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Environmental Issues for MIMO Capacity
Daniel W. Bliss, Keith W. Forsythe, Alfred O. Hero, III, Fellow, IEEE, and Ali F. Yegulalp

Abstract—Wireless communication using multiple-input mul-
tiple-output (MIMO) systems enables increased spectral efficiency
for a given total transmit power. Increased capacity is achieved
by introducing additional spatial channels that are exploited using
space–time coding. In this paper, the environmental factors that af-
fect MIMO capacity are surveyed. These factors include channel
complexity, external interference, and channel estimation error.
The maximum spectral efficiency of MIMO systems in which both
transmitter and receiver know the channel (using channel estimate
feedback) is compared with MIMO systems in which only the re-
ceiver knows the channel. Channel complexity is studied using both
simple stochastic physical scattering and asymptotic large random
matrix models. Both uncooperative (worst-case) and cooperative
(amenable to multiuser detection) interference are considered. An
analysis for capacity loss associated with channel estimation error
at the transmitter is introduced.

Index Terms—Channel capacity, channel phenomenology, infor-
mation theory, interference cancellation, MIMO communication,
multiuser detection, space–time coding.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) systems are
a natural extension of developments in antenna array

communication. While the advantages of multiple receive an-
tennas, such as gain and spatial diversity, have been known and
exploited for some time [1]–[3], the use of transmit diversity
has more recently been investigated [4], [5]. Finally, the advan-
tages of MIMO communication, exploiting the physical channel
between many transmit and receive antennas, are currently re-
ceiving significant attention [6]–[9]. While it is possible for the
channel to be so nonstationary that it cannot be estimated in any
useful sense [10], in this paper, a quasistationary channel as-
sumption is employed.

MIMO systems provide a number of advantages over
single-antenna communication. Sensitivity to fading is reduced
by the spatial diversity provided by multiple spatial paths.
Under certain environmental conditions, the power require-
ments associated with high spectral efficiency communication
can be significantly reduced by avoiding the compressive
region of the information theoretic capacity bound. Here,
spectral efficiency is defined as the total number of bits per

Manuscript received June 12, 2001; revised May 28, 2002. This work was
supported by the Defense Advanced Research Projects Agency under Air Force
Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and rec-
ommendations are those of the authors and are not necessarily endorsed by the
United States Government. The associate editor coordinating the review of this
paper and approving it for publication was Dr. Dennis R. Morgan.

D. W. Bliss, K. W. Forsythe, and A. F. Yegulalp are with Lincoln Labora-
tory, Massachusetts Institute of Technology, Lexington, MA 02420-9185 USA
(e-mail: bliss@ll.mit.edu; forsythe@ll.mit.edu; yegulalp@ll.mit.edu).

A. O. Hero, III is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109-2122 USA
(e-mail: hero@eecs.umich.edu).

Publisher Item Identifier 10.1109/TSP.2002.801914.

Fig. 1. Spectral efficiency bound as a function of noise density normalized
energy per bit (E =N ) comparison ofM � M MIMO systems assuming
channel matrices with flat SVD.

second per Hertz transmitted from one array to the other.
Capacity increases linearly with signal-to-noise-ratio (SNR) at
low SNR but increases logarithmically with SNR at high SNR.
A given total transmit power can be divided among multiple
spatial paths (or modes), driving the capacity closer to the linear
regime for each mode, thus increasing the aggregate spectral
efficiency. As seen in Fig. 1, which assumes an optimal high
spectral efficiency MIMO channel [a channel matrix with a
flat singular value distribution (SVD)], MIMO systems enable
high spectral efficiency at much lower required energy per bit.
Because MIMO systems use antenna arrays, interference can
be mitigated naturally.

A. Environment

The environmental factors that affect MIMO system capacity,
namely channel complexity, external interference, and channel
stationarity, are addressed in this paper in Sections III–V, re-
spectively. The first category (channel complexity) is a function
of the richness of scatterers. In general, capacity increases as the
singular values of the channel matrix increase. The distribution
of singular values is a measure of the usefulness of various spa-
tial paths through the channel.

The second category (external interference) adversely affects
the usefulness of paths through the channel. Given that the most
useful portion of the channel lives in a subspace of the channel
matrix, capacity loss is a function of the overlap of the inter-
ference with this subspace. Generally, interference is assumed
to be uncooperative (worst-case). However, if the interference
source is cooperative, that is, the various users share system pa-
rameters and control, the adverse effects of interference can be
reduced significantly through the use of multiuser detectors.

The third category is channel stationarity. If the environment
is stationary, then channel estimation error vanishes asymptoti-
cally. However, in practical systems, channel stationarity limits
the useful period over which a channel can be estimated. Be-
cause the transmitter will generally have access to older channel
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estimates than the receiver, one would expect the channel esti-
mation error to be greater at the transmitter.

B. Channel Estimation Feedback

In implementing MIMO systems, one must decide whether
channel estimation information will be fed back to the trans-
mitter so that it can adapt. Most MIMO communication research
has focused on systems without feedback. A MIMO system
with an uninformed transmitter(without feedback) is simpler
to implement, and at high SNR, its spectral efficiency bound
approaches that of aninformed transmitter(with feedback).

