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ABSTRACT

Environmental modeling with GIS:

A strategy for dealing with spatial continuity

by

Karen Kathleen Kemp

Linking a GIS to a spatially distributed, physically-based environmental model offers
many advantages.  However, the implementation of such linkages is generally problematic.
Many problems arise because the relationship between the reality being represented by the
mathematical model and the data model used to organize the spatial data in the GIS has not
been rigorously defined.  In particular, while many environmental models are based on
theories that assume continuity and incorporate physical fields as independent variables,
current GISs can only represent continuous phenomena in a variety of discrete data models.
This document develops and outlines a strategy in which field variables are used to enable
modelers to work directly with the spatial data as spatially continuous phenomena.  Field
variables are declared like other data types in standard computing languages.  Specifications
of field variables include several special properties which are used to express the relationship
between the physical field and the discrete data model.  These properties determine how the
spatial data can be manipulated.  This allows the manner in which the spatial data has been
discretized and the ways in which it can be manipulated to be treated independently from the
conceptual modeling of physical processes.

Several outcomes from the use of this strategy are explored.  Modelers can express
their spatial data needs as representations of reality, rather than as elements of a GIS
database, and a GIS-independent language for model development results.  By providing a
formal linkage between the various models of spatial phenomena, a mechanism is created for
the explicit expression of transformation rules between the models of spatial data stored and
manipulated by GIS.  The incorporation of field variables allows several operations (such as
determining integrals, slope and aspect) and reserved variables (such as latitude and
longitude) which are commonly used in environmental models to be defined.  While scalar
fields are the focus of this document, consideration of the potential for the definition of
vector fields and related operations (such as divergence and gradient) using this strategy is
also included.
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CHAPTER 1 - INTRODUCTION

Environmental issues are among the most important facing decision-makers today.
The dynamics of the hydrologic and atmospheric systems of the earth imply that all
environmental systems are tightly interrelated, dynamically and spatially.  Impacts in one
location usually have effects in others.  Spatial data, systems for managing that data and
analytical techniques for converting that data into information are now vital tools in the
assessment and management of a healthy natural environment.

Considerable progress is being made in integrating spatial information systems, GIS,
and mathematical models of the environment (cf. Goodchild, et al, 1993).  For most
environmental modeling projects, GIS is seen as a convenient and well structured database
for handling the large quantities of spatial data needed.  Traditional GIS tools such as overlay
and buffering are also important for developing derivative datasets that serve as proxies for
unavailable variables.  Many experts also expect that as better spatial analysis methods
become incorporated into GIS, GIS will also become an important tool in all aspects of
modeling, including model building, validation and operation.  However, there are significant
incompatibilities preventing true integration.  GIS manages static and discrete data while
environmental models deal with dynamic and continuous phenomena.  GIS databases contain
information on location, spatial distribution and spatial relationships while environmental
models work on a basic currency of mass and energy transfer (Maidment, 1993).  In order to
fully integrate the two we need to add dynamics and continuity to our understanding of
spatial data, and spatial interaction and functionality to the environmental models (Fedra,
1993).

This research seeks to address the first of these needs by considering the implications
of working with continuous phenomena directly in the context of GIS.  Following a
consideration of how spatially distributed phenomena are characterized in environmental
models, a strategy for working with these continuous phenomena so that they can be
efficiently and conveniently incorporated into the discrete digital computer code of
mathematical models is developed.  Since most environmental models deal with phenomena
which are continuous in space, this strategy provides a means by which modelers can work
with the spatially continuous phenomena directly rather being forced to work with individual
discrete spatial elements.  As Goodchild (1992) and Tobler (1989) have contended, we must
recognize that digital spatial data are representations  of reality, not reality itself and we
should strive to achieve a "frame free analysis" (Tobler, 1989, p. 116), one which is not
dependent upon the representations but upon reality.  Therefore, the fundamental theses of
this research are:

1) it is both desirable and possible to separate the mathematical operations which
will be performed on data about spatially continuous phenomena from the form of
spatial discretization used to represent those phenomena in the computer, and

2) this separation allows issues about the implementation and manipulation of these
digital representations to be dealt with automatically, without external control, in
such a way that they can be considered extraneous to the modeling task.
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This chapter sets out the intellectual challenge of this research effort.  It introduces
the theme of environmental modeling and in particular that of the physically-based modeling
of spatially-distributed environmental processes which is the focus of this research.  We
consider briefly the value and problems of these modeling efforts and discuss the possibility
of a new spatial paradigm for environmental modeling.  Continuity is a constant theme in this
research and its role in environmental modeling is examined.  Finally, related research efforts
are reviewed so that this work can be placed in context.

A.  ENVIRONMENTAL MODELING FOR THE 90'S

Mathematical models have been around since the development of mathematics by the
Chinese, Greeks and Hindus, but modeling has progressed rapidly since the 1950's as a result
of developments in computers and programming languages (Cross and Moscardini, 1985).
While computer models became popular initially with scientists in the physical sciences who
had well-developed formally defined theories to work with, the use of such models has now
gradually shifted into biology, medicine, natural resources, urban development, and social
and behavioral sciences (Jacoby and Kowalik, 1980).

While decades of less than satisfying experience with large-scale models have
provided many sound arguments against dependence upon the outcome of models for
decision making (Lee, 1973), governments at all levels are encouraging the use of
mathematical models in research and planning.  The anticipation is that such models will
provide useful tools for dealing with the multitude of complex issues facing them.  NASA, in
a recent call for proposals, demonstrates the fervent anticipation of success from such
modeling efforts:

It is the function of this research program to use the available satellite data;
derive its essential information about the interacting environmental regimes,
assimilate the derived quantitative information sets into initial, sequential, and
boundary conditions for numerical forecast models; to run the coupled,
multidisciplinary prediction models in likely scenarios that will simulate the
consequences of stressing the global environment with perceived processes of
global change.  (NASA, 1991, Appendix A, p. 1)

Decision-makers increasingly are being asked to make legally justifiable decisions
about complicated environmental issues (Breidenbach, 1976) and physically based models
are particularly attractive for this purpose.  Unlike earlier black-box models, these models
attempt to describe real physical processes and interactions occurring across the landscape.
Though he refers to the use of hydrologic models, Beven's comments are relevant to all
environmental modeling areas:

Distributed [physically-based] models will be increasingly used in the future.
The incentive to do so will be due to the fact that they are 'better' models in
the sense of having a more rigorous theoretical basis....  There is an important
danger of a subversion of hydrological reasoning by ill-conceived applications
of distributed models, arising from the very fact that their theoretical rigor
may lead to an uncritical belief in their predictions.  (Beven, 1985, p. 432)

While models are, by definition, simplifications of reality, it is often assumed in management
situations that models are precise and that all relevant factors are included.  It is difficult to
argue against the model conclusions without an intimate knowledge of the model itself
(Freeman, 1973).  Breidenbach suggests that in order to assist decision-makers, it is
imperative that scientists begin working more closely with them:
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Development of a consistent and understandable modeling language is
becoming extremely important to the manager, the scientist, and the public...
The person who developed the model probably knows precisely what
assumptions are important.  It is the user -- the decision-maker -- who will feel
the effects of these assumptions...  It is your job and responsibility as modelers
to reduce the manager's risk.  (Breidenbach, 1976, p. 4)

Decision-makers need to know what assumptions have been made and how sensitive
the model is to changes in the variables.  This will assist in the determination of what
elements are important and what can be ignored.  They also need confirmation of the validity
of the model and information about what data were used, where they came from, their
currency, which variables were measured and which were estimated.  Both the model and its
data must be available for scrutiny by non-specialists.  A "universal language for
communicating the structure and behavior of models to others" (Zeigler, 1976) is needed.
This research begins to address this need.

Modelers, too, need help dealing with the new modeling opportunities.  In spite of
increasing popularity, there are many practical difficulties in developing spatially-distributed
physically-based models.  Besides the problems of creating stable numerical solutions to non-
linear continuous equations and the need to create spatial discretizations for the iterative
procedures, the acquisition of accurate and meaningful spatial data for these models is of
prime importance in ensuring the validity of results.  These models require massive quantities
of physically-based data for calibration, processing and validation.

On the surface, it may appear that this problem is diminishing.  Huge quantities of
spatial data are currently being collected and stored.  Many government agencies have taken
on primary roles as data producers, compilers and archivists.  For example, while the USGS
mission has always been that of "collecting, analyzing and disseminating earth-science
information" (USGS, 1991, p. 8), it now is responsible for coordinating all digital
cartographic activities of the Federal Government (USGS, 1991).  NASA and the remote
sensing agencies of other countries are now accumulating formidable amounts of raw
spatially-referenced data about the earth and its atmosphere.  Local and state governments are
compiling regional databases.  And commercial organizations are preparing updated and
niche collections of all types of spatial data (GIS World, 1991).

Unfortunately, quantity does not necessarily ensure that the data needs of physically-
based environmental models are being met.  In fact, as the models become more sophisticated
and sensitive, the cry from the modelers for more data becomes louder.  As Thornes points
out "the demand made by these models quickly outstrips the capacity to supply them with
data, even where national or international agencies are involved" (Thornes, 1989, p. 12).
Clearly, from the modelers' viewpoint, the available data does not match the needs of the
modelers.  Modelers are being forced to invent creative ways to transform the data they can
get into the data they need.  And since modeling is a creative activity, it is unlikely that we
will ever be able to forecast accurately the data modelers will need.

Each new data source encourages increased modeling efforts, more demands for new
data collections and the possibility of misuse of available data.  In the early days of the
development of digital mathematical models, scientists had to deal directly with their data;
collecting, verifying and interpolating it.  Now copious amounts of data are available at arms
length and "the cult of information presumes that all information is good" (Batty, 1989, p.
166).  While there may be fewer opportunities for simple typographical mistakes, the
possibility of misuse and misunderstanding of data quality and suitability is greatly increased
(Rumble, 1984).  Interfaces between models and spatial databases generally tend to use a
brute force method of transformation in which source data is converted with little regard for
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the spatial consequences of the manipulation.  The development of a sound, theoretical basis
for the use of spatial data in environmental models is needed.

Fortunately, the groundwork for this effort has been well started.  Decades of work by
geographers passing through the quantitative revolution have provided us with many
concepts and tools for handling spatial data in numerical operations (cf. Getis and Boots,
1978).  Since the quantitative revolution, geographers have tended to study not the
phenomenon itself, but its spatial characteristics and abstract properties related to topology
and geometry (Haggett and Chorley, 1967).  The topological-geometrical framework of
reality relates directly to the data models now available in GIS.  The soundness of these
principles can be seen in their frequent rediscovery by numerous environmental modeling
teams as they construct individual interfaces between reality and spatial data for their specific
projects.

A paradigm change for environmental modelers

Proper integration of geographic knowledge into these modeling efforts requires a
form of paradigm change for environmental modelers.  We can see Harvey's 1969 statement
(not made in reference to geographic information systems as a computer technology) in this
newest sense:

The current issue is not one of revolutionizing geographic information
systems - it is, rather, one of examining the underlying logic of any
geographic information system, and formalizing the method whereby
geographers [and now others] may spatially order the mass of information
available to them.  (Harvey, 1969, p. 214)

The spatial paradigm for environmental modeling is just beginning.  Opportunities offered by
spatial data and functionality through GIS will lead the sciences into new realizations, new
"patterns of searching the real world" (Haggett and Chorley, 1967, p. 26).  On paradigm
change, Harvey comments that "Experiences that seemed irrelevant now seem surprising and
demand explanation.  This general change in expectations involves a shift in the scientist's
perceptions of the world around him" (Harvey, 1969, p. 18).  Insight will come from the
consideration of spatial effects, new data will be collected or generated and theories will be
revised and extended.

Although a paradigm shift does amount to "a matter of judgment, an act of subjective
choice, an act of faith", it must be "backed up by substantive evidence from logic and
experiment" (Harvey, 1969, p. 17).  Scientists in many different fields are investigating the
significance of the accuracy of spatial databases, effects of scale change, relative efficiencies
of data models, etc.  They need formal methods for incorporating spatial effects with known
confidence into their models.  This research draws on basic geographic principles to provide
a sound theoretical structure for the integration of environmental models and GIS.

There is another perspective to this paradigm shift taking place in the environmental
sciences.  As the models move gradually away from direct descriptions of physical laws to
complex models with uncertain spatial parameters, effects and inputs, environmental
modelers will find themselves working with models more similar to those of the soft-sciences
like economics and behavioral science in which relationships are ill-defined and full system
description impossible.  The difficulty of validating these new spatially distributed models
often means that "truth" must be found by means other than by reference to universal
physical laws (Beven, 1987).  New tools to help environmental modelers examine and
confirm the validity of their models are needed.

Environmental Modeling with GIS  9 Karen K. Kemp
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Paraphrasing Casti (1989), when he spoke of issues to be addressed in developing a
theory of modeling, there are several interesting questions that can be explored as the role of
spatial data in models is formalized.  How many different ways can we measure space?  How
can we represent space in a formal system?  What is the relationship between space and its
formal representation?  How can we compare two representations of the same space?  How
do these models relate?  What is the role of space in the mathematical model?  How do the
models of space relate to the mathematical models?  Can two models of space be
interchanged in mathematical models?  What procedures can we invoke that can be used to
choose the appropriate model of space?  Such questions provide the intellectual challenge to
this effort.

B.  CONTINUITY IN ENVIRONMENTAL MODELING

Since physically based environmental models depend upon physical principles, the
mathematics of these models is often in the form of differential equations.  These equations
implicitly recognize the continuity of space and the constantly changing values of the
independent variables.  The challenge for scientists and GIS analysts working with
environmental models is to transform this continuity into the discrete world of the computer.

Discrete representations for both continuous equations and the continuity of space
have been devised and are widely used.  Finite difference numerical solutions to differential
equations discretize time and space into small units.  These stepped algebraic solutions for
the governing differential equations are calculated for each time and space unit and a final
solution is achieved by "integrating" (generally through simple addition) the results across
the entire study area and time period.  Finite element solutions divide the study area into units
which are homogeneous in ways that allow some terms of the governing equations to be
simplified.  Analytical solutions can then be determined for each element and the total
solution is determined through simultaneous solution of a set of equations.  Alternatively,
some of the global climate models achieve discretization by spectral analysis.  In this case,
instead of discretizing space, the response spectrum itself is dissected into a set of ordinary
differential equations for which solutions can be found (Bourke, 1988).

Just as the equations themselves in these mathematical models are continuous, so are
most of the phenomena being described.  For example, air temperature, soil infiltration rate
and solar radiation are continuous physical fields.  Since we cannot measure continuous
phenomena everywhere, it is necessary to develop techniques for gathering information about
fields by collecting data at a finite number of points.  Likewise, we need techniques for
representing continuity with this finite collection of data.  A few environmental variables,
particularly those in the biological sciences which deal with individuals like trees or animals,
are not continuous in the strict sense.  Conceptually, such phenomena can be converted to
fields by taking the limit of the value of the phenomenon (in this case the count or the
frequency) divided by the area as the area tends to zero, "stopping short in the usual way
before molecular lumpiness manifests itself" (Shercliff, 1977, pp. 11-12).  This process
results in a continuous density surface.  Models using such variables calculate the rate of
change of the density.  In the urban environment, Angel and Hyman (1976) used this
continuous conceptualization of discrete phenomena to develop a continuous model of
transportation systems.  However, since molecular lumpiness sets in at the scale of the
phenomenon itself (i.e. the individual being counted), the measurement (count) must be made
over a defined area, otherwise the phenomenon would yield a binary presence/absence value
only.  Density estimation cannot be taken to or even near this binary limit.  Thus the value of

density is dependent upon the unit over which it is measured (e.g. 100 over each 10 km2

versus 10 over each km2) and all density measurements have an implied scale.  Since the
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value of such a field changes as the area over which observation occurs changes, density
fields are not true physical fields and cannot be modeled in an entirely similar fashion.

Continuity, of course, also exists in time.  Like space, time is difficult to discretize.  It
is common in many different areas of mathematical modeling to discretize time as either a
series of instantaneous snapshots, such as daily noon temperature, or as a series of averages
over a time slice, such as average monthly temperature.  Since continuity through time can be
as important as continuity through space, many researchers are working on new temporal
data models for computation (cf. Langran, 1989).  However, for the purposes of this
particular investigation, it is assumed that the continuity of time is adequately represented by
either of these traditional temporal discretizations.

Finally, continuity arises in measurement.  Many phenomena in the natural
environment are measured on continuous scales.  Temperature, solar radiation and
precipitation can be measured to as many decimal places as the measuring instrument allows.
Continuity in many dimensions is a fundamental characteristic of all natural systems and it
must be scrupulously and explicitly addressed whenever the natural environment is
transformed into a digital representation.  This research considers continuity in the spatial
dimension.

C.  RELATED RESEARCH

This section reviews some of the related research being carried out by others who are
seeking to find solutions for the integration of GIS and the modeling of natural processes.

Map algebra and cartographic modeling

Map algebra is perhaps the first significant attempt at achieving this separation of
operations from consideration of the form of the spatial discretization.  Here this is
accomplished by allowing only a single discretization.  Beginning with the requirement that
all spatial data to be manipulated is stored in co-registered sets of gridded data, Tomlin's map
algebra provides an organizing framework and a vocabulary for expressing many standard
GIS operations (Tomlin, 1990).

Founded in the map overlay tradition of landscape architecture, map algebra provides
a computer language which automates many of the concepts of cartographic modeling, a
technique for land planning made popular by McHarg (1969).  Tomlin maintains that
"cartographic modeling is a general methodology for the analysis and synthesis of
geographical data" (Tomlin, 1993, p. 361).  In cartographic modeling each different theme in
the landscape is expressed as a separate map or layer.  Manually, cartographic modeling was
accomplished by physically overlaying several transparent maps of different themes in order
that composite characteristics at individual locations could be observed.  Map analysis
provides a means to implement and extend these manual overlay techniques with the
computer.  Chan and Tomlin note that "At the heart of cartographic modelling is the idea of
decomposing data sets, data processing-capabilities and data-processing control
specifications into elementary components that can then be recombined with ease and
flexibility". (Chan and Tomlin, 1991, p. 351).  Tomlin recognizes that the cartographic
modeling approach is "function-oriented" since the language is concerned only with the
functions that are performed on the data rather than with the objects that are represented by it.
The form in which data is stored and the functions specified do not purport to represent
reality, but rather to facilitate the manipulation of digital data.
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This reduction to elementary components is achieved by requiring that each element
of the landscape which is to be examined using map algebra must be discretized as a
continuous layer of rectangular cells.  This greatly facilities the implementation of the
analysis functions since mention of the spatial discretization can be ignored and data
processing can be specified for this particular form of discretization only.  However, as a
result, all operations are conceptualized on the grid rather than on the fields themselves.  For
example, distance from a point must be conceptualized in terms of "rook's case" or "queen's
case" adjacencies or an nxn window rather than by the linear distance determined by the
physical process being modeled.  Thus the modeler must work within a gridded universe
rather than with the continuous one described by the physical laws.

Is a gridded universe the only one an environmental modeler needs?  It may be
possible to convert all datasets to grids, but is this the best approach?  Certainly not if one
considers the reality that is represented.  Certain phenomena may be better represented by
other forms.  Unnecessary conversion from one form of representation to another leads to an
unacceptable loss of information if the mathematics does not demand a gridded structure.  All
movement must be discretized to 4 or 8 directions, paths may become unnecessarily
distorted.  By reducing all fields to a single gridded data model in which values are constant
across cells but change suddenly at cell boundaries, it is difficult to conceptualize and work
with continuous functions such as differentiation and integration.

Map algebra requires us to enforce a structure on reality rather than allowing reality to
suggest a more appropriate structure for our analysis.  The modeler is forced to work within
this single discretization and to be constantly aware of its limitations.  Unless the grid size
can be allowed to shrink towards 0, it is impossible to conceptualize continuous natural
processes operating across continuously varying surfaces within this gridded world.  Rather
than being a true modeling algebra, it is instead a unified nomenclature for formally defined
GIS operations on gridded data.  The weakness of the link with reality is critical.

In spite of its limitations, the map algebra approach has achieved wide popularity.
Most notably, it has been chosen as a framework for the modeling language included in
ESRI's raster-based product GRID (ESRI, 1991) and is the basis for the GIS software,
MapBox (Decision Images, undated).  Once the common data model is accepted and
achieved, it is possible to express many mathematical operations between different datasets
representing environmental variables in a structured syntax.  For example, if we wish to add
two themes, call them FIRST and SECOND, together, Tomlin's 1990 syntax would be
(Tomlin, 1990):

RESULT = LocalSUM of FIRST and SECOND

though in the implementation of map algebra in ESRI's GRID software the more direct
syntax:

RESULT = FIRST + SECOND

is employed.  Using such a common syntax for basic algebraic operations, it is possible to
conceptualize the operations distinct from the implementation details.

Model/data interfaces

An altogether different approach to the problem of linking digital data about spatially
distributed phenomena to mathematical models of environmental processes drives the many
attempts that have been made to develop generic interfaces between spatial information
systems and applications programs (cf. Abel and Wilson, 1990, Evans et al, 1992).  In
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general, these interface systems allow data to be stored in several different files and formats
in information systems that are logically and often even physically remote from the
mathematical model.  When the mathematical model is executed, required data is requested
automatically from the interface.  The interface then accesses the appropriate database(s),
extracts the required dataset(s) and converts it (them) automatically to whatever format is
required by the model.  Once in a form suitable for input, the interface forwards the data to
the model.  Output from the model is handled similarly but in reverse.

Breunig and Perkhoff describe the development of one such interface system
designed to mediate between several heterogeneous databases and different task-oriented
applications programs.  In this case, "the goal of logical data integration is the transparent use
of data managed in different autonomous database systems" (Breunig and Perkhoff, 1992,
p. 273).  Using a client server structure, the Data Integration System (DIS) sits between the
applications programs and the databases.  Users define and use application dependent views
of the databases in such a way that "the structure and location of the data and the different
data handling languages of the external systems" (Breunig and Perkhoff, 1992, p. 273) are
irrelevant to the user.

As it is currently implemented the DIS provides a Functional Global Data model
(FGD) that enables schema integration between INGRESS and the DASDBS Geokernal
databases and provides a high level of data abstraction.  The FGD is a functional language (as
opposed to an object oriented language) which is strongly typed, containing type variables
and constructors for defining new types, and provides a small set of primitive functions"
(Breunig and Perkhoff, 1992, p. 275).  A distinct advantage of this system is that standard
algorithms which are specific to certain representations of reality, such as distance or aspect,
can be retained within the databases rather than written specifically for each application.

These data integration systems are designed to serve the data exchange needs of
specific software.  Rather than allowing system independent manipulation of spatial data,
they provide tools for the conversion of datasets from one format to another.  They do not
provide a means by which modelers can express and manipulate the representations of
spatially distributed phenomena directly outside of the constraints of specific software.

Database oriented solutions

Other approaches to dealing with the problems of representing the spatial complexity
of reality work from the perspective of the data rather than from formalization of operations
as provided by map algebra or from the development of interface programs between the
database and the model or application.  These approaches seek to find a means for
rationalizing and organizing the various ways spatial data can be conceptualized and
represented.  Here, the data itself becomes the focus of scrutiny rather than the operations to
be performed.

In the 70's, IBM developed a research prototype for a comprehensive
database/application system which was designed to manipulate both standard and geographic
data within the same framework.

Geographic data support allows the system to handle information extracted
from maps in the same way as the more conventional string and numeric data.
This is achieved by the provision of a geographic data type and an appropriate
set of geographic operators and functions.  (Aldred and Smedley, 1974).

Using a relational database design and representing geographic data as points, lines
and areas, this prototype was intended to provide a comprehensive urban management
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system.  While the prototype is described in several internal IBM documents, it was never
fully implemented.  It seems likely that advances in technology and computing science
overtook this ambitious project.  Thought incomplete, this project did attempt to address the
issue of whether geographic data as a fundamental and unique data type could be handled
concurrently with more traditional data types.

More recently, the concepts of object orientation have been seen to provide a possible
means by which related but individually unique classes of complex spatial objects, with
specialized operations inherited and encapsulated, can be defined for incorporation into
computational models.  Smith outlines the elements of a logic based modeling and database
language which has as a long term goal the unification of computational modeling and
database systems of many areas of scientific research (Smith, 1992).  By developing a formal
language for defining and manipulating complex spatio-temporal entities at all levels of
abstraction, "from simple datasets to large, mathematical models", Smith hopes to be able to
derive tools that will enable scientists to "focus on scientific rather than on computational
issues" (Smith, 1992, p. 592).  At the core of his research is the "Term Definition Language",
a metalanguage that will allow complex spatio-temporal entities, their properties and
relationships to be defined and manipulated independent of specific programming and spatial
database implementations.  Data objects can be conceptualized and structured according to
the requirements of any single scientist or modeling task.

When Smith's work is complete and scientists have access to the multitude of
distributed large heterogeneous spatial databases via this logic-based database and modeling
language, modeling will become transformed and the full benefit of object orientation in
mathematical modeling may be realized.  In the meantime, the research described in this
document seeks to work in the middle ground between function oriented and data oriented
approaches to integrating mathematical modeling with GIS.  Rather than seeking ways to
restructure the way spatial data is modeled or ways to redefine the operations that modelers
seek to apply to the data, this research is focused on tools for implementing the current
models of natural phenomena using existing spatial data models and GISs.  The result is an
new way of looking at old tools.

Formal languages and algebras

Formal languages and algebras are important tools for developing and expressing
abstract concepts such as those which are developed here.  Formal languages consist of sets
of symbols, operations and rules about how to combine the operations and symbols.
Algebras are a subset of formal languages in which properties of the operations, such as
symmetric, transitive and reflexive, are important (Egenhofer, 1992, pers. comm.).  Such
properties allow the identification of minimal sets of operations and permit the simplification
of complex tasks.

Efforts to develop formal languages for working with geographic data have been
underway for several decades.  In the late '60's/early 70's Dacey outlined some concepts for
the development of such a formal language (Dacey, 1967, 1970 and 1971).  Though little of
this fundamental work is easily accessible, much of it published only in technical reports,
many of his contemporaries did recognize the significance of this work.  More recently, the
call for the development of a formal language has been taken up by Molenaar.  He outlines
his vision of a Theory of Geoinformation whose purpose is "to structure the whole field of
geoinformation systems in the sense that the common aspects and the differences of existing
GIS systems can be made more clear... [and] the common aspects and differences of the
applications of GIS can be made more transparent" (Molenaar, 1991, p. 98).  He notes that
the definition of entities within a geographic database are very dependent upon the reason
they were collected.  For example, the definition of a soil unit depends on whether the data is
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to be used for landuse planning, erosion studies or hydrological modeling.  He argues that the
theory should provide a grammar for specifying the context of the information handled and
methods for transforming data from one context to another (Molenaar, 1991).

Working over a period of more than two decades, Serra and others at the Centre de
Morphologie Mathematique in France have developed a very sophisticated algebra for the
analysis of digital images through image analysis and mathematical morphology (Serra, 1982
and 1988, and Serra and Lay, 1988).  Mathematical morphology uses a transformation
algebra to convert bounded sets of points into significant numbers.  The technique uses
"structuring elements" which "interact with the object under study [on the image], modifying
its shape and reducing it to a sort of caricature which is more expressive" than the original
image object (Serra, 1982, p. v).  This approach is particularly useful for medical imagery
where the objects being studied (e.g. blood vessels or connective tissue) are depicted on
single cross-sections that may not be oriented in a direction useful for understanding the
characteristics of the object being examined.  Applications of mathematical morphology
range from medical imagery to plant physiology and satellite imagery.

While their data models are limited to regular (hexagonal) point grids and their
applications are concerned only with extracting measurements of form, this effort
demonstrates how a transformational algebra for analyzing spatially distributed data can be
formally developed.  Beginning with a number of "criteria" which limit the types of
phenomena that can be considered under their algebra, they gradually build a set of "tools"
and principles that can be used to extract spatial structure from point based data.  Their most
recent efforts provide the algorithmic basis for the automatic analysis of medical imagery.
While this research provides useful direction, it is important to note that the work of Serra
and his group seeks to understand the relationships between patterns in the data and the
morphological characteristics of the real phenomena rather than considering how relevant
characteristics of reality are captured in the data set.

Harvey gives an extended review of the role of artificial languages (e.g. mathematics)
in the development of theories.  Such artificial languages provide "an abstract system of signs
and relata which have no empirical content or substantive meaning" (Harvey, 1969, p. 21).
He notes that since abstract symbols and relationships must be defined precisely within the
language, a clarity and lack of ambiguity that is impossible in natural languages can be
expressed.  Once concepts are defined in abstract languages and theories they can be linked
to the real world through empirical definitions of the abstract concepts.  For example, a
gravity model of interaction between cities is linked to reality by stating that cities form the
bodies of the formula and their masses are represented by their populations.

The basic fundamentals of algebras are well developed in any elementary algebra
text.  Algebraic tradition provides simple definitions of sets, mappings, relations and
functions that offer an established structure for the development of an algebra.  Selby and
Sweet note that it is possible to "construct many different mathematical systems, depending
on the choice of different sets of elements, relations, operations, and postulates (Selby and
Sweet, 1969, p. 270).  While many algebras are developed for specific purposes, each one has
its own merits and range of interpretations.  They add that "Mathematical systems may be
looked upon as games that involve certain objects (elements) and are played according to
specified rules (postulates)" (p. 271).

While the development of a formal language or algebra is a useful way to express
theoretical concepts, it is presupposed here that environmental modelers are generally
conversant with one or more formal languages appropriate for the expression of the particular
mathematics of their models.  Frequently these are universal computer languages such as
FORTRAN or C though they may be more specialized modeling languages such as STELLA.
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Furthermore, it is assumed that to develop an additional formal language to handle the spatial
data would be counterproductive as modelers would be required to integrate two separate
languages.  Therefore, rather than developing a complete formal language, this research
focuses on the development of concepts which can be implemented within existing
mathematical and computer languages, or in other words a strategy  for dealing with spatial
continuity.

