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Abstract – Exploiting others is beneficial individually but it could also be detrimental globally.
The reverse is also true: a higher cooperation level may change the environment in a way that is
beneficial for all competitors. To explore the possible consequence of this feedback we consider a
coevolutionary model where the local cooperation level determines the payoff values of the applied
prisoner’s dilemma game. We observe that the coevolutionary rule provides a significantly higher
cooperation level comparing to the traditional setup independently of the topology of the applied
interaction graph. Interestingly, this cooperation supporting mechanism offers lonely defectors a
high surviving chance for a long period hence the relaxation to the final cooperating state happens
logarithmically slow. As a consequence, the extension of the traditional evolutionary game by
considering interactions with the environment provides a good opportunity for cooperators, but
their reward may arrive with some delay.

Copyright c© EPLA, 2018

Protecting environment is often considered as a social
dilemma where mutual defection can easily lead to the
tragedy of the common state [1,2]. In the reversed case
cooperating players do not just avoid the undesired sce-
nario but they can produce a globally improved environ-
ment that is profitable for all members. This effect is not
limited to human societies, but can also be observed in mi-
crobiological systems. For example when bacteria secrete
compounds for nutrient scavenging then its consequence
is useful for all competitors [3–5].

We should not forget, however, that not only coopera-
tors benefit from the improved state of the environment,
but it can also elevate the temptation to defect. In other
words, in a rich environment a defector gains more than
a similar defector who wants to exploit others in a world
where the average income is low. Accordingly, it is a more
realistic approach to leave the traditional concept of fixed
payoff elements and assume that these values may change
in time and space. This concept assumes that the general
state of environment determines the level of interactions
of players, which are considered via the actual values of
payoff elements [6].

In this work we apply this concept by using a coevo-
lutionary protocol where there is a feedback between the

local cooperation level and payoff values of social dilemma.
In particular, we introduce an adjustable coupling con-
cerning how the actual state of environment influences the
interactions of competitors and explore its consequence on
the behavior of spatial systems. As we will show in what
follows, the applied coevolutionary protocol has a largely
unequal consequence on the evolution of strategies and
cooperators will be supported by increasing the coupling
with the environment. On the other hand, defectors may
also benefit from an improved environment, at least tem-
porarily. Albeit they cannot escape their fate, their fight
results in an unexpectedly slow relaxation that cannot be
observed in the traditional model.

The remainder of this letter is organized as follows.
First, we describe the coevolutionary model that is fol-
lowed by a brief discussion of the well-mixed model. Next
we present our main observations for spatially structured
populations, whereas lastly we summarize and discuss
their implications.

In the traditional prisoner’s dilemma game we consider
cooperation and defection as the two competing strate-
gies. The payoff elements which characterize their rela-
tions are fixed and can be interpreted in the following
way: two cooperators collect R reward each for mutual
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cooperation, a defector realizes T temptation value against
a cooperator, while P determines the punishment for mu-
tual defection, and finally S is the income of cooperator
when playing with a defector. The rank of these payoff
values, namely S < P < R < T , ensures that it is bet-
ter to defect independently of the partner’s choice. Mu-
tual defection, however, can be avoided in spatial systems
where players have limited and at least temporarily fixed
connections [7]. In the last two decades several pioneering
works highlighted that the topology of interaction graph
plays a decisive role on the high cooperation level of the
resulting stationary state [8–14]. We note that there are
several other alternative ways to avoid the full defection
state by considering more sophisticated strategies [15–22],
introducing punishment or reward [23–28].

These models, however, assume that the interactions
between players of different strategies are uniform in the
whole space and remain fixed in time [29]. Needless to say,
this hypothesis could be oversimplified because the temp-
tation value or the benefit of mutual cooperation may de-
pend on site due to heterogeneous local environment. To
catch the latter effect, we adopt the hypothesis when the
actual state of local environment influences the quality
of interaction between players, which may alter the deci-
sions of competitors about strategy update [6]. This ex-
tension can be executed via a coevolutionary model where
both the interaction of strategies and the resulting strat-
egy distribution coevolve in time [30]. The feedback be-
tween the environment and individual state is based on
the locally evaluated cooperation level that influences the
payoff values.

