
REVIEW

Environmental factors in autoimmune diseases and their role
in multiple sclerosis

Stefanie Jörg1 • Diana A. Grohme2 • Melanie Erzler2 • Marilene Binsfeld4 •

Aiden Haghikia5 • Dominik N. Müller6 • Ralf A. Linker1 • Markus Kleinewietfeld2,3,4

Received: 9 March 2016 / Revised: 4 July 2016 / Accepted: 18 July 2016 / Published online: 4 August 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract An increase in autoimmune diseases poses a

socioeconomic challenge worldwide. Predisposing genetic

risk has been identified, yet environmental factors make up

a significant part of the risk in disease initiation and

propagation. Next to improved hygiene and a gross

reduction of infections, changes in dietary habits are one of

the most evident Western lifestyle factors potentially

associated with the increase in autoimmune diseases.

Growing evidence suggests that particularly a typical

‘Western diet’, rich in saturated fat and salt and related

pathologies can have a profound impact on local and sys-

temic immune responses under physiologic and

autoimmune conditions such as in multiple sclerosis (MS).

In this review, we discuss recent findings on environmental

factors influencing autoimmunity with an emphasis on the

impact of ‘Western diet’ on immune homeostasis and gut

microbiota in MS.
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Introduction

The common cause for autoimmune diseases, such as

multiple sclerosis (MS), type-1 diabetes (T1D), rheumatoid

arthritis (RA) or inflammatory bowel disease (IBD), is

suspected to be the loss of tolerance to self. Initiating

events are mostly unknown but may be associated with a
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equally.

& Markus Kleinewietfeld

markus.kleinewietfeld@vib-uhasselt.be

Stefanie Jörg

stefanie.joerg@uk-erlangen.de

Diana A. Grohme

diana.grohme@gmail.com

Melanie Erzler

melanie.erzler@biotec.tu-dresden.de

Marilene Binsfeld

marilene.binsfeld@vib-uhasselt.be

Aiden Haghikia

aiden.haghikia@rub.de

Dominik N. Müller

dominik.mueller@mdc-berlin.de

Ralf A. Linker

ralf.linker@uk-erlangen.de

1 University Hospital Erlangen at the Friedrich-Alexander-

University (FAU) Erlangen-Nuremberg, Erlangen, Germany

2 Translational Immunology, Department of Clinical

Pathobiochemistry, Medical Faculty Carl Gustav Carus, TU

Dresden, Dresden, Germany

3 Center for Regenerative Therapies Dresden (CRTD),

Dresden, Germany

4 VIB Laboratory of Translational Immunomodulation &

Hasselt University, Diepenbeek, Belgium

5 Department of Neurology, Ruhr-University Bochum,

Bochum, Germany

6 Experimental and Clinical Research Center, An Institutional

Cooperation Between the Charité Medical Faculty and the
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responses, including loss of costimulatory control by anti-

gen presenting cells (APC) and ‘‘molecular mimicry’’,

which causes immune cells recognizing a certain extrinsic

antigen to react also to structurally similar self-antigens

[1]. Once an immune reaction is initiated, massive invasion

of immune cells accompanied by a systemic/humoral

immune response leads to tissue damage resulting in

exposure of additional self-antigens [1, 2]. Although pre-

disposing genetic risk factors have been identified for

various autoimmune diseases, it is understood that they

account only for a fraction of the overall disease [3, 4].

Hence, the remaining risk component of autoimmune dis-

eases such as MS must be related to exogenous factors.

Research efforts of the past decades confirm this finding,

and it is now well accepted that the etiology of many

autoimmune diseases involves environmental factors that

act on top of genetic susceptibility profiles [3, 5, 6]. The

increasing incidence of autoimmune diseases with a high

prevalence in Western countries [7, 8] and the rapid evo-

lution of MS in former low prevalence countries like Japan

[9] nurture multiple explanatory concepts around environ-

mental triggers. The so-called hygiene hypothesis aims to

explain the increase in autoimmunity in industrialized

countries by linking the decrease of infection rates and the

increase in autoimmune diseases to a general improvement

of hygiene standards [10].