Object orientation

Finally, it is useful to introduce the broad concept of object orientation as it forms a
central, though often unremarked, theme in this research.  Object orientation means different
things to different people.  and the appellation object orientation has been attached to
techniques, languages, databases and interfaces (Khoshafian and Abnous, 1990).  STELLA,
described above, is an example of an object oriented programming language while Smith's
logic based database language (Smith, 1992) described above is an example of an object
oriented database language.  Object orientation is particularly relevant to this effort as it
provides a new paradigm for modeling "the real world as close to a user's perspective as
possible" and for allowing the user to interact "easily with a computational environment,
using familiar metaphors" (Khoshafian and Abnous, 1990, p. 1).  It allows "the normal
radical transformation from system requirements (defined in the user's terms) to system
specification (defined in computer terms)" (Ledbetter and Cox, 1985, p. 314) to be greatly
reduced.

Central to object orientation is the concept of abstract data typing.  Abstract data
types are defined according to the needs of the user and the operations which are to be
performed upon data stored in them:

The actual data structures chosen to store the representation of an abstract data
type are invisible to its users or clients.  The algorithms used to implement
each of an ADT's [abstract data type] operations are also encapsulated within
the ADT (Khoshafian and Abnous, 1990, p. 8).

Individual objects, which are, in many ways, the object orientation equivalent of variables in
procedural languages, are associated with particular abstract data types.  Thus, rather than the
traditional approach where the flow of operations is determined by the statements of a
procedure and performed on the passive variables, object oriented operations are initiated and
defined by the objects themselves.

The relevance of object orientation to this particular effort is in the notion that the
objects, or variables, themselves determine how operations are to be performed on them.  As
demonstrated at length later, specific implementation details controlling the manipulation of
different digital representations of spatially continuous phenomena can be determined by the
representations themselves and can, therefore, be encapsulated within them.  Encapsulation
and the definition of new data types are important themes here.

D.  OVERVIEW

The fundamental theses of this research were stated early in this chapter.  These
theses contend that it is possible to separate considerations about the form in which spatial
data about spatially continuous phenomena are stored in the computer from the operations
which are performed on them.  If this separation can be achieved, it should be possible to
perform mathematical manipulations of the data independently of its representation.  This
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document seeks to confirm these theses by first exploring a number of related issues and then
integrating these issues in a generic strategy.

Chapters 2 and 3 provide a background on mathematical modeling in general and the
mathematical modeling of environmental processes in particular.  These chapters introduce
and discuss the basic characteristics of environmental models and highlight the great
heterogeneity of the environmental modeling field.  Thus, while this research seeks to
provide a high level, generic strategy for the separation of representation from manipulation,
it is abundantly clear that individual modeling domains and even kinds of data require unique
treatment.  The need for a generic strategy which allows for the incorporation of unique,
individual solutions is demonstrated.

Chapter 4 turns to a consideration of the measurement and representation of
continuous phenomena in the discrete world of the computer.  The characteristics of different
representations and the relationships between these spatial data models and the reality they
represent are examined.  This chapter develops the fundamental concept of the field variable
which forms the basis of the strategy developed later.  The field variable concept allows both
the continuous physical field and its discrete representation to be handled separately but
within a single entity.

Chapter 5 examines the typical operations that are performed on spatial data in
mathematical models of environmental processes.  When these operations involve discrete
spatial data models of physical fields, simple mathematical operations are confounded by the
need to manipulate different forms of the representations of the fields.  This manipulation
generally requires the conversion of one discrete field representation to another.  There are
many issues related to these spatial data model conversions.  Some of these are generic to all
physical fields and others are specific to certain modeling domains and kinds of data.  How
these phenomena are represented determines how their representations can be implemented
in mathematical models.  This chapter lays out the aspects of the conversion processes which
need to be considered, either automatically by the computer or individually by the modeler,
when performing various mathematical manipulations.

In Chapter 6, the themes examined in earlier chapters are brought together in a
strategy for dealing with spatial continuity.  Using the critical aspects of spatial data
manipulation described earlier, a plan for the declaration of field variables is outlined.  This
declaration allows the important characteristics of each particular spatial dataset to be clearly
expressed in such a way that they can be used to determine how that dataset should be
manipulated.  Then, in most cases, the implementation of these manipulations can be
controlled automatically by the computer without the direct involvement of the modeler.
This approach provides a generic solution while at the same time allows the special
characteristics of unique datasets to be respected.

Once field variables can be declared, the specification of new mathematical
operations using fields becomes possible.  Chapter 6 outlines several such operations for
scalar fields.  On a more speculative theme, Chapter 7 considers some of the untapped
potential of the concept of field variables by examining the role of vector fields in
mathematical modeling.  The declaration of vector fields follows directly from the principles
outlined in earlier chapters.  Finally, returning to practical matters, Chapter 8 outlines how
this strategy for dealing with spatial continuity through the declaration of field variables can
be implemented.  Chapter 9 provides a brief summary and a look forward.

In summary, this document seeks to lay out the foundation for a generic, high level
strategy which allows spatial data about continuous phenomena to be handled both as
continuous physical fields and as discrete digital representations of these fields.  It is
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recognized that little of the data and few of the processes handled across the various domains
of environmental modeling can be generalized and that much of the important work done in
these fields requires an unique approach to the modeling of the physical world.  However, the
strategy outlined here seeks to achieve a generic solution to these diverse problems by
providing a means by which the uniqueness of each modeling problem can be incorporated.
Throughout this document, exceptions to the general case are discussed to illustrate this
diversity and to demonstrate how exceptions can be included within this high level strategy.
While the true test of the value of the strategy outlined in this document can only come
through practical application, discussion of issues of a practical nature which would require
consideration of specific implementations or applications are avoided in order that generic
issues can be discerned before implementation is attempted.  In this way, it is hoped that this
effort will lead to the establishment of a solid theoretical basis for future work.

We begin, then, with a consideration of the field of mathematical modeling in
general.
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CHAPTER 2 - MATHEMATICAL MODELING

This chapter provides some background on the art and science of mathematical
modeling in general.  We confine the discussion largely to the characteristics of mathematical
models of physical processes though much of what is described below can be applied equally
to models of physical form and of human activities.  Following a definition and discussion of
models and their general purposes, some of the theories and logical constructs that have been
developed to offer organization to a complex process are reviewed.  A consideration of the
stages that are followed during model building provide additional organizational structure.
Finally, since this research is concerned with the link between data and models, the role of
data in models is examined.

A.  MODELS AND MODELING DEFINED

A model is, quite simply, any representation of reality.  Casti has suggested that
models are "toy versions of real-world situations" (Casti, 1989, p. vii).  However, because of:

• the complexity of the real world,

• inaccuracies in measurement,

• imperfect hypotheses,

• modeling approximations, and

• necessity of scaling, up or down, in space and time,

the representation is a simplification of reality, elements are omitted and complexity reduced
(Jacoby and Kowalik, 1980).

Many definitions of models assume a mathematical form.  Cross and Moscardini
(1985) define models simply as mathematical descriptions of hypotheses about physical
processes.  Casti defines a model as

an encapsulation of some slice of the real world within the confines of the
relationships constituting a formal mathematical system...  A model is a
mathematical representation of the modeler's reality, a way of capturing some
aspects of a given reality within the framework of a mathematical apparatus
that provides us with a means for exploring the properties of that reality
mirrored in the model.  (Casti, 1989, p. 1)

More formally, a model can be defined as a formal representation of the relationships
between defined quantities or qualities (Jeffers, 1982).  "Defined" quantities or qualities
describe objects in the real world.  This contrasts with the abstract entities that are the
hallmark of mathematics.  In this sense modeling is always applied and defined within the
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context of a natural system.  Formal expression provides tools which the modeler can use to
confirm that the model is valid with respect to reality, that it can be tested against reality and
that predictions about reality may be made.

Simulation is often equated with modeling.  Although a number of authors would
hotly debate this equation, it appears that much of the debate is based on definitions.  Zeigler
(1976) and Bekey (1985) both define simulation as the implementation of mathematical
models of physical systems on computers.  Zeigler states "modelling  deals primarily with
relationships between real systems and models; simulation refers primarily to the
relationships between computers and models" (Zeigler, 1976, p. 3).  Thus they distinguish
between the mathematical model and its implementation on the computer - the simulation.
This is a useful distinction since there is a significant step between conceptualizing a natural
system as a continuous model and its implementation in the necessarily discrete world of the
computer.  Here, numeric approximations and enforced finite word length make the
conceptualization of the model somewhat remote from the realized implementation.  In a
similar vein, there is a big step between the continuous natural world and its discretization in
a GIS.

Casti (1989), on the other hand, distinguishes between models and simulations on the
basis of structure.  In his view, models which provide a mathematically created black box
linkage between observed inputs and outputs represent simulations rather than proper models
of reality.  Such models do not contain the inherent functional relationships of reality.  By his
definition, if A simulates B and B simulates C, A does not necessarily simulate C; "in fact, A
is only a simulation of a simulation of C" (Casti, 1989, p. 468).  On the other hand, if A
models B and B models C, then A models C.  In essence, however, the distinction between
model and simulation is one of degree of correspondence between reality and the model.

Model purpose

Models can have a number of purposes.  From a management perspective, models can
be used to (Trakowski, 1976):

• evaluate the consequences of various environmental management
decisions and regulatory strategies,

• assist in the planning process,

• develop optimal control systems and technology,

• project future environmental phenomena and variables,

• aid in interpretation and analysis of monitoring data intended to depict the
state of the environment,

• estimate the risks of adverse effects of environmental hazards, and

• assess the economic and social costs arising from environmental hazards.

From the scientific point of view, models are also constructed to improve
understanding of natural systems.  The process of building a model forces the modeler to
"rationalize one's conceptual view of a process or system and quantify the influence of each
main factor" (Cross and Moscardini, 1985, p. 18).  If a model is built based on theoretical
principles and the model performs in a manner similar to the natural system being modeled,
modelers conclude that the theory may provide some explanation of the behavior of the real
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world.  If the results do not match reality, deficiencies in the hypotheses may become
apparent.  Of course, the measurement of "similarity" is not simple and suitable tools are
limited.

In many cases prediction is the objective of the modeling task.  Here similarity
between the model and reality must be achieved.  While it is important for models to
represent reality, Casti notes that "models should not be judged by their truth or falsity but
rather by their usefulness as algorithms for correlating observations and making predictions".
As such, a model can be used for "reality organization, i.e. a tool for ordering experiences
rather than a description of reality" (Casti, 1989, p. 458).  In fact, Chorley and Haggett note
that models are "highly subjective approximations in that they are valuable in obscuring
incidental detail and in allowing fundamental aspects of reality to appear" (Haggett and
Chorley, 1967, p. 22).  This is the approach to model building that must be used in the less
physically-based social sciences, but it must become more common in the environmental
sciences as their models become more complex and inclusive.

Models provide a means for conducting carefully controlled experiments repeatedly
and under impossible natural conditions such as ecosystem destruction.  Jeffers (1982)
cautions that experiments on models should not be regarded as a total substitute for
experiments on actual physical systems; however, models can often be used to identify the
most critical field experiments which should be done.  As well, model output can be used to
produce comprehensive data sets that would otherwise be unobtainable, an approach used in
meteorological and oceanographic research.

Types of models

Given the broad definition of "model" that is generally applied, the term has been
appropriated for many different uses.  With regard to GIS alone, models are commonly
discussed in the following senses:  geographic models, data models, GIS models, ecological
models, mathematical models, decision models, environmental models, scientific models and
map models.  In a formal sense, it may be argued that there are only two basic types of
models: physical and logical (Chorley and Haggett, 1967).  Physical models are the scale-
models physically constructed of materials.  Logical or symbolic models are "a collection of
symbolic entities satisfying a particular set of axioms and theorems" (Casti, 1989, p. 458).
Mathematical models are a major subset of logical models.  They incorporate variables,
parameters, equations and inequalities and have no physical resemblance to the phenomena
being modeled.  In order to construct and use a mathematical model it is necessary to define
each of the components and solve a mathematical problem (Jacoby and Kowalik, 1980).
Mathematical models are the focus of this research.

Mathematical models can be classified in many different ways.  The dichotomous
classification developed by Jorgensen (1990) shown in Table 1 provides a useful summary of
some of these.  The dimensions by which models can be classified include: time and space
related behavior; type of data, parameters and expressions used; model structure; and, type of
mathematics.  Time related behavior  determines whether results depend on conditions
existing at the moment of calculation or on conditions at previous time(s).  The latter
situation is typical of recursive models.  Another aspect of this is whether the rules of
interaction and/or the parameters change over time, time varying, or are constant over time,
time invariant .  Space related behavior likewise considers whether other locations affect the
results of calculations at a particular location (Jacoby and Kowalik, 1980).  Dynamic and
static  are the opposite ends of the spectrum in terms of time and space related behavior.
Dynamic systems are those which change over time and, possibly, over space.  They may
have initial, transient and steady states.  Transient states can only be modeled using
differential or difference equations.  While, by definition, steady states correspond to
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conditions where derivatives are zero and thus can be modeled with algebraic equations,
oscillations around a steady state can be modeled using continuous mathematical forms.
Static models normally assume variables and parameters are independent of time and space
(Jorgensen, 1990).  Changes over space and time may be continuous or discrete  and the
model may be autonomous  if it is completely isolated from the environment or
nonautonomous  if it receives inputs from outside the model (Zeigler, 1976).

Table 1 - Classification of Models (from Jorgensen, 1990)

Research models Used as a research tool
Management models Used as a management tool
Deterministic models Predicted values are unique and exact
Stochastic models Predicted values depend on probability

distribution, vary from one realization
to another

Differential models Mathematics based on differential
equations

Matrix models Mathematics based on matrix algebra
Reductionistic models Include as many relevant details as

possible
Holistic models Use general principles
Static models Variables not dependent on time or space
Dynamic models Variables are a function of time and/or

space
Distributed models Parameters considered function of time

and space
Lumped models Parameters considered as constants
Linear models First degree equations used consecutively
Nonlinear models One or more equations not first degree
Causal models Input, states, output related by physical

principles (causal relation)
Black box models Input and output only statistically related

When examined in terms of the type of data, parameters and expressions used,
models can be classified in a number of other ways: deterministic  versus stochastic , fixed-
parameter  versus adaptive-parameter and, again but in a different context, continuous  versus
discrete  (Jacoby and Kowalik, 1980).

Additional descriptive terms for models arise when model structure is considered.
Distributed  models have one or more independent variables which vary according to spatial
position.  Such models are frequently used for continuum or field problems and generally are
described in the form of partial differential equations.  On the other hand, lumped models are
zero-dimensional; average or otherwise representative values are used irrespective of spatial
location.  Such models may be expressed in difference, ordinary differential or simple
algebraic equations.  In actual implementation, however, all distributed models are actually
lumped models at some level of detail since it is impossible to solve continuous equations
over continuous space in the computer.  All spatial distributions must be discretized for
computation.  Hence, distributed models are defined only by the degree to which spatial
position affects the output of a large number of lumped models distributed across the spatial
dimension.  Finally, the within model structure category, the complexity of the relationships
between model elements also leads to descriptions such as tree , network and feedback
models.
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When the type of mathematics used is considered, models can be classified in yet
another manner.  Jeffers (1982) uses this approach to classification when he considers the
vast range of mathematical models.  Dynamic models are very flexible and allow
considerable freedom from constraints and assumptions.  Differential equations, non-linearity
and feedback are often hallmarks of these models.  However, it is often difficult to predict the
behavior of such models or to estimate the values of basic parameters.  Matrix models
(input/output models) sacrifice reality and replace it with the logic of pure mathematics.
Such models are easy to use and the determination of parameters results directly from
mathematical manipulation.  Stochastic models come in many varieties.  Many of these
models incorporate very stringent assumptions, those relating to independence of
observations and error are particularly difficult when dealing with spatial data.  Distribution
models can be used to describe spatial distributions and to test predicted distributions against
observed to confirm the adequacy of the model.  Other stochastic models include those based
on regression techniques.  Multivariate  models include principal component, cluster and
discriminant analysis.  Optimization  models locate the maximum(s) or minimum(s) of a
given mathematical expression.  Game theory  models and catastrophe  models are other, less
frequently used techniques (Jeffers, 1982).

Finally, a geographic and time dependence classification of models has been provided
by Tobler (1979).  This system considers the relationship between the value at one location at
one time and that at other locations and times.  Independent models show no dependence
between values at different locations.  Dependent  models incorporate dependence upon the
immediately previous condition at a location (e.g. the previous land use type).  Historical
models extend temporal dependence to the sequence of previous conditions at that location.
Multivariate  models make the value at a single location dependent upon several variables at
that location. Geographic  models incorporate dependence between different locations so that
the value at a single location depends upon that at other locations.

B.  THEORIES OF MODELS AND MODELING

While "the field of modelling and simulation is as diverse as the concerns of man"
(Zeigler, 1976, p. vii), it can be argued that there are several fundamental principles.  Zeigler
and Casti have both attempted to develop formal systems.

Zeigler's theory of modeling

Zeigler incorporates aspects from general systems theory, mathematical systems
theory and automata theory into his theory of modeling (Zeigler, 1976).  General systems
theory provides an underlying structure which assumes the unity and interdependence of
natural systems, mathematical systems theory provides the formal structure while automata
theory provides a logical and algebraic analysis of computer models.  Beginning with a
recognition of five elements in modeling - the real system, the experimental frame, the base
model, the lumped model and the computer - Zeigler sets out to link the elements together in
a formal structure.

The real system is the natural system, the one which supplies data on which the model
is based.  Some of the inputs and outputs to this natural system can be measured, while others
are unobservable.  These inputs and outputs can be linked into pairs and, according to
Zeigler, this I/O behavior is "all that can be directly known about the real system" (Zeigler,
1976, p. 30).  The experimental frame  describes the range of conditions under which the real
system is observed.  This frame may be determined by time or space scales or by the range of
measurements made.  It determines the set of variables that can be measured.  Identification
of this frame is important as it determines the range of validity of the model constructed
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based on the observed I/O behavior.  The base model is a conceptual representation of the
natural system.  This model accounts for all the interactions which produce the observed I/O
behavior.  The definition assumes complete correspondence between the model and the
natural system.  However, due to the incompleteness with which we can observe the natural
system, it is impossible to fully describe this model.  The lumped model is the simplification
of the base model.  This is the only model that can actually be constructed and includes a
number of components representing aggregations of components of the base model.  Since it
can be constructed, the structure of the lumped model is known completely.  Although the
computer is simply the computational device used to implement the lumped model,
computational methods add another level of complexity to the relationship between the final
model and the natural system.  Computers and computing programs add additional structure
to the model that is unrelated to the true structure of the natural system.

Using these five elements, Zeigler develops a hierarchy of models from models based
on simple input/output analysis to fully functional network models.  This hierarchy allows an
examination using mathematical set theory of the homomorphism between the real system,
the base model and the lumped model.

Casti's theory of models

In the book Alternate Realities:  Mathematical Models of Nature and Man, Casti
(1989) also attempts the monumental task of developing a theory of models.  His work is
commendable for the clarity it provides on a number of issues that are normally obscured by
application specific aspects.  According to Casti, in order to create a good model, one needs
to know the properties of models, the techniques for encoding specific realities into formal
systems and the procedures for interpreting the properties of the formal system in terms of
the real world (Casti, 1989).  In an annotation he notes that the role of the environmental
modeler is to "understand the ways and means of how to encode the natural world into 'good'
formal structures, and then to see how to use these structures to interpret the mathematics in
terms of the questions of interest to the experimental scientist" (Casti, 1989, p.43).

Casti begins by identifying a number of elements and relationships.  The infinite
variety of nature is seen as an innumerable set of states  which fully describe the total
condition of the natural system under study.  While these states may not in reality be distinct
from one another and may be infinite in variety, any modeling effort must proceed by
identifying a minuscule subset of this total set, the set of abstract states , which can be
observed and measured.  The specific abstract states that are chosen for observation and
measurement depend upon the measuring apparatus and the observer's aims and knowledge.

An observable is "a rule associating a real number with each abstract state" (Casti,
1989, p.5).  For example, "temperature" is an observable in that it is a rule for associating a
real value (e.g. degrees Celsius) with a state of the system under study (thermal energy).  We
can measure the temperature of the system for each abstract state we have identified.  Or in a
simple mathematical example, consider a straight line.  If we view this line in Cartesian space
there are several observables: location in space given by distances along x and y axes, the
slope, the yintercept, the x-intercept, the quadrant in which x has the greatest value, the
curvature, and so on.  Note that we can also observe and measure the line using other origins
and different coordinate systems.  Casti notes that in order to "see" an entire natural system,
we would need an infinite number of observables and the entire set of states.  However, for
practical modeling purposes we must "boldly just throw most of them away and focus our
attention on a proper subset" (Casti, 1989, p. 5).  As well, Casti notes that

the quantities that remain invariant under coordinate changes are the only
aspects of the system that have any right to be termed intrinsic system-
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theoretic properties, and we should ideally only make use of the invariants in
answering questions about the system. (Casti, 1989, p. 38)

Other observables are "coordinate dependent" and are simply artifacts of the observation
method.  This comment is particularly relevant to spatially-based models.  This implies that
conclusions based solely on how we have discretized a continuous world do not truly
describe the system, but rather describe aspects of our construction of it.

Equations of state  are mathematical statements expressing the dependency
relationships among observables.  For the example of the straight line, the equation y = ax +
b represents such an equation of state.  Using the equations of state, a number of different
types of observables can be identified.  The first are those which remain constant for every
state, in other words the parameters .  In the straight line model the slope and intercept are the
parameters.  We can also identify those observables which are functions of others.  Again
with the line and the slope/intercept equation of state, y is a function of x.  This allows us to
identify other observables as inputs (x) and outputs  (y).  Using these concepts, Casti develops
formal descriptions of complexity, error and many specific modeling tasks in the social,
behavioral and life sciences.

Herring has discussed Casti's and other theories of modeling within the context of
GIS.  While he is using modeling in the much broader sense that a GIS is a model of reality
(a model of its structure rather than of its function), he notes that Casti's modeling theory falls
within the category theory of models .  "Category theory is the study of structure-preserving
morphisms between "algebraic" structures, especially concerned with the types of
information and inferences that can be preserved under such mappings" (Herring, 1991, p.
319).  A morphism between reality and the model in the GIS establishes a correspondence
between entities in each system so that inferences about entities drawn in one apply to the
corresponding entities in the other.  Like other model theories, Casti's requires that the
following be identified or constructed:

• the entities or objects included in the model,

• the operations and relationships between the entities, and

• an algebra which expresses the rules of calculation and composition.

In summary, Herring concludes that all models which seek to represent the real world
embody two fundamental assumptions (Herring, 1991):

• the model and the data represented reflect the pertinent facts about reality,
and

• the rules of calculation and composition correspond to processes and
relationships in the real world.

C.  MODEL BUILDING

There is considerable advice available on model construction, particularly in the fields
of engineering and computer science where modeling and simulation form an important part
of their education and work.  The following section is based on material merged from several
sources including Cross and Moscardini (1985), Jorgensen (1990), Marani (1988), Sklar and
Costanza (1990) and Haines-Young and Petch (1986).
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The procedure for developing a mathematical model of a natural system has several
stages.  The first is the formulation of the problem.  This stage involves articulating
objectives, defining the variables of interest, deciding upon the assumptions and specifying
the functional relationships.  In order to determine the variables to be included, the modeler
must identify the specific aspects of reality which represent the abstract terms in the theory
which will underlie the model.  A theory on plant succession, for example, may refer to
successional stages which can be expressed in nature as specific plant communities.  Next, it
is necessary to determine measurable surrogate variables which can be used to quantify the
defined concepts.  In the succession model, this may be the number of individuals of specific
species or species density.  These variables are generally called the state or  response
variables  of the model.  Once these variables have been established, it is necessary to identify
the elements of the environment which influence their value (called forcing functions or
external variables) and, finally, to devise the mathematical equations which specify the
functional relationships between all the variables.  Selecting the appropriate model structure
is critical and it may be necessary to simplify the components, observations and relationships
of the real world.  Zeigler (1976) discusses a number of ways to simplify models including
dropping components, variables or interactions, replacing deterministically controlled
variables by random variables, coarsening the range of variables, and aggregating variables
and components.

The implementation stage involves coding, parameter estimation (in some cases also
known as calibration) and verification.  Coding may require the choice of a numerical
method for the solution of differential equations in the theoretical model.  Parameters  are the
coefficients in the equations.  In many cases, parameters will be physically-based and derived
from experimental results (e.g. rate of growth of a specific species), though frequently these
parameters function as error terms and are used to account for unknown interactions or
subscale processes.  Parameter estimation in this latter case is often an iterative, statistical
procedure requiring, in some situations, intelligent guesswork.  Software for automatic
parameter estimation is available (Jorgensen, 1990).  Verification is a test of the internal logic
of the model.  This involves ensuring the model behaves as intended and that it is stable, an
important consideration when working with finite difference models.

Finally, sensitivity analysis and validation must be performed.  Since, in most models,
interactions are non-linear, the individual behavior of model elements is unknown.
Sensitivity analysis is critical to identify those elements which must be specified with the
most accuracy.  If it is determined that the model is very sensitive to changes in variables that
cannot be supplied with known accuracies, it will be necessary to reformulate the model.
Validation is concerned with how well the model output fits the empirical data.  There is
considerable literature available on validation procedures (Sargent, 1980).  Validation
techniques include asking experts if the model is reasonable, tracing entities through the
model, examination of graphic simulations, and comparing model results to other model
results and to historical data.

D.  THE ROLE OF DATA IN MODELS

Zeigler (1976) identifies three different levels of model validity:  the degree with
which the output from the model matches the output from the natural system; the
correspondence between predictions generated by the model and those observed; and, the
degree to which the model's structure matches the structure of the natural system.  All of
these conditions require experimental or observational data about the reality that is being
modeled.  It is clear that data plays a critical role in model development and operation.
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It is important to note that the effect of data collection methods has a major impact on
model design and validation (Thornes, 1989).  It seems likely that some modeling efforts
now arise simply because relevant data is available.  Cox notes "too much research in the
Brave New World will be guided by whatever data happen to be readily and copiously
available.  The danger will be... that preoccupation with data will limit imagination and
creativity" (Cox, 1989, p. 208).  If this is to be the case, it behooves data provider and
information system designers to take whatever steps are possible to ensure that the data they
make available is used as religiously and appropriately as possible.  Providing tools which
help modelers handle data intelligently is perhaps a good step in this direction.

In many ways, while models are attempts to build representations of real processes,
data can be seen to represent the shape or form of reality.  Linking the representations of
form in the data to the representations of process in the models in such a way that meaning
and understanding can be obtained is the challenge of modeling.  This chapter has introduced
many of the fundamental aspects of modeling and provided several organizational
frameworks for considering this large and growing activity.  We now move forward to a
detailed consideration of environmental modeling.
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CHAPTER 3 - ENVIRONMENTAL MODELING

In this chapter the theme of environmental modeling is examined broadly.  Interesting
differences and similarities between the different environmental modeling domains are
highlighted.  The common mathematical structures used to implement these models are
discussed, particularly with respect to the relationship between these structures and the
spatial data which is placed within them.  This leads to a consideration of the manner in
which GIS can be linked with such physically-based mathematical models.

A.  ENVIRONMENTAL MODELING DOMAINS

While the modeling of systems in the hard sciences such as physics and chemistry
may be more rigorous and precise, considerable progress has been made in the modeling of
complex environmental systems.  Given the functional link between hydrological modeling
and engineering (e.g. the US Army Corps of Engineers), it is not surprising that hydrological
systems were the first to receive concerted attention in the modeling arena.  Now, however,
all environmental disciplines have entered the modeling arena with an interesting variety of
approaches and results.  Sklar and Costanza (1990) compiled a very useful summary of
models in disciplines related to ecology, including geography, hydrology, biology and
ecosystem science.  Their summary chart, reproduced in Table 2, is a concise review of the
range of scales, variables and model structures used in these different areas.  While efforts to
work in interdisciplinary teams are growing, much of the modeling work is still discipline-
specific.  Thus, the traditional "spheres", the hydrosphere, atmosphere, biosphere and
lithosphere, provide a convenient way to organize the following review.

Since many of the differences between the processes and their models described
below are related to their relative scales, it is useful to clarify the sense in which the word
scale is used below.  For the following discussion, scale is used in its common, non-technical
sense such that large scale processes are those which occur over large territories and large
time scales are those covering long time periods.  Small scale processes and time scales refer
to small territories and short periods, respectively.

Hydrological models

Hydrological modeling is concerned primarily with the flow of water and various
mobile constituents (salts, chemical pollution, suspended sediment) over the land surface and
through the upper subsurface.  Hydrological processes can be modeled quite successfully by
dependence upon the fundamental conservation laws of mass, momentum and energy
(Maidment, 1993).  These models may include advection, dispersion and various chemical
and physical transformations such as adsorption, reaction and degradation.  Coupled with
extensive field data and widely accepted empirical relationships, these models have
considerable predictive ability.
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As early as the '60's, fieldwork had revealed enough about the physical relationships
in watersheds that the outline for physically-based hydrologic response models could be
described (Freeze and Harlan, 1969).  The recognition of the value of these models for water
resources planning encouraged considerable research interest in the early '70's (see Bowers et
al, 1972, Brown et al, 1974, and World Meteorological Organization, 1975).  Research
activities in this area are now focused on moving away from traditional spatially lumped
models to fully distributed models.  The availability of spatial databases coupled with GISs
has helped intensify this activity (see for example Goulter and Forrest, 1987, Lindhult et al,
1988, Stuebe and Johnston, 1990, and any recent GIS conference proceedings for
descriptions of several GIS/hydrological model interfaces).  Recently, however, concern has
been voiced regarding the ability of modelers to develop truly valid distributed models given
the quality of data available (Beven, 1989).