C. Space–Time Coding

The focus of this paper is the environmental sensitivity
of MIMO communication; however, for completeness, a
few space–time coding references are discussed. In order
to implement a MIMO communication system, a particular
coding scheme must be selected. Most space–time coding
schemes have a strong connection to well-known single-input
single-output (SISO) coding approaches and assume anunin-
formed transmitter. Space–time coding can exploit the MIMO
degrees of freedom to increase redundancy, spectral efficiency,
or some combination of these characteristics [11]. Preliminary
ideas are discussed in [6]. A simple and elegant solution that
maximizes diversity and enables simple decoupled detection is
proposed in [12]. More generally, orthogonal space–time block
codes are discussed in [13] and [14]. A general discussion of
distributing data across transmitters (linear dispersive codes) is
given in [15]. High SNR design criteria and specific examples
are given for space–time trellis codes in [16]. Unitary codes op-
timized for operation in Rayleigh fading are presented in [17].
More recently, MIMO extensions of turbo coding have been
suggested [18], [19]. Finally, coding techniques forinformed
transmittersystems have received some interest [20], [21].

II. I NFORMATION THEORETICCAPACITY

The information theoretic capacity of MIMO systems has
been widely discussed, for example, in [7]. The development of
the informed transmitter“water filling” and uninformed trans-
mitterapproaches is repeated here. This is useful as an introduc-
tion to MIMO capacity and to the notation used in this paper. In
addition, the spectral efficiency bounds in the presence of inter-
ference are introduced.

A. Informed Transmitter (IT)

For narrowband MIMO systems, the coupling between the
transmitter and receiver for each sample in time can be modeled
using

(1)

where
complex receive array output;

(number of receive by transmit antenna)
channel matrix;
transmit array vector;
zero mean complex Gaussian noise.

The capacity is defined as the maximum of the mutual infor-
mation [22]

(2)

over the source probability density subject to average
transmit power constraints, where the expectation value is indi-
cated using the notation . Noting that the mutual informa-
tion can be expressed as the difference between two conditional
entropies

(3)

that , and that
is maximized for a zero mean Gaussian source, the capacity
is given by

(4)

where
determinant;
Hermitian conjugate;
identity matrix of size .

There are a variety of possible constraints on , depending
on the assumed transmitter limitations. Here, it is assumed
that the fundamental limitation is the total power transmitted.
The optimization of the noise-normalized transmit
covariance matrix is constrained by the
total noise-normalized transmit power . Allowing different
transmit powers at each antenna, this constraint can be enforced
using the form tr . The channel capacity is achieved
if the channel is known by both the transmitter and receiver,
giving

tr
(5)

To avoid radiating negative power, the additional constraint
is imposed by using only a subset of channel modes.
Substituting , the magnitude-ordered singular value

decomposition, for , (5) can be written as

tr
(6)

(7)

where is a diagonal matrix,
, and and are and

matrices containing the selected columns of unitary matrices.
The maximum under the total power constraint can be found
by differentiating with respect to an arbitrary parameter of

tr (8)

where is the undetermined parameter associated with the La-
grangian constraint. Evaluating the derivative

tr tr (9)
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this relationship is satisfied for all if is a diagonal
matrix given by

(10)

This discussion assumes thatis full rank. The additional pos-
itive power constraint is satisfied by employing only a subset of
channel modes. This intuitively satisfying but arbitrary enforce-
ment of the positive power constraint is justified with greater
precision in the Appendix. The total power is given by

tr

tr (11)

tr
(12)

The constraint is enforced by employing only the top
modes of the channel modes. The optimum is given
by

(13)

tr
(14)

where the entries in the diagonal matrix contain the
top eigenvalues of (or, equivalently, of ). The values

must satisfy

(15)

tr
(16)

If (16) is not satisfied for some , it will not be satisfied for
any smaller . The resulting capacity is given by

tr
(17)

The receive and transmit beamforming pairs are given by the
columns of and associated with the selected eigenvalues
contained in .

In this discussion, it is assumed that the environment is sta-
tionary over a period long enough for the error associated with
channel estimation to vanish asymptotically. In order to study
typical performance of quasistationary channels sampled from
a given probability distribution, capacity is averaged over an en-
semble of quasistationary environments. Under the ergodic as-
sumption (that is, the ensemble average is equal to the time av-
erage), the mean capacity is the channel capacity.

B. Uninformed Transmitter (UT)

If the channel is not known at the transmitter, then the op-
timal transmission strategy is to transmit equal power with each
antenna , [7]. Assuming that the receiver can
accurately estimate the channel but the transmitter does not at-

tempt to optimize its output to compensate for the channel, the
maximum spectral efficiency is given by

(18)

This a common transmit constraint as it may be difficult to pro-
vide the transmitter channel estimates.

C. Capacity Ratio

At high SNR, and converge. This can be observed
in the large limit of the ratio of (17) and (18)

tr

(19)

If , then the convergence to one is logarithmically
slow.

At low SNR, the ratio is given by

tr

tr
(20)

using (17) with and (18). Given this asymptotic result,
a few observations can be made. The spectral efficiency ratio is
given by the maximum to the average eigenvalue ratio of .
If the channel is rank one, such as in the case of a multiple-
input single-output (MISO) system, the ratio is approximately
equal to . Finally, in the special case where has a flat
eigenvalue distribution, the optimal transmit covariance matrix
is not unique. Nonetheless, the ratio approaches one.