Besides infection, there are many more environmental

factors that have been proposed to promote autoimmune

diseases, like MS, including climate, stress, occupation,

cigarette smoking, and diet [11]. Of note, the consumption of

‘Westernized food’, including high salt, high fat, high pro-

tein, and high sugar intake, has already been associated with

increasing prevalence in various diseases [12, 13]. The

change of dietary habits has been under intensive investi-

gation, revealing a direct influence on immune homeostasis

and on bacterial communities colonizing the gastrointestinal

tract (GIT) [14] and the gutmicrobiota is tightly connected to

the immune system and highly involved in immune regula-

tory processes [15]. IBD has been associated with shifts and

variety reduction in the microbiome. This observation has

also been made in other autoimmune diseases not directly

associated with the GIT [12, 16]. However, there is still little

understanding on the mechanisms linking environmental

factors to disease mechanisms, genetic predisposition, and

the immune system. Gaining further insight into the influ-

ence of environment andmicrobiota on immune homeostasis

will be a powerful source for a better understanding of the

rising incidence of autoimmune pathologies with the aim to

provide novel approaches for therapeutic treatment and

prevention strategies.

This review will, therefore, discuss recent developments

in research linking the environment to autoimmune diseases

with an emphasis on the nexus of immune cells, dietary

components, and gut microbiota. Thereby, we highlight the

role of CD4? T lymphocytes in MS, especially with respect

to the importance of balancing effector and regulatoryT cells

for maintenance of immune homeostasis.

Immune cells in multiple sclerosis

Worldwide, there are an estimated 2.5 million patients

suffering from MS with women twice as frequently

affected as men [17]. MS is a progressive demyelinating

disease characterized by disseminated central nervous

system (CNS) lesions, most likely caused by an autoim-

mune response to CNS self-antigens [18]. Pathologically,

perivascular inflammatory infiltrates in brain, optic nerve,

and spinal cord dominate during the early phases of the

disease. These infiltrates contain mononuclear immune

cells, such as lymphocytes (CD4? and CD8? T cells as

well as B cells), monocytes, and macrophages, and form

so-called plaques, the end stage of inflammation, charac-

terized by demyelination, astrogliosis, and neuronal as well

as axonal degeneration [5, 19, 20]. Dendritic cells (DCs)

have been shown to play a critical role in immune invasion

of the CNS by presenting antigen to activated autoreactive

T cells [21, 22]. In addition, the activation of microglia and

macrophages plays an essential role in the pathogenesis of

the disease [23]. Recent studies, demonstrating the pres-

ence of inflammatory cells and their products in CNS

lesions, led to the generally accepted hypothesis that at

least relapsing-remitting MS is triggered by pathogenic

CD4? T cells reactive against myelin constituents

[5, 19, 20]. Besides these, several other cells of the innate

and adaptive immune system are involved in the patho-

genesis of MS. For instance, CD8? T cells were shown to

directly damage axons by the secretion of granzyme B and

perforin, [24] and macrophages can contribute to tissue

damage by releasing toxic molecules like nitric oxide,

oxygen radicals and proinflammatory cytokines [25]. Also

B cells [26–28], as well as innate lymphoid cells (ILCs)

[29], c/d T cells [30] and NK cells [31] play distinct

important roles in the autoimmune response. In particular,

the recently discovered ILCs, which are tissue-resident

lymphoid cells that lack specific antigen receptors, gained

interest as new targets for modulating immune tolerance in

autoimmune diseases like MS [29]. ILCs have been rec-

ognized for their importance in mediating the interplay

between microbiota and the immune system [32], and the

non-cytotoxic ILC1, ILC2, and ILC3 show a striking

resemblance to CD4? T cell subsets with respect to

development and function [33, 34].