Hydrologic models often incorporate two distinct geographic models.  Water
originates as a distributed phenomena over the watershed; therefore, modeling runoff from
the entire watershed as a distributed process is an important component.  However, water
quickly concentrates in stream channels, hence these models also incorporate network models
of the channel system.  Terrain data is extremely important as input to hydrologic models.
Several topographic components are commonly used as forcing functions, including
elevation, slope angle, aspect and slope length (distance downslope before encountering a
major change in slope) (Corbett and Gersmehl, 1987).  As well, in channelized flow, channel
depth, roughness, slope and width are important (Brown et al, 1987).

Atmosphere models

Like hydrologic models, atmospheric models are also firmly grounded on the basic
laws of conservation, with motion fueled by energy from the sun and phase changes of water
(Lee et al, 1993).  Originally devised as lumped models where components were passed from
land surface to the atmosphere, they can now be extremely complex models predicting the
state of the global atmosphere.

The range of spatial and temporal scales at which different processes operate is an
important problem in atmospheric models.  Convective storms are significant energy
converters and are very small in area compared to the air masses in which they are imbedded.
Some processes become critical only when their size reaches a threshold.  The influence of
the land surface is now recognized as an important determining factor in circulation and
energy fluxes in the boundary layer (Hay et al, 1993), but the heterogeneity of slope aspects
and land cover makes it very difficult to combine these small scale variations with others
operating at much larger scales.  Parameterization of the land surface is one way in which
these multiple scale factors can be combined (Henderson-Sellers, 1989) and many hope that
GIS will provide a means for automatic derivation of these parameters.

Mathematically and physically speaking, ocean models have more in common with
atmosphere models than they do with other models of the hydrosphere.  In fact, many large
ocean circulation models are fundamental components of climate models with links through
the physics of energy storage, momentum and thermal convection (Han, 1988).  While often
modeled as 3D grids, they are generally limited to horizontal grids with spacings of a few
hundred kilometers and a very few vertical layers with vertical processes introduced through
parameterization.
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Ecological models

Unlike hydrological and atmosphere models, ecological models are not so easily
developed from strictly physical principles.  Many of the fundamental theories in biology are
qualitative and cannot be stated completely in mathematical terms.  For example, Darwin's
theory of survival of the fittest with genetic mutation occurring at random cannot be specified
in a deterministic equation (Vansteenkiste and Spriet, 1980).  Many biological principles
depend on the identification of species and vegetation types that often cannot be
unambiguously defined.  As well, biological systems and organisms have tremendous
variability.

In addition to the difficulty of discriminating the entities on which the models must be
based, the structure of ecological models are extremely complex due to (Jeffers, 1982):

• non-linearity,

• interaction of factors,

• feedback,

• discontinuities in which a large change in behavior is often associated with
a relatively small change in other variables

• bimodality in which there are a countable number of distinct states with
only a few individuals between these

• hysteresis marking delayed responses to changing inputs, and

• markedly different behaviors related to increasing versus decreasing
stimuli

Like atmosphere models, hierarchies are important in ecological models since processes are
dissimilar at different time and space scales (Nemani, 1993).  However, the magnitude of
differences between micro- and macro-scale processes in biology (e.g. cellular vs. plant
scale) is much smaller than in other natural sciences (e.g. local vs. general circulation) while
critical time scales for processes across the range of spatial scales may be similar
(Vansteenkiste and Spriet, 1980).  Such problems led Vansteenkiste and Spriet to conclude in
the late 70's that "the theoretical foundations in biology have not yet reached the level of
abstraction of certain other fields" (Vansteenkiste and Spriet, 1980, p. 16) necessary for true
physically-based modeling.

Nevertheless, many important ecological models do exist (see reviews in Baker,
1989, Costanza and Sklar, 1985, Johnson, 1990, Dale et al, 1985).  Landscape ecology, in
particular, is contributing a great deal to the current modeling efforts of biological systems.
Ecological models normally include representation of one or more of the hierarchy of system
structure elements (e.g. cell, leaf, canopy and community) and simple biological functionality
such as photosynthesis, transpiration and nutrient cycling (Nemani, 1993).  While until
recently many of these models concentrated on temporal density variation and assumed that
the future state of a landscape unit is independent of adjacent units, it is clear from evidence
gathered during field experiments that this is an invalid assumption (Hunsaker et al, 1993).
In the larger ecosystem models, spatial components have generally been aggregated into
single variables via black-box or other non-physically-based models or by providing for
interaction through flows of energy, minerals or individuals between submodel components
(Sklar and Costanza, 1990).
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An area of particular concern in landscape ecology is how to identify natural
landscape units and how to recognize critical sized "patches" (Baker, 1989).  Clearly
traditional geographical research linked to the analytical capabilities in GIS can contribute
considerably to this work.  Perhaps the integration of these models with GIS can help
overcome some of the problems that arise from the ill-defined and qualitative nature of the
discipline.

Land surface and subsurface models

This category of models covers a broad range of themes.  Some of these, specifically
soil erosion and groundwater models, might be also considered within the hydrological
category.  However, groundwater models, though concerned with the flow of water, differ
from hydrological models since flow is constrained more by characteristics of the medium
through which the water flows than by characteristics of the flow itself.  Likewise, soil
erosion models include modeling of overland flow, but the focus is on interaction between
the water and the landsurface.  This group also includes geomorphological models of
landforming processes which, of course, are related to many of the soil erosion models.
While all of these models, like hydrological and atmospheric models, depend upon basic
physical laws, they are more frequently spatially distributed in structure.  Thus these models
tend to have the highest demand for accurate spatial data, including topographical
characteristics, soils, geology, land cover, land use and hydrography (Moore et al, 1993).

Since these models depend very heavily upon spatial data, problems with this data
have received particular attention from researchers in this field.  Many of the spatial variables
on which these models are based are very poorly defined (e.g. slope, surface roughness) and
depend largely on the units selected for discretization of surfaces (Evans, 1972).
Considerable effort is currently being expended on developing an understanding of the effect
of various discretizations and on investigating the existence of universal landscape
characteristics (see for example Moore et al, 1991, Franklin, 1987, Pike, 1988 and Frank et
al, 1986).  As well, researchers are devising methods for dealing with a lack of appropriate
data, including interpolation techniques which use data sparse models common in geological
modeling and the development of reliable empirical indices to act as proxies for unknown
spatial characteristics (Moore et al, 1991, 1993).

Surprisingly, very few fully developed physically-based models of land surface
processes exist.  This is likely due to the fact that very little substantive quantitative
theoretical development has occurred.  Smith and Bretherton's paper on drainage basin
evolution is one of the few successful attempts to develop theoretical treatment of land
surface change (Smith and Bretherton, 1972).  Though Smith and Bretherton's analysis has
been incorporated into several recent models (see for example Willgoose et al, 1990), its use
in spatially distributed models is still limited.  As a result of this lack of theoretical
development, many land surface models widely used in environmental management are
based on a few empirically based equations.  In soil erosion modeling, ANSWERS, AGNPS,
CREAMS and EPIC models are all based on the empirical Universal Soil Loss Equation
(Beach, 1987), despite frequent criticisms (Moore and Burch, 1986).

General issues in environmental modeling

In spite of numerous efforts to formulate, implement, verify and validate physically-
based environmental models, significant problems with these mathematical models are
widely recognized.  Many arise from the fact that it is often not possible to define the precise
mathematical relationships due to an inadequate theoretical understanding of reality.  As a
result, many models include fundamental empirical relationships as part of their apparently
physical basis.  Processes that cannot be treated directly are included through parameters.
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Modeling also is hampered by the fact that critical processes operate on many different scales
in time and space and there may be scale thresholds at which critical processes change.
Processes occurring over time scales which are longer than those being modeled are often
considered invariant, and those over shorter scales are neglected as random statistical
fluctuations (Henderson-Sellers, 1989).  Statistical techniques are important elements in
deterministic modeling efforts.  They are required in the calibration, parameterization and
validation stages and stochastic noise may arise in the model from numerical procedures,
boundary conditions and data and coding errors (Unwin, 1989).

Many environmental models have grown immense over years of improvement and
enhancement.  Large models present particularly difficult validation problems since they are
so complex that the interactions within the model may create obscure errors.  These models
often have hidden, hardwired constraints designed to ensure the model works that may
unknowingly become invalid when new modules are added (Thornes, 1989).  Unfortunately,

There is a great deal of political, emotional and organizational capital and
prestige bound up in the largest of these models, and original objectives have
a tendency to be lost in the momentum developed in the operation and the
established wisdom resulting from it.   (Thornes, 1989, p. 14)

Space in environmental models

Modelers in many fields are gradually recognizing the value of incorporating a
consideration of spatial structure or processes in their models.  "Spatial structure arises from
the operation of processes in which spatial relationships enter explicitly into the way the
process behaves.... A spatial process is a process where changes of state are due to spatial
properties of the attribute" (Haining, 1990, p. 24).  At present, spatial functionality in
environmental models is limited primarily to simple flows between adjacent neighbors.
Models for these flows are well developed for advection, convection and dispersion.  There
are certainly many additional spatial factors that affect natural systems, such as connectivity
and patchiness.  Sklar and Constanza suggest there are three ways to incorporate spatial
characteristics or processes into models: 1) geometrically through system element
interactions, 2) statistically, and 3) mechanically through physically-based simulation of the
processes (Sklar and Costanza, 1990).  However, it will be some time before the
experimental data and theory development arising out of a new spatial paradigm in
environmental modeling provide the basis for mathematical models incorporating spatial
effects.

B.  THE MATHEMATICS OF ENVIRONMENTAL MODELING

It has been noted above that the majority of physically-based environmental models
depend largely upon variations in a few fundamental laws of physics.  For example,
following experiments on soil water movement conducted in 1856, Darcy concluded that the
flow rate in porous materials is directly proportional to the hydraulic gradient.  This can be
expressed by what is known as Darcy's law (Skaggs, 1982):

qs = −K
∂H

∂s

where qs  is the volume of water moving through the soil in the s direction per unit area per
unit time, H is the hydraulic head, ∂H/∂s  is the hydraulic gradient in the s  direction and K is
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the hydraulic conductivity.  As another example, Laplace's equation for steady-state flow in
two dimensions is:

∂ 2u

∂x2
+ ∂ 2u

∂y2
= 0

where u is the quantity being measured (i.e. heat, water).  Such relationships form the basis of
many modern soil and ground water models where they are used as expressions of true
physical processes or as analogies to others.

In order to solve such equations, for example to find the value of u at any place, it is
necessary to find a method for isolating this variable on one side of the equation.  Ideally, a
solution can be found by analytical means.  However,

In general, however, closed form solutions are only attainable for models
which are very simple, or which have some special form.  Because of the
complexity of most ecological systems, models of dynamic systems must be
solved numerically.  (Jeffers, 1982)

Numerical solutions for differential equations in two dimensions

Computers are discrete and finite machines.  Numerical methods are required to solve
continuous equations and data can be stored only to finite precision.  Thus while many
natural processes occur continuously over continuous surfaces, it is necessary to discretize
the processes and/or surfaces for implementation in computers.  The search for techniques for
the solution of differential equations has produced two general numerical methods suitable
for implementation on computers - the method of finite elements and the method of finite
differences.  These numerical solutions rely on techniques which allow complex partial
differential equations to be simplified in such a way that they can be solved by analytical
means.  As well, spectral methods are commonly used in global models of atmospheric flow.

Finite difference method

Finite difference solutions are commonly used in all of the environmental modeling
areas.  This solution discretizes both time and space into small steps and solves the equations
as simple algebra.  For example, Laplace's equation above can be replaced with the following
difference equation (Gerald and Wheatly, 1989):

1

h2
ui+1, j + ui−1, j + ui, j +1 + ui, j −1 − 4uij[ ] = 0

where h is the step size in both x and y directions.

Once a finite difference equation has been devised for the differential equation, the
space over which the solution is required is divided into an appropriate number of equal
intervals and the difference equation is written for each of these intervals where the value is
unknown.  Finally, the system of equations is solved simultaneously.  If the differential
equation is dependent upon time, the simultaneous solution is iterated over the required
number of time steps.  These solutions have significant problems with compounded errors
but there are many different methods for dealing with of which the Runge-Kutta method is
perhaps the most widely used (Gerald and Wheatley, 1989).
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It is useful to note the similarity between the manner in which space is divided in
finite difference methods and traditional raster or grid-based GIS databases.  This has led to
the widespread use of raster GISs as database managers for such modeling efforts.

Finite elements

Developed in the 50's and 60's for use in the aircraft industry, finite element methods
did not become widely popular as a solution technique for differential equations until
sufficiently powerful computers were available (Barron, 1988).  Finite element solutions are
particularly well suited for problems where the study area cannot be easily broken into simple
rectangular units or are better treated as a set of homogeneous but irregularly-shaped areas.
Each element has certain known physical properties which may be the same or different than
those of other elements.

Briefly, the finite element method proceeds through four stages (Gerald and
Wheatley, 1989).  First, the region over which the value of a given continuous phenomenon
is to be predicted is divided into elements.  The boundaries of each element are defined by a
set of nodes and a set of lines and surfaces between these nodes:

Element

Nodes

The values at some nodes may be known from initial values and/or they may be constrained
in some way (e.g. steady-state conditions).  However, for the majority of the nodes, the value
is unknown.

The second stage requires the identification of a set of functions which can be used to
interpolate the values of the phenomenon at any location within each element.  These
interpolating functions are based on the values at the nodes, though these values may initially
be unknown.  While these functions can take many forms, they are often linear.  Therefore,
triangular elements are particularly useful in finite element techniques since it is easy to
express linear relationships for each element based on values at the three triangle nodes.
Interpolating functions can also be simplified by rotating coordinates within each element.
Thus, two dimensional flow problems can be simplified by expressing the flow within each
finite element in one dimension along the axis of the element instead of as a vector based on
two Cartesian coordinates.

The set of these interpolating functions over all elements (where the value of any
function outside its corresponding element is 0) is used in the next step as an approximation
of the solution.  The final result of the finite element method provides the coefficients for
these interpolating functions.

The next stage requires the derivation of a functional corresponding to the general
differential equations which govern the behavior of the phenomenon being studied.  A
functional is a function whose domain is a set of functions (Daintith and Nelson, 1989).  For
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the finite element method, the set of functions comprising the domain is the set of
interpolating functions.  Thus the functional describing the physics of the process
incorporates the nodal values which are functions of the interpolating functions which are
functions of space (in 1 or more dimensions) and, possibly, of time.  When the matrix of
interpolating functions is substituted into the functional, a large but sparse set of linear
equations is obtained.  In final step the linear equations are solved for the vector of unknowns
(the nodal values) using well-known Gaussian elimination or iterative methods (Desai, 1979).
The solution is then used to determine nodal values which can be used to describe the
resulting continuous phenomenon.

Like raster GISs for finite difference methods, vector-based GISs are particularly well
suited for the implementation of finite element solutions for distributed physically-based
environmental models (Vieux, 1991).

Spectral methods

While confined mainly to applications in global atmospheric models, spectral
methods provide a different type of solution for models based on complex differential
equations.  In these models, while vertical variation is discretized into layers in a manner
similar to three dimensional finite difference methods, variation horizontally over the surface
of the earth is expressed in terms of a series of smooth spherical harmonic functions of
latitude and longitude.  Note that latitude and longitude are used as spherical coordinates
rather than as the rectangular coordinates commonly used in finite difference methods
(Bourke, 1988).  Thus, instead of discretizing space, the dynamic processes themselves are
discretized.  Bourke lists the advantages of the spectral method:

(i) the intrinsic accuracy of evaluation of horizontal advection, (ii) the
elimination of aliasing arising from quadratic nonlinearity, (iii) the ease of
modelling flow over the entire globe, and (iv) the ease of incorporating semi-
implicit time integration.…  These characteristics of the spectral method
afford in practice both highly accurate and stable numerics and efficient and
simple computer coding.  (Bourke, 1988, p. 169)

The data stored in GISs are by necessity spatially discretized, a situation which is
quite compatible with both finite difference and finite element methods.  However, such
spatial discretiztion is incompatible with spectral methods which discretize across the
response spectrum instead of across space.  Thus the integration of spectral methods with
current GISs is very limited and will not be considered further in this research.

C.  SPATIAL DATA FOR ENVIRONMENTAL MODELING

The modeling of spatial processes and structures requires empirical data about the
natural system.  Spatial data included in environmental models are derived from available
data on topography, climate and weather, soil properties, geological properties, landcover,
landuse, hydrography and water quality.  An excellent review of these different data sources
is given in Moore et al (1993).  Each of these data sources has unique and problematic
qualities when it is used in environmental models.  Some of these phenomena vary
continuously across space (elevation, soil properties), others can be seen to be discrete
(geological faults, river networks) while others may fall in either category depending upon
the level of detail considered (shore- and coastlines).  As well, these phenomena may be
measured on continuous scales of measurement (elevation, infiltration rate) or on discrete
scales of measurement (rock type, soil color).  Since data cannot be stored in computers in
continuous form, one of the major problems in using spatial data in environmental models is

Environmental Modeling with GIS  38 Karen K. Kemp



36

the mismatch between reality, the forms of discretization used to collect and store data about
continuous phenomena and the form in which it must be used in the model.  The connection
between the reality being represented and the data in the database is often very tenuous.

Roles for spatial data in environmental modeling

Spatial data may play many roles in environmental modeling.  These roles can be
roughly classified into three categories:  visualization of model output, proxy or surrogate
building, and arithmetical calculations during model operation and calibration.  GIS may be
integrated with environmental models for any or all of these activities.

Visualization of model output is important during both model development and model
operation.  Visualization of spatial data requires techniques for translating discrete data into
continuous surfaces and for displaying the results in effective and meaningful ways.  While
visualization of spatial data has traditionally been the sole domain of cartographers, research
in visualization is now also being conducted in the fields of computer graphics and spatial
cognition.

In addition to its role as a spatial database management system, GIS's other primary
role in environmental modeling has been as a means for deriving proxy data.  Mathematical
models of environmental processes frequently call for dense datasets about phenomena which
are normally only sparsely measured, if they are measured at all.  Often, spatial datasets
provide only data on potentials (e.g. elevation) while the models require forcing functions
(e.g. slope).  Often characterization of the landscape, a process which combines data about
various phenomena which vary at scales less than that considered in the model, is required
for many regional and global models.  Resampling , in which data must be transformed from
one spatial representation into another, is also frequently required.

GIS has become a very important tool for generating such proxy datasets.  In order to
transform measured spatial data about one phenomenon into estimates of other phenomena, it
may be necessary to use a combination of traditional GIS tools along with mathematical
transformations.  For example, to estimate an input value "soil moisture deficit", spatial data
on cropping practices, vegetation cover, slope angle and rainfall may be transformed through
the construction of Thiessen polygons, the use of buffers, polygon overlay and regression
analysis, and, finally, the conversion of the result to a gridded data model for use in the finite
difference solution.

Research into the construction of valid and defensible proxies predates the appearance
of GIS as a scientific modeling tool by decades.  Water resources modelers have been
concerned with the accuracy of their predictions and the development of sufficient datasets
for operating their models since the 60's.  Clarke (1973) provides a review of some of the
work on such issues in hydrology research during the early 1970's and Wood et al (1988)
examine some of the issues being studied more recently.  Laslett et al (1987) review related
issues in soil science.  The Long-Term Ecological Research Program of the National Science
Foundation (Franklin et al, 1990) and the International Satellite Land Surface Climatology
Project of UNESCO's Man and the Biosphere Program (Sellers et al, 1990) are two major
programs addressing the problems of land characterization.  As a result, considerable
information is available in many disciplines on techniques for the derivation of these proxies
and their accuracy.  Burrough suggests that some formalization of this knowledge is needed
so that it can be included in intelligent geographic information systems (Burrough, 1992).
For the moment, such transformations depend upon the skill and knowledge of GIS analysts
trained in specific disciplines.
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In terms of the mathematical manipulations in models, spatial data play an important
role during model calibration, verification and operation.  In all of these activities, the spatial
data are used as simple non-spatial numeric values in algebraic equations.  For example,
when we calculate c=a+b in the computer, it uses two finite real numbers to produce a third
finite real number.  At the very core of all computer operations, each single process can
involve only one or two real finite numbers (this applies even with parallel processing).  Use
of spatial data about continuous phenomena in this manner raises an important contradiction.
While the data stored in the computer are discrete, they are modeled to represent continuous
phenomena and, while the mathematical equations themselves are discrete, they are
frequently also designed to represent continuous processes.  Thus when designing and
implementing mathematical equations using spatial data, we must think in terms of
continuous phenomena while at the same time manipulating the values of discrete entities.  In
many cases, the mechanism for and timing of the switch between the continuous conceptual
model and the discrete implemented model is critical but uncertain.

While mathematical calculation and proxy building are not mutually exclusive, the
distinction does serve a useful purpose here.  Mathematical calculations operate on discrete
values for specific locations using traditional scalar, vector or matrix algebra, trigonometry,
geometry and statistics.  All of these processes can be broken down to simple arithmetic
algorithms which operate on individual numbers.  Location, if it does play a role in these
operations, is restricted to consideration of the position of a value in a vector or a matrix.
Proxy building, on the other hand, often requires direct manipulation of the spatial data
through the techniques of spatial analysis.  Spatial analysis requires explicit consideration of
the geographical location of spatial elements.  Thus again we have the contradictory situation
of operations which require discrete values about individual spatial entities being used in
conjunction with operations which require geographically extensive datasets.  While it is
useful to maintain this conceptual distinction, it is clear that mathematical and spatial
operations become thoroughly entwined in mathematical modeling with spatial data.

We must also consider how data about phenomena measured on discontinuous scales
are incorporated into environmental models.  Discontinuous scales of measurement are
typical of soil, geological, land cover and land use data.  To be used in non-Boolean algebraic
equations classified data must be converted to numerical values.  This is accomplished in a
number of ways.  As is frequently the case with soils data, the functional relationships of the
model may will use values that are obtained from tables relating the classified soil types
given in the spatial database to specific characteristics such as permeability or erosiveness.
In Boolean statements, data classes may be used to select a specific path at a branch in the
computer program.  Classified data may also be used in the model development process to
select parameter values.  For example, an examination of the study area may show that there
are three vegetation types.  Based on previous field research on these vegetation types,
parameters related to physical characteristics such as rate of transpiration or conversion rate
of carbon might be determined for use in the model.

D.  The role of GIS in environmental modeling

Linking GIS and environmental modeling

The value of GIS in environmental modeling efforts is widely acknowledged.  Links
between environmental models and GIS are becoming common and interest in merging the
technologies is growing (cf. Goodchild et al, 1993).  Nyerges (1992) has reviewed the issues
related to the coupling of GIS and spatial analytic models (which he defines as all those
models which implement a set of numerical expressions in stand-alone software).  He notes
that
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coupling can occur through any combination of GIS and model subsystems,
implementing graphic, analysis and data management functions.  However,
the most common coupling occurs through the data management subsystem.
Consequently, the data management subsystems form the basis of the coupling
architecture.…  Since the data models provide the key to the coupling, an
interface which supports data model translation or conversion plays a key role
in the coupling effort.  (Nyerges, 1992, p. 538)

Fedra has suggested that there are three levels of integration that can be achieved
between GIS and environmental models (Fedra, 1993).  The lowest level involves a simple
exchange of files.  Since file formats may differ, it may be necessary to modify output files
manually before they can be used as input to other components.  The next higher level adds a
special interface program which manages the file format conversions so that file sharing is
transparent to the user.  At the highest level, the model becomes one of the analytical
functions inside the GIS or the GIS is an option in the file management and output
components of the model.

Independently, several researchers have developed conceptual frameworks for the
data integration that must take place if GIS and environmental models are to become fully
integrated.  Generally these frameworks call for interface programs which can handle all of
the issues related to the conversion of different file formats (cf. Breunig and Perkhoff, 1992).
Others have suggested that the solution lies in defining unified data modeling languages that
can manipulate and integrate data from many different formats (cf. Smith, 1992).  Whatever
integration approach is the best, a conceptual framework which can guide the way in which
environmental modelers think about and handle data about spatially continuous phenomena is
still needed.

This chapter has examined many aspects of environmental modeling.  In particular,
we considered how these models deal with the problem of discretizing continuous space and
continuous processes and touched upon how this may relate to the issue of integrating
environmental models with GIS.  With some understanding of how discretization takes place
on the modeling side of the modeling/GIS enterprise, we turn now to the problem of
managing and working with data about spatially continuous phenomena.
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CHAPTER 4 - MEASURING AND REPRESENTING FIELDS

Just as models of natural processes are "toy versions of real world situations" (Casti,
1989, p. vii), geographic databases are also real world models, but they are descriptive rather
than functional models.  While there has been considerable discussion about how humans
perceive the world (Couclelis, 1992), how we develop conceptual spatial data models of it
(Burrough, 1992) and eventually how we construct abstractions of it in the form of spatial
databases (Nyerges, 1991), for the most part the question of how to construct a database
model of reality is out of the hands of environmental modelers.  Databases often exist before
the modeling task is conceived and the model is designed to take advantage of what is
available.  Thus the question is not how to represent reality but rather how to understand and
work with the database's representation of reality.

The majority of the phenomena and processes which are modeled in environmental
models are continuous in space as well as in value and variation.  Techniques for discretizing
the processes have been discussed in a previous chapter.  This chapter examines how we
discretize spatially continuous phenomena conceptually and represent them in computers.
We begin, however, with a brief consideration of the related questions of how to measure,
record and represent the value of phenomena.  We also briefly consider the issue of
measuring and representing location.

A.  MEASURING AND REPRESENTING VALUE AND LOCATION

The "scales of measurement"

In an earlier chapter, we discussed Casti's approach to modeling the infinite variety of
nature (Casti, 1989) as an infinite set of "states".  Since we cannot enumerate this infinity, we
are forced to concentrate on only a tiny subset of these states when we model a natural
system.  The states that we choose to include depend upon our goals, interests and,
importantly, the measurement tools we have available.  Stevens, in his landmark 1946 article
"On the Theory of Scales of Measurements" notes that measurement, "in the broadest sense,
is defined as the assignment of numerals to objects or events according to rules" (Stevens,
1946, p. 677).  Our measurement tools allow us to develop such rules for assigning numbers
to the abstract states (Casti calls these "observables").  These numbers in turn can be used "as
a model to represent aspects of the empirical world" (Stevens, 1946, p. 677).  In any situation
there is a multitude of ways by which we can measure these abstract states and, as a result,
we have many different measurement systems.  How we measure reality affects how we can
model it.  The following identifies the different types of measurement systems available to
the environmental modeler.  Each spatial dataset incorporated into a model must embody one
of these systems.

Steven's "scales of measurement" divide the ways we can measure phenomena into
four systems.  The first two of these are categorical since each observation is assigned to one
of a finite, often small, number of categories or classes.  These values serve as a form of
identification which is used to assign a name or a class to the phenomena.  Although
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mathematical symbols may be used to identify these classes (e.g. 1 = rocky, 2 = loam), by
definition, these class values cannot be used in mathematical expressions.  They have no
explicit mathematical value.  If the values have no inherent order, if they serve simply as
names as a means of distinguishing one entity or its characteristics from another, the
measurement is nominal .  Binary measurement systems are a special case of nominal in
which the number of classes is equal to 2.  Binary systems are generally used to indicate
opposite conditions such as high/low, exists/does not exist; inside area of interest/outside area
of interest.  Values in ordinal systems identify a set of ordered classes (e.g. 1 = good, 2 =
medium, 3 = poor).  Examples of phenomena measured in nominal and ordinal systems are:

• nominal:  land cover, soil type, soil texture, rock type
(binary:  existence of hard pan, high concentration of salts)

• ordinal:  drainage class, erosion potential

As we have noted earlier, although values based on a categorical measuring system
cannot be used in mathematical equations, they may be used in computer programs in one of
the following ways:

• to select a subroutine,

• to select a substitute real number from a lookup table, or

• (rarely) as a parameter (ordered sets only).

Observations using measuring systems based on real numbers are the fundamental
fuel for mathematical models.  There are two types of real number measurement systems:
interval systems which have a feasible range of [-∞,∞] and ratio systems with the more
limited range of [0, ∞].  Frequently, ratio measurements are seen simply as a subset of
interval numbers.  However, there are some critical differences between these measurement
systems when it comes to performing arithmetic.  For example, while it is possible to subtract
15 m from an elevation of 10 m to get -5 m (interval system), it is not possible to subtract 15
m from 10 m of water (ratio system).  Examples of spatial phenomena which are measured
using the real number system are:

• interval:  temperature, elevation, head

• ratio:  rainfall, wind speed, infiltration rate, pH, NDVI

There are a number of specialized real number measurement systems that have
additional constraints on their use in mathematical equations.  Two of these which are
particularly important for environmental modeling are radial systems and vectors.

Radial measuring systems produce values stated in degrees or radians and are the
common units of measurement in geographic coordinates based on latitude and longitude as
well as in measures of aspect and turn angle.  Since these systems are circular (or
semicircular as in the case of latitude) they are usually limited in range and may cycle back to
initial values.  For example, aspect and wind direction are measured from 0° to 360° with
360° equal to 0°, while longitude ranges from -180° to 180° which is equal to -180°.  It is
important to note that within the set of radial systems, the values may be either interval
(latitude, turning angle) or ratio (slope, compass direction).

Vector measuring systems produce values with two components which together
determine direction and magnitude.  There are two ways to express these elements:
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• direction (in degrees) and magnitude, and

• the x  and y components of a geometric vector based on Cartesian
coordinates.

Each of these can be determined geometrically from the other.  Generally for mathematical
manipulation, the (x,y) form is preferred.  Examples of phenomena which can be expressed as
vectors are horizontal groundwater flow, wind (observed as direction and magnitude) and
ground slope (observed as aspect and amount of inclination).

