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Abstract 

Herpetofauna (amphibians and reptiles) and fish represent important sentinel and 

indicator species for environmental and ecosystem health. It is widely accepted that the 

epigenome plays an important role in gene expression regulation. Environmental 

stimuli, including temperature and pollutants, influence gene activity and growing 

evidence demonstrates that an important mechanism is through modulation of the 

epigenome. This has been primarily studied in human and mammalian models; 

relatively little is known about the impact of environmental conditions or pollutants on 

herpetofauna or fish epigenomes and the regulatory consequences of these changes on 

gene expression. Herein, we review recent studies that have begun to address this 

deficiency, which have mainly focused on limited specific epigenetic marks and 

individual genes or large-scale global changes in DNA methylation due to the 

comparative ease of measurement. Greater understanding of the epigenetic influences 

of these environmental factors will depend on increased availability of relevant species-

specific genomic sequence information to facilitate chromatin immunoprecipitation and 

DNA methylation experiments. 
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1. Introduction 

 Herpetofauna (amphibians and reptiles) and fish frequently contend with 

variations in temperature, salinity, and aridity, as well as exposure to myriad chemicals 

and contaminants, over changing seasons and environs. Adaptation to environmental 

conditions may only be temporary, as in acclimation to low winter temperature or 

summer aridity, or environmental stimuli may have permanent impacts on the animal, as 

in the case of temperature and sex determination, or carcinogen exposure and tumour 

development. Regulation of genes required to address these changes can be mediated 

through the epigenome. 

 Epigenetic regulation of gene expression is independent of changes to the 

genetic sequence and includes post-translational modifications of histones, 

incorporation of different histone isoforms into the nucleosome, and DNA methylation. 

Histone modifications and isoforms influence gene expression through recruitment or 

exchange of co-regulatory factors or by changing the strength of the interaction between 

the DNA strands and the histone octamer (Buschbeck et al. 2009; Herz et al. 2013; 

Kamakaka and Biggins 2005). DNA methylation occurs most commonly at cytosine 

residues in the context of cytosine-guanine dinucleotides (CpGs), and occurs by 

transfer of a methyl group from S-adenosylmethionine to cytosine to produce 5-

methylcytosine and S-adenosylhomocysteine by DNA methyltransferases (DNMTs). 

Methylated CpGs are recognized by methyl-CpG-binding proteins, which favour 

transcriptional silencing of the associated gene (Arand et al. 2012). DNA methylation 

was considered to be permanent for the life of the cell and to be inherited by its 

progeny, but experimental evidence of DNA methylation changes within the lifetime of a 
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single cell (Metivier et al. 2008) instead support a more dynamic role, and suggest a 

stochastic model where the overall level of CpG methylation in a given region is 

maintained but individual CpG methylations are not (Jeltsch and Jurkowska 2014). 

When studying epigenetic regulation of gene expression, it is important to 

consider whether the epigenetic mark under study represents a persistent memory for 

gene activation or silencing, or if it merely reflects the change in gene expression. For 

example, acetylation of lysine 9 or 27 of histone H3 (H3K9Ac, H3K27Ac) in 

nucleosomes at gene promoters is observed during active transcription of the 

associated gene (Wang et al. 2008) and treatment with histone lysine (de)acetylase 

inhibitors can alter gene transcription (Fernandez-Sanchez et al. 2013; Gui et al. 2004). 

However, few studies examine whether or not removal of the inhibitor returns 

transcription to pre-treated levels. Clarifying the cause-effect relationship between 

epigenetic marks and transcription is necessary to ultimately understand the epigenetic 

contribution to gene expression changes due to environmental stimuli. 

In the present review, we discuss recent investigations into how environmental 

factors encountered by fish and herpetofauna impact their epigenomes through histone 

modification or isoform switching and/or DNA methylation (Figure 1), consider possible 

mechanistic implications of the experimental observations, and identify key areas for 

future research. 

 

2.1. Non-chemical environmental factors 

2.1.1. Temperature-dependent sex determination 
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Fish and herpetofauna are poikilotherms; they do not maintain a constant internal 

temperature. Environmental temperature varies considerably between seasons in 

temperate regions and these long-term temperature variations require long-term, but 

non-permanent, changes in gene expression. Epigenetic regulation offers both a means 

to control expression of genes required only seasonally and those required during 

critical developmental periods. 

Environmental temperature during a critical developmental time period is an 

important sex determination factor in many species of fish and reptiles (Azuma et al. 

2004; Ferguson and Joanen 1982; Kitano et al. 1999; Koumoundouros et al. 2002). 