Many data on the immunopathology of MS stem from

experimental autoimmune encephalomyelitis (EAE), an

animal model mimicking several aspects of the disease
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[35–37]. EAE is most commonly induced in rodents by the

immunization with myelin peptides (e.g., MOG, myelin

oligodendrocyte glycoprotein) and adjuvant [38] or the

transfer of myelin-reactive T cells [39]. The resulting T

cell-mediated acute autoimmune reaction against myelin in

the CNS induces similar symptoms to those seen in MS. It

was thus initially shown in EAE models that CD4? T

helper (Th) cells play a key role in MS. MS was first

thought to be a Th1 cell-mediated autoimmune disease,

with interferon gamma (IFN-c) assuming a pathogenic

role, while Th2 cells producing primarily interleukin (IL)-4

or IL-10 exert a modulatory function with a protective role

[40]. After the identification of the relevance of IL-23 in

EAE, subsequent work showed that also Th17 cells are

involved in the pathogenesis of the disease, since IL-23 is a

critical growth factor for this cell subset [41, 42].

Th17 cells frequently occur in the intestine, playing a

particularly important role in the intestinal immune home-

ostasis by providing defense against extracellular bacteria

and clearance of pathogens [43]. Depending on their phys-

iological role, Th17 cells are exposed to environmental

factors and could, therefore, be influenced by nutritional

components. Together with Th1 cells, Th17 cells are

believed to be the main constituents of the CD4? T effector

subset that drives disease pathology in T cell-dependent

autoimmune diseases [44]. However, due to the fact that

Th17 cells are associated with several autoimmune diseases,

recent investigations often focus on this Th cell subset [44].

In EAE studies, IL-17 deficient mice showed delayed and

reduced symptoms, but no complete protection [45, 46].

More recent studies found that the pathogenicity of Th17

cells additionally depends on the IL-23-induced production

of the cytokine granulocyte macrophage colony-stimulating

factor (GM-CSF), probably explaining the incomplete pro-

tection from EAE in IL-17-deficient mice [47, 48]. The

importance of Th17 cells was also linked toMS, as lesions of

MS patients contained an increased frequency of IL-17-

producing CD4? T cells [49]. Moreover, it was found that

Th17 cells are able to cross the inflamed blood–brain barrier

and secrete the proinflammatory cytokine IL-17A [50]. A

recent study showed that in particular Th17 instead of Th1

responses were absent in patients with MS disease abroga-

tion after hematopoietic stem cell transplantation [51],

confirming the pivotal role of Th17 cells in MS.

In contrast to effector T cells, regulatory T cells (Tregs)

play a central role in immunoregulatory reactions and

suppression of autoreactive immune cells. Once activated,

forkhead box P3 (FoxP3) positive Tregs exert their sup-

pressive functions via the release of anti-inflammatory

cytokines like IL-10 and transforming growth factor

(TGF)-b in addition to cell–cell contact-dependent mech-

anisms [52]. In EAE, adoptive transfer of Tregs improved

disease symptoms, while ablation led to worsening of

disease [52]. Importantly, an impairment of regulatory T

cell function is frequently observed in patients with

autoimmune diseases like MS, and it is believed to be a

major cause for disruption of immune homeostasis, further

contributing to autoimmune reactivity [2, 52]. The loss of

Treg suppressive capacity might be related to the potential

of Tregs to convert into Th1-like Tregs, secreting IFN-c
[53–55], as well as Th17-like Tregs, secreting IL-17 with a

proinflammatory potential [56–59]. In MS patients, IFN-c-
secreting Tregs were found to be increased [60] and Tregs

displayed lower expression levels of FoxP3 and an

impaired suppressive capacity [2, 52, 61–63]. It is thus well

accepted that the balance between T effector cells and Treg

subsets plays a major role in autoimmune diseases like MS.