While there are important differences in how each of these measurement systems can
be manipulated, for our purposes here it is convenient to collapse these measurement systems
into categorical  and numerical .  As noted above, while numbers can be used freely in
arithmetic expressions and thus can be incorporated freely into mathematical models,
categorical values are restricted to the uses expressed above.  To be sure there are certain
situations where operations on interval numbers create invalid values.  For example,
multiplication and division of numbers representing physical phenomena are only valid for
ratio values -- 20°C/2 does not make physical sense, since 10° is not 1/2 of 20°.  Practically
speaking, however, interval and ratio values are often combined in mathematical equations
based on physical principles.  In this case, one or more empirically based parameters will be
included which may be assumed to convert the interval value to an ratio value in appropriate
units.  An example of this parameterized conversion is Turc's empirical formula for potential
evapotranspiration (Turc, 1961):

PET =
0.40T Rs + 50( )

T +15

where PET = potential evapotranspiration (mm/month) (ratio)
T = mean air temperature (C°) (interval)

Rs= solar radiation (langleys = cal/cm2) (ratio)

Radial (numerical) data also has complex restrictions on arithmetic operations.
Results must conform to the range and circularity characteristics of the resulting variable.
For example, if a and c measure declination from north (feasible range is [0,360) ) and b
measures the turning angle (feasible range is (-∞, ∞) ) then if a = 330° and b = 85°,

c = a + b = (330 + 85 − 360) = 55°
c = b ×10 = (850 − 360)°= (490 − 360)°= 130°

Or, if a and c measure longitude (feasible range (-180,180] ) and b measures movement in the
east-west direction (feasible range is (-∞,∞) ), and negative values indicate angles measured
in a westward direction, then if a = -150° and b = 70°

c = a + b = −150 + 70 = −80°
c = a − b = −150 − 70 = (−220 + 360) = 140°

So while only categorical and numerical measurement systems are distinguished here,
it is assumed that the constraints on the use of the different measurement systems, as well as
normal considerations for appropriate measurement units, are considered during the
construction of the mathematical equations.
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Data types in computer languages

The measurement systems described by Stevens become practical issues when
mathematical models are implemented on computers.  Computer languages are formal
languages based on abstract symbols and relationships.  Their power lies in our ability to
relate these abstract elements to real world phenomena (Harvey, 1969).  One of the most
important aspects of this abstraction is the provision of a set of standard data types .  A data
type "consists of a set of valid data values, a means of denoting those values, and a set of
operations that are allowed on them" (Metcalf and Reid, 1990, p. 15).  For example, addition
and subtraction may be performed on integer values but not on character strings, while
concatenation is valid on characters and not on integers.  Computer languages require each
variable to be associated with a single data type.  The data type of each variable determines
how it can be used in a computer program and how it will be handled in memory.  While the
naming conventions vary from language to language, there are several common basic data
types.  Table 3 shows some examples of these basic data types for different languages.

Table 3 - Examples of basic data types

Examples FORTRAN C Pascal Mathematica

-3,-2,-1,
0,1,2,3

integer int integer integer

23.456,
-10.6E-11

real
(double)

float
(double)

real real

2/3 rational
John character char char string
3 + 4.2i complex complex
true, false logical boolean
pi, e symbol

Basic types
called...

intrinsic basic required atomic

It is useful to note that, unlike all the other data types listed, complex data types are
represented by a set of two numbers, the first element for the real part and the second for the
imaginary.  In this way a single variable and its related operations may be defined for a 2-
component value.

Most higher level languages also allow the definition of derived  data types based on
combinations of the basic types.  Derived data types are used to produce vectors, arrays and
other data structures specific to a particular programming task.  For example in FORTRAN
90 a new data type, employee, might be defined as follows:

type employee
character(len=20) name
real payrate
integer ssn

end type employee

This high level of data abstraction allows the programmer to define and manipulate data
objects without being concerned about the way they are actually represented in the computer
(Metcalf and Reid, 1990).  In object oriented languages, these derived data types, called
abstract data types, also allow the programmer to associate specific operations with the data
type.
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Measuring location

Since space is continuous, it is possible to express a location on the earth's surface to
any degree of precision required.  Thus values used to express location are elements of the set
of real numbers.  Location is usually expressed in terms of a rectangular or spherical
coordinate system imposed on the surface being examined and we often use (x,y) as a generic
method of expressing the location of a point.

Of course, when a rectangular coordinate system is imposed upon the curved surface
of the earth, distortions arise.  Map projections are the tools we use to geometrically relate
locations on the earth's surface expressed as a set of latitude and longitude (spherical
coordinate system) to position in a, normally, rectangular grid, expressed as an (x ,y) pair.
Fortunately for the large majority of modeling efforts in which location is an integral part,
there are readily available formulas which can be used to convert between rectangular
coordinate and spherical coordinate systems.  Snyder (1987) has provided an excellent
summary of the most important coordinate transformations.

B.  REPRESENTING FIELDS

We now return to the specifics of working with spatially continuous phenomena for
which it is useful to establish the concept of a field .  A physical field is traditionally defined
as an entity which is distributed over space and whose properties are functions of space
coordinates and, in the case of dynamic fields, of time:

z = f x, y( ) or z = f x, y,t( )

Scalar fields are characterized by a function of position and, possibly, time, whose value at
each point is a scalar, while the value at any location in a vector field is a vector (i.e. wind
fields where the value at a location has both magnitude and direction).  Goodchild has
suggested that the fundamental element of geographic information is the tuple

T = x, y, z1, z2 ,..., zn

which describes the value of n spatial variables at the location (x,y) (Goodchild, 1992).  Since
x and y  are continuous, he concludes that the number of tuples is infinite.  Thus the infinite
set of tuples <x,y,z> containing the values of a single spatial variable over space describes a
field.

Since they are continuous, physical fields are particularly distinguished by their
extremely high degree of spatial autocorrelation.  Thus, while we cannot measure the value of
a continuous phenomenon everywhere, we know that locations near those we can measure
will have very similar values.  Knowledge of spatial autocorrelation, however, gives us little
information about how rapidly and erratically the values change between locations at which
we know the value.  In order to represent and manipulate fields for mathematical modeling,
we must have some way of linking the continuous variation of the field as it is observed in
nature to the individual numbers or letters stored in the computer as representations of the
value of the field at certain locations.  In a few special cases, values and variation in space
can be represented by an equation such as:

z = x2 + xy + y2
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where x , y are horizontal Cartesian coordinates and z is the value of the phenomena at any
(x,y) location.  However, since surfaces in reality are rarely this smooth, the linkage between
continuous reality and its representation in the computer is achieved by:

1. dividing continuous space into discrete locations for which discrete values
can be measured and recorded, and

2. establishing a rule for interpolating unknown values between these
locations.

The first of these is known as discretization.  The second is accomplished through the use of
spatial data models .  The following sections consider these two issues in greater detail.

Discretization of space

Geographers have sought to bring structure to the spatial complexity of nature for
centuries.  Even when geography is seen as primarily qualitative, it is nevertheless necessary
to partition space so that regions and elements can be described in an analytical manner.
During the quantitative revolution in geography, the focus turned to the discovery of
geometric structures and mathematical techniques that could be used to explain spatial
distributions.  While much of the initial euphoria about spatial structures has disappeared,
particularly in the human side of geography (Haggett and Chorley, 1989), it is impossible to
repudiate the tremendous progress that has been made in understanding how spatial structures
arise and how they can be described.  This is particularly evident in the development of GIS
which, while apparently not driven strongly by geographic research, has its roots in much of
this early quantitative effort.

As an important tool for understanding spatial structures, maps are recognized by
many geographers as a special language for spatial information (Harvey, 1969).  From maps,
the line work and shading created by cartographers can be reduced to the basic spatial
primitives of point, line and area.  Tobler calls this the cartographic paradigm of geographic
phenomena (Tobler, 1990).  Within the map model of geographic reality, continuous
phenomena are given structure in the point/line/area model through the use of contour lines
and other isolines.

The point/line/area model for geographic investigation has not been, of course, the
only approach.  In fact, as Golledge notes, there are "many geographies and many possible
worlds" (Golledge, 1982, p.21).  However, while it may be argued that this map based
definition of spatial primitives is too limiting given our current technologies (Grelot, 1985,
Goodchild, 1988), it has become the basis of much of our current jargon in geography and, in
fact, in GIS.  These concepts certainly do provide powerful analytical tools.  The landmark
work by Getis and Boots, Models of Spatial Processes: an approach to the study of point,
line and area patterns  (Getis and Boots, 1978), provides an excellent early summary of the
value of this approach while much of the current work on error modeling (cf. Goodchild and
Gopal, 1989) and spatial statistics (cf. Haining, 1990, Arbia, 1989b) also demonstrates the
usefulness of this spatial structure.

With the development of satellite remote sensing and grid-based computer maps, a
second formal model of space, the raster, became popular.  Much debate has been generated
over the value and representativeness of the raster model versus the point/line/area or vector
model.  Many GIS companies currently market their products as "integrated", i.e. capable of
displaying both raster and vector data and in some cases translating between them.  David
Sinton, chief of systems engineering for a large GIS company, expounds upon this common
theme,
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I believe the systems that integrate these data models will continue to mature
and evolve through the 90's.  Thus, the great debate about geographic data
models that consumed so much energy in the early days of the GIS industry
has become moot as the industry has matured.  (Sinton, 1992, p. 4)

Unfortunately, Sinton and others who have called the debate off, have missed the most
important issue.  The problem is more fundamental than simply the development of
algorithms to convert raster images to vector representations of them.  At the heart of this
debate should be the issue of how well these models represent the reality they are intended to
portray.

Peuquet has attempted to bring this question into focus (Peuquet, 1988).  By
reviewing different concepts used to deal with representations of spatial phenomena in
several different fields, she proposes a "dual conceptual model" for representing geographic
data.  In this model, entities in reality are seen as either locations or objects.  Location entities
have attributes, some of which may point to objects (e.g. county in which the location occurs)
and object entities have locations as one of their attributes.  By equating rasters to the
locational perspective and vectors to the object perspective, Peuquet attempts to bring raster
and vector together within the same model.  Harvey, on the other hand, stresses that working
with locations and objects requires two different languages (Harvey, 1969).  For example, he
notes that the concept of similarity produces entirely different results when considering
similar objects than when considering similar locations.  He concludes that, "Deriving
'individuals' in one language... from 'individuals' in another language requires an adequate
translation procedure.  Simply mixing up two very different languages will only yield garbled
results" (Harvey, 1969, p. 216).

In fact, the simple concepts of raster and vector are incomplete for working with the
various representations of continuous phenomena.  There is more to representing reality than
just breaking it into pieces.  It is useful to consider the distinct stages of increasing
abstraction involved in the building and implementation of a mathematical model of a natural
process.  Bekey identified three levels in his hierarchy of representations (Bekey, 1985).
These are

• the reference model, which is purely conceptual since it is a perfect model
exactly equivalent to the process being modeled;

• the mathematical model, which formally expresses the process variables
and the relationships between them; and

• the computer implementation of the model.

In terms of the representation of space, Peuquet recognizes three similar levels of abstraction:
(Peuquet, 1988):

• the conceptual representation

• the functionally-oriented representation, and

• the implementational format.

Within the field of database management, the last two levels are referred to as data models
and data structures  respectively.  When considering the discretization of space for computer
representation it is useful to recognize these different kinds of abstractions and recognize the
differences and relationships between them.  Based on these distinctions, we propose to use
the following set of abstractions:
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• Geographic models (a term proposed by Grelot, 1985) are those
conceptual models used by environmental modelers as they evolve an
understanding of the phenomenon being studied and extract its salient
features from the background of infinite complexity in nature.  Examples
of such geographic models are visualizing terrain as a continuous surface
which can be measured everywhere and regarding soils as a highly
variable continuous phenomena with specific, measurable physical
characteristics.  Like Bekey's reference model or Zeigler's base model,
models at this level cannot be completely specified though they can be
described in a number of ways (e.g. size of smallest unit considered or the
scale on which characteristics can be measured).

• Spatial data models are formally defined sets of entities and relationships
used to discretize the complexity of geographic reality (Goodchild, 1992).
The entities in these models can be measured and the models completely
specified.  These models provide a vehicle for interpretation of spatial data
and a formal link between the geographic models and the data structures.
Spatial data models are the method by which we discretize the complex
natural and man-made environment so that it can examined within the
computer.

• Data structures describe details of specific implementations of spatial data
models.

Grelot distinguishes the three levels in this manner,

a geographic model is an abstract modelling of an object… which can have at
the very same time several representations built on different and
complementary data models... each of which requires a specific mode of
spatial data distribution [the data structure].  (Grelot, 1985, p. 576)

This research focuses on the link between a specific geographic model, the field, and
various spatial data models which can be used to represent it.  We now turn to a consideration
of these data models.

C.  Spatial data models for fields

In a literal sense, just as a hydrological model represents hydrology and a plant
growth model represents plant growth, the term "data model" suggests the idea of a formal
representation of data , not of reality.  It is important to recognize that the process of
developing spatial data models of a specific reality, called data modeling, involves the
discretization of the spatial variation of that reality.  Unfortunately data modeling is often
confused with issues of data structure (Goodchild, 1992) and becomes mired in questions of
how points, lines and areas should be represented.  In fact, this confusion of terms may be
partially at fault for a lack of understanding about the fundamentally different ways these
data models represent reality.  Each one embodies one or more important assumptions about
the form of the reality represented.  These assumptions critically affect how the data model
can be manipulated mathematically.

For the representation of fields, there are six different spatial data models available
(Goodchild, 1992): cellgrids, polygons, TINs, contour models, pointgrids and irregular
points.  In the next sections, we define and discuss each of these models and describe how
each one models reality.  For this and later discussions, it is useful to define the concept of
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spatial elements.  These are the basic geometric components of spatial data models (e.g.
point, cell (pixel), line) and are the individual entities which are referenced and manipulated
by the computer.  Each of these elements is located in space and assigned one or more
specific values.  The full set of spatial elements in a single spatial data model used to
represent a specific instance of a phenomena is a dataset .

Cellgrids

A cellgrid partitions the entire study area into rectangles which are evenly aligned in
two perpendicular directions.  Regular tesselations which are not rectangular (e.g. hexagonal
tesselations) are considered polygon models.  The most common example of a cellgrid is a
remotely sensed scene composed of pixels.  The value of the phenomenon over the entire
area covered by each cell (the spatial element) is represented by a single value even though
there may be considerable variation within the cell.  As a result, values change abruptly at
cell edges.  The geography of a cellgrid can be fully described by specifying the cell width
and height, the origin of the grid, the orientation of the rows or columns to a compass
direction and the projection used.

Polygons

Polygons partition the entire study area into irregularly shaped contiguous regions.
Like cellgrids, the value of the phenomenon within a single polygon is defined as a constant
and changes abruptly at polygon edges.  The boundaries of a set of polygons may be defined
either by the phenomenon (e.g. vegetation zones) or they may be independent of the
phenomenon (e.g. cut blocks, watersheds when used to partition soil characteristics).  In
environmental databases, polygon-structured data is often categorical (e.g. soils, vegetation
types, watershed).  To be useful in mathematical models, these categorical datasets are
usually linked to a relational table which describes various numerical and other properties of
each class.

TINs (Triangulated Irregular Networks)

TINs partition the entire study area into triangular regions.  The value of the
phenomenon is specified only at triangle nodes.  However, since the surface of each triangle
is assumed to be a simple function of rectangular coordinates, values anywhere on a triangle
face can be calculated directly from the values at the nodes.  (Many different forms can be
assumed for the variation on these triangular faces, but since planar faces are the easiest to
work with and the majority of commercial implementations of TINs allow only planar faces,
we consider only that form here.)  While there is no abrupt change in value at planar triangle
edges, there is an abrupt change in slope.  The location of boundaries is defined by the
location of the nodes.  Thus the correspondence between the real surface and that represented
by the surface of triangles is determined by the set of points (nodes) selected to define the
critical points of the surface.  Since TINs define continuously varying surfaces, TIN models
can never be used to structure categorical, non-numerical data.

Pointgrids

Pointgrids store the value of the phenomenon at every intersection in a rectangular
grid.  These values represent the actual value of the phenomenon at that location.  The
location of each sampling point is determined by the grid, independently of the phenomenon.
If a pointgrid dataset has been derived from a primary data source (e.g. elevation from stereo
pairs), no assumptions are made regarding the representativeness of each value within the
neighborhood of sampling points.  However, if the dataset has been derived from some other
spatial dataset, points may indeed be representative of the neighborhood.  For example, the
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values in a pointgrid derived from a cellgrid are representative of the cell neighborhoods
rather than of the point values.  The geography of a pointgrid may be described by specifying
the x and y spacing, the origin and orientation of the grid and the projection used.

Irregular points

Irregular point models store the value of the phenomenon at irregularly scattered point
locations.  The location of the points may be determined by the phenomenon.  In this case,
values may be assumed to be representative of neighboring locations (e.g. carefully selected
representative locations for the collection of rainfall data).  However, irregular point data
may also be collected at locations determined by concerns other than the phenomenon under
study (e.g. weather stations located at airports).  In this case, the value at each point is less
likely to be representative of the surrounding conditions.

Contour models

Contour models are unique amongst these spatial data models used for continuous
phenomena.  Unlike the other spatial data models, contour models are constructed by holding
the value of the phenomenon constant and determining the location.  Lines are constructed to
connect adjacent locations whose value matches that of the desired contour line value.  This
model explicitly identifies all places which exhibit a value expressed by one of the contour
lines.  However, the value of the surface is defined only along the contour lines.  The location
of the contour lines is determined by both the phenomenon and the selected values at which
contour lines are drawn.

A unique characteristic of this model is that the spatial elements are lines, rather than
points or areas as in the other five models.  These lines are ordered by value so that
neighboring contour lines are either equal in value or different by only one contour interval.
Like TINs, contour models partition space into regions over which the value of the
phenomenon varies.  Unlike TINs, the variation between contour lines is not linear or
otherwise clearly defined.  The only assumptions that can be made about the variation
between the lines are that the value of the phenomenon remains within the range defined by
the values of the bounding contour lines and that locations close to contour lines have a value
close to that of the lines.  Finally, like TINs, since contour lines must be measured on a
continuous measurement system, contour models can never represent categorical data.

Characteristics of the spatial data models

Having defined and briefly described the six spatial data models used to represent
fields, it is now possible to consider their different characteristics in a holistic manner.
Goodchild has suggested that these six models represent two distinct ways of exploiting the
spatial autocorrelation of fields (Goodchild, 1992).  Piecewise  models make use of the
assumption that nearby locations are similar while sampled  models exploit the fact that if we
know the value at one location we can estimate the values at nearby locations.

Piecewise models dissect the surface into contiguous regions.  A value is defined at
every location on the surface.  The continuous variation of the value of the phenomenon
within each region is described by a simple mathematical function of the coordinates.  In two
models, gridcell and polygons, this mathematical function is a constant while in the TIN
model the function is linear.  Thus if the values of the phenomena represented are drawn as a
third dimension, gridcell and polygon models produce a stepped surface of horizontal
regions, while the regions of the TIN model are sloping planes with the edges of each region
coincident to those of its neighbors.  The crucial assumption in all piecewise models is that
the value or function assigned to each region is representative of the average value or general
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trend of the surface in the region.  While each individual point may not be represented
precisely, it is assumed that the integral of the values over this surface would produce the
value or linear function assigned.

Sampled models use an entirely different approach.  In these models, the phenomenon
is sampled precisely at a number of different points.  Sampling is done either at points as in
pointgrids and irregular point models, or along lines as in contour models.  No values are
assigned to locations that have not been sampled and, except in the limited case of contour
models, no information is provided about the variation in the value of the phenomenon
between sample sites.  In order to represent the continuous surface between these sample
locations, an assumption must be made that variation between these points can be described
by a mathematical function.  However, unlike piecewise models, the form of this function is
not always clearly defined.  Frequently, linear functions are used though other forms are also
common (e.g. higher order functions to fit a surface exactly to points in a 3x3 window of a
pointgrid).  The interpolation function chosen may vary for a single dataset in different
applications.  As well, the accuracy with which the value of a given point on the surface can
be predicted varies depending upon its distance from a sampled site since, in general, the
value of a point very close to a sampled site can be predicted with greater accuracy than the
value of a location at a great distance away.

Contour models actually display a combination of sampled and piecewise model
characteristics.  While they are indeed sampled in the sense described above, they are
complete samples of all locations with the selected contour line values.  This provides
additional information about the variation between lines.  Thus, from the piecewise
perspective, they do imply the existence of some information about the variation within each
region bounded by lines.  And, like TINs, contoured surfaces drawn in three dimensions
display smoothly varying surfaces between lines.

Thus we have two groups of models with widely different basic assumptions.  While
piecewise models provide a generalized representation of the continuous phenomenon,
sampled models provide precise data at a limited number of locations.  Sampling schemes
may be unbiased (as in pointgrids) or biased (as in contours and some irregular point
models).  In terms of surface representation, it is useful to regard the 6 models in three
distinct groups.  Constant piecewise models depict a stepped horizontal surface with vertical
breaks at cell or polygon borders.  Surface models, TIN and contour models, depict a
continuous surface with varying values within regions and continuity across borders (triangle
edges or contour lines).  Point models do not depict a continuous surface; interpolation must
be used to construct one.

Spatial data models as representations of reality

How well a spatial data model represents reality is a multi-dimensional issue.  Many
authors have discussed the sources of error in digital data (good summaries are found in
Burrough, 1986, Chrisman, 1991, Goodchild and Gopal, 1989).  Error arises initially in the
measurement of the phenomenon and may include mismeasurement and incorrect recording
of one or both of the value and the location.  This has led to the development of separate
measures for locational and positional accuracy and a recognition that errors may be random
or systematic (Chrisman, 1991).

If we assume that the true surface has been accurately sampled and recorded, spatial
data models are still only representations of reality.  Is it possible to estimate the accuracy
with which a spatial data model fits reality?  How can the fit of a discrete representation of a
continuous surface be tested?  The direct answer to these questions is simply, with difficulty.
Since it is continuous, the true surface cannot be completely described.  Therefore the model
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cannot be directly compared to it.  As well the high degree of spatial autocorrelation between
values at points in a field invalidates many of the traditional statistical tools that can be used
to measure the degree of correspondence between the model and reality.  While there are
some measures, including the US National Map Accuracy Standard (Chrisman, 1991) and
kriging (Burrough, 1991), none of them are completely satisfactory.  We must often resort to
qualitative assessments of the veracity of the models.

But even qualitative assessment is difficult.  Unlike the resolution of satellite images,
the amount of detail we can discern on a continuous surface is infinite.  The closer we look
the more we see (Tobler, 1988).  Our assessment of the relationship between the surface
represented by the model and the true surface will be affected by the scale of the
phenomenon we are considering and the sampling frequency with which we have measured
and recorded the surface:

The interaction between sampling frequency and terrain variation is important
because the type of land feature captured at a certain resolution is site
specific.…  Sampling theory dictates that a grid DEM can represent terrain
features no smaller than twice the spacing (the Nyquist frequency) and
therefore for a 30 m DEM, the minimal feature resolution is 60m.
Conversely, the TIN-based DEM theoretically responds to the variation
change in a terrain, with the sampling intensity increasing in areas where the
terrain variability increases.  (Theobald, 1989, p. 105)

Another important issue related to phenomenon variability concerns the smoothness
of the spatial data model used to represent the physical field.  While many phenomena may
exhibit high frequency variability, digital datasets representing these fields often give
produce models of only low frequency variation.  This, of course, is related to the issue
addressed by the Nyquist frequency since the size of the spatial elements in the spatial data
model can only capture phenomenon variation at scales greater than the spatial elements.  As
well, different types of spatial data models represent this high frequency variability in
different ways.  Constant piecewise models replace local variation with a single local average
while surface models depict variability by expressing the rate of change of the value of the
phenomenon through measures of slope (i.e. the slope of TIN triangles or the closeness of
contour lines).  How these models of reality are used and interpreted by a modeler must be
determined by the application in which they are to be used.  For example, if small variations
in the value of the phenomenon are important, it is essential that the spatial data model is
capable of representing these variations.  This may be done either through the use of very
small spatial elements or the development of measures of variability such as those provided
by the application of geostatistical techniques.  In other cases, where small variations in the
value of the phenomenon lead to inconclusive model results, a spatial data model which
smoothes these high frequency variations while maintaining a good representation of low
frequency variation will be required.  If a dataset cannot depict the appropriate level of
variability for the modeling effort, then some means to introduce that information must be
sought.  This is the responsibility of the modeler, not of the dataset.

A further concern about the relationship between reality and models of it is due to
artifacts that arise in certain datasets.  An excellent example of such artifacts are those which
can be observed in TIN models which have been derived from contour models.  Due to the
algorithms which are used to create TINs from contours, a derivative model may display such
processing artifacts as flat triangles (which occur when the three nodes of a triangle are
obtained from a single contour line) and dams and divots (which occur when triangles cut
across ridges and valleys which are not captured by the contour lines) (Kumler, 1992).
Whether these artifacts create problems depends upon the application to which the derivative
TIN will be put.  If the TIN is to be used as a means for creating a shaded relief image of the
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surface, these characteristics may be extremely misleading.  Similarly they may have a great
impact on the results of a hydrological model since they will cause flow directions to be
modified.  On the other hand, if the spatial model is to be used in a mathematical model
where only the scalar value at any point is important, values interpolated on TIN triangles
should be similar to those on the contour model.  Thus the match between reality and the
model is in some cases a matter of subjective choice - does this model match the modeler's
version of reality?  And finally, in the absence of expert knowledge about the phenomenon
represented, we must rely upon the basic assumptions of the spatial data model which has
been chosen to model reality and hope that its selection was driven by a desire to represent
reality as accurately as possible.

Data structures for field spatial data models

As Goodchild pointed out, data structures often become confused with data models
(Goodchild, 1992).  The reason for this is simple - there is a complex mapping between data
models and data structures.  If we consider only two large categories of data structures -
raster and vector - the mapping between data models and data structures might look like this:

Cellgrid -> raster
Polygons -> vector
TINs -> vector
Contours -> vector
Pointgrids -> vector or raster
Irregular points -> vector

Thus, a dataset may be stored in a vector format, but it may represent one of several different
spatial data models.  In order to use a spatial dataset appropriately, it is necessary to know
which spatial data model has been used during the data modeling stage of database
development.

D.  MODELING WITH CONTINUOUS VARIABLES

For environmental modelers, designing and coding a mathematical model is an
entirely different task than accessing and manipulating spatial data in a GIS.  On the one
hand modelers can use well-known and well-structured algebraic and computer languages,
following widely accepted and proven rules for substitution and solution.  On the other hand,
when manipulating spatial data for use in the models, the modelers have only the
idiosyncratic language of a specific GIS to work with.  The procedures they must follow to
get at the spatial data are not codified in any common language.  There are no widely
accepted common rules and defaults to guide how spatial data are used in environmental
models.  Thus, while modelers can use a common symbolic language to express the
development of their mathematics and thus prove the validity of their approach, there is no
simple way to express the transformations and manipulations that are necessary to
incorporate the spatial data into the model.  The consequence of this is that it is very difficult
to assess the validity of the data incorporated into models which have been based on spatial
data and, as a result, it is difficult to evaluate the validity of the model results.

A strategy for dealing with spatial continuity

What is needed are common strategies and techniques for handling spatial data about
continuous phenomena in all its forms.  A common strategy for handling data about fields in
mathematical models provides a framework in which many issues related to the
representation of continuous phenomena can be addressed.  An awareness of the basic
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assumptions which are embodied in each field data model and a means for expressing
exceptions to these assumptions can be provided for.  Specifically this strategy should:

• allow expression and manipulation of variables and data about continuous
phenomena in common symbolic languages.  In other words, the strategy
should be capable of being incorporated into computer language
implementations of environmental models.  This is in direct contrast to the
natural language-like structure of Tomlin's map algebra and is more
amenable to the scientific environment.

• eliminate the necessity to consider the form of the spatial discretization
(the data model) whenever possible.  While we believe it is desirable and
possible to achieve this objective for most operations, it is necessary to
provide for input of additional information for some operations.

• provide a syntax for incorporating primitive operations appropriate for
environmental modeling with fields but which are not yet available in GIS
or common programming languages.  These include operations to perform
discrete versions of "differentiation" and "integration" on variables
representing fields and the incorporation of the concept of vector fields.

• guide and enable the rapid development of direct linkages between
environmental models and any GIS.

The remainder of this chapter establishes the fundamentals of this proposed strategy
for handling spatially continuous data in environmental modeling projects.

E.  FIELD VARIABLES

The field data type and field variables

In order to manipulate data about spatially continuous phenomena, we begin by
defining the field data type to be used in addition to the traditional data types (e.g. float,
integer, character and so on).  Variables declared as field data types are field variables.  Field
variables are the logical or functional representation of the concept of fields.  These variables
are spatially continuous and represent values of the field during a single slice or instant of
time.  Like other types of variables, fields are represented with symbols.  In this document,
uppercase letters are used to denote field variables.  For example, the field of temperature
may be represented by the symbol T or by TEMP.

For any field variable, it must be possible to determine a value at any location and
these values may differ from location to location within the same field variable.  Using a
Cartesian coordinate system, we can refer to the temperature at a specific location in the field
using the notation T(x,y).  While Cartesian coordinates are the default, it is possible to denote
the value of the variable at a point using any coordinate system.  The notation T(x,y)
reinforces the notion that the value at any point in a field is a function of its location.

Spatial equality and nesting

It is useful to define the concepts of spatial equality and nesting as they are essential
when doing mathematics on field variables.  These concepts are used to compare the specific
spatial discretizations of different field variables.  In spatially equivalent field variables, the
geography of all spatial elements correspond exactly and completely.  Such a condition is
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found in co-registered cellgrids of equal dimensions, i.e. if A and B are spatially equivalent
cellgrids ("A as B"), they have the same cell dimensions, origin, orientation and projection.
Spatially equivalent polygons are less common in environmental datasets since boundary
locations are generally determined by the phenomena observed.  However, when a field
variable is derived from another by simple substitution of a set of classes for a set of numeric
values, the resulting variable will be spatially equivalent to the original.  Spatial equivalence
is essential for most mathematical operations on field variables.

Spatial nesting indicates that one spatial variable nests spatially within another.  The
definition varies slightly for piecewise and sampled models.  For piecewise spatial models, if
A spatially nests within B ("A in B"):

• each element in A falls completely within one element in B, and

• the set of lines which form the boundaries of B is a subset of the set of
lines which form the boundaries of A.