D. Interference

Extending the previous discussion [8], [23], capacity is calcu-
lated in the presence of uncooperative (worst-case) external in-
terference in addition to the spatially-white complex Gaussian
noise , which was considered previously. The mutual informa-
tion is again given by (2) and (3), where entropy in
the presence of the external interference becomes

(21)

and is the spatial interference covariance matrix. Equality
is achieved if and only if the interference amplitudes have a
Gaussian distribution. Thus, the worst-caseinformedcapacity
(the maximum–minimum mutual information)

(22)
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becomes

tr
(23)

using

(24)

Gaussian interference corresponds to a saddle point of the
mutual information at which the maximum–minimum capacity
is achieved. The capacity in the presence of Gaussian inter-
ference has a form identical to (17) under the transformation

, where contains the eigenvalues of . The
transmitted noise-normalized power covariance matrixis
calculated using . Similarly, the uninformed transmitter
spectral efficiency bound in the presence of noise is given by
the same transformation of .

E. Other Performance Metrics

The information-theoretic capacity is not the only possible
metric of performance. As an example, another useful perfor-
mance metric is the “outage capacity” [16]. “Outage capacity”
is the achievable spectral efficiency bound, assuming a given
probability of error-free decoding of a frame. In many practical
situations, this metric may be the best measure of performance,
for example, in the case where the system can resend frames
of data. However, this metric is dependent on particular system
choices (allowable probability of outage and frame size). For
this paper, the information theoretic capacity is employed.

III. CHANNEL COMPLEXITY

A variety of techniques are used to simulate the channel ma-
trix [24]. The simplest approach is to assume that all the entries
in the channel matrix are sampled from identical independent
complex Gaussians . While this approach is convenient
from the perspective of performing analytic calculations, it may
provide a channel eigenvalue distribution that is too flat. At the
other extreme, channels can be characterized by a diversity order
[25], which is used to indicate an effective cutoff in the eigen-
value distribution induced by spatial correlation. A number of
approaches that introduce spatial correlations have been sug-
gested. One approach uses the form

(25)

The above model results in a covariance matrix of the Kronecker
product form for the entries in the channel ma-
trix . This product structure can arise from a spherical Green’s
function model of propagation such as that used in Section III-C,
provided several additional conditions are met. First, scatterers
are concentrated around (but not too close to) the transmitter and
receiver. Second, multiple scattering of a particular kind (from
transmitter element to transmitter scatterer to receiver scatterer
to receiver element) dominates propagation. Third, scatterers
are sufficiently separated in angle when viewed by their asso-
ciated array. Finally, all transmitter scatterers couple with all re-
ceiver scatterers. Ray-tracing models of urban propagation in-
dicate that the latter assumption, in particular, is often violated.

Fig. 2. Eigenvalues ofHH for a 2� 2 line-of-sight channel as a function of
antenna separation.

For this discussion, three approaches will be explored:

• line-of-sight toy physical model;
• large dimension random matrix model;
• stochastic physical single scattering model.

A. Toy 2 2 Channel Model

Because the distribution of channel matrix eigenvalues is
essential to the effectiveness of MIMO communication, a toy
example is employed for the purposes of introduction. The
eigenvalue distribution of a 2 2 narrowband MIMO system
in the absence of environmental scatterers is discussed. To
visualize the example, one can imagine two receive and two
transmit antennas located at the corners of a rectangle. The
ratio of channel matrix eigenvalues can be changed by varying
the shape of the rectangle. The columns of the channel matrix

can be viewed as the receiver array response vectors (one
vector for each transmit antenna)

(26)

where and are constants of proportionality (equal to the
root mean squared transmit-to-receive attenuation for transmit
antennas 1 and 2 respectively) that take into account geometric
attenuation and antenna gain effects, andand are unit
norm array response vectors. For the purpose of this discussion,
it is assumed that , which is valid if the rectangle
deformation does not significantly affect overall transmitter-to-
receiver distances.

The capacity of the 2 2 MIMO system is a function of
the channel singular values and the total transmit power. Eigen-
values of are given by

(27)

where the absolute value norm is denoted by . The sep-
aration between receive array responses can be described in a
convenient form in terms of generalized beamwidths [26]

(28)

For small angular separations, this definition of beamwidths
closely approximates manyad hocdefinitions for physical ar-
rays. The eigenvalues and are displayed in Fig. 2 as a func-
tion of generalized beamwidth separation. When the transmit
and receive arrays are small, as indicated by small separation
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Fig. 3. Informed transmittercapacity of a 2� 2 line-of-sight channel,
assuming antenna beamwidth separations of 0.1 (solid) and 0.9 (dashed).

in beamwidths, one eigenvalue is dominant. As the array aper-
tures become larger, which is indicated by larger separation, one
array’s individual elements can be resolved by the other array.
Consequently, the smaller eigenvalue increases. Conversely, the
larger eigenvalue decreases slightly.

Equations (16) and (17) are employed to determine the ca-
pacity for the 2 2 system. The water-filling technique first
must determine if both modes in the channel are employed. Both
modes are used if the following condition is satisfied:

(29)

assuming .
If the condition is not satisfied, then only the stronger channel

mode is employed, and the capacity, from (17), is given by

(30)

Otherwise, both modes are used, and the capacity is given by

(31)

The resulting capacity as a function of for two
beamwidth separations 0.1 and 0.9, is displayed in Fig. 3.
At low , the capacity associated with small beamwidth
separation performs best. In this regime, capacity is linear
with receive power, and small beamwidth separation increases
the coherent gain. At high , large beamwidth separation
produces a higher capacity as the optimal MIMO system
distributes the energy between modes.