Environment and its link to MS

Genetic variants influencing susceptibility or protection

from autoimmune diseases like MS have been explored in

studies of twin concordance [64], familiar clustering and

genome wide associations studies (GWAS) [65]. Genes

account for roughly 25–30 % inheritability in monozygotic

twins, and as in the majority of autoimmune diseases,

variants of the human leukocyte antigen (HLA) complex

provide a strong susceptibility for MS. Especially, the

HLA-DRB1*1501 allele is associated with a highly ele-

vated risk for MS development, displaying a sixfold risk

increase in homozygous carriers [65]. In addition, a num-

ber of immune-related risk-alleles have been established

independently of the HLA-locus, affecting in particular

CD4? T cell subset responses [66, 67]. Among the iden-

tified genes are, for instance, the IL-2 and IL-7 receptors,

both genes playing a critical role for Tregs and Th effector

cells [66, 67]. Moreover, predisposing variants for MS

have been found for the Th17/IL-23 axis, supporting a role

for Th17 cells in disease development [66]. Similar studies

have also suggested an increased susceptibility caused by

variants of CD86, an important coreceptor for T cell

stimulation expressed by DCs, supporting the important

role of DC/T cell interaction for MS [65]. A genetic link to

B cell function and MS is for instance based on risk vari-

ants in the CD40 and CXCR5 genes, encoding for a surface

protein inducing B cell activation and differentiation and a

chemokine receptor expressed on B and T cells [28].

GWAS studies have even identified risk association with

genes that are important for current and new MS therapies

including vascular cell adhesion molecule 1 (VCAM1), as

well as genes related to the crucial environmental factor

vitamin D [65]. Nevertheless, the large amount of data on

genetic predisposition for autoimmune diseases can, in

most of the cases, only explain a part of the disease risk,

supporting the view that the increasing prevalence of MS is
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triggered in addition by environmental factors. Epidemio-

logical studies have shown a striking trend of MS toward

higher prevalence with increasing latitude and an increase

in disease incidence in developed countries [7, 8]. Several

theories have aimed to explain these observations. Since

exposure to sunlight is the main source for vitamin D

synthesis in humans, a lower sunlight exposure in high-risk

regions such as Northern Europe results in a decreased

generation of vitamin D. In fact, patients with MS were

found to have lower blood levels of vitamin D [68, 69] and

also in other autoimmune diseases, low vitamin D levels

may represent an emerging risk factor [70, 71]. Studies on

the effect of vitamin D in autoimmunity suggest an

immunomodulatory capacity with anti-inflammatory action

[72, 73]. Moreover, UVB light increased levels of tolero-

genic DCs and Tregs while reducing effector T cell counts

in MS patients [74]. In addition to sunlight, fatty fish could

be a dietary source of vitamin D, and fish consumption

correlated with lower MS prevalence in coastal areas [75].

However, the recent OFAMS study failed to detect any

influence of fish oil on the course of MS [76]. Nevertheless,

there is an increasing amount of data demonstrating the

positive role of vitamin D or other vitamins like biotin [77]

in MS, as summarized elsewhere in depth [78–80].

Furthermore, the hygiene hypothesis states that individ-

uals not exposed to certain infections early in life but

growing upwith improved hygienemay develop a hyperalert

immune system, favoring the occurrence of autoimmune

diseases [10, 81]. While according to the hygiene hypothesis

some infectious agents may be protective, others may

increase the risk, such as Epstein–Barr virus (EBV) which is

associated with MS especially when infection takes place in

late adolescence [5]. A potential explanation for that might

be the similarity of the EBV nuclear antigen (EBNA)-1 to

myelin surface proteins, leading to crossreactivity of adap-

tive immune cells [82]. Interestingly, T cells specific to

EBNA-1 display a significantly higher frequency as well as a

broader specificity in MS patients than in healthy controls

[83]. Although associations between MS and EBV infection

have been well investigated, the role of EBV in MS pathol-

ogy remains unclear as further studies could not demonstrate

latent or active EBV infection in active MS lesions [84].

Infections that might confer a protective effect to the host are

colonizations of the GIT by parasitic worms. Different

studies have shown that helminths may affect the host’s

immune response by the promotion of an anti-inflammatory

environment [85, 86]. Based on this, the possibility of

treating MS with helminths has already been explored in

animal models [87–89] and also phase 1 clinical trials [90].