A B A in B

For sampled models, spatial nesting means simply that the spatial elements of A are a subset
of the set of spatial elements of B; again A is nested in B:
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Nesting arises most frequently when working with cellgrids.  For example, consider
two cellgrids, A and B, with the same origin, orientation and projection but different cell
dimensions.  If A has a cell width of 10 seconds and B has a cell width of 1 degree, A is
nested in B such that there are 36 A cells in each B cell.

Declaring field variables

Earlier in this chapter, a strategy for dealing with spatial continuity was outlined.  We
propose that this strategy can be achieved by incorporating field variables into environmental
models.  The essential element of the implementation of this strategy, then, is the statement
in which field variables are declared.  The objective of this declaration statement is to provide
the information needed to establish all the parameters for spatial data manipulation and to
determine which specific operations must be used given the specific spatial data model and
the characteristics of the fields represented.  In most cases, sufficient information can be
provided in the declaration of the field variables that no further input is required from the
modeler when these variables are manipulated.  In this manner, several of the strategy's
objectives can be met, specifically it:
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• allows the "expression and manipulation of variables and data about
continuous phenomena in common symbolic languages", and

• eliminates "the necessity to consider the form of the spatial discretization
(the data model)".

Like declaration statements in standard programming languages, these declarations
establish certain functionality constraints and options particular to the specific data type.  For
example, in C, when a variable is declared as

char A[10,8]

memory is set aside to allow for a 10 by 8 array of characters.  It is subsequently impossible
to place a floating point or integer data value in this variable location, or to algebraically add
two elements of this array.  Similarly, the declaration of field variables establishes not only
the type of data contained within the variable, but how it can be manipulated.  Declaration of
the field variable is not a difficult task.  It simply provides a structure in which the essential
properties can be unambiguously and completely described.  These properties will be used
during runs of the model to determine automatically the appropriate operations and
conversions that must be performed.

In this chapter we have introduced the concept of fields and considered how fields are
discretized and represented in the computer.  Since the manner in which fields are
represented is fundamental in determining how mathematical operations can be performed,
the properties associated with field variables describe the data model used and other critical
characteristics related to information density, temporality and measurement system.  These
properties are critical in determining how the variable can be manipulated mathematically
within the computer and help determine how variables represented by different data
structures may be combined in a single mathematical statement.  The issue is to determine
what these critical properties are and how they can be expressed clearly.  The next chapter
considers the operations that may be performed on field variables.  These considerations lead,
in Chapter 6, to a complete description of how field variables may be specified and an outline
of the requirements for the specification for a mathematical model using field variables.
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CHAPTER 5 - OPERATIONS ON FIELD VARIABLES

There is a wide range of operations which may be carried out using field variables in
environmental models.  This chapter seeks to bring some organization to this variety.  We
begin with a quick review of some of the different classification schemes that have been
devised to organize the wide range of operations that can be performed on spatial data in
GISs.  This provides a useful background to and contrast for the remaining sections of this
chapter in which we examine in detail the operations which may be performed on field
variables within mathematical models.

A.  GIS  OPERATIONS

GIS research concentrates on the special characteristics and problems of manipulating
spatial data.  It is useful, therefore, to begin with the GIS perspective.  Three contrasting
approaches to organizing the wide range of operations that can be performed on spatial data
and thus might be available in GIS are considered here.

Tomlin's map algebra

While Tomlin's map algebra approach (Tomlin, 1991) was designed to manipulate
only spatial data in gridded spatial data models, his fundamental organizational scheme has
found wide acceptance.  Tomlin organized the various operations that might be applied to
different data layers (which may be different attributes or different time slices) into four
general classes - local, focal, incremental and zonal (Tomlin, 1990).

• Local operations operate on the values of a single location (a cell) through
a number of different layers.

• Focal operations use the values of a neighborhood around a single
location.

• Incremental operations allow extension of the operation to neighboring
cells which exhibit a connected attribute, such as flow direction or position
along a linear feature.  This provides for the consideration of larger
anisotropic neighborhoods.

• Zonal operations operate on all locations within the same zone (class).

This classification scheme emphasizes the difference between operations which are carried
out on data for a single location and those which relate to neighborhoods defined by
proximity, distance and direction.
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Raper and Maguire's categories

Raper and Maguire (1992) have identified five major functional categories for GIS
operations.  The five categories are:

• data capture, transfer, validation and editing

• data structuring

• data manipulation - restructure, generalize and transform

• analysis and query

• presentation

This approach organizes the functional operations contained within typical GISs, classifying
them according to the sequence of steps that might be made during the implementation of a
single GIS project.

Burrough's classification

Burrough's approach is much more theoretical and has broader application (Burrough,
1992).  He has constructed 9 classes of GIS operations:

• Class 1 operations derive new values from the exact values of discrete
objects and include arithmetic and Boolean operations and classification
(numerical taxonomy) methods.

• Class 2 operations produce non-exact values from exact values of discrete
objects and include statistical and regression methods of value estimation.

• Class 3 operations derive new object values from the values of locations
within the neighborhood of discrete objects.  Included are operations of
adjacency, connectivity and proximity.

• Class 4 are also neighborhood operations, but these are concerned with
neighborhood operations on continuous surfaces and include filtering,
indices of spatial variation, computation of derivatives (slope, aspect,
drainage networks), interpolation and surface fitting.

• Class 5 operations are the inverse of 3 and 4 since they assign values
based on the value at the original location to the locations in its
neighborhood through the use of buffer zones and point-in-polygon
operations.

• Class 6 operations create new spatial objects through overlay, buffering,
centroid calculation and smoothing.

• Class 7 operations derive values based on geometrical attributes of the
objects under study and include measurement of shape, size and topology.

• Class 8 operations produce summary reports including histograms, counts
of occurrences and cross-sections.
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• Class 9 operations are for data management and include rectification,
projection change and join functions.

This classification system makes some distinction between operations performed on
data representing continuous fields and those on data representing discrete objects.  However,
only class 4 explicitly deals with operations on continuous surfaces.  All other operations, if
they are to be performed on data representing continuous phenomena, require discrete data as
input.  Continuous operations must be approximated.

B.  MATHEMATICS ON FIELDS

While Burrough's classification comes the closest to describing mathematical
operations that may be performed on spatial data, even it does not address the issues from the
perspective of traditional mathematical manipulation.  We now turn to consideration of
operations that might be performed on spatial data from the mathematical perspective,
leaving the traditional GIS approach behind.

We have noted above that the computer is incapable of adding two continuous fields
to produce a third continuous field.  All fields must be reduced to simple finite numbers
before mathematical manipulation can proceed.  This is the function of spatial data models of
continuous phenomena.  However, there is an additional complication.  In order to
manipulate two fields simultaneously (as in addition or multiplication), the locations for
which there are simple finite numbers representing the value of the field must correspond.
To add field A to field B, one must add the value of A to the value of B at the same location.
Different spatial data models express location in ways which are generally incompatible.
This implies that in order to perform mathematical operations on data in various spatial data
models, we must first convert all models to spatially equivalent ones, or at least to extract
estimates of values for locations in one field variable for which we have data in the other
field variable.  This condition can be expressed most directly in the "=" or assignment
operation of traditional algebra.  We begin, therefore, with a detailed consideration of
assignment and then examine other mathematical operations important in the construction of
mathematical models.

Assignment

This operation is the most fundamental of all mathematical operations.  By definition,
all mathematical equations require assignment.  In standard programming languages,
assignment statements such as (A = B) or (A := B) or (A <- B) replace the value of the left
hand variable with the value of the right hand variable.  If the type of the two variables is not
the same, a conversion is performed to restate the value of the right hand variable in the data
type required by the left hand variable.  A similar convention must hold here.

As with simple scalar variables, the conceptual version of the assignment operation
for fields is simple.  If B is the temperature field and A = B, then A is a copy of the
temperature field.  Every location has the same value in A as it does in B.  But there are a
number of different ways to represent fields in the computer.  If A is declared as a different
spatial data model than B, then it is entirely possible that a value which must be specified at a
given location in A is not precisely specified at the same location in B (see diagram on the
next page).  Thus assignment, the simple, fundamental mathematical operation, becomes a
complex spatial operation when fields are involved.  It requires the conversion of one spatial
data model to another.  Since each model provides a different representation of reality, it is
important to confront these differences directly during the operation.  However, it is our
contention that it is possible to codify these differences in such a way that the decisions
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regarding how to convert one model to another can be handled automatically, without input
from the modeler.  In the next section we discuss issues which determine how these
conversions should be done and lay out a scheme for organizing and selecting appropriate
procedures.

Ο

Ο

Ο

ΟΟ

Ο
Ο

Ο

=

A                    =                     B

•   •   •   •   •   •   •
•   •   •   •   •   •   •
•   •   •   •   •   •   •
•   •   •   •   •   •   •
•   •   •   •   •   •   •
•   •   •   •   •   •   •
   

It should be noted that the term conversion is used instead of the possibly more
common term transformation to describe this model-to-model assignment process.  The term
transformation is often synonymous with function and commonly used to refer to changes in
coordinate systems.  Such transformations generally are invertible; in other words, a
transformation can be inverted to return to the original data without any change or
degradation in the data or loss of information (Tobler, 1979a).  In the case of spatial data
models, the conversions or transformations which are performed are rarely invertible since
they generally lead to a loss of information.  For example, even though exact values for a
given set of points can be extracted from a TIN, it is not possible to return from that set of
points to the original TIN if the TIN nodes are not part of the point structure.  (An exception
is any conversion process which densifies the structure without changing the spatial data
model.)  Therefore, we prefer the term conversion to emphasize that the model as well as the
information content is, in most cases, permanently changed by one of these operations.

C.  CONVERTING FIELD DATA MODELS

Selection of appropriate techniques for converting field data models to other field data
models requires consideration of several issues.  Most important is the consideration of how
each model represents reality.  In an earlier chapter, the six models were reviewed and the
ways in which they model continuity by taking advantage of spatial autocorrelation were
described.  The models differ in the assumptions that must be made to derive the continuous
surface from the discrete representation but each provides some link with reality.  In order to
convert models, we must exploit each model's link with reality as data is extracted from one
model and placed in another.  This process may be conceptualized in two stages.  First we
must derive a continuous surface from the original discrete spatial data model, then we must
use an appropriate technique to sample the continuous surface to produce the target model.

The derivation of a continuous surface from a discrete representation involves spatial
interpolation .  Goodchild has defined spatial interpolation as the task of computing a
complete continuous surface from a set of sample points (Goodchild, 1992), though Tobler
suggests that it also includes computation using any other spatial data model used to
represent continuous phenomena (Tobler, 1988).  Here we define spatial interpolation as a set
of rules for obtaining a complete field from a spatial data model.  Spatial interpolation has a
long history.  It has always been an important tool for geologists wishing to interpret the
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limited clues they collected on the surface of the earth.  One of the first things that
geographers have traditionally learned is how to interpolate elevations from contour maps.
With the rapid expansion of the use of computers for scientific investigation and the
development of elevation matrices and digital contour maps in the late '60's, interpolation
became an important and widely examined computational procedure.  Many different
approaches and algorithms for interpolation and the resulting conversion between different
spatial data models exist.  Excellent reviews of spatial interpolation methods can be found in
Schut (1976), Lam (1983) and more recently in Burrough (1986).

Sampling may be similarly defined as a set of rules for obtaining a spatial data model
from a complete field .  Together these two processes, spatial interpolation and sampling, may
be regarded as resampling   (Tobler, 1988).  By splitting resampling into these two stages,
passing through a best guess of reality, we ensure that the link with reality is maintained and
that the final representation is as close to it as possible.

When performing spatial data model conversion it is necessary to consider the type of
data involved.  Numerical data are measured on a continuous scale and thus permit the
derivation of values which lie between those in the original dataset.  Since values in
categorical datasets are elements of small, finite sets of discrete classes, derived values must
also be members of these sets and no new values can be created in a conversion operation.
This fundamental difference suggests that different approaches to the conversion of spatial
data models will be appropriate for these different types of data.  As well, operations
involving categorical data about continuous phenomena are restricted to a subset of the six
spatial data models.  Categorical data cannot be stored in the surface models - TINs and
contour models.  Point models may be used to store categorical data, though any practical use
of this data requires the initial construction of piecewise models as a representation of the
continuous surface.

The next section discusses how each spatial data model may be converted so that
mathematics can be performed on data stored in different representations.  This demonstrates
a fundamental principle of this work - no common model is assumed for the representation of
fields.  Each field may be represented in a different manner, the choice of which model being
dependent upon many things, including the phenomenon being represented.  Thus we make
an important fundamental step away from the cellgrid confines of map algebra.

The approach outlined below is prescriptive, suggesting how each of these models
may be converted most precisely.  The purpose of this prescription is to demonstrate how
rules for conversion can be devised, not to set out definitive techniques.  The derivation of
definitive techniques will require implementation and widespread application of the concepts
outlined here.  In later chapters, we discuss how these rules can be encapsulated with the
spatial data itself or added to standard programming language compiler libraries and accessed
as required during mathematical model runs.  The approach is generic although we recognize
that specific phenomena and datasets may require specialized handling.  Provision for such
specialized handling is described later.

We begin by considering how each model can be used to obtain a continuous surface.
This is followed by consideration of how each model can be sampled from the field.
Conversion of categorical data models is treated separately from conversion of numerical
data models.  We define the source   data model as the original or right hand side of the
assignment statement, and the target  data model as the destination or left side of the
assignment.  The term region  is used to refer to either cells or polygons.  The structure of the
target data models must be predefined, since, within the context of performing mathematics
on fields represented by spatial data models, models will only be converted if there is a need
to make them spatially equivalent to other models.  Thus while generalization or
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enhancement of a TIN or contour model may be desirable for storage or display purposes,
these conversions are not considered in this context.

Interpolating fields from numerical field models

Interpolation of a field from a discrete data model can be thought of as the process of
finding the value of the field at an infinite number of locations.  Therefore to determine the
appropriate interpolation procedure for a particular spatial data model we need to find a
technique that allows us to find the value at any location.  TINs provide a complete
description of a surface, so no interpolation is required to construct a continuous surface.
Cellgrids and polygons also provide a continuous representation in the spatial sense but the
values change abruptly at region boundaries.  Therefore, it is not necessary to devise a
technique by which the value at any location can be found.  Although it is clear that this
stepped surface is not identical to the original surface, we can use the models' assumption
that the value within each region is representative of all locations covered by that region to
suggest that the best guess of a value at any location is that of its enclosing cell or polygon.

On the other hand, near the boundaries of source regions, it may be more appropriate
to assign a value intermediate between the value of adjacent regions.  Since constant
piecewise models do represent continuous surfaces in which values of points near region
boundaries will tend toward the value of neighboring regions:

Value tends towards
neighboring constant
value

this approach may provide more accurate estimates of the value on the true surface.  Thus, in
the case of cellgrid interpolation, it may be reasonable to calculate point values on the surface
as a distance weighted average of the center points of each cell.  Some form of averaging is
certainly necessary for deriving the values of points on the surface which fall exactly upon
the corners or boundaries of source regions:

For the other data models, interpolating fields involves finding the values at a number
of points.  Although contour models do describe a smoothly varying surface, values are only
known on the contour lines.  Many algorithms for finding values between contour lines are
available (Schut, 1976, Weibel and Heller, 1991).

x

a

b

contour of value x

contour of value y
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Conceptually, finding the value at any location on a contour model may be determined by
calculating the distance of a point from the adjacent contour line(s) and using linear
interpolation along these lines to determine the intermediate value which should be assigned
to the point.  The value at the point will be

z = a

a + b





 y − x( ) + x = ay + bx

a + b

Interpolation of a surface from points (pointgrids or irregular points) has a long
history and there are almost as many techniques for interpolation as there are applications
(e.g. see Lam, 1983 and McCullagh, 1988):

Numerous algorithms for point interpolation have been developed in the past.
But none of them is superior to all others for all applications, and the selection
of an appropriate interpolation model depends largely on the types of data, the
degree of accuracy desired, and the amount of computational effort afforded.
(Lam, 1983, p. 130)

Selection will also depend upon the phenomenon being modeled, the data model, the
available software and the knowledge and experience of the modeler.  Techniques include
distance weighting, Kriging, splines, interpolating polynomials, Fourier series and least-
squares.  Therefore, the generic term, point interpolation, is used here to refer to the spectrum
of techniques available.  The selection of a specific technique will be made either by 1) the
person who compiles the data and encapsulates an appropriate technique with the dataset,
2) the modeler who will make a selection based on knowledge of the phenomenon, the data
or the application, or 3) the software through limitations on available techniques.

Sampling from numerical fields

As described in Chapter 4, each of the spatial data models provides a different
representation of the spatial variation of a continuous phenomenon.  For the constant
piecewise models, the value recorded for each cell or polygon represents the average of all
values within that region in the field.  Such averaging is performed automatically by remote
sensors with spatial resolutions of a given pixel (cell) size.  However, for fields that must be
measured by taking samples on the ground, values cannot be collected everywhere.  In order
to determine average values for the regions in a constant piecewise model, it is necessary to
determine the mean value of a sample of values falling within the region.  Thus to generate a
constant piecewise model, we need to begin with a dense set of point values on the surface.

Sampling a field for representation as a TIN requires selection of the critical points on
the surface that upon triangulation produce planes approximating the true surface.  When
many points have been measured, selection of critical points can be done automatically
(Kumler, 1992).  Construction of a contour model requires a dense net of point values so that
the selected contour lines can be threaded between the points as accurately as possible (Yoeli,
1984).  Finally, creating point models from fields is the most direct, since the surface is
simply sampled at any location for which a value is required by the model.

Resampling numerical field models

Having considered the two stages independently, it is important now to consider the
combination of interpolation and sampling from one specific model to another since there are
certain aspects that require modification as the conversion proceeds through the intermediate
representation of continuity.  Some of the procedures described above can or must be
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modified, combined or simplified in order that the conversion proceed as directly as possible
with the least loss of information.  Note again that no conversions to contour or TIN models
are considered.

In the following section, it is assumed that each source data model incorporates all the
available information about the true field.  Thus, if we resample from a contour model to a
cellgrid, for example, the assumption of constant variation between contour lines allows us to
assign values interpolated between lines to the target cells.  This may, in fact, be seen to be
creating data since the cellgrid is likely to have several spatial elements between each contour
line.  However, if we accept the assumptions inherent in the contour model, the target cellgrid
becomes simply an alternate representation of the same field.  Rather than adding data, we
have lost information implicit in the precise location of the contour lines.  If the basic
assumptions of a particular data model cannot be assured (for example, a contour model
constructed from very sparse data), then additional knowledge must be used to determine the
appropriate conversion procedure.

From constant piecewise models

From constant piecewise models to constant piecewise models.  Since cellgrids and
polygons represent a continuous surface, creation of new models from these source models
requires rearrangement of the cell or polygon boundaries (see diagram below).  A method for
estimating a new value from the values in a set of whole or partial regions on the original
(stepped) surface is required.  This involves the use of areal interpolation .  As for point
interpolation, there are many different techniques for areal interpolation (Goodchild and
Lam, 1980, Lam, 1983, Flowerdew and Green, 1992).  However, many of these, including
volume-preserving techniques such as pycnophylatic interpolation (Tobler, 1979b) or
methods based on the EM algorithm (Flowerdew and Green, 1992), have been devised for
categorical and count data and are unnecessary here.   (Image on following Page)

In fact, simple areal weighting is sufficiently precise and conceptually consistent for
fields.  It may be expressed as (Flowerdew and Green, 1992):

zt = zstast

ats

∑

where t is the target zone, s is a source zone, st is the intersection of the target and a source
zone, z is the value in the indicated zone, a is the area of the zone and
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zst = zs

From constant piecewise models to point models.  With the cellgrid or polygon model
as the representation of the continuous surface, values for points can be sampled directly
from the surface.    It must be kept in mind, however, that when created from one of the
constant piecewise models, point values will not be indicative of the value at the location, but
instead will be the average of the neighborhood.  As a result, derivative point based models
are not conceptually the same as original point based models.

Unfortunately, there are several complications with region to point resampling.  The
provision for distance weighting values near the boundaries of regions was discussed above.
As well, for models in which polygons or cells are large in comparison to the point spacing,
sampling will produce large patches of same valued points which do little to reflect the true
nature of the underlying surface.  Selective use of an appropriate spatial filter may provide
some smoothing across former region boundaries and produce a more realistic representation
of the true surface.  The decision whether to use a filter or the distance weighting approach
should depend upon knowledge of the smoothness of variation in the phenomenon.  For
example,

Case A Case B

if the surface is very smooth, as in case A above, filtering or weighting may be appropriate.
In case B, however, irregularity of the surface invalidates the underlying assumptions of
smoothness inherent in filtering and weighting techniques in such a way that it is clear they
are inappropriate for this type of field.  For this latter case, alternate techniques must be used.
Knowledge of the surface form must be used to determine appropriate conversion
procedure(s).  Fortunately, as it will be demonstrated later, it is possible to encapsulate this
knowledge with the source data model.

From TINs

From TINs to constant piecewise models.  TINs provide a complete description of a
continuous surface.  Therefore, to sample to constant piecewise models it is necessary to
perform areal averaging  over the area covered by each target region (see diagram on the next
page).  Conceptually, areal averaging would be done by finding the average value within
each piece of triangle in each target region and then carrying out areal weighting.  To find the
average value within each triangle piece it is necessary to divide the pieces into smaller
triangles for which the centroid and its related value can be found.  The values and areas of
these smaller triangles can be used as the basis for the areal weighting.
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From TINs to point models.  TINs to point models allows an exact TIN-to-point
interpolation procedure which calculates the linear equation on each triangle face from the
rectangular coordinates of the nodes and their values.  The equation which results may be
used to find the value at any point which falls on that triangle face.

From contour models

From contour models to constant piecewise models .  Since the surface represented by
a contour model cannot be simply described by a simple mathematical relationship, it is
necessary here to resort to an intermediate data model, a pointgrid, though which this
conversion is performed.  Using a contour-to-point interpolation procedure, a dense grid of
points is created.  This provides information about the variation of the value of the field
within each target region which can be used to estimate the required representative value.
This estimation from a pointgrid requires the use of point averaging .

The validity of point averaging depends upon the number of points that fall within
each target region though the critical minimum number of points that should be used is not
clear.  In many cases, the number of points from a set of interpolated points which fall within
each target region will vary depending on the configuration of the interpolated points and the
target data model:

•   •   •   •   •   •   •   •   •

•   •   •   •   •   •   •   •   •

•   •   •   •   •   •   •   •   •

•   •   •   •   •   •   •   •   •
•   •   •   •   •   •   •   •   •

•   •   •   •   •   •   •   •   •
•   •   •   •   •   •   •   •   •

•   •   •   •   •   •   •   •   •

•   •   •   •   •   •   •   •   •

•   •   •   •   •   •   •   •   •

•   •   •   •   •   •   •   •   •
•   •   •   •   •   •   •   •   •

•   •   •   •   •   •   •   •   •
•   •   •   •   •   •   •   •   •

It is important to recognize that averaging a different number of points for each target region
may affect the statistical validity of the target model.
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Given a specified minimum number of points to be interpolated for each target
region, the spacing of the grid of interpolated points can be determined directly from the
dimensions of the cells or from the size of the polygons.  For example, let us assume that a

minimum of 4 points is sufficient.  Thus, for a target cellgrid, if ∆x and ∆y are the width of
grid cells in the two perpendicular directions, the interpolated grid should have spacings of

∆x/3 and ∆y/3.  For a target polygon model, the grid spacings in both directions should equal:

ap

4

where ap  = area of the smallest polygon.  For polygons which are roughly rectangular, this
should place at least 4 grid intersections in all polygons.  However, since it is likely that
polygons will not be rectangular, it will be necessary to check that at least 4 points fall in
each polygon.  For any polygon without the minimum number of points, a new, denser grid
may be calculated for the area covered by that polygon.  While this point-in-polygon
checking procedure is computationally intensive, algorithms for its solution do exist
(Burrough, 1986).  Hence it would not be necessary to obtain additional input from the user.

From contour models to point models.  Contour to point conversions use the contour-
to-point interpolation procedures described above to combine interpolation and sampling
from the continuous surface described by the contour model.

From point models

From point models to constant piecewise models .  If the number of points in a point
model is much greater than the number of cells or polygons, resampling of point models can
proceed directly by calculating the mean of each set of points falling in each region.
However, if this is not the case, then it will be necessary to invoke an interpolation procedure
which can be used to determine a continuous surface represented by a dense net of point
values which can be averaged within each region.  As described above, the relationship of the
density of the point model to the size of cells or polygons can be determined automatically
without additional input.

From point models to point models.  In this case, interpolation and sampling will be
done simultaneously by interpolating point values in the source model for destination points
in the target model.  The appropriate interpolation procedure may be determined by the
characteristics of the source model as well as the relative densities of source and target.

Interpolating fields from categorical field models

We now turn to a consideration of the conversion of fields expressed using
categorical data.  Much of what has been discussed above applies here although several
differences arise.  Recalling that not all spatial data models are appropriate for categorical
data, this discussion is restricted to consideration of constant piecewise models and point
models.

Whether numerical or categorical, cellgrids and polygons present a continuous
surface.  The blocky nature of the constant piecewise models is the only possible
representation of fields measured on categorical scales since the data is discrete and cannot
be continuous across boundaries.  Thus the field represented by these models is the closest
approximation to reality that can be provided.  Near zone boundaries, it may be appropriate
to assume that a transition occurs with the class at any point being determined by a binary
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probability function.  However, since the assumption is that the regions in a piecewise model
depict the most common class within the zone, it is equally appropriate to assume that the
most likely class at any location is that indicated by the class of the zone in which it falls.

Continuous fields of categorical data cannot be generated from points using any of the
mathematical interpolation techniques since values cannot be "interpolated" between classes.
Geometric techniques must be used.  These techniques involve proximal mapping through
the construction of Thiessen polygons (also known as Voronoi and Dirichlet graphs,
diagrams or tesselations).  By constructing Thiessen polygons each point is associated with
the region of the plane closer to it than to any other point.  By assigning the value of the
enclosed point to the entire polygon, the assumption is made that the closest known point
provides the best information about any unknown point (Burrough, 1986, Boots, 1986).
(Note that this assumption may be invalid for fields which are known to be highly
heterogeneous.)  Many implementations of algorithms for the construction of Thiessen
polygons exist (Aurenhammer, 1992).  Once converted to Thiessen polygons, the
characteristics of these representations of fields are those of constant piecewise models and
conversions proceed accordingly.

Sampling from categorical fields

Once the continuous categorical fields exist, sampling for cellgrids and polygons
must be performed by partitioning source zones into target zones, the first step in areal
weighting.  However, for this categorical data, it is not possible to use the full areal weighted
procedures to determine a representative value for the target regions since categorical data
cannot be mathematically manipulated.  Thus, to determine the value of a region in the target
model it is necessary to devise a set of rules which can be used to determine which class
should take precedence in the new region.  There are several different types of rules that may
be invoked, including:

• the source class covering the largest portion of the target region becomes
the new value.

• precedence rules determine which class takes precedence if it appears
anywhere within a target region.  This approach might be taken when the
classes indicate the level of expected impact; if any part of a target region
contains a portion of any source region classified as high impact, the entire
target region is classified similarly.

• proportions are retained.  This requires a different data structure for the
target model which can retain several pairs of values with each pair
indicating the class and the proportion of the region covered by that class.

Sampling categorical fields for point models is simply a matter of determining the
class of the area in which the point falls.  No mathematical manipulation is possible.

Resampling categorical field models

The options available for resampling of categorical models are limited by the
restriction on suitable data models.  Since constant piecewise models give the best
representation of the surface, only point models need to be interpolated through construction
of proximal regions to create complete representations as piecewise models.  Sampling is
performed through partitioning and rules as described above or by point sampling.
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Problems with converted fields

It is worthwhile to reemphasize here a point made earlier regarding the veracity of
spatial data model conversions.  Each conversion creates a new model of the reality being
represented.  While a conversion process generally causes some loss of information, the
number of spatial elements may actually increase.  This may cause an apparent change in the
smoothness of the variation and an apparent addition of data.  We have argued that an
increase in the number of spatial elements does not increase the degrees of freedom in the
data set and that it may be useful to attach relevant information about the character of the
source data model to the target model.  However, we have also noted that these changes are
artifacts of the processing, and in the absence of expert knowledge about the field, they do
not substantially change what is known about the relationship between the model and reality.
The effect of such transformations of the representation are important, but their effects are
manageable if the relevant characteristics of the datasets are recognized.

The conversion matrices

Based on the preceding discussion, we can summarize these various procedures in a
pair of conversion matrices, shown below in Tables 4 and 5.  While organized for the
purpose of conceptual clarity, the procedures outlined in these matrices could be
implemented as a specific set of decision rules and operations within any computer
programming language.  Note that in Table 4, TINs and contours cannot be used for
predefined destination models since the structure is determined by the phenomenon
represented.  The conversions for TINs and contour models outlined here may be performed
to reduce data volume or for visualization purposes.  They are included here for completeness
but are shaded to indicate that they will not be used for mathematical manipulations.