Recent studies have suggested that the mechanism of sex determination by 

temperature involves differential DNA methylation in the gonad in sexually dimorphic 

gene promoters of aromatase (cyp19a1), which encodes the enzyme that converts 

testosterone to 17β-estradiol, and sex determining region Y box 9 (sox9), which controls 

testis differentiation. In the European sea bass (Dicentrarchus labrax), rearing at a 

male-producing temperature during early life was found to increase DNA methylation in 

the cyp19a1 promoter, which correlated with decreased aromatase expression and 

increased masculinization in sexually undifferentiated individuals (Navarro-Martin et al. 

2011). The authors identified two of seven CpG loci in the cyp19a1 promoter as 

temperature-sensitive with one particular locus conserved in related teleost species. 

This locus, at position -13 from the transcription start site, is near a Sry-related high 

mobility group (Sox) binding site and TATA box, while the other non-conserved locus at 

-431 is within 30 bp of a forkhead box (Fox) binding site (Navarro-Martin et al. 2011). 

CpG methylation in the cyp19a1 promoter may represent a general mechanism for sex 
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determination in response to temperature as increased CpG methylation has also been 

observed in alligator (Alligator mississippiensis) and red-eared slider turtle (Trachemys 

scripta elegans) embryos incubated at male-producing temperatures (Matsumoto et al. 

2013; Parrott et al. 2014). Conversely, increased methylation of the sox9 promoter 

corresponded with decreased sox9 expression at female-producing temperatures 

(Parrott et al. 2014). Differential expression of dnmts was not observed suggesting that 

temperature may be affecting methyltransferase activity or localization directly; 

mechanisms that may be involved in communicating many environmental influences but 

that remain to be investigated. 

Temperature fluctuations also affect installation of histone variants and 

deposition of post-translational modifications on histone tails in the common carp 

(Cyprinus carpio). The carp undergoes structural changes and alterations in ribosome 

biogenesis in its skeletal muscles to cope with seasonal temperature variations in its 

native temperate latitudes. In animals acclimated to winter temperatures, rRNA 

transcription decreases corresponding to the co-localization of mH2A1 and the 

H3K27me2 repressive mark at the promoter of the rRNA cistron (Araya et al. 2010). 

These were replaced by mH2A2 and the H3K4me3 mark of active transcription in 

animals acclimated to summer conditions. This relationship was also observed for the 

acclimation-related ribosomal protein L41 (rpl41) gene, but not for prolactin (prl). While 

these epigenetic marks and isoforms have been associated with transcriptional 

activation or silencing, they alone may not necessarily represent a specific method of 

temperature-sensitive regulation, and instead may simply be a consequence of 

increased transcription at these loci. The regulatory relationship between mH2A 
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recruitment and increased rRNA transcription could be further elucidated through 

knockdown of the mH2A isoforms followed by measurement of rRNA and rpl41 

expression during winter and summer conditions. 

 

2.1.2. Environmental temperature mediates natural and thyroid hormone-induced 

metamorphosis  

The North American bullfrog (Rana catesbeiana) overwinters in its larval tadpole 

form (Cecil and Just 1979) and has natural systems to modulate its development 

depending on the environmental temperature. The tissue-specific outcomes of 

metamorphosis from the aquatic tadpole to the semi-terrestrial adult is initiated by, and 

totally dependent on, thyroid hormone (TH) and treatment with TH can induce the 

tadpole to undergo metamorphosis precociously. However, tadpoles acclimated to low, 

nonpermissive temperature (4-5 °C) will not undergo precocious metamorphosis when 

exposed to exogenous thyroid hormone as they would at higher, permissive 

temperature (20-25 °C), but elements of the TH-induced gene expression program are 

nonetheless activated and may be responsible for forming a molecular memory of TH 

exposure (Ashley et al. 1968; Frieden et al. 1965; Hammond et al. 2015).  

This phenomenon has been recently examined at the chromatin level. It was 

found that low temperature blocked the transfer of active chromatin marks, such as 

H3K9Ac and H3K36 methylation, to the transcribed regions of key metamorphic 

transcription factors including thyroid hormone receptor β (thrb) and CCAAT/enhancer 

binding protein 1 (cebp1) in liver (Mochizuki et al. 2012a). This observation was 

consistent with the lack of induction of these genes by TH at low temperature, in 
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contrast to the genic deposition of H3K9Ac and H3K36me3 marks that accompanied 

activation of the thrb gene in response to TH treatment at permissive temperature 

(Mochizuki et al. 2012b). While these epigenetic data support the hepatic transcriptional 

observations, genetic information was limited such that epigenetic marks at the gene 

promoters were not examined. The pending release of the bullfrog genome will enable 

the definition of the potential epigenetic molecular memory of TH treatment 

(http://www.genomebc.ca/news-events/news-releases/2013/genomics-leading-

innovation-bc/). 