In complicated multipath environments, small arrays employ
scatterers to create virtual arrays of a much larger effective aper-
ture. The effect of the scatterers on capacity depends on their
number and distribution in the environment. The individual an-
tenna elements can be resolved by the larger effective aper-
ture produced by the scatterers. As was demonstrated in Fig. 2,
the ability to resolve antenna elements is related to the number
of large singular values of the channel matrix and, thus, the
capacity.

1) Received Power:The choice of for the horizontal
axis of Fig. 3 is convenient because it can be employed to easily
compare performance using different constraints and environ-
ments. This choice corresponds to the typical noise-normalized
received power for a single receive and single transmit antenna
radiating power . However, this choice can be mildly
misleading because the total received power will, in general,
be much larger than . In general, is defined by the
Frobenius norm squared of the channel matrix normalized by
the number of transmitters and receivers

tr
(32)

The total received noise-normalized power produced by a
set of orthogonal receive beamformers is given by tr .
Theuninformed transmitterrate is maximized by sending equal
power to all transmit antennas so that tr becomes

tr . It is worth noting that is not,
in general, optimized by theinformed transmitterto maximize
received power but to maximize capacity. For the 22 toy ex-
ample, the total received power is given by
and when using one or two
modes, respectively. In both cases, the total received power is
much larger than .

The total received power for the capacity-optimizedinformed
transmitter, given an arbitrary channel matrix, is

tr tr
tr

tr tr tr
(33)

using (14). The first term in (33) is bounded from below by

tr tr

(34)

The second term in (33) is bounded from below by zero. Con-
sequently, the total received power is greater than or equal to

.
For very small , far from the nonlinear regime of the

Shannon limit, the optimal solution is to maximize received
power. This is done by transmitting the best mode only, setting

. In this regime, the total received power is given by

tr maxeig (35)

This result is bounded from above by , which is
achieved if there is only a single nontrivial mode in the channel.
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B. Large Dimension Gaussian Channel

A common channel modeling approach is to construct a ma-
trix by independently drawing matrix elements from a unit-
variance complex Gaussian distribution, mimicking indepen-
dent Rayleigh fading

(36)

This matrix is characterized by a relatively flat distribution of
singular values and is an appropriate model for very rich mul-
tiple scattering environments.

In the limit of a large channel matrix, the eigenvalue
probability density function for asymptotically
approaches a variant of the Wigner distribution [27]–[31].
Of course, implemented systems will have a finite number of
antenna elements; however, because the shape of the typical
eigenvalue distributions quickly converges to that of the
asymptotic distribution, insight can be gained by considering
the infinite-dimensional case. The probability that a randomly
chosen eigenvalue of the matrix is
less than is given by . Here, is an matrix,
and the ratio of to is given by . In the
limit of , the probability measure is

(37)

where the constant associated with the “delta function” at 0 is
given by

(38)

The first term of the probability measure is given by

otherwise

(39)

where

(40)

The eigenvalue probability density function for this matrix ex-
pressed using a decibel scale is displayed in Fig. 4. Using the
probability density function, the large matrix eigenvalue spec-
trum can be constructed and is depicted in Fig. 5.

1) Uninformed Transmitter Spectral Efficiency Bound:In
the large matrix limit, theuninformed transmitterspectral
efficiency bound, which is defined in (18) and discussed in [9]
and [31], can be expressed in terms of a continuous eigenvalue
distribution

(41)

Fig. 4. Eigenvalue probability density function for the complex Gaussian
channel ((1=n )GG ), assuming an equal number of transmitters and
receivers(r = 1) in the infinite dimension limit.

Fig. 5. Peak-normalized eigenvalue spectrum for the complex Gaussian
channel ((1=n )GG ) assuming an equal number of transmitters and
receivers(r = 1) in the infinite dimension limit.

where the continuous form is asymptotically exact. This integral
is discussed in [31].1 The normalized asymptotic capacity as a
function of and , is given by

(42)

In the special case of , the capacity is given
by

(43)

where is the generalized hypergeometric function [32].
2) Informed Transmitter Capacity:Similarly, in the large

matrix limit, theinformed transmittercapacity, which is defined
in (17), can be expressed in terms of a continuous eigenvalue

1Equation (42) is expressed in terms of bits rather than nats as it is in [31].
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distribution [9]. To make connection with the continuous eigen-
value probability density defined in (37), from (17) is re-
placed with , where diagonal entries of contain
the selected eigenvalues of .

tr

(44)

where is the fraction of channel modes used by the transmitter

(45)

and is the minimum eigenvalue used by the transmitter,
given by the continuous version of (16)

(46)

The approximations are asymptotically exact in the limit of large
.

For a finite transmit power, the capacity continues to increase
as the number of antennas increases. Each additional antenna
increases the effective area of the receive system. Eventually,
this model breaks down as the number of antennas becomes so
large that any additional antenna is electromagnetically shielded
by existing antennas. However, finite random channel matrices
quickly approach the shape of the infinite model. Consequently,
it is useful to consider the antenna-number normalized capacity
as a function of and , , which is given by

(47)

Using the asymptotic eigenvalue probability density function
given in (39), the integrals in (46) and (47) can be evaluated.
The relatively concise results for are displayed here as

(48)

and

(49)

Fig. 6. Asymptotic large dimension Gaussian channel antenna-number-
normalized spectral efficiency boundsC =M (solid) and C =M
(dashed) (b/s/Hz/M) as a function of attenuated noise-normalized power
(a P ), assuming an equal number of transmitters and receivers (r = 1,
M = n = n ).