Table 4 - Summary of spatial data model conversions for numerical data

To
From

Cellgrid Polygon TIN Contour Point
grid

Irreg pt

Cellgrid areal
weights

areal
weights

point
interp &
triang

point
interp &
contour

point
sample

point
sample

Polygon areal
weights

areal
weights

point
interp &
triang

point
interp &
contour

point
sample

point
sample

TIN areal
weights

areal
weights

add or
remove
nodes &
triang

thread
contours

point
interp

point
interp

Contour point
interp &
average

point
interp &
average

select
nodes &
triang

remove
or add
contours

point
interp

point
interp

Point
grid

point
interp &
average

point
interp &
average

select
nodes &
triang

contour point
interp

point
interp

Irreg pt point
interp &
average

point
interp &
average

select
nodes &
triang

contour point
interp

point
interp
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Table 5 - Summary of spatial data model conversions for categorical data

To
From

Cellgrid Polygon Point
grid

Irreg pt

Cellgrid partition &
apply rules

partition &
apply rules

point
sample

point
sample

Polygon partition &
apply rules

partition &
apply rules

point
sample

point
sample

Point
grid

Thiessen,
partition &
apply rules

Thiessen,
partition &
apply rules

Thiessen &
point
sample

Thiessen &
point
sample

Irreg pt Thiessen,
partition &
apply rules

Thiessen,
partition &
apply rules

Thiessen &
point
sample

Thiessen &
point
sample

The computational structure

As noted earlier, continuous mathematics requires some form of discretization in
order for computation to be performed on a computer.  Frequently differential equations are
solved on the computer through the use of finite difference grids.  The dimensions of these
computational grids are defined with respect to the scale of the processes under study.  Thus
global circulation models with grids of 10° latitude and longitude are concerned with
processes that operate at scales of 100's of kilometers while soil erosion models based on
grids of cell width in the order of 100m are concerned with processes operating near the
hectare scale.

Virtually all environmental models will be designed for implementation in a specific
spatial data model with predefined dimensions.  This is the computational structure of the
mathematical model.  Since the definition of the computational structure depends upon the
processes being studied and not the spatial data available to the modeler, there is no
expectation of any fixed relationship between the computational structure and the spatial
properties of the field variables the model uses.  As we shall see, since this is the structure in
which all mathematical calculations of the model will be performed, it becomes the default
structure, the one towards which all others will tend during mathematical and proxy building
operations.

D.  ARITHMETIC OPERATIONS

Having examined the fundamental assignment operator and its related conversions,
we now briefly review the range of other operators and functions that may be used in
mathematical equations.  Categorical fields can only be used in Boolean arithmetic, so, with
the exception of the Boolean section, the following applies only to numerical fields.

Binary arithmetic operators

Binary arithmetic operators combine two numbers through the simple operations of
addition, subtraction, multiplication and division.  If one variable is scalar and one a field, the
result of the operation is to increase or decrease field values uniformly according to the
specified operation.  Adding and subtracting 0 and multiplying and dividing by 1 create
identical fields.  Multiplying by 0 creates a null field, one in which the value everywhere is 0.
Division by 0 cannot be done.  If both variables are fields, these arithmetic operations can be
visualized as combining the values of the variables for each location in space:
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WATER_DEPTH = IMPERV_LAYER_DEPTH - WATER_TABLE_DEPTH

In abstract mathematics, binary arithmetic operations can be performed without
restriction on any real or integer numbers (arithmetic with vectors has different conventions
and is treated separately below), with the two exceptions: division by 0 which is not
permitted and integer division which may create a real number.

Unary operators

Unary operators operate on a single value to create a derivative value.  These include
negation, absolute value, log, roots and exponentiation.  Exponentiation may also be seen as
a special case of multiplication operating on a single value.  With a field, negation creates a
reflection of the surface across the 0-plane, while absolute value reflects only those values
which fall below 0.

Vector arithmetic operations

Arithmetic can also be performed on vector data.  Some of these operations are
defined as follows.  If a = <a1 ,a2>, b = <b1 ,b2> and c is a scalar,

addition: a + b = <a1 + b1, a2 + b2>
subtraction: a - b = <a1  - b1, a2 - b2>
multiplication by a scalar: ca = <ca1, ca2>
dot or inner product: a • b = a1b1 + a2b2 (a scalar)
cross product cannot be done in 2 dimensions

As with binary arithmetic operations on scalar data, these operations when performed on field
data assume the combination of the corresponding vector values for each location in the field.

Trigonometry

While not strictly arithmetic operations, like arithmetic, trigonometric operations
require scalar values.  Radians and degrees, which can be exactly transformed one to the
other, are the only permissible arguments in trigonometric operations.  There are no
restrictions on the execution of trigonometric operations on field variables which are given in
radians or degrees.  Standard language compiler operations are suitable.  Trigonometric
operations are common in models which consider intensity of solar radiation (using a field
variable of aspect) or rate of flow (using a variable of slope).

Boolean arithmetic

Both categorical and numerical fields can be manipulated through Boolean arithmetic.
The operators of Boolean arithmetic provide tools for working with categorical data and are
useful for determining the flow of operations to be performed in a mathematical model.

E.  OPERATIONS INVOLVING DIFFERENT SPATIAL DATA MODELS

Even simple binary arithmetic operations on field variables are not necessarily simple.
However, if A and C are spatially equivalent field variables and b is a scalar, the equations:

C = A + b
C = A - b
C = A / b
C = A * b
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perform the specified operation on each value in the data set comprising the right hand
variable and place the result in the data set comprising the left hand variable.  If all three
variables are field variables and spatially equivalent, then the arithmetic is performed directly
on the values in each spatial element and the result is placed in the corresponding element of
the left hand variable.  Recall that a spatial element, as defined in Chapter 4, is the basic
geometric component of a spatial data model (e.g. point, cell, polygon).

Difficulties arise when the field variables are not spatially equivalent.  In this case,
conversion must be performed so that 1) the operation on the right hand side can be
performed and 2) the answer can be placed in the left hand variable.  The question now is
which conversion should be performed first.  Consider thefollowing case.  The computational
structure of the model is a cellgrid.  We wish to develop a proxy variable for monthly
precipitation.  The only data available is a contour map of total annual precipitation and
scattered weather station records detailing the percent of total annual precipitation that falls
in each month.  Hence we have a contour model which must be multiplied by an irregular
point model to create a cellgrid.  Do we convert the contour model to irregular points,
multiply and then convert the result to the cellgrid, or do we convert both the contour model
and the irregular points to the computational structure before the multiplication?  Clearly a
set of priority rules is needed.

Intuitively, it is possible to develop a set of rules for conversion.  Since the most
convenient structure for most mathematical and spatial operations is the grid, a simple rule
might be that all variables are converted into grids before calculation is performed.  However,
this may lead to an unnecessary loss of information, particularly if the target variable is not a
grid.  Figure 1 shows a wide range of such combination operations and indicates the model to
which variables should be converted before the arithmetic operation is carried out.  From
such an analysis, a set of rules can be devised.  The decisions upon which many of these rules
are based depend upon the relative size or spacing of the spatial elements.  This concept is
expressed here as density  which is defined as the number of spatial elements per unit area.
The following is an example of such a set of rules, listed in order of priority:

1. If both sources are spatially equivalent, use that structure.

2. If each source is either a TIN or a contour model, use the target structure.

3. If all variables are spatially nested grids, use the densest grid.

4. If the target is spatially identical to one source, use the target structure.

5. If one source is a TIN or contour, and the other is a grid, use the grid.

6. If all are of approximately the same density, use the target.

7. If only one is points, use points, unless the points are very sparse.

8. Use the densest structure.  If there is a tie, use the target.

While there is opportunity for experimentation to devise the perfect set of priority
rules, it is clear that implementation of any such set of rules can be done without input from
the modeler.
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FIGURE 1 - Combining spatial data models
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FIGURE 1  (cont)
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This sketch illustrates some of the many different combinations of spatial
data models which may be required in a mathematical  operation.  Icons
represent different spatial data models and structures.  Icons marked with
checks indicate the preferred computational models for each operation.
Where two checks are indicated for a single operation, either model might
be used.

Incompatible scales

The foregoing discussion has ignored the fundamental issue of incompatible scales, a
multi-faceted and complex topic.  Since there are processes operating at many different scales
in any natural system, the sampling frequency and the density of a spatial dataset will
determine which processes are represented and can be modeled.  Mixing datasets based on
different sampling frequencies and spatial densities may lead to confused or misleading
modeling results.  This aspect of incompatible scales is a recurring theme in all the modeling
sciences but, since the nature of its resolution is dependent upon specific modeling domains
and processes, it is beyond the scope of this research.

If it can be assumed that datasets which are to be used together depict the appropriate
level of variability of the fields being represented, there are some generic issues of scale
incompatibility that may be addressed.  For example, suppose a model is being developed
which will use a finite difference grid of 10' latitude and longitude and one of the necessary
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input variables is only available with a grid spacing of 1° latitude and longitude.  For
statistical purposes, it may be suggested that it is inappropriate to significantly densify the
resolution of this dataset so that it can be used with another dataset.  This is because the
number of degrees of freedom, normally determined by the number of data elements, remains
that of the original dataset, although the number of data elements increases significantly
through densification.  Since the new points or cells have been created from the original data,
they do not represent separate independent observations (i.e. degrees of freedom).  Thus, the
available degrees of freedom are not determined by the number of spatial elements in the
densified variable but rather by number of elements in the original variable.  This implies that
each variable which results from an operation in which one or more of the original variables
has been densified should carry an indication of its true degrees of freedom.  While this is not
provided for in the syntax described later, it is a desirable addition for future versions.

However, for spatial data model conversions, it is often the densest model which
determines how operations should be performed and how accurately the results can be
determined.  As the following figure demonstrates, when undertaking data model
conversions, restricting operations to only the sparsest models can lead to unnecessary loss of
information.
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Here, cellgrid A is multiplied by polygon model B to produce the sparse polygon (or cellgrid)
in C.  There are several ways these different data models can be integrated for this
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calculation.  Case 1 gives the true result since the two source data models are overlaid to
produce an intermediate dense model which includes all recorded variation.  An area
weighted average of these values produces the final result.  The other three cases demonstrate
each of the alternatives for selection of a computational model from the source or target
model structures.  In Case 2, model B is converted to the cellgrid of model A before
multiplication and averaging.  Case 3 uses model B as the computational structure.  In Case
4, both target models are converted, by area weighted averaging to the target model.  It is
clear that using the sparsest model, the target (Case 4), as the computational structure
produces the least accurate estimate of the product.  Thus, while densification should not be
used to simulate an increase in the available information, it is appropriate during model
conversions.

F.  DESCRIPTIVE STATISTICS FOR FIELDS AND FIELD VARIABLES

There are several statistical measures that are used to summarize or describe sets of
observations.  These measures include those of central tendency which give an indication of
the typical values observed and those of dispersion which suggest the degree of variability in
the set (Silk, 1979).  For sets of observations, the mean value is the sum of all values divided
by the number of values, maximum and minimum values are simply the largest and smallest
values in the dataset, and the standard deviation is the square root of the sum of the squares
of differences between each value and the mean divided by the number of observations.

While these measures are simply defined for a set of discrete values, it is possible to
express some of these summary statistics in terms of derivatives and integrals of continuous
functions.  For example, a local maximum value of a function occurs at those points where
the first derivative equals 0 and the second derivative is negative.  The mean value of a two
dimensional function f(x,y) on the intervals x=[a,b] and y=[c,d] is defined as

f = 1

b − a( )
1

d − c( )
f x, y( ) dx dy

c

d

∫a

b

∫

However, when the fields are physical fields that cannot be described by simple
functions, the definition and determination of such descriptive statistics is extremely difficult.
Fortunately, the discrete data sets provided by spatial data models provide us with a means to
devise representative statistics for fields.  In this section we review the methods by which
simple descriptive statistics can be devised for fields represented by the various spatial data
models.  It must be remembered that many sophisticated statistical measures for analyzing
spatial data exist (cf. Haining, 1990 and Anselin, 1989), including measures of spatial
autocorrelation and indices of spatial pattern.  While these may often be better descriptors of
the datasets themselves, spatial statistics and for that matter, spatial effects, have yet to
become widely incorporated into mathematical models.  Therefore, we confine the discussion
below to those statistical measures which are likely to be used in mathematical models of
environmental processes.  These measures can be used only with numerical fields.

Mean

While the mean is difficult or impossible to calculate for a continuous field which is
not described by a simple function with a definite integral, it is possible to calculate means
for fields represented by discretized field variables.  Given that constant piecewise models
are representative of the continuous surface and that the value for each region is
representative of all values in that region, the region value can be considered the local mean.
The mean of the entire dataset in a constant piecewise model is calculated as the sum of each
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region value times its area divided by the total area of the study area.  Similarly, fields
represented by TIN models also can be averaged by finding the mean of each triangular facet
(the value at the centroid) and calculating the area weighted average across the field.

Assuming that the variation between contour lines is smooth, means for fields
represented by contour models can be calculated by constructing polygons between adjacent
contour lines.  Contour-bounded polygons are defined as contiguous areas bounded but not
intersected by contour lines and, possibly, the border of the area under study:
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25

32.5

7.5

Each polygon is assigned a value based on the values of bounding contour lines.  The mean
of the entire surface is calculated using the area weighted average.

Since pointgrids are sets of points sampled on a regular grid and thus independent of
any phenomena being sampled, a simple arithmetic mean of all values in a pointgrid dataset
provides a reasonable estimate of the true mean of the field in the same way that the mean of
a sample is used to estimate the mean of a population.  This approach requires an assumption
that there is no systematic spatial variation with a period equal to the grid spacing.  For
irregular points, the mean of the values of the set of points can also provide an estimate of the
surface mean if the points are assumed to be random samples of the surface value.  However,
spatial autocorrelation may make this approach invalid if the points are not evenly distributed
over the surface since points sampled close together will weight the mean to the value in that
area.  Thus, if irregular points are clustered, it is more appropriate to construct Thiessen
polygons around each point and continue as if the dataset were a polygon model (i.e. use the
area weighted average) or to triangulate the surface and continue as for TINs.  The choice of
which process to use depends upon whether the points can be considered representative of
their neighborhoods (in which case Thiessen polygons are appropriate) or critical points on
the surface (in which case triangulation is preferred).  Information which is used to make this
choice may be encapsulated with the dataset or, in the case of possible spatial autocorrelation
problems, a test for spatial randomness (Silk, 1979) may be invoked.

Of course it is quite possible that the mean is not stationary over the surface.  In this
case more sophisticated approaches to calculating means may be necessary, including trend
surface and Fourier analysis.

Sum (Integration)

When working with discrete sets of count data such as cancer cases by county or
votes by electoral district, if we wish to know "How much?" is represented by the complete
dataset, we simply add together all the elements of the dataset.  When working with fields
such as rainfall depth or nitrogen content, "How much?" requires integration of the surface
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function over the area under study.  In two dimensions, the sum of a defined function f (x,y)
over the intervals x=[a,b] and y=[c,d] is

sum( f ) = f x, y( ) dx dy
c

d

∫a

b

∫
As any calculus student knows, the result of the integration operation is the area under the
curve.  In two dimensions the result is a volume.

When working with fields which are not described by functions, integrals can be
found by dividing the study area into regions for which a simple mean value can be
calculated.  The mean of each region is multiplied by the region area to give the region
volume and the total of all region volumes is the integral over the study area.  Therefore, in
order to calculate the integral of any spatial data model we need simply to find the set of
regions for which we can determine mean values.  For cellgrids and polygons, these regions
are defined by the model.  The mean of a region defined by a TIN triangle is the value at the
centroid of the triangle.  Mean-valued polygons can be devised from contour models as
described above.  The point models require the initial construction of regions.  This is
achieved through the construction of Thiessen polygons or through triangulation with the
choice based on whether points are representative or critical as described above.  Once
regions have been constructed from the point models, integration proceeds as outlined for
polygon or TIN models.

The final output of many mathematical models is a final single scalar value which is
used to represent the integration of individual contributions across the entire study area.
Since most computer languages include the clearly defined explicit operation of sum which
adds up all values in the specified set, we propose that a new operation, integrate replace
sum when working with field variables.  Here it is abbreviated to the form

a = integ(B)

where a is a scalar and B is a numerical field.  As well, we often wish to know the individual
integrals within specific regions such as counties or soil types.  Therefore, it is useful to add a
second, optional categorical field to the integ function which defines the regions over
which integration is to be calculated.

a = integ(B, C)

where C is a categorical field.

Maximum and minimum

The maximum and minimum of a field described by a spatial variable can generally
be considered to be the maximum and minimum observations in the dataset.  Since the
surface is completely described in constant piecewise models, these descriptive measures are
simply the extreme values in the set of spatial element values.  For TINs, extremes are
extracted from the set of node values.  For point models, sophisticated interpolation
procedures such as splines or fitted polynomials could be used first to define the surface from
which extremes will be extracted.  However, since many of these techniques use the sample
points as extremes, and it may be difficult to determine the extreme values of some fitted
surfaces, it is also reasonable to extract the maximum and minimum values directly from the
set of point values.
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Contour models do not yield exact extreme values since the value of the field varies
smoothly across contour lines.  Maximum and minimum values must be extrapolated from
the value of the highest and lowest contour lines contained within the study area.  While it is
certain that these extreme values lie within one contour interval of the extreme valued
contour lines, there is no additional information within the spatial data model itself available
to produce accurate estimates.

Standard deviation

The standard deviation of a function, f ,(x,y) may be defined as

σ =
f x, y( ) − f( )2

dx dy
c

d

∫a

b

∫
dx dy

c

d

∫a

b

∫

where f  is the mean of function f.  Since this is difficult to determine for a field not defined
by a simple function, it is necessary to resort again to the use of the discrete representations.

To calculate standard deviation for a constant piecewise model, each squared
difference must be weighted by the area of each region:

σ = xi − x( )2 × areai

total_ area











i

∑

where i  is an index value for each region.  The standard deviations of TIN and contour
models can be found in a similar manner once the mean value for each region has been
determined as described above.  It must be noted that standard deviations found in this
manner will be less than the true value since the local means of each region have already
removed some of the true variation.

Pointgrids and irregular points are the only models which can produce a statistically
correct standard deviation value.  In these models, values represent the true value at a point
and the dataset itself can thus be treated simply as a set of observations.  As noted above,
problems with spatial autocorrelation may arise for irregular point models so it may be
preferable to construct Thiessen polygons or to triangulate and proceed as for polygons or
TINs.

G.  INFERENTIAL STATISTICS

Finally we consider briefly the area of inferential statistics as a operation in
environmental models.  Strictly speaking, inferential statistics will not form a part of the
models themselves, but they are important in all other aspects of mathematical modeling
including model fitting, testing and evaluation, proxy building, visualization of results and
importantly in interpolation and sampling.

Due to inherent characteristic of spatial autocorrelation and the resulting lack of
independence in spatial datasets, researchers dealing with spatial data often find it necessary
to avoid strict parametric approaches to inferential statistics in favor of nonparametric,
qualitative and robust procedures.  Parametric approaches require assumptions of
independence and normality, which is unrealistic for many spatial data sets.  However, results
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from robust and nonparametric techniques are limited in their generality (i.e. results may not
hold for the population from which the sample was drawn) and tend to be very conservative
(Anselin, 1989).

As well, many statisticians argue that a dataset comprising a field variable is not the
set of random samples required by traditional inferential statistics but rather it is a single
instance of a stochastic variable.  In fact, it has been suggested that a spatial dataset forms the
complete population and as a result, no inferential statistics can be used (Summerfields,
1983, in Anselin, 1989), although Anselin has argued that this condition does not often hold
due to "the imperfect nature of measurement, and the inherent error (or noise)" (Anselin,
1989, p. 8).  If this is the case, the spatial dataset can be viewed as the result of a set of
stochastic processes that have measured the underlying signal along with the stochastic error
of measurement (Haining, 1990).  It is thus one realization of many.

Geostatistics and the theory of regionalized variables

Fortunately, a new approach to inferential statistics which has recently gained in
popularity provides some new tools for dealing with fields.  Geostatistics and the theory of
regionalized variables have evolved in a number of different disciplines, originally in mining
and climatology, but the common driving force behind this development has been the need to
develop statistical techniques which work with spatially correlated continuous phenomena.

Fields are traditionally described as functions of location, (Oliver, et al, 1989):

z x, y( ) = f x, y( ) + ε

where z (x,y) is the value of a variable z  at location (x,y) and f denotes a deterministic

function, ε is a random error term.  Using this concept, the use of fitted polynomials to
interpolate surfaces from a limited number of sample sites implies that the majority of the
variation observed is deterministic.  An alternative way to look at the observed variation is to
consider it as essentially random but spatially dependent.

Geostatistics is the application of the theory of regionalized variables to spatially
distributed data (Journel, 1986).  Although Journel suggests

From a theoretical standpoint, little is new in this theory, which borrows most
of its models and tools from the concept of stationary random functions and
techniques of analysis of variance and generalized least-squares prediction.
(Journel, 1986, p. 120)

it provides a "concise, coherent and useful body of theory" (Oliver et al, 1989, p. 268)
providing a new set of probabilistic tools which can be used to estimate and describe the
spatial variation of phenomena on the earth's surface.

All of geostatistics depends upon the development of a model of the spatial
dependence observed in the regionalized variable.  This model is the variogram  which
relates the variance of the value of the variable between any two sites to the distance
separating them.  Thus, the initial stage in any geostatistical analysis is the development of
the variogram.

Constructing the variogram

The variogram is constructed from sample data by calculating the variance between
sample values for a range of different lags, or separating distances.  If the spatial variation is
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isotropic then the estimate of the semivariance, γ∗ , is calculated as (Oliver and Webster,
1991):

γ * h( ) = 1

2m h( )
z xi( ) − z xi + h( ){ } 2

i=1

m h( )

∑

where z(x i) and z(x i+h) are the observed values at xi and xi+h,h is the lag, γ*(h) is the estimate

of γ(h) and m(h) is the number of paired comparisons at that lag.  Once the variance has been
calculated for several different h, a sample  or experimental  variogram is constructed by

plotting γ*(h) against h.  If the field is anisotropic, this calculation is done individually for
several different directions with each set of points treated separately in later manipulations.

The resulting sample variogram consists of a set of discrete points (or sets of points if
anisotrophy is considered).  So that this graph can be used to estimate the semivariance at any
given lag, it necessary to fit a smooth model to these points.  Using weighted least squares
approximation, the points of the sample variogram will be fitted to one of several different
models, including spherical, linear, exponential, Gaussian, De Wijssian and Bessel functions
(Burrough, 1991).  Davis notes that the process of fitting models is "to a certain extent an art,
requiring experience, patience and sometimes luck.  The process is not altogether satisfying,
because the conclusions are not unique" (Davis, 1986, p. 245).

The resulting variogram has several interesting features which can be interpreted with
respect to the phenomenon being studied (see diagram below).  The range  is the distance
over which points exert influence on their neighbors; beyond the range, marked by the
beginning of the sill, no influence is observed.  The nugget  represents the wholly random,
non-spatial, variation (Oliver and Webster, 1991).  However, many sample variograms and
their fitted models will not match this classic form.

 

nugget

range

sill

Kriging

Kriging is "a generic name for a variety of generalized least-squares estimation
algorithms" (Journel, 1986) based upon the variogram and its derivatives.  In its simplest
case, a kriged point estimate is a linear weighted sum of the sample data (Oliver et al, 1989):

z * xo( ) = λ i

i=1

n

∑ z xi( ) with λ i

i=1

n

∑ = 1
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where xi  are the n points used in the estimation, i=1 to n, and z*(xo) is the estimate of the
value at point xo.  The weights are chosen by solving a set of simultaneous equations:

λ i

i=1

n

∑ • γ xi , x j( ) + ψ = γ * xi , xo( ) for all j

where γ(x i,xj) is the semivariance between xi and xj , γ(xi,xo) is the semivariance between xi and

the point being estimated (xo)and ψ is the Lagrange multiplier added to achieve minimization.
Semivariances are determined from the variogram.  The variance of the estimate is

σ 2 xo( ) = γ * xi , xo( )
i=1

n

∑ + ψ

Kriged estimates are unbiased and optimal (Davis, 1986).

Using geostatistics

Geostatistics is rapidly moving out of the domain of statistics researchers and into the
hands of practitioners in many different fields Oliver and Webster, 1991).  Its most important
application is in interpolation since kriged estimates have been found to be as good or better
than those made with other techniques (Burrough, 1986, Journel, 1986) though this
contention has been argued by others (Philip and Watson, 1986).  The existence of an error
measure in the estimate variance is unusual among the range of interpolation procedures.
Techniques for devising "block" estimates from point samples were one of the early
developments in the set of tools available.  Block estimates are particularly important in
mining geology where scattered core samples must be used to determine the grade of ore
over a large mining block (Davis, 1986), though the application of this technique to the
derivation of estimates for the value of phenomena modeled using continuous piecewise
models is obvious.  Geostatistics is also useful in planning optimal and efficient sampling
designs for continuous phenomena and for carrying out spatially constrained classification
(Oliver and Webster, 1991).   Finally, analysis of the variogram itself provides some insight
into the form of the spatial variation of the phenomenon under study.

However, there are many problems with geostatistics and Kriging.  Some statisticians
question the fundamental statistical bases of the theory of regionalized variables and its
derivatives in geostatistics (Philip and Watson, 1986 present a particularly strong criticism).
At a less fundamental level, major problems with geostatistics arise due to the extremely high
computational demands of the method.  Each point estimate requires the solution of a set of
simultaneous equations - 17 or more are used in some contouring packages (Davis, 1986).
As well, Lam has noted that "the method is unreliable unless a large number of sample values
are available" (Lam, 1983, p. 134); Webster and Oliver (1992) have shown that at least 100
and preferably 200 points should be used.

Finally, as Oliver, et al, have noted, "the method is by no means universally
applicable and investigators need to be quite sure that it is appropriate to their circumstances
when using it" (Oliver, et al, 1989, p. 262-3).  In fact, while "the kriging process is an elegant
solution to a difficult problem [it] requires a clear understanding of its approach and rather
more elegant data than is often available to achieve a reliable result" (McCullagh, 1988, p.
753).
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Geostatistics for spatial data models

How can geostatistics be used in environmental modeling with field variables?
Clearly kriging provides an excellent interpolation alternative for many of the conversions.
However, if it is to be used upon demand within mathematical models, it would be absolutely
essential that the variogram is encapsulated with the dataset as the derivation of it is a time
consuming and skilled task.  Such encapsulation seems entirely appropriate as it is expected
that the data gatherer would be sufficiently familiar with the phenomenon and the data which
represents it to perform this geostatistical modeling task.

Since geostatistics is becoming more widely promoted (note its inclusion in standard
statistical texts like Davis' Statistics and Data Analysis in Geology), computer software to
assist in the development of variograms and kriged estimates are now appearing.  Kriging is
already included in many commercial GISs, including Arc/Info (from ESRI, Inc.), GeoEAS
(from the EPA, Las Vegas) and Surfer (from Golden Software).

Having laid out the fundamental aspects of the mathematical manipulation of field
variables, the next chapter identifies the specifics that must be included in declarations of
these variables.  These specifics are intended to allow the mathematical operations discussed
here to be performed automatically, without direct control from the modeler.
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CHAPTER 6 - SPECIFYING FIELD VARIABLES

Having examined the types of operations that may be performed on field variables it
is now possible to consider the requirements for their specification.  Based on the discussion
of the previous chapter it is evident that each field variable must be described by two required
properties and may also be described by several additional optional ones.  Required
properties that must be described are:

• spatial data model

• measurement system

Optional properties include:

• field type

• measures of accuracy

• interpolation procedure

• temporal characteristics

The value of any field may be one dimensional (scalar) or multidimensional (vector).
Therefore, scalar field variables represent those fields for which there is a scalar value at
every location while vector field variables  represent vector fields.  Scalar fields may be
numerical or categorical but vector fields can only be numerical.  While vector fields are
important in many dynamic atmosphere and ocean models, the additional complexity of
representing and manipulating dynamic phenomena in static geographic databases suggests
that it is useful to consider each of these types separately.   We begin therefore by limiting
our initial consideration only to the representation and manipulation of scalar field variables.
In Chapter 7, these concepts are expanded by considering vector fields, their properties and
the operations which may be performed on them.

A.  CONVENTIONS AND ASSUMPTIONS

Since mathematical models which will be run on the computer must be constructed in
a computer language, and many are now being run on UNIX workstations, the strategy
developed here is expressed in a simple pseudo-code similar in structure to C.  However, it is
designed to be generic and should be implemented easily in any computer language.
Implementation issues are considered in Chapter 8.

As in C, all statements end with a semi-colon.  Any statement may contain a block of
statements which are contained within braces.  In this document, pseudo-code statements
representing elements of the strategy are shown by the use of courier typeface.  Field
variables are indicated in capital letters.  Arguments are indicated by italic characters.  For
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the purposes of this strategy, it is assumed that all datasets which will be combined for use in
a single mathematical model adequately cover the geographic area under consideration, are
co-registered and expressed in a common geographic referencing system.

While there are some mathematical models which do use polar coordinate systems,
rectangular coordinate systems are the basis of finite element numerical methods and are the
most common ones used in GIS.  While not explicitly treated within this initial framework
for the spatial language, it is assumed that many of the conditions and operations described
can be readily translated into ones appropriate for other geometric coordinate systems.  As
well we recognize as rectangular any coordinate system in which the axes meet at a right
angle.  Thus the latitude and longitude coordinate system are rectangular and in fact form the
most important rectangular coordinate system for most regional and global mathematical
models.

B.  DECLARING FIELD VARIABLES

This strategy makes use of two types of environment statements.  Declaration
statements identify variables to be used within a particular mathematical model code while
definition  statements are used to define and identify a name for specific formats or operations
to be performed later in the code.  Spatial variables are declared using a declaration statement
of the form:

field NAME:property(parameter),property(parameter)…;

C.  PROPERTIES OF FIELD VARIABLES

Spatial data model

As described in Chapter 4, there are six spatial data models currently used to
represent fields.  Each of these models has different inherent assumptions about the manner
in which continuity is represented and may be inferred from data stored in that form.  In the
field variable declaration this property is identified as:

model(name: parameters)
where name may be

cellgrid (cg)
polygon (py)
tin (tn)
contour (cn)
pointgrid (pg)
irregular points (ip)

Two letter codes indicated in brackets after each model name may be used as abbreviations.
Some of these models have additional required parameters to provide information on the
resolution or density of the data in each field variable and on the geometry and location of
grids.