 

2.1.3. Salinity and hatchery adaptation 

Diadromous fish must regulate gene expression pathways to adapt to changes in 

salinity as they exit their natal waterways and enter the ocean (and again when they 

return to spawn). Accordingly, changes in salinity can impact epigenomes of aquatic 

vertebrates. This may be of particular significance during migration between freshwater 

rivers and lakes and the ocean. Hatchery-raised fish tend to have low survival rates for 

their initial migration to the sea, which may be a result of adaptation to the hatchery 

environment. Work in other organisms suggested that declines in fitness due to different 

growth conditions was associated with genome-wide methylation changes (Kaeppler 

1993; Peraza-Echeverria 2001), but these differences were not detected in freshwater 

hatchery-raised fish (Blouin et al., 2010). Indeed, a salt-enriched diet improved survival 

of freshwater hatchery-raised trout transferred to salt water, but the altered DNA 

methylation profile of the fish was not maintained  (Moran et al. 2013). The transitory 

nature of the DNA methylation changes suggests that they were likely a consequence of 
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other changes in gene expression, rather than the direct cause of them, and therefore 

that DNA methylation is not a major mechanism of adaptation to the hatchery 

environment. 

 

2.1.4. Aestivation and photoperiod 

DNA methyltransferases and DNA methylation by extension have been 

implicated in transcriptional silencing of skeletal muscle bioenergetic genes during 

aestivation; a period of low energy state and water conservation during drought or 

extreme temperature, in the green striped burrowing frog (Cyclorana 

alboguttata)(Hudson et al. 2008). Transcript levels of the DNA methyltransferase dnmt1 

and the transcriptional co-repressor sin3a were significantly higher in aestivating adults 

than non-aestivators, but no direct evidence of differential DNA methylation or its 

regulatory consequence was provided. This is likely because, like many non-model 

wildlife species, there is limited genomic data available for C. alboguttata.  

Similarly, a role for DNA methylation in the regulation of muscle growth rate by 

photoperiod was proposed in the Atlantic cod (Gadus morhua), where increased 

expression of dnmt1 and dnmt3a was detected in fast twitch muscle of G. morhua 

exposed to continuous illumination relative to fish reared under a natural photoperiod 

(Giannetto et al. 2013). Interestingly, this relationship was still maintained once the 

natural photoperiod was equal to that of the continuous illumination cohort, which 

suggests that increased dnmt expression is a lasting impact of the continuous 

illumination during rearing. Determination of the fitness and ability to respond to 
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environmental challenges of fish raised under constant illumination would offer insight 

into the consequences of this increased dnmt expression. 

 

2.2. Chemical pollutants in the aquatic environment  

2.2.1. Environmental estrogens 

 Chemical contaminants possessing estrogenic activities are capable of altering 

DNA methylation in fish, but the contribution of these alterations to epigenetic memory 

is unclear. Ethinyl estradiol (EE2) is widely found in surface waters due to its common 

use in oral contraceptive pills and acts through the nuclear estrogen receptor to activate 

expression of sex-related genes including cyp19a1 and vitellogenin (vtg), an egg yolk 

precursor protein naturally expressed only by females (Belfroid et al. 1999; Kolpin et al. 

2002). The three CpG sites of the vtgI promoter are normally methylated in male 

zebrafish (Danio rerio) liver, and minimally methylated in female liver (Strömqvist et al. 

2010). Treatment with 100 ng/L EE2 for 14 days reduced hepatic vtgI promoter 

methylation in both males and females, suggesting that induced expression of vtgI 

typically observed under these conditions may be mediated through reductions in CpG 

methylation. While the lifespan of zebrafish hepatocytes in vivo has not been 

determined, it is hundreds of days in mice (Magami et al. 2002); therefore the period of 

exposure was probably not sufficient for replication-dependent (passive) DNA 

demethylation to contribute significantly to the reduced promoter CpG methylation. 

Active demethylation may have contributed as well, perhaps through cytosine 

deamination followed by nucleotide or base excision and repair or cytosine 

demethylation in situ by the ten-eleven translocation (TET) proteins (Fritz and 
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Papavasiliou 2010; Pastor et al. 2013; Ramchandani et al. 1999). Determination of the 

rapidity of the demethylation within the 14 day period would suggest an active 

mechanism, as would studying the expression of dnmt genes and the putative enzymes 

involved in DNA demethylation. 