In line with these findings, the fact that colonization of the

GIT by parasitic worms has decreased over the past decades

in industrialized countries [91] possibly contributes to an

increasing MS prevalence.

The gut and its microbiota recently gained a lot of

attention in various fields of research. The human gut

microbiome is expected to consist of more than 1014 bac-

terial cells from about 500–1000 species and helps the host

to maintain the body in homeostasis [92]. The first exposure

to the human microbiome occurs during birth, and breast

milk or formula feeding further influences the colonization

of the new born’s own gut microbiome [93–95]. During a

lifetime, the human gut is recolonized permanently over the

years with dominating bacterial orders, such as Firmicutes

and Bacteroidetes, and other bacteria found in minor

amounts, creating a unique human gut microbiota for each

individual [16]. The human microbiota reaches maximum

diversity at adolescence and can then be stable for years. A

large amount of physiological functions, such as food

digestion (providing fermentation products) and competi-

tion with potential pathogens, have been described for the

commensal gut bacteria [96, 97]. Besides this, a vast col-

lection of data points out that the gut microbiota is essential

for the proper function of our immune system and meta-

bolism and thus has a strong impact on human’s health.

Indeed, changes in the gut microbiota have been observed in

several diseases such as IBD [98], allergies [99], and asthma

[100–102]. Those changes are induced by many factors,

such as diet, stress or medication, and can lead to a so-called

dysbiosis [103, 104]. A common consequence of dysbiosis

is the alteration of the mucosal immune system leading to a

rise of gut inflammation and alterations of intestinal

immunity [105]. It was shown that a dysbiotic microbiome

could lead to Treg deficiency and an activation of proin-

flammatory Th17 cells [106, 107]. While not expecting a

direct correlation between the gut and brain autoimmunity,

EAE studies indicate that the microbiota might play a role

in MS as well. For instance, germ-free mice were shown to

be protected from EAE induction, and using transgenic

mice, Berer and colleagues could show that gut bacteria are

a necessary prerequisite to induce a relapsing-remitting

autoimmune disease [108]. Consistent with this, oral

antibiotic treatment reduced and modulated bacterial pop-

ulations in wild-type mice and, thereby, significantly

ameliorated EAE onset and severity [109]. This effect was

correlated with an increase in IL-10 producing Tregs,

mainly induced by polysaccharide A of Bacteroides fragilis

[110, 111]. Similar to Tregs, Th17 cells could be influenced

by the gut microbiota. It was demonstrated that distinct

species of commensal bacteria, namely, segmented fila-

mentous bacteria (SFB), can specifically induce Th17 cells

[112]. It was further shown that the induction of these cells

could be indirectly influenced by luminal adenosine

triphosphate (ATP) secreted from bacteria [113]. Moreover,

the recently described gut–brain-axis may further support a

possible link between gut microbiota and autoimmunity

[114].
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In addition to direct effects of the microbiota, also

dietary changes in association with a microbiota modula-

tion are likely to be linked with the increasing incidences

of autoimmune disorders [115]. It was shown that a

‘Western diet’ increases inflammation and might nega-

tively affect the gut-immune homeostasis. In contrast, low-

calorie diets based on fruits, fish and vegetables downreg-

ulate proinflammatory molecules and restore or maintain a

healthy symbiotic gut microbiota [116]. For instance,

plant-derived nutrients were found to be associated with an

anti-inflammatory potential by acting as ligands of the aryl

hydrocarbon receptor (AhR) [117, 118]. AhR acts as a

transcription factor in a variety of immune cells, including

Th17 and Tregs, and has been associated with suscepti-

bility as well as prevention of autoimmune diseases

depending on its ligands [107, 117, 118]. In that matter,

indole-3-carbinol, deriving from crucifers such as broccoli,

has been shown to suppress the production of proinflam-

matory cytokines [118, 119], whereas the tryptophan-

derived AhR ligand FICZ (6-Formylindolo(3,2-b)car-

bazole) specifically increases the Th17 population and,

therefore, worsens EAE severity [107]. Another plant-

derived component supporting the induction of Tregs is

retinoic acid (RA). RA is metabolized from vitamin A,

which is derived from carotenoids in plants and as retinol

from animals [118]. The highly metabolically active

intermediate product all-trans RA (ATRA) can be gener-

ated by mucosal DCs potent in inducing and maintaining

regulatory T cells [120, 121]. Nutrients, mostly discussed

as risk factors in autoimmunity, are related to a ‘Western

diet’. In that matter, especially, changes in the gut micro-

biome in association with diets rich in fat and salt have

gained increasing attention during recent years and are

discussed as potential risk factors for MS (Fig. 1).