As demonstrated in the previous chapter, some measure of the density of spatial
elements is required in order that decisions about some conversion operations can be made.
Considering irregular point models, Tobler has suggested that the
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average influence domain of each sample point might be calculated by
dividing the total area (in square units) containing the observations by the
number of observations.  The square root of this value is an estimate of the
average resolution (in linear units), or the effective average length per
observation.  (Tobler, 1988, p. 134)

He goes on to add that

The definition given here for spatial resolution enables one to make the
calculation for point, line, polygon or raster Geographic Information Systems,
and for categorical, scalar, vector, or tensor data.  (Tobler, 1988, p. 135)

Since we are concerned here more with the "average influence domain" rather than the
resolution, we choose to express the "density" of data as the spatial elements per unit area,
calculated by dividing the number of spatial elements by  the total area.

Of course, the density measure does not address a number of important issues about
how the spatial dataset represents reality.  Of particular importance is the issue of the
relationship between the size of spatial units and the rate of variation of the phenomenon.
For example, polygons may be large because the phenomenon under study is very
homogeneous, or they may be large because the sampling interval was large and variation at
a smaller scale was not recorded.  This suggests a variation of the concept of resolution
which may be defined as the minimum distance over which variation has been recorded.
Since this aspect is related to issues of accuracy, we leave discussion of this to a later section.

Declaring grids

Since cellgrids and pointgrids have simple geometric characteristics, details on the
grid spacing and orientation are supplied with this property identifier.

model (cellgrid: c1, c2, α, ∆x, ∆y, nx, ny)

model (pointgrid: c1, c2, α, ∆x, ∆y, nx, ny)

where
c1, c2 are the geographic  coordinates of the center point of the grid

expressed in the rectangular coordinate system of the entire database (e.g.
latitude and longitude, UTM).

α  is the number angle between -45° and 45°, measured clockwise, from north
to the first axis.  This axis defines the x or row direction.  The angle has a

range of (-45°, 45°].

∆x, ∆y are the size of the grid spacing (i.e. cell width or height or distance
between adjacent points) in the x and y (row and column) directions
respectively, includes units.

nx, ny are the number of cells or points in x and y respectively.

The density of the grid is

1

∆x × ∆y
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and, therefore, it does not need to be specified.

An example of this property declaration is:

model(cellgrid: 34°N,128°W,15°,100m,100m,256,256)

Declaring polygons , TINs and irregular point models

Polygons, TINs and irregular point models are declared simply with the addition of
the density measure.  For example:

model(polygons: 10-5m-2)

Declaring contour models

The density of information stored in contour models cannot be expressed using the
measure described above.  Fortunately, since the density does not affect the manner in which
data stored in contour models can be manipulated, this property is not needed for contour
models.  While it may seem that it would be useful to include items such as contour interval
and lowest and highest contour values in the specification of a contour model, the previous
discussion of spatial data model conversions did not suggest a use for such information.
Thus contour models require no additional parameters to be declared in the model property.

Measurement system

For implementation, it is only necessary to recognize two different measurement
systems.  Numerical  measurement systems are those which yield interval or ratio numbers.
Categorical systems include nominal and ordinal measurements.  While we often think of
categorical data as being linked via IDs to relational tables of numerical and other categorical
data, in this strategy we define each attribute as a separate field variable, though related
variables are linked through a common spatial structure.  This allows each attribute in the
related table to be treated as an individual component in mathematical equations while at the
same time economizing on spatial data model conversion efforts.  We discuss this aspect in
greater detail after all the components of the strategy have been specified.

This property is expressed as:

measurement(name)
where name is either numerical or categorical, abbreviated as num or

cat

Field type (required only if vector)

If the field is scalar, field type is expressed as:

type(scalar)

If the field is vector, field type is expressed as:

type(scalar,n)
where n  is the number of components in the vector
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Since the default type is scalar, this property is only specified when the field is a vector field.
Vector fields are discussed in Chapter 7.

Specific interpolation procedure (optional)

This optional property allows the user to specify a specific interpolation procedure
that is to be used in place of the default procedure for the dataset representing a particular
variable.  For example, if the points stored in an irregular point model are critical points, it
may be appropriate to specify that interpolation should use a triangulation procedure rather
than a default Thiessen polygon procedure.  Kriging may be specified for a point model to
override a default distance weighted averaging technique.

In the declaration statement, this procedure is specified only by a name:

interpolation (name)

The specific procedure will be identified and described in a define procedure  statement.

Accuracy (optional)

The measurement and description of the accuracy of spatial data is a area of
considerable concern under active research on a number of dimensions.  Questions of
accuracy in field variables relate to how accurately the true value at any point is predicted.
Accuracy of prediction depends upon many things including: the resolution (the minimum
distance over which variation has been recorded) and its relationship to the distance over
which the phenomenon varies; and, how accurately a spatial data model represents the true
continuous field.  There is a growing body of literature on the accuracy of spatial databases
and many measures have been proposed (cf. Goodchild and Gopal, 1989); however, the
selection of appropriate measures to use in particular cases depends upon the way in which
the data is to be used (Goodchild, 1992).  Thus, although not specifically discussed, the
structure of the declaration of field variables, their properties and optional procedures
described here can be easily extended to include one or more measures of accuracy which
can in turn be used to determine the appropriate spatial operations to perform.

Temporal characteristics (optional)

As discussed in an earlier chapter, time, like space, is continuous.  However, in order
to constrain the scope of this research, we have chosen to assume time can be represented
adequately by the time slice or the time instant.  Since many environmental models do
include analysis of time sequences, it is necessary to include syntax for dealing with temporal
aspects.  Thus, temporal characteristics are described by the length of the time slice, the time
of the beginning of the series and the number of observations in the set:

time(length_of_slice,start,number_of_observations)
where
length_of_slice is the amount of time during which the measurement

was recorded.  If the recording was a single moment then length is 0.
Except in the case of 0 length, this parameter includes both a number and a
unit.  For example "12 hours", "1 month".

start is the time at which the first moment was recorded or the first slice
began.  Time is recorded using the SI format, yy/mm/dd/hh/mm/ss.  This
sequence must be filled from the left, but unnecessarily precise elements
on the right may be omitted.
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number_of_observations is the total number of datasets in the
temporal sequence.

Thus, a daily average temporal sequence starting on September 15, 1954 would be
recorded as:

time (1 day, 54/9/15, 15)

For those sequences which are averages of cyclical time periods, only those elements of the
start date which vary need to be replaced with numbers.  For example, to express a sequence
whose values are representative of all values during a calendar month, starting with January,
12 months in the series, temporality would be specified as

time (1 month, yy/1, 12)

The default condition is static.  Thus, temporality does not need to be declared if the
variable represents a phenomenon which is constant over time.  In this case, though it is
unnecessary as this is the default, static variables can be declared as

time (i,0,1)
where i represents infinity (or static conditions)

Examples of field declarations

field TEMP: model(irregular_points: 10-2 km-2),
measurement(numerical), time(0, 91/5/1, 31) ;

field VEG_TYPE: model(polygons: 10-5 m-2),
measurement(categorical) ;

field CLOUD_COVER:
model(cellgrid:34N°,10W°,0°,100m,100m,256,256),
measurement(numerical), time(1 month,yy/1,12);

D.  Defining special components

In order to allow for user control in the implementation of this strategy, it includes a
number of different types of definition  statements.  These definition statements name and
describe properties, rules, tables or spatial structures which can subsequently be referred to
only by name.  The standard syntax for definitions is

define component name: parameters ;

Define model

Since it is likely that several variables will share similar spatial properties, it is useful
to allow for the definition and naming of specific spatial models.

define model NAME: (spatial_model: parameters) ;

For example,
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define model AGRID:
(cellgrid:34N°,12W°,0°,100m,100m,256,256) ;

field PRECIP, HUMIDITY, TEMP: model(AGRID),
measurement(numerical), time(1 month,yy/1,12);

field VEG_TYPE:

model(AGRID), measurement(categorical) ;

The model name is capitalized here as it can be used, as described in the next section, as a
generic term in other statements to refer to the several fields which share the particular
structures.

Define time

Since the temporal property can become lengthy and is likely to be repeated in the
declarations of several variables, we also allow the definition of time properties:

define time name: (parameters) ;

Define computational structure

In the earlier section on the numerical solutions for continuous equations, a number of
different approaches to discretizing continuity for mathematical manipulation was described.
In that section it was noted that finite difference and finite element solutions appear to be the
most widely used.  Both of these solutions have specific spatial structures in which all model
calculations are performed.  Therefore, it is useful to declare the computational structure so
that intermediate conversions will tend to terminate in datasets which are spatially identical
and algebraic operations can be performed on identical spatial elements.  The computational
structure is defined using the same structure as the model property declaration:

define model COMP:(spatial_model: parameters) ;

or

define model COMP(NAME):
(spatial_model: parameters);

If the computational structure is a grid, the first form may be used since the grid is fully
described by the model properties and does not need to be supplied externally.  Any
computational structure which is not a grid must be described using the second form which
specifies that the computational model will be input as a variable..  NAME refers either to one
of the independent variables or to a dummy variable which has only spatial structure and no
values.

In subsequent field declarations, this structure may be used like other defined models
to establish spatially similar field variables.  Variables with the computational structure are
given structural precedence in many conversion operations.  Since conversion to the
computational model is frequently required, a special mark (") is used to signify a field
variable which has been reformatted to the computational model.  For example,

T" = T
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indicates that the spatial model of T has been converted to that defined for the computational
model.

Define table

The define table statement is used to define lookup tables used to derive numerical
values for computation from categorical field variables.  These tables may be one or two
dimensional.  A one dimensional table may be used to relate a numeric or categorical value to
a class in a categorical field or to a range of numeric values in a numerical field:

Class or upper range
value

Value

10 150
20 200
30 400

If the field which is being used to determine the value is numerical, the values in the first
column represent the upper inclusive value of a range extending from but not including the
next lower range limit in the column.  For example, in the table shown above, if the field
referred to in the first column is numerical, then the table indicates that any field value >10
and ≤20 would be related to the table value 200.

Within the syntax outlined here, a one dimensional table would be defined as:

define table name: field_name ;

A two dimensional table would be used to determine a derivative value from the joint
values of two different fields.  These fields may be categorical or numerical.  For example, a
two dimensional table might look like this:

SOIL

VEGETATION Class 1 Class 2 Class 3

Type 1 2 2 3

Type 2 2 1 3

Type 3 1 1 2

Like one dimensional tables the fields in the rows and columns may be either categorical or
numerical.  If numerical, like one dimensional tables, values under the field names indicate
the upper limits of ranges to which the table value is to be related.  The exclusive lower limit
is defined by the next lower range limit listed.  A two dimensional table would be defined as:

define table name: row_field_name,column_field_name;

where
row_field_name is the field variable whose classes define the

rows,
column_field_name is the field variable whose classes define

the columns.
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For example, in the table given above VEGETATION is the row_field and SOIL is the
column_field.

While the content of most tables will be supplied as input, for some operations it is
necessary to define a table in advance which can hold the output of an operation on
categorical data.  The use of tables is described further below in the section "New operations
on field variables".

Define procedure

Metaknowledge about the data in the database can be used to determine critical
characteristics about the relationship between the representation and the surface.
Metaknowledge itself is difficult to codify but may be critical in choosing correct
interpolation and other conversion procedures.  By using metaknowledge to define
procedures initially, the modeler or the database specialist can:

• specify an appropriate interpolation procedure for a particular dataset.

• specify appropriate smoothing operations for densification of cellgrids and
pointgrids.

• specify the appropriate conversion rules for densifying or generalizing
categorical data.

Conversion procedures can be model-to-model conversions, variable-to-variable
conversions or specialized functions for performing particular algebraic operations.
Procedures are specified with a symbol (often algebraic) and the field variables or spatial
models to which it is to be applied.  Such overloading of system defined functions is a
common feature of most higher level programming languages.

define(VARIABLE_1 SYMBOL VARIABLE_2):{algorithm};

For example:

define (A = B): {algorithm} ;

define (pointgrid = irregular_points):
{algorithm} ;

define (VEG + SOILS): {
overlay (VEG, SOILS)
lookup (potential)} ;

The use of the terms overlay  and lookup  in the previous example illustrate how this syntax
can be used as a window to a GIS or any other applications program.  According to the
modeler's familiarity with other software, these procedures can be defined as generically or
specifically as desired.  Procedures can be specified simply by a common name (like overlay
or buffer for GIS operations) or, if necessary or desired, by pseudo-code descriptions of the
algorithms involved.  When implemented, procedures can be specified as functions or
subroutines in procedural languages or applications software.

Once defined, the symbol can be used directly in mathematical statements.  For
example,
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A = B ;
POTENTIAL = VEG + SOILS ;

will perform the conversions as defined above.  In the first case B is assigned to the new field
A according to the algorithm.  In the second case, the fields VEG and SOILS are overlaid
(using some undefined GIS) to create a new field POTENTIAL.  The value in each region of
POTENTIAL will be determined by the table potential.  (Categorical operations are
discussed in greater detail below.)

Define conversion matrix

Having outlined the default conversion matrices for field variables in the previous
chapter, it is useful to allow for their formal specification.  The procedures specified in these
matrices would be invoked if a field declaration does not specify a special procedure which is
to be applied to it.  Thus these procedures can be seen as the generic operations, those which
can be used in the absence of additional information encapsulated with the field variable
itself.  Note that for conversion of categorical fields to piecewise models, the specification of
rules is required.  Thus categorical conversion matrices are always incomplete and require
encapsulation of additional procedures with each variable or the definition of suitable
procedures.

There are many different ways the matrices could be implemented in different
computer languages.  Here we suggest a conceptual form which may be easily translated
when required.  A matrix is constructed as a simple table with each cell containing one or
more procedures and a set of decision rules if necessary.  Tables 4 and 5 in Chapter 5 outline
possible default matrices.  Physically, these tables may be implemented as lists of procedures
which can be selected based on the type of spatial data model of the source and target field
variables.  Each of the procedures included may be defined in a definition statement or
provided externally through GIS or other software.

Define priority rules

Similarly, it is possible to also formally specify the priority rules as a procedural list
with appropriate decision paths.

E.  Spatial equality and nesting

The concepts of spatial equality and nesting were defined in Chapter 4.  Unless
specified, it is assumed that field variables are not spatially equivalent or nested.  If these
properties do exist they are specified explicitly as follows:

declare equivalent: (A, B) as C ;

declare nested: (D, E) in F ;

However, equivalence will more often be specified by declaring several field variables in the
same statement, for example:

field A, B, C: model(COMP), measurement(numeric);

This indicates that fields A, B and C are spatially equivalent.  This is the statement which
is used to declare individual attributes of a categorical variable as separate field variables.
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To simplify data manipulations, spatially equivalent fields can be jointly referred to in
other types of statements as well.  For example, to input a set of variables possessing the
same spatial structure, the following can be used:

define model(APOLYGON): (polygon: 10 km2) ;

field A,B,C: model(APOLYGON), measurement(num);

read APOLYGON(A,B,C) ;

This read statement can be interpreted either as reading in the spatial structure and a related
table of attributes or as reading in three separate field variables.  On the other hand, the input
of these variables could also be expressed as:

read A,B,C ;

in which case their individuality is stressed.

If we wish to force conversion of a set of spatially equivalent field variables to the
computational structure, then using the definition and declaration above, we can write:

APOLYGON" = APOLYGON ;

or

A" = A ;
B" = B ;
C" = C ;

F.  Neighborhoods

For many natural processes, the values of phenomena which we observe at particular
locations are determined by conditions at other locations in their neighborhoods.  Therefore,
it is essential to establish a syntax for working with neighborhoods.  This section considers
the definitions of neighborhoods for fields and provides a syntax for working with
neighborhoods.

Definition of neighborhood

In many cases, devising a precise definition of a neighborhood is difficult.  We often
identify the area surrounding a place as its neighborhood.  Funk and Wagnalls' dictionary
defines a neighborhood as "the quality or condition of being near; proximity".  For his map
algebra Tomlin defines a neighborhood as "any set of one or more locations that bear a
specified distance and/or directional relationship to a particular location" (Tomlin, 1990, p.
96).

For our purposes, a neighborhood can be defined as the area adjacent to a specific
location whose condition affects the process under study at that location .  Note that the
extent of the neighborhood is determined by the process.  For example, in a study of plant
root growth, the neighborhood of a plant might be limited to that area over which the plant
roots compete for nutrients with other plants.  In a study of soil erosion, the neighborhood
might encompass all of the hillside upslope from a point.  Thus neighborhoods may be
defined in terms of proximity relationships (e.g. within a distance of) or connectedness
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relationships (e.g. flows into this location).  If the process is isotropic, then the neighborhood
may be expressed simply as a circle surrounding the location whose radius is equal to the
distance over which the process is affected by other locations.  If the process is anisotropic,
then the neighborhood will extend in the direction of the effect.  As well, physical barriers,
such as rivers or mountains may reduce the extent of the neighborhood on the affected side.

To define this concept for spatial data models, it is necessary to translate the field
view of a neighborhood to one which can be expressed as a set of spatial elements.
Beginning with Tomlin's definition and rephrasing it in the context of a field variable
represented by a discrete spatial data model, a neighborhood is the set of complete or partial
spatial elements which bear some distance or connectedness relationship to the spatial
element under consideration.  We recognize two types of neighborhoods - within a distance,
and connected to.

Within neighborhoods are geometrical.  They can be calculated from the geometry of
the spatial elements and can be used equally well for numerical and for categorical fields.
Many connected to neighborhoods, in particular watersheds, are determined by the value of
the phenomenon under study.  These neighborhoods also can be determined automatically
but they are restricted to use with numerical fields.  Other connected neighborhoods, such as
those determined by adjacency to a transportation corridor or water body, are determined by
factors external to the phenomenon being studied.  They cannot be derived directly from the
values of the field and must be input.

Using a neighborhood

However a neighborhood is defined, it may be referenced by a simple syntax:

FIELD[neighborhood]

where [neighborhood] has been previously defined by some function or read in as input.
For example, for a hierarchically nested set of polygons depicting subwatersheds, the
topological relationships will be stored in some manner with the polygons, either in the
geometry or in an attribute table.  Thus

SURPLUS[UPSTREAM]

refers to the set of subfields of the field SURPLUS, one subfield for each location, defined as
the neighborhood UPSTREAM.  Each location will have a unique subfield but subfields may
overlap.

When implemented for the spatial data models, each spatial element will be
associated with a set of spatial elements as its neighborhood.  We assume that the spatial
elements in the neighborhood will be a subset of the set of spatial elements which
collectively comprise the field variable itself.  Thus subfields defined as individual
neighborhoods in a pointgrid will be sets of points, not regions.
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G.  NEW OPERATIONS AND VARIABLES

Integrals

Integral functions were introduced in the previous chapter.  These may produce either
ordinary scalar variables or scalar field variables.  If we wish to determine the integral of a
single quantity over the field then:

a = integ(B)

will produce a single scalar value for that function.  If the result is assigned to a field then the
parameter of the function must be associated with a neighborhood:

A = integ(B[up])

The result will be a scalar field variable A whose value at each point is the integral of the
value of the phenomena in the neighborhood [up] of each point of B.

A third variation of this function produces a table of scalar values.  If we wish to
know the integral of the field over a set of regions, then it can be expressed as:

table(a) = integ(B, C)

where C is a categorical field which defines the regions and table(a) has been defined
previously as.

define table a: C, null;

The result will be a table with one column:

Field classes Integ value

Latitude and longitude variables

Latitude and longitude are fields.  They can be determined for any location on the
surface of the earth and vary continuously in space.  Fortunately, this geographic coordinate
system is geometric and mathematical functions can be used to determine latitude and
longitude at any location that falls within a region covered by a geographically referenced
dataset.    For this reason, we suggest that functions for determining latitude and longitude be
incorporated as the reserved field variables, LAT and LONG.  These variables can be used
directly in any equation in which latitude and/or longitude are independent variables.

Earlier we have noted that any mathematical operation must be performed on discrete
data representing a single location.  Therefore, any mathematical statement which
incorporates the reserved variables LAT and LONG assumes the values of these variables are
determined for each iteration of the statement by the specific location for which the equation
is being calculated.  Since latitude and longitude are point values, they can be determined
directly for the location of any point in a point model.  For piecewise models, a location
within each region must be identified as the location for which latitude and longitude will be
determined.  The most obvious location for these points would be the centroid of each spatial
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element.  While centroids are easy to locate within rectangular cells or triangles, centroid
calculation for irregular polygons can be quite complex.  Fortunately, most polygon data
structures include reference to an included point which can serve as a representative location
for the location of latitude and longitude.

Slope and aspect

Slope and aspect are important field variables in many mathematical models.  (While
these two scalar quantities can be jointly regarded as the vector quantity gradient, we leave
consideration of vectors to a later chapter.)  Aspect determines the impact of solar radiation
and the local direction of flow on the surface.  Slope is important in many physically based
models as it plays a critical role in determining the rate of flow and the energy content of
mobile constituents.  Slope can also be thought of as the physical description of the first
derivative of a function describing the field.  These fields can be derived from any numerical
field representing a potential such as elevation or hydraulic head.

Mathematically, slope can be defined as the inclination of a line or plane tangent to
surface at the point.  If the surface can be described by a function then slope can be defined
as

slope = lim
h→0

f a + h( ) − f a( )
h







= df

dh

where h is a small distance.  (Note that this formula is the textbook definition of the
derivative of the function.)  In a Cartesian coordinate system, slope can calculated as an angle
(Burrough, 1986):

tan slope( ) = ∂z

∂x
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where z is the value at a point.  Aspect can similarly be defined in Cartesian space as
(Burrough, 1986):

tan aspect( ) = −∂z / ∂y

∂z / ∂x

While slope and aspect are defined strictly at points, practically speaking they are
often used in a more regional sense.  For example, when considering water flowing over a
hillside, we are not particularly concerned where each individual drop of rain goes, but
instead need to know the integrated flow path of a large number of minute flows.
Fortunately, the spatial discretization that is required for the numerical solution of
mathematical models as well as for the digital representation of fields provides a basis for
this spatial generalization.

In order to calculate the parameters of slope and aspect, it is first necessary to
estimate a function which describes the shape of the surface at any given point.  This
estimation is easiest with a TIN model since the slope of each triangle can be described by a
simple linear function in x  and y .  In fact, many implementations of TIN models
automatically calculate slope and aspect as a standard attribute.  However, due to the
discontinuous nature of the functions at TIN boundaries, this method cannot provide slope
and aspect calculations at the triangle nodes.
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Point models can be used to derive functions of continuous surfaces through the use
of several different interpolation procedures including fitted polynomials and splines.  While
global methods can be used, more frequently, piecewise polynomial surfaces are calculated.
For example, for pointgrids, a polynomial can be fitted to the set of 9 points centered in the 3
x 3 window around each point in the grid (e.g. Evans, 1980, uses a six-parameter quadratic
equation to estimate slope and aspect at the central point).  For irregular points the
determination of the appropriate surface patches to use for calculating piecewise polynomials
can be difficult (Lam, 1983).  Therefore, it is common to use simpler methods for calculating
slope and aspect on pointgrids.  For pointgrids, Burrough notes that most researchers "show
most interest in gradient [slope] and aspect which are computed from finite differences"
(Burrough, 1986, p. 50).  For example, a simple finite difference estimate of slope in the x
direction at point i,j  is (Burrough, 1986):

δz

δx







ij

=
zi+1, j − zi−1, j

2δx

For irregular point models, it may be more efficient to triangulate the points and calculate
slope and aspect as for TIN models.

For the constant piecewise models, the slope of each spatial element is 0° except at
element boundaries where it is 90° (derivative of infinity).  Thus, slope and aspect cannot be
defined on a polygon or cellgrid model.  However, for cellgrids, if the value of each cell is
assigned to its center point, cellgrids can be converted to pointgrids which in turn can be used
to calculate continuous surfaces from which slope and aspect can be determined.

Contour models also provide a defined surface on which it is possible to determine
slope and aspect at specific points.  Given that a pointgrid or set of irregular points at which
values must be determined is placed over the contour model, it is possible to determine the
required values.  While some algorithms may be more efficient or precise than others, any
application program which manipulates contour models is likely to have built-in modules for
determining slope and aspect at any point.

Given the above discussion, we suggest that it is appropriate to devise slope and
aspect functions:

A = slope (B) ;

A = aspect (B) ;

where each of these returns a new field of the desired parameter.  Specific procedures used to
derive these values are determined by the spatial data model.

It should be noted that Chapter 7 - Vector Fields provides an alternate way of
operationalizing the concepts of slope and aspect.

Categorical functions (lookup)

By definition, categorically measured fields are not continuous in value since
categories are discrete.  However, since categorical field variables are often used
conceptually for continuous phenomena (e.g. soils classes in the determination of erosion
potential) it is useful to devise a categorical function using  tables and the define procedure
statement.  Unlike algebraic functions discussed in earlier chapters, categorical functions do
not return mathematically derived values.  However, a large portion of the data available to
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environmental modelers is categorical.  It is therefore necessary to allow for the specification
of functions for categorical field variables.  There are several variations on this theme which
need to be considered separately.

One input variable, input and output in same spatial model

This function might be thought of as a simple reclassify function.  Each class in the
input variable is assigned to a different class or value for the output variable.  None of the
geometry changes.  This is easily operationalized as in the following:

define model AGRID: (cellgrid: ...) ;

field SOIL_IN:

model(AGRID), measurement(cat) ;

field SOIL_OUT: model(AGRID), measurement(num) ;

define table reclass: SOIL_IN ;

define (SOIL_OUT = SOIL_IN): {

lookup (table(reclass)) } ;

read SOIL_IN ;

SOIL_OUT = SOIL_IN ;

This function works equally well for any combination of numeric and categorical
variables.

Two input variables, input and output in same spatial model

A two dimensional table may be used to combine the values of two variables to
produce a third.  Since the table produces discrete values for each combination, these are
considered categorical functions even though all variables may be declared numerical.  As
with one dimensional tables above, if input variables are numerical, then the table defines
ranges within which values may be found.

Suppose A and B are categorical fields which are to be jointly considered to
determine a numerical result for field C:

define model AGRID:
(cellgrid: 34°N,128°W,15°,100m,100m,256,256) ;

field A, B: model(AGRID), measurement(cat) ;

field C: model(AGRID), measurement(num) ;

define table AbyB: A,B ;

define (A * B): {lookup (table(AbyB)) } ;

C = A * B

Other lookup tables can be defined for the same pair of field variables and defined for other
symbolic operators.
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Two input variables, all variables in different spatial models

If there are several different spatial models involved in the lookup, it becomes more
complex:

define model AGRID:
(cellgrid: 34°N,128°W,15°,100m,100m,256,256);

field A: model(polygon: 1000 m2),
measurement(cat) ;

field B: model(polygon: 1200 m2),

measurement(cat) ;

field C: model(AGRID), measurement(num) ;

define table  AbyB: A,B ;

define (A * B): {lookup (table (AbyB)) } ;

C = A * B

First the two input variables must be overlain to produce a temporary merged variable.  The
lookup then results in the assignment of a single value for each new polygon.  This temporary
numeric polygon field variable must then be converted to the target model using the a
procedure either defined within the program or established in the defaults.

H.  GIS OPERATIONS FOR FIELD VARIABLES

For completeness, we include reference to standard GIS operations for field variables.
In the pseudo-code described here it is acceptable to include reference to standard GIS
operations such as overlay and buffer.  These operations are to be understood in their
traditional sense.  If desired, it is reasonable to incorporate more detailed specifications for
these operations such as those described in map algebra.

I.  EXAMPLES OF THE USE OF THE STRATEGY

Generalize a categorical cellgrid

Reduce the density of a cellgrid by generalizing 2x2 windows of cells into single
cells.  The cellgrid represents a categorical variable which has four classes (1 to 4).  Assign a
class to the new larger cells using the following rules:

1. if 3 or 4 of the set of 4 original cells are a single class, assign that class to the new
cell.

2. if 2 original cells are class 4, assign class 4 to the new cell,

3. if 2 original cells are class 3, assign class 3 to the new cell,

4. if 2 original cells are class 2, assign class 2 to the new cell,
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5. if all original cells are different classes, assign class 4 to the new cell.

define model SMALL_GRID:
(cellgrid: 34°N,118°W,0°,100m,100m,1000,1000) ;

define model LARGE_GRID:
(cellgrid: 34°N,118°w,0°,200m,200m,500,500) ;

field VEG_TYPE: model(SMALL_GRID), measurement(cat);

field VEG: model(LARGE_GRID), measurement(cat) ;

declare (VEG_TYPE in VEG) ;

define (VEG = VEG_TYPE): {
{values} = {set of 4 values in VEG_TYPE in

a single cell in VEG}
for each {values} {

if mode({values}) exists, return mode, end;
if count({values}=4) = 2, return 4, end;
if count({values}=3) = 2, return 3, end;
if count({values}=2) = 2, return 2, end;
else return 4 } } ;

read VEG_TYPE ;
VEG = VEG_TYPE ;

Polygons to grid

Given two field variables, one a cellgrid the other a polygon model with several
attributes, calculate the multiple of a numerical field and one attribute from the table related
to the categorical field.

define model AGRID:
(cellgrid:30°N,15°S,0°,1km,1km,200,200) ;

define model VEG_TYPE: (polygon: 10-4m-2) ;

field HOURS_SUN, GROWTH:
model(AGRID), measurement(num) ;

field GROWTH_RATE, DENSITY, HEIGHT:

model(VEG_TYPE), measurement(num) ;

read VEG_TYPE(GROWTH_RATE,DENSITY,HEIGHT), HOURS_SUN;

GROWTH = HOURS_SUN * GROWTH_RATE ;

Functions on grids

Calculate photosynthetically active radiation (PAR) at the surface as a function of
latitude, reduced by cloud cover to 45% to 65% of total irradiance.

define model AGRID:
(cellgrid:  30°N,15°S,0°,10°,10°,200,200) ;
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define time atime: 1 month, yy/1, 12 ;

field LATITUDE: model(AGRID), measurement(num) ;

field CLOUD_COVER, PAR:

model(AGRID), measurement(num), time(atime) ;

read CLOUD_COVER;

for each month: {

PAR = ( f(LAT) * (65 - CLOUD_COVER/5) /100 ) } ;

where f(LAT) determines the total irradiance received at the surface under 0% cloud cover.