Changes in CpG methylation at the promoters of other sex steroid metabolism 

and signalling genes have been identified as a consequence of exposure of males to 

EE2, but not females. Promoter hypermethylation of the steroid 17-alpha-

monooxygenase (cyp17a1) gene, which encodes an enzyme important in steroid 

biosynthesis, was observed in male testis but not female ovary following EE2 exposure 

of adult rare minnows (Gobiocypris rarus)(Liu et al. 2014). In adult Japanese medaka 

(Oryzias latipes), CpG sites identified in the estrogen receptor 1 (esr1) promoter that 

were not methylated in the male brain or testis became methylated upon EE2 treatment 

in a manner found in female tissues (Contractor et al. 2004). Similarly, EE2 exposure 

also increased cyp19a1 promoter CpG methylation in male liver and brain to a similar 

state found in females. Insight into the permanence of these methylation changes in 

males could be gained by measuring CpG methylation after EE2 removal, which was 

not performed in these studies. The transition to a female-like DNA methylation profile in 

these genes was not accompanied by the expected effects on O. latipes ESR1 or 

aromatase expression. More recent work in related species has identified additional 

potential sites of DNA methylation in the cyp19a1 promoter, so the disconnect between 

the DNA methylation changes and gene expression in O. latipes may be due to 

incomplete characterization of the promoter CpG sites (Wen et al. 2014). Alternatively, 
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the feminizing effects of EE2 may be primarily mediated through other epigenetic 

modifications or other non-epigenetic methods. 

 DNA methylation can also be affected by the estrogenic herbicide breakdown 

product 2,4-dichlorophenol (2,4-DCP) (Ma et al. 2012). Increased global DNA 

methylation and increased dnmt1 and dnmt3 transcript levels were detected 5 days 

after exposure of adult goldfish (Carassius auratus) to as little as 0.01 mg/L 2,4-DCP  

(Zhang et al. 2014).  Co-treatment with 2,4-DCP and the DNMT inhibitor 5-AC or the S-

adenosylmethionine depletion agent, sodium selenite, prevented this hypermethylation, 

but the impact of these observations on the disruption of estrogen-regulated gene 

expression by 2,4-DCP was not investigated. 

 

2.2.2. Polychlorinated biphenyls (PCBs) 

 Killifish from sites with high levels of PCB contamination are more resistant to 

PCBs than those from less-contaminated sites (Elskus et al. 1999; Nacci et al. 1999) . 

Killifish from New Bedford Harbor, ME, have an overall reduced level of signalling 

mediated by aryl hydrocarbon receptor (Ahr), which includes resistance to induction of 

aryl hydrocarbon hydroxylase (Cyp1a1), a cytochrome P450 enzyme (Bello et al. 2001). 

Aluru et al. (2011) hypothesized that this lack of Cyp1a1 induction would be associated 

with promoter CpG hypermethylation of the two killifish Ahr isoforms. However, bisulfite 

sequencing of the two promoters revealed that there was no significant difference in 

CpG methylation between the New Bedford Harbor fish and fish from a reference site 

(Aluru et al. 2011). Killifish from another site of high PCB contamination, Elizabeth 

River, VA, did not have detectable methylation in any of a limited set of CpG sites in the 

Page 12 of 27

https://mc06.manuscriptcentral.com/bcb-pubs

Biochemistry and Cell Biology



Draft

13 

 

cyp1a1 promoter, despite a similar refractory phenotype (Timme-Laragy et al. 2005). 

The hypothesis that CpG methylation is responsible for this phenotype was also not 

supported by a study where PCB-resistant killifish from Newark Bay, NJ, were treated 

with 5-AC (Arzuaga et al. 2004). PCB-resistant fish co-treated with the Cyp1a inductive 

agent 3,3',4,4',5-pentachlorobiphenyl (IUPAC PCB126) and 5-AC showed no increase 

in Cyp1a catalytic activity, while the expected increase in activity was detected in fish 

treated with PCB126 alone. Although the PCB-resistant phenotype observed in these 

wild killifish does not seem to be due to CpG methylation and silencing of cyp1a1, an 

epigenetic repression mechanism is almost certainly at play as laboratory-raised F1 

generation fish from the Elizabeth River population regain Cyp1a inducibility during 

development (Meyer et al. 2002).  