To calculate the capacity, the following integral must also be
evaluated:

arcsec

(50)

Implicitly solving for , capacity as a function of is
displayed in Fig. 6. Theuninformed transmitterspectral effi-
ciency bound is plotted for comparison. For small ,
approaches the maximum eigenvalue supported by . In
this regime, the ratio of approaches 4. Conversely,
at large , the normalizedinformed transmitterandunin-
formed transmitterspectral efficiency bounds converge.

C. Stochastic Physical Scattering Model

For many physical environments, the random channel matrix
assumption may be inappropriate because it produces an eigen-
value spectrum that is overly optimistic in terms of the number
of large eigenvalues. To investigate more realistic channel ma-
trices, a simple scattering model is employed. This model was
relatively successful in matching the spatial decorrelation of
antenna elements measured at cellular phone frequencies and
bandwidths [33]. Assuming a particular density, a field of point
scatterers is generated randomly, and the channel matrix is cal-
culated explicitly using

(51)

where distances and between antennas and
scatterers are expressed in terms of wavelengths, and, , and

index the receive antenna, transmit antenna, and scatterer, re-
spectively. The model does not include multiple scattering.

Given an ensemble of matrices constructed using this tech-
nique, the distribution of channel matrices is primarily a func-
tion of the number of transmit and receive antennas and the
density of scatterers in units of , where is the distance
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Fig. 7. (a) Median eigenvalue distribution ofHH for 2 � 2, 4� 4, 8�
8, and 16� 16 channel MIMO systems, assuming a dense field of scatterers
(10=(L) ) and an antenna array separationL. The median eigenvalue
distribution for a 16� 16 random matrix MIMO system is provided for
comparison. (b) IT capacity ratio with respect to the 16� 16 random Gaussian
channel.

between the arrays. If the field of scatterers is large compared
with , the size of the field does not overwhelm the contribu-
tion to an element in the scattering matrix. At some large dis-
tance , the contribution of a scatterer to
an entry in the channel matrix is attenuated by the inverse of
the distance squared . The number of scatterers in a differ-
ential annulus increases linearly with distance, but the effects
of the scatterers combine incoherently so that the contribution
grows more slowly than , and the integrated contribution from
radius to is finite.

The local distribution of antenna elements has a subtle ef-
fect on the channel SVD. As was discussed in Section III-A,
the eigenvalue distribution depends on the ability of one array
to resolve the individual elements of the opposing array. In the
presence of scatterers, the issue is whether or not the virtual
array (consisting of scatterers) can resolve the antennas in the
opposing array. However, the effect is dominated by the density
of scatterers. Assuming that the array is not oversampled spa-
tially, the dependence on intra-array spacing is weak.

1) Eigenvalue Spectrum Examples:The sensitivity of
eigenvalue spectra and capacity to variations in the dominant
parameters (number of antennas and scatterer density) of
the model are analyzed here. The median eigenvalues of an
ensemble of eigenvalue spectra are displayed with the largest
eigenvalue normalized to 0 dB in Figs. 7(a) and 8(a). Theth
point in the median eigenvalue distribution indicates the median
of the th eigenvalue for each spectrum in the ensemble. The
median eigenvalues are a helpful diagnostic tool but cannot be
used as an input to other calculations because of correlations
between eigenvalues. In Figs. 7(b) and 8(b), the corresponding
capacities are displayed.

The median eigenvalue distribution as a function of the
number of MIMO antenna elements is displayed in Fig. 7(a)
for the same total aperture (16 wavelengths). As the number
of antennas increases, in a fixed environment, the value of
the smallest eigenvalue in each spectrum decreases. There are

Fig. 8. (a) Median eigenvalue distributions ofHH for an 8� 8 channel
MIMO systems, assuming scatterer densities of1=L , 10=L , and100=L for
antenna array separations ofL. The median eigenvalue distribution for an 8�
8 random matrix MIMO system is provided for comparison. (b) Capacity ratio
with respect to 8� 8 random Gaussian channel.

two reasons for this. First, the typical ratio of the maximum to
minimum of a set of random numbers grows as the number in
the set grows. Second, as the number of antennas increases,
more scatterers are required to take advantage of the new
degrees of freedom. Theinformed transmittercapacity ratio
for each array size to the 16 16 random matrix is displayed
in Fig. 7(b). Over a wide range of SNR, the performance is a
simple function of the number of antennas.

The median eigenvalue distribution as a function of scatterer
density is displayed in Fig. 8(a). At low density, the relatively
low number of scatterers dominate the channel matrix with
strong spatial correlation at the transmit and receive arrays. This
causes the eigenvalue distribution to decrease quickly. As the
density of scatterers increases, the environment becomes more
random, and the eigenvalue distribution of moves closer
to the random matrix distribution. However, the distribution
does not converge to the random matrix distribution. In the
figure, it can be observed that once the density of scatterers (in
units of ) has exceeded the number of antennas, there is
little effect on the distribution. The channel matrix in the high
scatterer density limit is affected by two fields of scatterers:
one near the transmit array and one near the receive array.
This is because at high density, there are a large number of
scatterers near both the transmit and receive arrays, and the
contribution increases inversely with distance. A scatterer near
one of the arrays is necessarily far from the other. The field
of scatterers near the transmit array is spatially uncorrelated
from the transmit array’s perspective, but this field of scatterers
subtends a small angle from the receiver’s perspective and
is consequently highly correlated. Similarly, there is a dense
field surrounding the receive array. These scattering fields
contribute low rank components to the channel matrix. This
effect competes with the much larger number of scatterers
far from both arrays. The correspondinginformed transmitter
physical scatterer to theinformed transmitterrandom matrix
spectral efficiency bound ratios and theuninformed transmitter
physical scatterer to theuninformed transmitterrandom matrix
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capacity spectral efficiency bound ratios are displayed in
Fig. 8(b). At low SNR, the relative performance of theinformed
transmitteris better in simpler environments, taking advantage
of the dominant mode. At higher SNR, channels with higher
complexity perform better.