In particular, we propose that R and T values are not
fixed, but may change in time and space and their values
depend on the actual cooperation level of the local commu-
nity. For instance, suppose that player i has G−1 nearest
neighbors hence it is a focal player of a smaller group of
G members, where the number of cooperators is nC . If i
is a cooperator then it can collect R = R0(1 + αnC/G)
reward from a C-C link. If i is a defector then it gets
T = T0(1 + αnC/G) payoff from a D-C connection. Here
R0 = 1 and T0 are fixed values of the traditional prisoner’s
dilemma game [7] and α ≥ 0 determines the strength of
feedback from environment. If α = 0 then the payoff el-
ements become independent of the state of environment
while for high α value there is a strong feedback between
the local cooperation level and the increment of payoff el-
ements. For simplicity we assume that the rest of payoff
elements, P and S, are fixed.

The dynamics of the strategy update which governs the
microscopic evolution is based on the imitation of a more
successful neighbor [10]. During an elementary step we
choose a player i randomly who acquires its payoff Πi by
playing the game with all its neighbors. Next, a randomly
chosen partner of i, denoted by j, also acquires its payoff
Πj by playing the game with all its neighbors. Player
i then attempts to imitate the strategy of player j with
the probability w = {1 + exp((Πi − Πj)/K)}−1, where K

determines the level of uncertainty via strategy adoptions.
To make our results comparable to previous findings we
use K = 0.1 noise value, but we stress that qualitatively
similar results can be found for other K values.

During the Monte Carlo simulations we have used at
least N = 105 players, but the system size was increased
until N = 106 players when the fraction of C or D play-
ers was too low. In particular, we paid special attention
to avoid the finite-size effect originated from the usage
of a small system size. Instead, we checked our results
using different system sizes and accepted them only if
they remained unchanged by increasing the system size
further. In agreement with the standard protocol during
a full Monte Carlo step the above-described elementary
step is executed N times, hence on average all players
have a chance to update their states. After the success-
fully long relaxation, which takes typically 104–105 Monte
Carlo steps, we have averaged the fluctuating level of co-
operation over another 104 steps. The data were averaged
over 10 independent runs. Additionally, to reach the de-
sired accuracy in case of heterogeneous graphs we averaged
the results over 100 independently generated networks.

It is worth stressing that this model does not only pro-
vide a more realistic model of the evolution of cooperation,
but it also bridges the gap between games based on pair
interactions with descriptions where the social dilemma
is described by public goods game-like multi-point inter-
actions [31]. More precisely, the players’ payoffs are still
calculated from the payoff elements of pair interactions,
but these values depend sensitively on the collective be-
havior of the whole group.

Before presenting our main findings in structured popu-
lations we briefly discuss the case of unstructured popula-
tions. In a well-mixed system the fraction of cooperators
can be denoted by x. By using this notation the av-
erage payoff of a cooperator player is ΠC = xR0(1 +
αx) + (1 − x)S while the average payoff of a defector is
ΠD = xT0(1 + αx) + (1− x)P . If we keep the rank S ≤ P
between the payoff elements then it is easy to see that ΠD

always exceeds ΠC . Accordingly, only the full D state is an
evolutionary stable state. Put differently, the introduction
of coevolutionary coupling between the state of environ-
ment and payoff values does not change the behavior of
the traditional well-mixed model.

In spatially structured populations, however, we face
to a quantitatively different situation because the het-
erogeneous performance of groups provides a cooperator
supporting mechanism. This can already be recognized
at the simplest level of multi-point approximations for
the square lattice topology [32,33]. When applying the
n-point level of this approach, which is a dynamical ver-
sion of the cluster variation method, we find a hierarchy
of evolution equations for the probability distributions of
configurations within a cluster of n sites. (For further de-
tails and direct applications to evolutionary game systems,
see [10,34,35].) At n = 2, called pair-approximation, we
only have two independent variables which can determine
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Fig. 1: (Color online) Fractions of cooperators for three differ-
ent interaction graphs at α = 10. In the case of a square lattice
and a random regular graph z = 4 was used at S = 0. For a
proper comparison in the case of a scale-free graph the average
degree is 〈z〉 = 4 where S = −0.2 was used. An arrow at the
low T0 value shows the typical threshold value of temptation
until cooperators survive in the α = 0 case irrespectively of
the graph topology. For random and scale-free topology the
typical system size was N = 105, while the linear system size
of the square lattice was L = 400. At the vicinity of transition
points we used larger system sizes as it is specified in the main
text. The inset shows the results of pair-approximation in a
square lattice for two extreme α values.