Fatty acids

Integral components of the daily diet that have recently

been linked to autoimmunity via changes in the gut

microbiota are fatty acids. Excessive fat intake, in general,

is a prominent factor inducing obesity. Associations

between obesity and MS have already been demonstrated,

displaying a positive correlation between body mass index

and the risk of developing MS, especially at younger ages

[122]. Obesity, defined by the inadequate accumulation of

Fig. 1 Schematic diagram displaying the nexus between ‘Western diet’, gut microbiota, T cells, and autoimmunity
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white adipose tissue (WAT), can lead to a state of systemic

inflammation called ‘‘metaflammation’’. Metaflammation

occurs, because WAT is not only involved in energy

storage, but also functions as an endocrine organ secreting

proinflammatory tumor necrosis factor (TNF)-a, IL-6 or

leptin. The latter in particular is a cytokine-like hormone

profoundly influencing T cell responses in EAE [123–125].

Leptin was shown to enhance phagocytosis and cytokine

secretion in macrophages and to promote CD4? T cell

proliferation and survival [126], favoring Th1 and Th17

reactions while inhibiting Treg responses [125–127]. In

MS patients, monocytes and T cells present in MS lesions

and patient-derived cerebrospinal fluid (CSF) both highly

express leptin and leptin receptor [128, 129]. However, MS

incidence is not necessarily accompanied by weight gain,

thus suspecting a direct effect of fatty acids on immunity.

Fatty acids, subdivided into saturated and unsaturated fatty

acids, were first correlated with MS in the 1950s

[130, 131]. More recent work related x-3 polyunsaturated

fatty acids (PUFAs) to anti-inflammatory effects [132]. In

contrast, x-6 PUFAs are precursors of proinflammatory

eicosanoids that may promote the activation of the Th17

pathway [133] and are thus suspected to play a detrimental

role in a variety of diseases. Studies in the EAE model

demonstrated saturated fats to be a risk or beneficial factor

depending on their chain length [134]. The increased intake

of medium- and long-chain fatty acids (MCFA and LCFA)

by the consumption of an experimental ‘Western diet’ was

shown to exacerbate autoimmunity in the CNS [134]. This

was due to an increased infiltration of Th1 and Th17 cells

in the spinal cord. In vitro, the differentiation of murine and

human CD4? T cells into Th1 and Th17 cells was signif-

icantly increased by the addition of LCFAs. In parallel, the

generation of Tregs was suppressed, coinciding with a

decreased secretion of anti-inflammatory cytokines. In

murine EAE, diets rich in LCFA were shown to modulate

the microbiome, such that naı̈ve CD4? T cells are exposed

to increased LCFA in the small intestine, thus inducing

more proinflammatory T cell responses [134].