IV. I NTERFERENCEEFFECTS

A. Interference Model

A given MIMO communication system may be required to
operate in the presence of other MIMO or wireless commu-
nication systems. This is certainly true in the case of wireless
local area networks operating in the uncontrolled industrial, sci-
entific, and medical (ISM) bands [34]. The effects of interfer-
ence will be addressed using random infinite dimension and sto-
chastic physical scattering models.

While one can certainly imagine a nearly limitless number of
interference scenarios, three interference regimes are of partic-
ular interest:

• small number of strong interferers;
• uncooperative competing MIMO system;
• cooperative interfering MIMO system.

1) Strong Interference:In an environment populated by
a relatively small number of strong interferers, the spatial
whitening performed in (24) can be replaced with a pro-
jection operator, removing the spatial subspace associated
with the interferers. Noting that the Hermitian interference
matrix can be expressed as some power scaling multi-
plied by the outer product of two matrices so that

, in the limit of high power,
becomes

(52)

where is a projection matrix, which projects onto the com-
plement of the column space of. Because projection matrices
are idempotent, this is also the solution for .

The strong interference-mitigated spectral efficiency bound
can be written as

(53)

The effect of strong interference on capacity is calculated, ex-
ploiting the fact that unitary transformation of independent iden-
tically distributed (i.i.d.) Gaussian matrices produces matrices
with the same Gaussian statistics and that there exists a unitary
matrix that transforms the projection matrix to a diagonal ma-
trix with the form

(54)

where the projection removes degrees of freedom.
Using the large dimension limit discussed in Section III-B, this

Fig. 9. Asymptotic interference loss capacity ratio~C =C (dashed) and
~C =C (solid) assuming an equal number of transmitters and receivers
(r = 1) for the surviving degree of freedom fraction = 0:9 (gray) and
0.5 (black).

bound is explicitly calculated. For theuninformed transmitter,
the spectral efficiency bound is given by

(55)

where is a matrix with entries sampled from a
unit-norm complex Gaussian distribution, is defined in
(42), and is defined in Section III-B. For theinformed trans-
mitter, the spectral efficiency bound is given by modifying (44)
as

tr

(56)

where the diagonal elements of contain the selected
eigenvalues of

(57)

and is given by

(58)

The spectral efficiency loss ratio is depicted in Fig. 9 forof
0.9 and 0.5. In the limit of large , the ratio converges
to .

2) Competing MIMO Systems:A reasonable model for the
interference is to assume that it is associated with a channel
matrix that is statistically independent of, but otherwise has
characteristics similar to, the channel matrix associated with
the intended transmitters. Using the statistical scattering model,
an ensemble of channel matrix pairs is constructed. The first
of the pair is associated with the intended transmitter, and the
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Fig. 10. Median eigenvalue distribution of~H ~H for an 8� 8 channel for
random, dense, and sparse scattering fields, assuming random interference of
(a) 20 dB and (b) 40 dB total noise-normalized power.

second is associated with the interfering MIMO system. De-
pending on the nature of the interference, the received signal
can be much stronger or weaker than the intended signal. In
Fig. 10, the median eigenvalue distribution is displayed for envi-
ronments that contain competing MIMO systems with total in-
terference-to-noise ratios trof 20 and 40 dB. The eigenvalue
distributions are peak-normalized in the absence of interference.
The effect of interference changes the shape of the distribution
and causes an overall downward shift.

In the case of the interfering MIMO system displayed in
Fig. 10, the story is somewhat complicated. As one would
expect, the adverse effects of the interference on the eigenvalue
spectra become worse for stronger interference. Because the
interfering MIMO system uses multiple transmit antennas, the
interference affects all of the modes of the channel matrix.
Interestingly, the loss of large eigenvalues for the sparse field
matrix is less severe than that for the random channel matrices
because the dominant portions of both the signal of interest
and the interference occupy smaller fractions of the total space
in the sparse scatterer environment. This decreases the typical
overlap between the associated subspaces and thus reduces the
detrimental effects of mitigation. Of course, the channel matrix
associated with the sparse scatterer environment had fewer
useful modes to lose.

It is interesting to compare the capacity of an 88 MIMO
communication system with a 1 8 SIMO system under the
constraint that the total transmit power is equal. It is common
to compare the capacity of MIMO systems to single-antenna
transmit and receive systems. However, in the presence of strong
interference, the capacity of single-to-single antenna systems is
poor. The spectral efficiency bound ratio

tr
(59)

is displayed in Fig. 11 for bothinformedanduninformed trans-
mitter bounds, where the expectation is evaluated over an en-
semble of scatterers and interferers for a given environment.

