [36].

Both the negative (Pb) and positive (Se) associations we observed with linear growth in this

analysis may have important implications for a child’s development far beyond stature. Lower

HAZ and stunting (HAZ < -2) have been associated with developmental and health outcomes

including cognitive deficits, detachment, and poorer learning as well as lower educational

achievement and income [5, 6, 43–45]. Many of the same developmental cognitive effects have

been independently associated with higher lead exposures [46] as well as selenium [35] and

zinc deficiency [38]; further research is needed to more specifically understand the interactions

between exposure to metal mixtures, nutrient status, linear growth, and neurodevelopment.

International child health research and interventions in child development have tradition-

ally focused on poverty, nutritional deficiencies, and quality of learning opportunities [47].

While these factors likely are the strongest determinants of child growth and development in

low resource settings, the potential detrimental effects of toxic environmental exposures

including metals and air pollution are increasingly recognized as important points for inter-

vention. These factors will continue to grow in importance as climate change progresses and

as the number of toxic chemicals in our environment continues to grow. Perhaps the most

striking finding in this study is that 65% of children had blood lead levels�5 ug/dL, the level

at which the US CDC recommends intervention [48]. This research points out the importance

of metal exposure in this urban setting and its potential pervasive effects on child development.

It is clear that more work to characterize sources of Pb and other metal exposures in this envi-

ronment is needed. An environmental health questionnaire in this population found no signif-

icant association between traditionally recognized risk factors for metal exposure in children

(parent occupation, painted walls), and blood metal levels [13]. A previous study from another

section of Kampala found increased blood lead level in children with increased proximity to a
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local landfill [14]. When risk factors for increased exposure are not understood, it becomes dif-

ficult to provide appropriate public health interventions to reduce exposures and reduce risk

to children.

Strengths and limitations

There are multiple limitations of this study to acknowledge. This is an observational commu-

nity-based sample and the results are not broadly applicable to larger populations of children.

We used Epi info version 3.5.1 to derive HAZ scores, which uses growth charts developed by

the US CDC/WHO in 1978 based upon a US population of formula-fed infants [21, 49]. Use

of this reference for our population of primarily breast-fed babies in Uganda could result in

overestimating undernutrition in the babies under 12 months since the rate of growth in for-

mula-fed infants is generally greater than breast-fed infants in the first year of life. We don’t

expect this significantly affected our results because of the 19 infants under 12 months of age

in our sample, there were only 2 with HAZ <-2. The proportion of infants under 12 months

with stunting (10.5%) was less than in the over 12-month old group (25.6%) and the overall

sample (22.7%). We were also limited by a small sample size, which may have limited our abil-

ity to find significant associations; due to this we used HAZ as a continuous rather than

dichotomized variable to increase power. We anticipate that advancing this work beyond the

small pilot sample will provide opportunities to learn more about interactions between metals,

nutrients, and their effect on growth in Ugandan children. If these associations hold true in

larger studies, this may represent important areas for intervention in environments known to

have increased risk of metals exposures [50]. Finally, our measure of metals in whole blood

precludes us from determining Zn or Se deficiency in this population of children.

Conclusions

This work shows associations between Pb, Se and HAZ, and demonstrates the application of a

mixtures analysis methodology to assess the effects of exposures to environmental mixtures in

healthy children in urban Kampala Uganda. To date, there is sparse literature on the extent of

toxic metal exposure to children in the low- and middle-income countries, the most important

sources of exposure in different settings (urban vs rural), and on the expected health effects in

these settings. This work suggests opposing effects of toxic and essential metals on HAZ in

young children. In order to design more effective interventions to improve early childhood

growth and cognitive development, important environmental exposures including lead cannot

be ignored. It is important to advance the work to identify sources of contamination from lead

and other metals in this poor urban environment, and to work for better protection of children

from toxic exposures.
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