Short-chain fatty acids (SCFA) with chain lengths

reaching from one to five C atoms mostly occur in the gut

as fermentation products of dietary fibers by commensal

bacteria [135]. A decrease in SCFA has been observed in

patients with IBD [99, 136]. In MS patients, levels of

Clostridia clusters XIVa and IV were shown to be reduced

[137], both formed by diverse bacterial species that are

able to produce SCFA such as butyrate [138, 139]. Buty-

rate displays anti-inflammatory properties, probably

indicating that a reduction of these microbes in MS patients

may be associated with disease [137–140]. Most data dis-

cussing the mechanism for the effect of SCFA demonstrate

the involvement of Tregs. In a murine model of IBD, the

administration of acetate (C2:0), propionate (C3:0) or

butyrate (C4:0) increased the level of Tregs in the gut

[136, 141]. In addition, the administration of butyrate to

germ-free mice mimicked the effect of Clostridium colo-

nization and increased Treg levels in colon lamina propria

[142]. Investigating the effects of SCFA in the EAE model

also revealed an increase of Tregs, while suppressing the

differentiation of Th17 cells [134]. In EAE, feeding pro-

pionate ameliorated the disease by promoting Tregs in the

small intestine. As a possible mechanism for how propi-

onate might regulate the differentiation of Tregs is the

acetylation of histone H3. SCFA, most potently butyrate,

were shown to function as histone deacetylase inhibitors,

maintaining acetylation of genes important for Treg func-

tion, such as Foxp3 [141–143]. Whether this in vitro effect

could also explain the in vivo amelioration of EAE remains

unclear. However, synthetic small inhibitors of histone

deacetylases have already been shown to decrease inflam-

mation in animal models of arthritis, IBD, asthma,

diabetes, cardiovascular diseases, and MS [143]. Thus,

SCFA as naturally occurring nutrients [144] or fermenta-

tion products may have a possible therapeutic value for

autoimmune diseases like MS by potentially triggering the

production of anti-inflammatory Tregs.

Salt

Another typical hallmark of ‘Westernized food’ is the high

content of sodium chloride (NaCl). In particular, processed

or so-called ‘fast foods’ may contain significantly more

NaCl than homemade meals [145]. Recent literature links

this high sodium intake to cardiovascular diseases [146],

cancer [147], chronic inflammation [148], and also

autoimmune diseases [6, 149, 150]. It was demonstrated

that primary and secondary lymphoid organs, such as the

thymus and lymph nodes, show increased hypertonicity in

comparison to the blood [151], indicating that immune

cells have to cope with these changes when infiltrating

peripheral tissues or during activation in secondary lym-

phoid organs. Studies dating back in the early 1990s have

demonstrated that the activation of innate and adaptive

immune cells under hypertonic conditions could enhance

immune function, and monocytes were shown to get highly

proinflammatory [152], while T cell lines were shown to

secrete less anti-inflammatory factors and to produce, for

instance, more TNF-a [153]. Moreover, it was recently

shown that high salt conditions, mimicking in vivo situa-

tions in the tissue after a high salt diet, enhanced the

activation of classical M1 macrophages, and increased the

expression of proinflammatory mediators [154–156]. In

contrast to this, excess salt diminished the activation of the

so-called M2 macrophages (M(IL-4 ? IL-13)) and

decreased their ability to suppress effector T cell
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proliferation [157]. Similar to cells of the innate immune

system, raising the sodium concentrations in vitro also

affected adaptive immune cells and promoted the differ-

entiation of murine and human Th17 cells with a

pathogenic phenotype, displaying increased expression of,

e.g., CSF2 and IL-23R [158, 159]. It was demonstrated that

this effect was linked to p38/mitogen-activated protein

kinase (MAPK), nuclear factor of activated T cells 5

(NFAT5), and serum- and glucocorticoid-regulated kinase-

1 (SGK1) dependent pathways. The fact that in particular

pathogenic Th17 cells with a similar phenotype are

involved in autoimmune diseases indicates that a high salt

diet may represent a previously unrecognized environ-

mental risk factor for autoimmunity. Indeed, in the EAE

model, a high salt diet augmented disease onset and

severity [158, 159]. Exacerbated disease was accompanied

by increased induction of Th17 cells and heightened

numbers of CNS infiltrating pathogenic Th17 cells. More

recent work focusing on the effects of sodium chloride on

regulatory immune cells provided evidence that high salt

conditions almost completely block the suppressive func-

tion of human and murine Tregs in vitro and in vivo. High

amounts of salt induced Th1-like Tregs, secreting IFN-c in

an SGK1-dependent manner [160]. In MS patients, a

recently published observational study demonstrated a

heightened disease activity and enhanced inflammation in

subjects with an increased dietary sodium intake [149].