Fig. 11. Spectral efficiency bound ratio of 8� 8 MIMO to 1 � 8 SIMO
systems for random, dense, and sparse scattering fields, assuming (a) no
interference, (b) interference of 20 dB, and (c) 40 dB total noise-normalized
power for bothinformedanduninformed transmitter.

In Fig. 11, the sensitivity of MIMO capacity to environment
is demonstrated. At very high SNR, theuninformedspectral ef-
ficiency bound andinformed transmittercapacities converge.
At low SNR, theinformed transmitteravoids modes with small
singular values, whereas theuninformed transmitterrandomly
spreads energy between modes. The loss is most significant for
environments with relatively few large channel matrix singular
values.

3) Infinite-Dimension Competing MIMO System:The max-
imum spectral efficiency for theuninformed transmitterin the
presence of an uncooperative (worst-case) interfering MIMO
system [9] is given by

(60)

where the noise-normalized interference plus noise covariance
matrix is given by

(61)
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The notation indicates the spectral efficiency bound in the
presence of interference. The interference transmitter-to-re-
ceiver channel matrix is , which is similar to the
channel matrix defined in (36). The interfering transmitters
have total power .

A particularly interesting interference environment occurs
when a MIMO system attempts to operate in the presence of
an uncooperative competing MIMO, where the average receive
power per transmit antenna is equal for the interferer and the
intended transmitter . In this case,
the spectral efficiency bound can be written using

(62)

where the shape of is . Assuming that
and are independent and that the complex entries of each are
selected from a unit-variance complex Gaussian distribution, as
was previously assumed, the spectral efficiency bound can be
expressed as

(63)

The asymptotic form of (63) can be expressed as the differ-
ence between two terms using (42) with two different sets of
parameters. The maximum spectral efficiency bound in the pres-
ence of this interference for theuninformed transmitteris given
by

(64)

where is defined in (42). The effects of the interference
for an uncooperative interfering equivalent MIMO system are
displayed in Fig. 12. The effect can be significant.

4) Cooperative MIMO Interference:Assuming knowledge
of the interfering MIMO system parameters (for example, all
channel matrices) and cooperative control of the interfering
users, the interference treated above can be mitigated by
employing a MIMO extension to the multiuser detector (MUD)
[30], increasing the capacity of each MIMO user beyond that
achievable with the spatial interference cancellation alone.
A simple example is provided by a system ofuninformed
transmitterMIMO users, each utilizing transmitters com-
municating with a single receiver array fielding elements.
It is assumed that is the same for all users, which can be
achieved using power control.

Fig. 12. Infinite-dimension antenna normalized capacity for an equal number
of transmitters and receivers (r = 1) given: no interference (black), cooperative
interference (dashed), and an equivalent uncooperative interfering MIMO
system (gray).

The MIMO extension to the MUD spectral efficiency bound
is given by the convex hull of a set of inequalities. In particular,
the rates of all users must satisfy

(65)

where denotes the spectral efficiency of theth user, and
has dimensions and has i.i.d. complex Gaussian

elements with zero mean and unit complex variance. Denoting
, the bound becomes

(66)

Using this relationship, the following asymptotic inequality is
constructed:

This asymptotic bound is achievable for a particular set of rates
by a receiver employing successive interference cancellation
(SIC). Recall that SIC detects signals (in this case, MIMO sig-
nals) in order, treating yet undetected signals as interference
in the manner of Section IV-A3 and subtracting previously de-
tected signals. More specifically, note that

where the th term in the summand represents an achiev-
able spectral efficiency bound after the previously
detected (lower ) signals have been subtracted, and the
remaining signals (higher) are treated as interference as in
Section IV-A3. Thus, in the asymptotic limit, one can achieve
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. By averaging over all possible
SIC orderings and controlling the corresponding user rates, the
spectral efficiency bound is the same for all users:

(67)

The spectral efficiency bound of a single user of the multiuser
MIMO network described above (for two users and

), given a MIMO multiuser detector as a receiver, is depicted
in Fig. 12. Note that MUD receivers substantially increase ca-
pacity at higher SNRs over the capacity achieved using spatial
interference cancellation alone.

V. CHANNEL ESTIMATION ERROR

Channel estimation accuracy is limited by channel station-
arity. For the purpose of this discussion, channel estimation error
is modeled as a perturbing matrix with i.i.d. elements. The
estimated channel is then given by . Here,

indicates the Frobenius norm. The validity of this model
depends on the details of the error source. It is assumed that
there is no correlation between the source of error and the modes
of channel matrix. While bothinformedanduninformed trans-
mitter MIMO systems suffer loss as a result of channel estima-
tion error, theinformed transmittersuffers a loss due to using
incorrect transmit spatial coding.

The losses peculiar toinformed transmitterMIMO systems
can be investigated by assuming that the receiver has an accurate
estimate of the channel but that the transmitter has an inaccurate
estimate. This model is reasonable for nonstationary channels.
Assuming data is transmitted in blocks, the receiver can perform
channel estimation using the current block of data; however,
the transmitter must wait for that information to be fed back.
Ignoring the possibility of channel prediction, the transmitter
will employ channel estimates from a previous block. Using this
estimated channel with error, the “optimal” noise-normalized
transmit covariance is constructed, solving for, using (7) and
(13), assuming the estimated channel is the true channel. As
a result, the spectral efficiency bound with channel estimation
error at the transmitter is given by

(68)

where the expectation is evaluated over an ensemble of scat-
terers and channel errors.