 

2.2.3. Heavy Metals and Arsenic 

The level of global DNA methylation is considered a rough measure of the level 

of transcriptional activity in an organism under particular conditions. DNA 

hypomethylation has been associated with development of cancer, but whether it is a 

cause of the disease or a symptom of general dysregulation of gene expression is 

unclear (Ehrlich 2009; Esteller and Herman  2002). For organisms with few molecular 

tools available, it is a common first parameter to examine for gross effects of 

environmental heavy metal exposure. Several recent studies of the impact of heavy 

metal exposure on global genome methylation in fish have yielded differing results, 

demonstrating the variety of mechanisms of disruption possible among this broad class 

of contaminants and the importance of carefully selecting the exposure conditions. 
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Surface waters may be contaminated with heavy metals from natural and 

anthropogenic sources. Cadmium and methylmercury (meHg) primarily enter surface 

waters from industrial or mining operations, while the anti-fouling agents tributyltin (TBT) 

and triphenyltin (TPT) leach from painted ship hulls (Andres et al. 2000; Boening 2000; 

Thomas et al. 2001; Tolosa et al. 1996). Cadmium exposure increased hepatic genome 

methylation in European eels (Anguilla anguilla) (Pierron et al. 2014). The authors used 

an immunosorbent assay and an arbitrarily primed PCR method to measure the level of 

methylation, due to the paucity of tools available for this endangered species. Of 

particular concern, however, was the decrease in overall RNA synthesis caused by the 

environmentally-relevant concentrations of cadmium. Hepatic DNA hypomethylation 

was observed in false kelpfish (Sebastiscus marmoratus) exposed to TBT or TPT, but 

the authors did not monitor the animals for tumour formation (Wang et al. 2009). The 

authors found that rather than directly affecting DNA methylating or demethylating 

enzymes, TBT and TPT caused DNA hypomethylation by disrupting the balance of 

methyl donors such that S-adenosylhomocysteine was in excess of S-

adenosylmethionine. Yellow perch (Perca flavescens) exposed to MeHg showed no 

significant difference in global DNA methylation, as determined by the LUMA assay 

(Basu et al. 2013). A lack of transgenerational MeHg effects on global genome 

methylation in zebrafish has also been noted (Olsvik et al. 2014). 

Arsenic enters surface waters through industrial processes and natural 

weathering of arsenic-containing ores (Smedley and Kinniburgh 2002). Zebrafish 

embryos treated with 2 mM arsenite (as NaAsO2) were shown to have disrupted 

patterns of DNA methylation using an immunostaining technique (Li et al. 2009). 
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Methylation in the trunk and tail regions of embryos exposed to arsenite post-fertilization 

was reduced by 24 hours post-fertilization (hpf). By 48 hpf, methylation in these regions 

had diminished in the controls but was increased throughout the arsenite-treated 

embryos. However, only 66% of embryos hatched at this exposure level, which is above 

the reported 96h LC50 of 772 µM (Salisbury 2006). The disruptions to DNA methylation, 

as well as the morphological abnormalities and overt physiological disruption observed 

in the embryos must therefore be considered in the context of the high embryonic 

lethality caused by the arsenic exposure. 

 

3. Closing remarks 

 It is clear that epigenetics contribute to organismal responses to their 

environment, whether natural or man-made. While fish and herpetofauna present 

particularly interesting examples of genome/environment interactions, our 

understanding regarding the contribution of specific epigenetic mechanisms is 

underdeveloped. So far, the majority of studies involving epigenetic changes in fish and 

herpetofauna have focussed on profiling a specific epigenetic mark(s) or used broad 

methylation state readouts rather than investigating the mechanistic relationship 

between the epigenetic landscape and changes in gene expression in response to an 

environmental stimulus. This is mostly due to a paucity of genetic sequence information 

to perform genome-wide experiments. As this issue is overcome, we will arrive at a 

greater understanding of the ways that these important organisms respond to changes 

in their environments, which is critical due to the acceleration of human industrial activity 

and global climate change. These studies nonetheless provide important insights and 
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testable hypotheses for epigenetic changes in fish and herpetofauna as they contend 

with environmental insults, as well as potential mechanisms by which important events 

in their lifecycles may be impacted by their changing environments. 
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Figure Legend 

Figure 1. Environmental factors that have known influence on herpetofauna or fish 

epigenomes through histone modification or isoform switching and/or DNA modification 

through methylation.  
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Figure 1. Environmental factors that have known influence on herpetofauna or fish epigenomes through 
histone modification or isoform switching and/or DNA modification through methylation.  
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