However, direct human data on effects of high salt intake

on the immune system are still sparse. A few available

studies indicate a heightened immune activation in asso-

ciation with excess salt intake. In particular, the

composition of monocyte subsets was shown to be shifted

towards higher numbers of proinflammatory monocytes by

a short-term increase in dietary salt intake [161]. Similarly,

a recent longitudinal study observed a striking correlation

of monocyte numbers and function with salt-intake levels.

The consumption of a high salt diet was paralleled by

higher monocyte counts and a significant increase in IL-6

and IL-23 production, whereas the secretion of IL-10 was

decreased [162]. Intriguingly, IL-6 and IL-23 are major

inducers of Th17 cells also in humans. Novel strategies to

investigate the body’s sodium content recently showed that

a high salt diet is accompanied by a periodical storage of

sodium in skin interstitium and the muscle [163–165]. This

process represents a new regulatory mechanism indepen-

dent from water retention and sodium clearance by the

kidney. Instead, this extra-renal sodium clearance was

shown to involve the immune system. Skin-resident mac-

rophages, activated in an NFAT5-dependent manner,

secrete vascular endothelial growth factor c (VEGF-C), a

growth factor for lymphatic vessels and, thereby, inhibit

the development of salt-mediated hypertension [164]. Ini-

tial studies, measuring the sodium content in humans by

23Na-MRI, revealed this specific accumulation of sodium

in the skin and muscle [163, 166]. The concept that higher

interstitial sodium content via increases in dietary salt

intake may drive proinflammatory responses of the innate

immune system, promoting Th17 cell induction was

recently supported by a study of Medzhitov and colleagues.

In this study, it was shown that macrophages could sense

hypertonic conditions through the caspase-1 pathway,

thereby promoting Th17 cell induction by heightened IL-

1b secretion [167]. In line with these findings, Jantsch et al.

demonstrated that sodium, which accumulated at the site of

skin infections, was able to boost proinflammatory mac-

rophage responses in a p38/MAPK and NFAT5-dependent

manner [156]. In summary, these data indicate that the

sodium balance may affect innate and adaptive immune

function and homeostasis at various levels. Salt intake,

therefore, might represent an environmental risk factor,

which may influence autoimmunity by promoting proin-

flammatory and blocking anti-inflammatory immune

responses. However, it remains to be seen how significant

these effects are for human autoimmunity. It is also likely

that the genetic architect could play a role here, as recently

indicated by an EAE study [168]. Moreover, alterations in

the gut microbiota may indirectly contribute to the

observed effects of altered immune function and disease

[2, 6].

Conclusion

Increasing research efforts indicate that nutritional factors

have the capability to potently modulate autoimmune

responses and inflammation. Sodium chloride and saturated

fatty acids have been implicated as risk factors in many

diseases, such as stroke, hypertension, cardiovascular dis-

eases, chronic inflammation and autoimmunity. It is thus

not surprising that there is growing interest in special diets

as add-on therapies to conventional therapeutics. Although

no long-term clinical trials currently exist, the data dis-

cussed above suggest that the impact of components of the

daily diet like saturated fats and sodium on inflammatory

processes and autoimmunity should be further investigated.

The gut as the main absorption interface for nutritional

components displays the most prominent anatomic site that

links diet and disease. Recent studies have already sug-

gested a role for the gut microbiome in a number of

diseases, including T1D, IBD, and obesity, and present

further evidence that the gut microbiome may also play a

role in diseases affecting the CNS, such as MS. The impact

of gut microbiota and its metabolites on the mucosal

immune system was shown to not only affect the gut

environment, but also to modulate extra-intestinal immune

responses by influencing the balance of pro- and anti-
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inflammatory T cell subsets. Modifying the gut microbiota,

either directly or indirectly through dietary factors, might

thus be a potential therapeutic option for the treatment of

various diseases, including MS. Promoting the induction of

anti-inflammatory Tregs and reducing pathogenic Th17

cell responses might represent here the most promising

strategy in the context of autoimmunity.
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