the probability of all two-site strategy distributions. By
solving numerically the equation systems we can deter-
mine the cooperation level in dependence of T0 for differ-
ent values of α parameters. In contrast to the well-mixed
case here the results do depend on the strength of cou-
pling. For two extreme α values the results are plotted in
the inset of fig. 1, which shows that coupling the present
state of environment to the actual payoff values has a co-
operator supporting consequence.

We can confirm this conclusion by the results of Monte
Carlo simulations. In case of strong coupling (α = 10)
three representative curves are plotted on the main plot
of fig. 1 for three different interaction graphs. Here S = 0
was applied for the square and the random regular graphs,
while S = −0.2 was used for the scale-free graph. In the
latter case S = 0 would result in too high cooperation
level even for the traditional (α = 0) case [8], therefore
we needed a negative sucker’s payoff to demonstrate the
difference between the traditional and coevolving models.
For comparison an arrow marks the typical threshold value
of T0 until cooperators survive in the traditional models
when spatially uniform and fixed payoff values are used.

These results suggest that there is a strong cooperator
supporting consequence if we allow a feedback between the
local cooperation level and the actual payoff values which
characterize the interactions of strategies. While a de-
fector enjoys the neighborhood of cooperators by getting
higher payoff, still, the positive consequence of environ-
mental coupling is even stronger for cooperators who can
support each other more efficiently.

0 2 4 6 8  10
α

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

T
0

0 2 4 6 8  10
 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

0 2 4 6 8  10
α

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

T
0

0 2 4 6 8  10
 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

a) b)

c) d)

Fig. 2: (Color online) Color-coded fraction of cooperators on
α-T0 plane for four different cases. Panel (a) shows the square
lattice interaction graph at S = 0, while panel (b) shows the
case of random regular graph using the same S value. Panel (c)
shows the case of the scale-free topology when S = −0.2 was
used. Finally, panel (d) shows the scale-free topology again
but here degree-normalized payoff values were applied. In the
latter case S = 0 was used again.

A more general overview about the consequence of envi-
ronmental feedback can be seen in fig. 2 where we plotted
the cooperation level in dependence of two key parame-
ters, such as T0 and α. To demonstrate the robustness
of the reported effect we have used different topologies
and different ways how payoffs are calculated. Panel (a)
summarizes the results for the square lattice interaction
topology when S = 0 was used. Panel (b) shows the re-
sults when the original square lattice is fully randomized
by rewiring links and introducing short cuts as it was orig-
inally described in ref. [34]. In this way we introduced a
small-world character into the topology without changing
the uniform degree distribution of nodes. The compari-
son of the mentioned panels indicates that the translation-
invariant regularity of lattice topology does not influence
the observed effect relevantly, which remains valid even if
a small-world–like feature characterizes the host network.

The positive impact of the environment coupling on the
cooperation level remains intact if we apply a largely het-
erogeneous degree distribution in the interaction graph.
For instance, when a scale-free graph is used we can ob-
serve a similar effect as previously: as we increase the
coupling between the environment and the applied pay-
off values then a higher general cooperation level can be
reached and cooperators can dominate the whole system
even at a so high T0 level which would cause their extinc-
tion in the traditional model. Note that here we had to use
a significantly smaller S = −0.2 value because the scale-
free topology at S = 0 would result in a dramatically high
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Fig. 3: (Color online) Interface propagation stating from a prepared initial state. Here the 400×400 square lattice is horizontally
divided into two parts, where in the top half we applied α = 0, while in the bottom half α = 10 is used. (To keep the distinct
feedback conditions for the whole evolution, invasion across the horizontal borders is not allowed.) In both cases T0 = 0.8 is
used to ensure the final dominance of cooperators. At the beginning, shown in panel (a), red defectors are framed by narrow
strips of cooperators (the latter stripes are not visible due to the large linear system size). Panel (b) shows the states after 300
Monte Carlo steps where invasion of blue cooperators becomes visible. In the bottom half the moving interface is smoother and
the invasion is faster than in the top half. After 480 MC steps, shown in panel (c), the homogeneous defector domain already
disappears in the bottom half, but the fast invasion left singular defectors behind the fronts. Finally, a full cooperator state is
reached for both cases but the relaxation is faster in the top half.