In Fig. 13, the fraction of the optimal capacity assuming
transmit channel estimation error for 0.01, 0.1, and 1 is
displayed as a function of . For this analysis, an ensemble
of errors and realizations of the dense scatterer environment
is used. For comparison, the spectral efficiency bound of the
uninformed transmitteris presented. At high SNR, MIMO
systems are very forgiving of transmit-channel estimation error
for the same reason that theuninformed transmitterspectral
efficiency bound approaches the optimal capacity at high
SNR. At low SNR, the spectral efficiency remains remarkably
insensitive to channel estimation error. Relatively few modes

Fig. 13. Fraction of stationary capacity for an 8� 8 MIMO system with
transmitter channel estimation error, assuming a dense scattering field and no
interferers.

are used by the optimal transmitter. It is apparently difficult for
random noise to significantly disturb the transmit beamformers
even when the channel estimation error and the channel have
the same Frobenius norm.

VI. SUMMARY

The sensitivity of spectral efficiency bounds to environmental
factors has been discussed. In Section II, the information theo-
retic capacity for MIMO communication systems was reviewed
for both theinformedand uninformed transmitter. The spec-
tral efficiency bounds in the presence of worst-case interfer-
ence were discussed. In Section III, the complexity of chan-
nels expressed in terms of channel matrix SVDs was discussed.
Line-of-sight and stochastic physical scattering models were
introduced. Using the stochastic physical model, channel ma-
trix SVDs and capacity sensitivity to the number of antennas
and scatterer density were investigated. The asymptotic large
Gaussian matrix channel SVD and correspondinguninformed
transmitterspectral efficiency bound was reviewed. The cor-
respondinginformed transmittercapacity was introduced. In
Section IV, three regimes of interference were investigated:

• strong interference;
• uncooperative competing MIMO system;
• cooperative MIMO interference.

A strong interference asymptotic large Gaussian matrix capacity
result was introduced for both theinformedand uninformed
transmitter. A competing MIMO interference, asymptotic large
Gaussian matrixuninformed transmittercapacity result was in-
troduced. Using the stochastic physical scattering model, the
competing MIMO interference spectral efficiency bounds were
investigated for both theinformedanduninformed transmitter.
Exploiting MUD, a competing cooperative MIMO interference
asymptotic large Gaussian matrixuninformed transmitterca-
pacity result was introduced. Finally, in Section V, the effects of
channel estimation error on performance of theinformed trans-
mitter was investigated using the stochastic physical scattering
model.

APPENDIX

This appendix provides a more rigorous derivation of the in-
formed transmitter capacity given in (17). The starting point is
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once again (5). Applying the generic matrix identity
, it can be rewritten as

tr
(69)

where , and . The matrices and both
have dimensions . Note that positivity for is now
automatic. The maximum in (69) is found by adding a Lagrange
multiplier to enforce the constraint tr and differ-
entiating with respect to the components of, yielding

(70)

Multiplying on the right by produces

(71)

where is the Lagrange multiplier constant that must be chosen
to satisfy the constraint. Note that and com-
mute so that (71) can also be written as .
Multiplying by a factor of on the left or right as ap-
propriate produces

and (72)

Subtracting (71) and (72) shows that

(73)

Now, it can be shown that . First, consider the case
. From (72), it follows that , and thus,

. In the case , let be
an eigenbasis for the Hermitian matrix. Computing the inner
product of (73) between two arbitrary eigenvectors shows that

(74)

where is the eigenvalue corresponding to . Taking the
conjugate of the above equation and swappingwith yields

(75)

If or , it follows from one of the above two
equations that . If ,

follows directly since annihilates
both eigenvectors.

The above arguments show that the optimum value formust
commute with , which means that they can be jointly diago-
nalized. Equation (69) for the capacity can be rewritten as

(76)

where and are the eigenvalues of and . The optimiza-
tion need only be performed with respect to the scalar values,

rather than the full matrix . Applying the method of Lagrange
multipliers as before leads to the diagonalized analog of (72) as

(77)

For each , either , or . Define
to be the set of for which in the optimal solution. For

, . Applying the total power constraint
shows that the Lagrange multiplier must satisfy

, where is the number of
elements in the set.

The only remaining question follows: What elements are in
? First, suppose and . It immediately follows that

; otherwise, could be increased by swapping the
values of and . Assuming that the eigenvalues are ordered
so that , the set must be given by

for some integer . The value
for is determined by maximizing while maintaining the
positivity condition for .
Noting that , it suffices to require that

.
To see which value of to choose, it is useful to define the

function :

(78)

Note that is similar to the capacity function, but there
is no positivity constraint. It is clear that

since any set of values for can be extended
to by setting and

. The optimization with respect to is performed
using the method of Lagrange multipliers, leading to the solu-
tion . Applying the total power con-
straint shows that the Lagrange constant is given by

. It follows that since
the values for , where , are the same in both cases.
Since the are monotonically increasing in , we need to
pick to be the largest value for which .

It is also easily shown that for and that
for . First, note that . Next,

suppose for some . Plugging in the solution for
gives the inequality

(79)

Adding to both sides and factoring the right side gives

which shows that as well. Once is
negative for some , it must remain negative for all larger.

To connect the results here to the main body of the paper,
note that the eigenvalues are the same as the entriesin the
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diagonal matrix . Plugging the solutions obtained for into
(76) leads directly to (17).
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