cooperation level even for the traditional model [8,36].
The latter fact would make it impossible to distinguish
high cooperation levels hence to illustrate the positive
consequences of environmental coupling for the frequently
used weak prisoner’s dilemma case.

Turning to the last panel (d) we still use the scale-free
topology but apply a conceptually different way of pay-
off calculation. More precisely, we normalized the payoff
values of every players by their degree, which changes the
cooperation level dramatically. In the latter case, when
hubs cannot collect significantly higher payoff values than
their neighbors or the cost of maintaining connections is
considered, the general cooperation falls back to a poor
level observed for graphs which are characterized by a
homogeneous degree distribution [37–39]. (This negative
consequence of payoff normalization allowed us to use the
S = 0 value again.) In the extended version, however, our
results illustrate again that the coevolutionary coupling of
environment and payoff has a positive consequence even if
we use normalized payoff values.

Based on the presented observations we may conclude
that the feedback mechanism, which allows coevolution
of strategies and payoff values, can enhance the positive
consequence of network reciprocity efficiently. This con-
clusion can be tested directly if we monitor how interface
separating homogeneous domains evolves at different cou-
pling rates. Figure 3 shows such a comparison where we
divided horizontally the space into two subsystems where
in the top half α = 0 while in the bottom half α = 10 was
used during the evolution. To maintain these differences
between the subsystems we prohibited strategy invasion
across the horizontal border lines (which are on the top,
middle, and on the bottom of the square lattice). All the
other parameter values are identical for both subsystems.

We are interested in how both subsystems reach the full
cooperator state therefore we used a small T0 = 0.8 value
which provides this final state even for the traditional
(α = 0) case.

At the beginning we start from an almost defector state,
colored by red, where their homogeneous domains are bor-
dered only by narrow vertical stripes of cooperators. The
latter are colored by blue but the width of these stripes
is only 5 lattice sites which is invisible at such large lin-
ear system size (L × L = 400 × 400 was used to follow
the spreading of interface properly). When evolution is
launched cooperators start invading defector domains due
to the small T0 value. In agreement with the enhanced net-
work reciprocity conjecture the interface moves faster and
remains more regular in the bottom half where the coevo-
lutionary protocol is applied. In the top half, where only
the pure network reciprocity is at work, this domain wall
is more fluctuating and the width of the defector domain
shrinks slower. Interestingly, however, the faster invasion
in the bottom half leaves many lonely defectors behind the
front. These “snow-flake”–like patterns seem to be long
life and disappear very slowly. Nevertheless, we stress that
both subsystems terminate into the full cooperator state
but this relaxation is qualitatively longer for the invasion
which is “fastered” by the coevolutionary coupling.

To demonstrate the qualitative differences of the relax-
ation process to the full-C state we monitored the frac-
tion of defectors for both cases where the evolutions were
launched from a random initial state. Figure 4 shows the
striking differences of how the fraction of defectors de-
cays: while the relaxation is exponentially fast for the
traditional model, it is logarithmically slow for the coevo-
lutionary model (we have used log-log plots to stress the
differences).
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Fig. 4: (Color online) Decay of defector concentration in two
different cases where the system evolves into a full coopera-
tor state on a square lattice topology. While in the tradi-
tional model this decay is exponentially fast, in the coevolving
model it happens logarithmically slow. In both cases we used
L×L = 1000×1000 system size where we averaged over 100 in-
dependent runs. The inset explains the basic mechanism which
is responsible for the slow relaxation of the coevolving model.
Note that not all players are presented on the two-dimensional
grid but only those whose change explains how a D-D pair an-
nihilates. Further explanation can be found in the main text.

The qualitative difference of the relaxation process can
be easily understood based on the evolution of strategy
distribution we presented in fig. 3. As we already warned
the reader in the introductory notes, the feedback mecha-
nism does not only support cooperators but also defectors:
a lonely defector in a highly cooperative environment can
collect a so high temptation value which makes it strong
and provides a nice example for a neighboring cooperator
player to imitate. This elementary process is illustrated
in the inset of fig. 4. Here we presented only those play-
ers from the grid whose strategy change explains the key
steps. Importantly, when this imitation of the successful
defector state is executed then the situation changes dras-
tically. In the new circumstance, illustrated in the middle
row of the inset, the old defector does not only loose a ben-
eficial link but the emergence of a new defector will also
reduce the cooperation level locally. As a result, the effec-
tive T value that characterizes how much a defector can
exploit from a D-C link will also decay relevantly. Conse-
quently, instead of a strong defector player we will have a
weak D-D pair. They become vulnerable and can be easily
invaded by a neighboring cooperator player. Depending on
which defector player goes extinct the position of the orig-
inal D remains intact or moves one step. These possible
options are illustrated in the bottom row of the inset of
fig. 4. These elemantary steps explain why a lonely defec-
tor walks randomly and why it annihilates when meeting
with another defector due to the consequence of a strong
environment feedback.

The above-described process can be implemented as
random walking of lonely defectors who are left behind
the invasion front of the propagating cooperator domain.

Importantly, when two lonely defectors meet randomly
then they weaken each other by exactly the same reason
we argued above. Technically, it means that when two
random walking defectors meet then one of them is anni-
hilated. This annihilation decreases the total number of
defectors gradually which explains the unexpectedly slow
relaxation we report in fig. 4.

To understand the evolution of cooperation has a
paramount importance in several seemingly different
research disciplines [40]. The fundamental conflict of in-
dividual and collective interests can be detected in several
problems raised by psychology, sociology [41,42], ecol-
ogy [43], biology [44], or even in cancer research [45–47].
During the last decades several subtle cooperator promot-
ing mechanisms were identified which help to understand
why a single competitor gives up the individual interest
for a collective benefit [15,48–51]. But most of these mod-
els ignored the fact that the collective behavior of a group
might have a clear consequence on the shape of local en-
vironment, which can also influence the individual success
of interacting players. We should stress that several works
already concerned the difficulties originating from hetero-
geneous environment [52–55], but they generally assumed
a stable background where the strategy choice of compet-
ing strategies has no direct consequence on the change of
environment.

A more subtle approach is when we assume that the
players act influences the state of the environment that
has a direct consequence on the success how players inter-
act with each other. This idea can be captured by means
of a coevolutionary model where not only strategies but
also payoff elements may evolve [6]. By following this re-
search path we assume that the cooperation level of a local
community directly determines the temptation value and
the reward of mutual cooperation. This feedback can sup-
port cooperator groups, but it can also provide a stronger
temptation to choose defection. In this way we are facing
with the original dilemma of the competing strategies.

We argue that in a well-mixed population this feed-
back has no observable consequence on the competition of
strategies and the system terminates into the well-known
globally defector state. In structured populations, how-
ever, cooperators gain more and a significantly improved
cooperation level can be reached for intensive coupling. In
the latter case even a full cooperator state can be reached
at a temptation value which would ensure a complete de-
fection in the feedback-free traditional evolutionary game
independently of the applied interaction topology. On the
other hand, beside the unambiguous positive effect of en-
vironment feedback there is an interesting consequence on
the relaxation dynamics how the above-mentioned cooper-
ator state is reached. Due to enhanced temptation lonely
defectors die out slow because they remain vital without
followers. Their temporary success will result in an effec-
tive random walk which eventually eliminates them.

Our work highlights that considering coevolutionary
systems [30,56–58] may provide not only a more realistic
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modeling of nature but can also offer several unantici-
pated outcomes. These consequences are expected to work
mostly in spatial systems where the spatially heteroge-
neous background prevents averaging, hence diminishing
strategy-specific consequence of feedback mechanisms. In
future studies it will be interesting to see how the concept
of varying payoff values provides other new mechanisms of
promoting the evolution of cooperation.
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