Neighborhood functions

Calculate the growth at a number of point locations based on a function of rain, cloud
cover, soil, elevation and aspect given rain at irregular points, cloud cover as a cellgrid, soil
as polygons, elevation as a pointgrid and aspect calculated from the elevation pointgrid.

define model COMP: (ip: 10-2 km-2) ;

define time months; 1 month, yy/1, 12 ;
field GROWTH:

model(COMP), measurement(num), time(months) ;

field RAIN: model(ip: 10-3 km-2),

measurement(num), time(months) ;

field CLOUD_COVER:

model(cg: 24°N,128°W,0°,1km,1km,100,100),
measurement(num), time(months) ;

field FERTILITY: model(pn: 10-3 km-2), measurement(num) ;

field ELEV: model(pg:24°N,128°W,0°,.5km,.5km,200,200),
measurement(num) ;

define find_growth {equation for calculating growth from

several parameters.  Conversion of all spatial models to

computational model is enforced before calculation} ;

read SITES, RAIN, CLOUD_COVER, FERTILITY, ELEV ;

GROWTH = find_growth(RAIN,CLOUD_COVER,FERTILITY,

ELEV,aspect(ELEV) ) ;

This chapter has outlined the essentials of a pseudo-code syntax which can be used to
specify those aspects of field variables required to fulfill the requirements of the strategy for
dealing with spatial continuity set out in Chapter 4.  The next chapter suggests an extension
to this syntax by considering the possible inclusion of vector fields.
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CHAPTER 7 - VECTOR FIELDS

Having demonstrated the fundamental properties and use of scalar field variables for
mathematical modeling, it is now useful to expand consideration to include vector fields.
While vector fields are important in some areas of environmental modeling, particularly
those dealing with fluid flow in 3 dimensions (i.e. groundwater and oceanic models), the
incorporation of vector fields into GIS has not yet been explored.  In this chapter we consider
the potential role of vector fields for all areas of environmental modeling.  Vectors are
denoted here by bold face type.

While scalars have only magnitude, physical vectors have both magnitude and
direction.  Examples of physical vectors are displacement, force and velocity, though
practically speaking a vector may be thought of as any field for which there are two or more
related values at any location.  Two and three dimensional vectors are graphically represented
by directed line segments in which length and direction are relevant:

The origin of the directed line segment signifies the location of the vector while the location
of the endpoint of the line is determined by the vector's value.  Hence, these values can be
described either by the Cartesian coordinates of the line's endpoint or by the line's magnitude
and direction:

x

y
rα

(x,y) (  ,r)α
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Since it is easier to perform mathematics on the Cartesian coordinate form of vectors, unless
otherwise indicated below, the Cartesian coordinate form is assumed.

Vectors can be used to represent directed quantities other than those related to
movement.  In particular, plane elements  can be represented by vectors such that the direction
component is normal to the plane and the magnitude is the area of the element  (see diagram
below).  As is shown later, this view of vectors is particularly useful for calculating flux.

A.  OPERATIONS ON VECTOR FIELDS

To illustrate the utility of vectors, this section reviews some basic operations for
vectors.

Vector algebra

Adding vectors results in a vector describing total displacement.  It is graphically
expressed as the triangular sum:

u

v

w

(v)

u+v=w

Thus, addition of vectors is simply the addition of similar elements:

if u = a,b,c[ ]  and v = d,e, f[ ]  then w = a + d,b + e,c + f[ ]
There are two types of multiplication for vectors.  The scalar, or dot, product is the

sum of the product of similar elements:

u • v = a × d( ) + b × e( ) + c × f( ).

The scalar product can also be expressed as
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u • v = u v cosθ (8-1)

where cosθ  is the angle between the vectors and u , v  are the magnitudes of the vectors

(Stewart, 1987).  Since cos 90°( ) = 0, the dot product of two orthogonal vectors is equal to 0 .
An excellent physical example of a scalar product is flux (flow rate) which can be expressed
as the dot product of the vector describing flow and the vector describing the plane element
(Shercliff, 1977) or the algebraic product of the magnitude of the flow times the area of the
plane element (the magnitude of the plane element vector) times the cosine of the angle
between them (equation 8-1).

The vector, or cross, product is:

u × v = bf − ce,cd − af ,ae − bd[ ]
and

u × v = u v sinθ

It is important to note that the vector product produces a vector which is perpendicular to
both original vectors and that two vectors are parallel if their cross product is the null vector ,
a vector whose elements are all 0 (i.e. [0,0,0]).

Vector calculus

Integrals, which may be thought of as the sum of field values over space and time,
and derivatives, which describe the variation of field values in space and time, provide
conceptually and mathematically useful abstractions for environmental modeling purposes.
Interestingly there is a close relationship between scalars and vectors through calculus.
Calculating gradient transforms a scalar field to a vector field (Tobler, 1989) and potential is
a scalar field which can be derived from a vector field (Brauer, 1988).  For example, the
vector field heat flow is associated with the scalar field temperature (potential) through the
operation of differentiation.

The differentiation operator, del  or ∇ , is defined in three dimensions as:

∇ = ∂
∂x

i + ∂
∂y

j + ∂
∂z

k

where i , j and k are the base vectors in the three orthogonal directions (i.e. i=[1,0,0], j=[0,1,0]
and k=[0,0,1]).  Applying del to scalar fields and to vector fields produces complimentary
results (Shercliff, 1977).  Gradient (grad) produces a vector field by differentiation of a scalar
field:

grad q = ∂q

∂x
i + ∂q

∂y
j + ∂q

∂z
k = ∇ q

Grad describes the nonuniformity of the scalar field.  Vectors point in the direction in which
the scalar quantity increases and their magnitude expresses the rate with which the quantity
changes.  This is directly analogous to the physical aspect and slope of a topographic surface.
Darcy's law for seepage flow through a porous medium (e.g. aquifers) and related diffusion
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laws can be expressed using the grad operator.  In two dimensions, diffusion can be
expressed as (Shercliff, 1977):

n = −d grad n = −d
∂n

dx
i + ∂n

dy
j







where n  is a vector describing the diffusion vector with magnitude equal to the quantity of
diffusing phenomena passing per unit area and time, n is the concentration of the phenomena,
and d is the diffusivity of the phenomena through the medium.

Divergence (div) produces a scalar field by differentiation of a vector field:

div v = ∂vx

∂x
+

∂vy

∂y
+ ∂vz

∂z
= ∇ • v

Divergence calculates the potential of a vector field and describes its nonuniformity by
measuring the net efflux (flux out minus flux in) in a flow field.

While divergence can be used to determine the quantity that can be displaced,
gradient is used to determine the field of displacement.  It is useful to note that both grad and
div are invariant on translation or rotation of the axes (Shercliff, 1977).

The product of the div and grad operators is the Laplace operator:

div grad f( ) = ∂ 2 f

∂x2
+ ∂ 2 f

∂y2
+ ∂ 2 f

∂z2
= ∇ 2 f (a scalar)

This operator is commonly found in many mathematical models of environmental processes
as it "forms the basis for solving a very wide range of field problems and a great variety of
mathematical, numerical and analogue methods have been developed for extracting
solutions" (Shercliff, 1977, p. 150).  The Laplace operator can also be applied to vector fields
(Stewart, 1987):

grad div f( ) = ∂ 2 f x

∂x2
i +

∂ 2 f y

∂y2
j + ∂ 2 f z

∂z2
k = ∇ 2 f

Vector calculus can be extended in many different directions to suit many different
problems of distributed flow.  Since this section sought only to highlight some aspects of this
large and fundamental mathematical topic, there is no need to explore these further.

B.  REPRESENTING VECTOR FIELDS

The concept of vector fields has not been implemented in current commercial GISs
and so there are no spatial data models specifically designed for vector fields.  It is, of course,
quite reasonable to construct models of vector fields using the separable components of
vectors.  Thus, vector fields are expressed by recording multiple values at each location in the
dataset.  What is missing, however, is a single common symbol or naming convention which
allows these vector components to be handled as a single variable and manipulated in special
vector functions.
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Point based spatial data models are the most appropriate models for representing
multiple component vector fields since the field values can be attached directly to their
specific locations.  However, cellgrids and polygons can also be used to identify the value
and location of vectors, though, like similar scalar fields, the vector is assumed to represent
the mean vector value over the entire area included in the spatial element.

Using TINs as models of vector fields is less direct.  Recall that TINs are modeled by
storing the value of the phenomenon at the triangle nodes and using these values to determine
the slope and aspect of the triangular planes between nodes.  While it is possible to store
multiple values at each node, the triangular planes between each node must be modeled
individually for each vector component such that if the vector components are [u,v] then the
equations of the planes are

u = f x, y( )
v = f x, y( )

The result is simply a set of individual TINs with common nodes.  However, since the
selection of locations for TIN nodes and the related planar faces is determined by the
variation in the phenomenon being represented, it is inappropriate to have two TINs with
common nodes.  What is a "break in slope" or "ridge" for one component may be a smooth
plane for another.  The only correct way to use TINs in for vector fields would be to select
critical points and triangulate for each component separately, then to combine the set of
nodes and triangles such that each of the component TINs is a superset of the triangles of the
result:
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Since it is unlikely that data can be collected to support such a dense triangulation, we reject
the use of TINs for vector field spatial data models.
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The similarity between the appearance of contour models and diagrams of vector field
lines may suggest that contour models are appropriate models for vector fields.  Field lines
are a common way of displaying certain aspects of vector fields.  The tangent of a field line
indicates the direction of the vector at that point.  Tangents to contour lines also indicate the
direction of the gradient of the scalar represented by the model.  However, field lines are
incomplete representations of vector fields.  Field lines give information only about direction,
not about magnitude, joining points of equal magnitude does not produce lines whose tangent
indicates direction:

 

Field lines - tangent 
indicates directions

Lines of equal magnitude

The contour model cannot model more than one component, even though it can give
information about that component's gradient.  Thus, we find that only four of the six spatial
data models are appropriate for representing vector fields.

C.  USING VECTOR FIELDS IN ENVIRONMENTAL MODELS

Declaring vector fields

The declaration of vector fields is identical to scalar fields with the exception of the
replacement of type(scalar) with type(vector, n).  A naming convention can be
established to distinguish between scalars and vectors though this would only be for
convenience since the declaration statement specifies relevant characteristics.  All other
properties for vector field variables can be declared in a manner similar to that for scalar field
variables.

Resampling vector fields

If we wish to use vector fields in mathematical operations, it is necessary, just like
with scalar fields, to establish ways in which values can be found in one vector field model at
locations specified in another vector field model.  Thus we need to consider the issue of
resampling from vector fields.  In a general sense, the operations performed will be similar to
those discussed for scalar fields in Chapter 5, including partitioning, point interpolation and
areal averaging.  The only difference is that each required arithmetic operation is performed
on each vector component individually.  Thus the sum of two vectors is the sum of each
component and the mean of two vectors is the mean of each component.  It is important to
recall that vector components are expressed as Cartesian coordinates.  This rule is particularly

Environmental Modeling with GIS  110 Karen K. Kemp



109

important when calculating vector means, since averaging angle and distance components
produces different and ambiguous results in the mean operation:

(-2,2)

(0,2)

(0,2  2)

(2,2)

Not this

Use this

Nor this

(345,2  2)(45,2  2)

(180,2  2)

√

√ √

√

Using vector field variables

Vector fields have not been widely implemented in environmental models linked to
spatial databases.  As a result, vector operations for GIS have yet to be adequately considered
by the software designers.  Since this is uncharted territory, we consider only a few aspects of
vector fields for GIS here.  Further extension of this concept will only come with the
incorporation of vector fields in conceptual data modeling and the implementation of vector
functions.

Since vector operations can be performed on the separable components of vectors and
it is possible to convert different spatial data models of vector field such that spatial elements
can be made coincident, the use of vector field variables in algebraic statements is
straightforward, so long as proper attention is paid to the dimensions of variables included in
a single statement.  For example, while it is possible to multiply a scalar times a vector,
addition requires two vectors of equal dimensions.  This is no different than similar algebraic
rules, such as the prohibition against division by 0, and creates no particular difficulty.
Given these restrictions, analytical, finite difference and finite element solutions of complex
equations may proceed in the normal scalar fashion with solutions being found for each
spatial element and integrated for the whole.

Once vector field variables have been defined, related functions can be established to
create vector fields or to create derivatives of them.  These include gradient, divergence,
surface normals, flux and curl.  The next sections briefly discusses some of these possible
functions and other applications of vector fields.

Gradient

The grad operator is the most immediately practical vector concept to implement
since the result of grad on a continuous surface produces the vector field of gradient which is
readily realized as the two scalar fields slope and aspect, two parameters commonly found in
environmental models.  Although grad is conceptually a continuous operations, calculating
grad on discrete spatial data models is best accomplished through the joint calculation of the
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parameters of slope and aspect.  Most simply, the grad operator can be implemented as two
functions, one which returns slope and the other aspect.  The derivation of slope and aspect
from scalar fields has been discussed in Chapter 6.  Results from these individual slope and
aspect functions can be converted to their equivalent representation as the 3 components of a
Cartesian coordinate vector.

Divergence

While gradient uses a scalar to produce a vector, divergence begins with a vector.
Since vectors are not widely implemented in most databases, the need for divergence
operators has not been recognized.  However, if vector fields are made available to modelers,
then this basic operation will be needed.

Plane element vectors

The plane element vector representation discussed earlier provides an interesting
alternative technique for the storage of gradient data in cellgrid spatial data models.  A plane
element vector gives both the normal to the surface, an important input to many solar
irradiance models, and the area of the tilted plane, also a useful quantity in radiation models.
As well, plane element vectors may also provide a new form in which the slope and aspect
attributes attached to TIN triangles may be stored.

This chapter has explored some basic issues related to the use of vector fields and
their manipulation and representation in GISs.  we have reviewed some basic principles about
vectors and have suggested how vector representations and associated vector functions may
be incorporated into environmental models through the field variable concept.  Since a
mechanism for expressing vector fields has not been previously available, the true value of
these concepts cannot be known until it has been widely incorporated into modeling efforts.
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CHAPTER 8 - IMPLEMENTING THE STRATEGY

Since the concept of field variables can be generically described, the implementation
of field variables is relatively straightforward.  This chapter demonstrates how the strategy
can be used in the development of a spatially distributed environmental model and then
discusses some of the implementation issues.

A.  AN EXAMPLE - THE SOIL WATER BUDGET

To begin, we consider Thornthwaite's relatively simple, non-spatial soil moisture
balance, or water budget, model.  This model has proven a useful tool for the longterm
analysis of water needs as well as a method for quantitatively describing different climates.
A discussion of the soil water balance is traditional in introductory physical geography texts
(cf. Strahler and Strahler, 1989; Marsh, 1987; Briggs and Smithson, 1985).  We begin with a
brief outline of the model and then discuss how to express the model in the syntax developed
here.

Thornthwaite's model

In this model, the amount of soil moisture at any time is a function of
evapotranspiration and precipitation (Thornthwaite and Mather, 1955).  Soil moisture is a
store of water available to plants when precipitation is insufficient.  In the model's simplest
form, its value may vary from 0 to a theoretical maximum.  Moisture is removed from the
store by evaporation and transpiration and replaced by precipitation.  If more precipitation
falls than is needed for evapotranspiration, it replaces any soil moisture deficit up to the
maximum.  Surplus beyond that needed to replenish the soil moisture is removed from the
system and is often regarded as a contribution to streamflow.  Since this model does not
consider small fluctuations in rates, it is best applied on a monthly basis, i.e. total monthly
precipitation, storage at the end of a month.

Given the following values:

PET - average monthly potential evapotranspiration
P - average monthly precipitation
FC - soil storage capacity (field capacity, a constant)

the model calculates the following :

S - soil moisture storage at the end of the month
∆S - change in soil moisture storage during the month
D - total monthly soil moisture deficit
AET - total monthly actual evapotranspiration
R - total monthly surplus water (runoff)
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All values are in water depth.  The governing equations discretized to time slices of one
month are:

∆S = P − PET

AET = P − ∆S

except that since 0 ≤ S ≤ FC  and AET ≤ PET :

if ∆S + St −1 < 0, then ∆S = St −1

if ∆S + St −1 > FC, then ∆S = FC − St −1 and AET = PET

D = PET − AET

R = P − AET

St = St −1 + ∆S

Given these governing equations, the pseudo-code routine for calculating one month's
values is as follows.  Note that the notation [t] is used to refer to a single month's values.

define procedure monthly_values {

dS[t] = P[t]-PE[t] ;
if dS[t]+S[t-1] > FC, then dS[t] = FC-S[t-1] ;
if dS[t]+S[t-1] < 0,  then dS[t] = S[t-1] ;

AET[t] = P[t]-dS[t] ;
if AET[t] > PET[t], then AET[t] = PET[t] ;

D[t] = PET[t]-AET[t] ;

R[t] = P[t]-AET[t]-dS[t] ;

Calculations are performed on a monthly basis beginning with an arbitrary choice of
starting month.  A guess for the value of the previous month's storage must be made to begin
the monthly calculations.  A good guess is (P-PET).  A maximum of two iterations through
the annual cycle will produce a stable result.  Table 6 illustrates the results derived from this
model when monthly PET and P are given and FC is estimated to be 100 mm.

A simple point-based query version

A very simple version of this model may be implemented as a point query.  Given
two sets of base maps of monthly precipitation and potential evapotranspiration, we wish to
design a model which allows the user to select a specific location and outputs a water balance
chart or graph for that location.  While this model could be designed as a query of the output
field at a single point, to illustrate how the computational structure can be used, we
conceptualize the query location as a separate field, POINT, which contains the location of
the single query point as the computational structure.  Using the pseudo code developed here
we could describe this model as follows:
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define model COMP: (irregular points: 8x107) ;
field PRECIP: model(irregular_points: 8x104),

measurement(num), time (1 month, yy/1, 12) ;
field PET:

model(cellgrid:0°N,0°W,0°,10°,10°,36,18),
measurement(num), time (1 month, yy/1, 12) ;

field S,D,AET,R,dS: model(COMP), measurement(num),
time(1 month, yy/1, 12) ;

read PRECIP, PET ;
input POINT ;

for each month, cycling from t=12 to t=1 {
do procedure (monthly_values)
repeat until old S[t] = new S[t] } ;

output P,PET,D,R,S,AET ;

Since all but two of the variables are in the single point structure, all calculation will
be done in this computational structure.  Although it would be much more efficient to convert
P and PET to single scalar values and then calculate the result as simple scalar variables, this
example shows the simplicity of the approach.  The next example makes better use of field
variables.

A grid-based map version

In this version, the complexity is increased by adding additional field variables to
determine PET and calculating the result across the region under study (continental or
subcontinental in scope) displaying the results as a monthly series of cellgrid based maps.

Based on field studies (Christiansen, 1968), the relationship between potential
evapotranspiration and the evaporation measured from a shallow pan of water has been found
to have an annual average relationship of

PET = 0.75 PAN

where PAN is pan evaporation (in cm) which itself is calculated from a combination of
climatic and other variables:

PAN = 0.324 CT CW CH CS CE Ret (9-1)

CT = 0.463 + 0.425
T

20





 + 0.112

T

20







2

(9-2)

CW = 0.672 + 0.406
W

6.7





 − 0.078

W

6.7







2

(9-3)

CH = 1.035 + 0.240
H

0.6







2

− 0.275
H

0.6







3

(9-4)
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CS = 0.340 + 0.856
S

0.8





 − 0.196

S

0.8







2

(9-5)

CE = 0.970 + 0.030
E

305





 (9-6)

and

Ret = f (latitude,date)

where T = mean air temperature, °C
W = mean wind velocity 2 m above ground, km/hr
H = mean relative humidity, decimal
S = mean % sunshine, decimal
E = elevation, m

Ret = extraterrestrial radiation, expressed as equivalent depth of vaporized
water, cm

Under standard climatic conditions, each of the coefficients calculated in equations (9-2) to
(9-6) equals 1 so that the total effect in equation (9-1) is to produce a 68% attenuation of the
incoming solar radiation.

Pseudo-code for this revised model might look like this:

define model COMP:
(cellgrid: 10°S,50°W,0°,100km,100km,100,100);

define model CLIMATE:
model(irregular points: 105 km2) ;

field T, W, H, S, PRECIP, CT, CW, CH, CS: model(CLIMATE),
measurement(numeric),
time(1 month, yy/1, 12) ;

field ELEV: model(cellgrid:
10°S,50°W,0°,50km,50km,200,200), measurement(numeric)
;

field RET, PET, AET, D, S ,R, dS: model(COMP),
measurement(numeric), time(1 month,yy/1,12);

read CLIMATE(T,W,H,S,PRECIP), ELEV ;

define procedure (CLIMATE"=CLIMATE): {
thiessen and partition } ;

define procedure (ELEV"=ELEV): {
3x3 window mean } ;

define procedure (LAT(cellgrid)): {
calculate latitude at center point of cell};
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define procedure (RADIATION(X,y)): {
determine radiation from on latitude X,
date y};

int date ;
CLIMATE" = CLIMATE;
ELEV" = ELEV ;

for each month[t] {
date = t*12+15 ;
RET[t] = RADIATION(LAT(GRID), date) ;
CT[t] = 0.463 + 0.425*(T"[t]/20) + 0.112*(T"[t]/20)^2

;
CW[t] = 0.672 + 0.406*(W"[t]/6.7) -

0.078*(W"[t]/6.7)^2 ;
CH[t]= 1.035 + 0.240*(H"[t]/0.6)^2 -

0.275*(H"[t]/0.6)^3 ;
CS[t] = 0.340 + 0.856*(S"[t]/0.8) -

0.196*(S"[t]/0.8)^2 ;
PET =0.75*0.324 * RET[t] * CT[t] * CW[t] * CH[t] *

CS[t] * (0.97 + 0.083*(ELEV"/305)) } ;

for each month, cycling from t=12 to t=1 {
do procedure monthly_values ;
repeat until old S[t] = new S[t] }

output P,PET,D,R,S,AET ;

A spatial interaction version

Finally, we consider a version of the water budget which includes spatial interaction.
Here we wish to determine how much surplus flows past given locations during each time
step assuming that all surplus water passes through the system within a single time step.
Calculation of surplus water may proceed as outlined above.  For this version it is necessary
to add a statement which describes how the surplus can be integrated over the region.  This
may be expressed as

Q x, y( ) = R x, y( ) + Rupdt∫
where Q(x,y) is the total quantity of water passing (x,y), R(x,y)  is the runoff generated at
point (x,y) and Rup is the runoff generated at all points upstream of (x,y) (the watershed).

We have discussed previously how integrals and watersheds might be calculated for
each of the spatial data models.  If we have defined both the watershed for each spatial
element ([up]) and the integral function (integ) for the specific combination of spatial data
models (both source and target), then the combined function would be simply:

Q = R + integ(R[up])

which should be inserted in the previous code after the monthly values procedure is iterated.
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B.  IMPLEMENTATION ISSUES

There are a number of ways this strategy can be implemented and several different
reasons for doing so.  In this section we consider the motivations for using this strategy and
consider how implementation might be achieved.

At its most fundamental level, this strategy can be used simply as a thinking tool, as a
means for conceptualizing the relationships of the model in a procedural fashion.  By
isolating issues related to the manipulation of the spatial data models, the difficulty of dealing
with data model conversions is eliminated and the modeler can work directly with the
variables of the model.

Pedagogically speaking this strategy emphasizes the fundamental differences between
the representation and the reality that is being modeled.  While reality can be modeled as
abstract scalar and field variables, the variables themselves must be declared as specific
spatial data models and the conversion procedures and other special operations defined in
these terms.  This separation of spatial operations from modeling operations helps clarify the
limitations and restrictions inherent in working with discrete representations of a continuous
world.

At a more practical level, this strategy maps out how a linkage between a model and a
GIS may be implemented.  There are several different ways this linkage could be achieved.
These are related to the levels of GIS/model integration proposed by Fedra (1993) and
discussed in Chapter 3.  The lowest level of integration, file exchange, is not addressed by
this strategy since it can be achieved by map algebra.  In that case, all data must be in the
same format before modeling is begun.

The next level of integration is more appropriate for this strategy.  This level involves
a special interface program which manages the file formal conversions so that file sharing is
transparent to the user.  At this level the strategy could be implemented as a compiler which
converts the syntax of the strategy into calls to various data management systems and data
model conversion subroutines and integrates these with the standard mathematical operations
of the program.  This solution suggests that implementation using a traditional procedural
language is suitable.

The highest level of integration, in which the model becomes one of the analytical
functions inside a GIS or the GIS becomes an option in the file management and output
components of the model suggests a final approach to the implementation of this strategy.
Here, the various functions and conversion procedures can be "unbundled" and made
available as individual tools in a GIS or model toolbox.  The model itself uses these functions
directly.  This particular implementation approach requires direct implementation of the
declaration of field variable statements as an integral part of the model.  This solution may be
most appropriate for implementation using an object oriented environment.

Implementation in scientific programming languages

In standard procedure-oriented languages such as C or FORTRAN, field variables can
be specified as user defined data types.  Properties can be stored as flags or values which can
be accessed when necessary to signal the appropriate subroutine or to insert the appropriate
value in a routine.  Specialized functions and subroutines using these user defined data types
can be created.  With procedural languages, details of the implementation of field data model
conversions and related procedures do not need to be handled within the program itself, but
may be developed as standard subroutine libraries accessed through operations on field
variables.  As well, these standard libraries may be written to interface directly between
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various programming languages and specific GISs.  It is possible to visualize a full range of
subroutines contained in a set of GIS libraries for the standard programming languages.

With object-oriented programming languages, the six field data models may be
defined as abstract data types with associated methods determining appropriate conversion
routines.  Specific field variables can then be defined as instances of these object classes.
Appropriate conversion procedures will be inherited.  Instance-specific overloading of
operators can be enabled by creating subclasses of the 6 object classes.

Thus it seems apparent that existing programming facilities which allow us to define
abstract or user-defined data types and to establish standard procedures either as subroutines
or encapsulated operations provide an immediate means by which field variables can be
incorporated into mathematical models of environmental phenomena.  We hope that this
strategy will provide the impetus to take advantage of such opportunities.

GIS implementation issues

Linking a mathematical model to a GIS using this strategy provides explicit details
about how the spatial data is to be manipulated.  By separating the manipulation of the spatial
data from the mathematics of the model, the spatial operations which need to be linked
become readily apparent.  This detail can be used directly to design the interface between
model and GIS.  The conversion procedures and functions defined by the modeler must be
translated into functions in the available GIS and other software.

An advantage of using this strategy lies in the fact that the modeler can specify spatial
operations to any level of detail desired.  If he or she is unfamiliar with the types of
operations that may or should be performed on spatial data, information about spatial data
model conversion procedures and even field variable declarations can be omitted from the
pseudo-code.  These elements can be specified as required when the model is implemented
with the GIS.

This chapter has considered some of the issues related to the implementation of this
strategy for dealing with spatial continuity.  The development of a simple model of water
balance demonstrated how the syntax outlined in Chapter 7 can be used.  We have also
considered the ways in which this strategy can be used and some of the tools available today
for its implementation.
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CHAPTER 9 - CONCLUSION

In this final chapter, we return to the beginning, review the progress made towards the
original goals and consider the value and implications of the strategy developed here.  The
premise of this research is that environmental modeling is based on an essentially continuous
world.  Processes, phenomena and time are all continuous.  While there are many advantages
to the integration of the spatial data management and analysis tools of GIS with
environmental modeling, the antithesis between the continuity of the natural world and the
discrete nature of the computer makes it very difficult to obtain perfect integration.  To assist
in easing this integration, this research considers how continuous phenomena can be handled
directly within the context of GIS.  The result is the outline of a strategy for dealing with
spatial continuity through the use of field variables.

The fundamental theses of this research were laid out in Chapter 1.  They are:

1) it is both desirable and possible to separate the mathematical operations which
will be performed on data about spatially continuous phenomena from the form of
spatial discretization used to represent those phenomena in the computer, and

2) this separation allows issues about the implementation and manipulation of these
digital representations to be dealt with automatically, without external control, in
such a way that they can be considered extraneous to the modeling task.

By examining aspects of the discretization of space and processes and the manner in which
discrete representations of continuous phenomena can be manipulated, we sought to affirm
these theses.  The strategy developed provides a means by which to achieve the separation
that is proposed.

A.  SUMMARY OF THE RESEARCH

Discretizing processes and phenomena

Environmental modeling deals with continuous processes in continuous space.
Numerical solutions for the discretization of continuous processes in continuous space exist
and are widely used.  Of course, the discretizations necessary for such modeling efforts have
direct links to the form of discretization that can be used to represent data about continuous
phenomena, or fields.

A field is defined as an entity which is distributed over space and whose properties
are functions of space coordinates.  There are six spatial data models which can be used to
represent fields.  They are the constant piecewise models, cellgrids and polygons, the surface
models, TINs and contour models, and the point models, pointgrids and irregular point
models.  By taking advantage of the spatial autocorrelation between values at different
locations in a field, each of these spatial data models provides an inherent set of rules or
assumptions that can be made about the form of the variation over space.  Constant piecewise
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models provide a value at every location, but these values are averages of the value over a
region.  Surface models provide a means for estimating the variation between locations at
which values are known.  Point models provide exact data at specific locations, but do not
provide any information about how to determine the value at locations between known
points.  These different assumptions inherent in each model are crucial in determining how
data in these models can be manipulated.

Mathematical modeling with spatial data models

Having recognized that data about continuous phenomena must be stored and
manipulated as discrete spatial data models, we next considered the implications of
performing mathematical operations upon these representations of reality.  It is fundamental
to recognize that in order to do mathematics on fields, it is necessary to determine the value
of every variable being used in a single operation at exactly the same location.  This implies
that any representation of a continuous phenomenon must permit the determination of the
value of that phenomenon at any location.  This is consistent with the definition of fields and
with the assumptions inherent in the various spatial data models.  However, to use discrete
representations of fields in these models, it is essential that consideration be given to the
means by which values can be determined in one spatial data model for locations which are
specified in others.  This, it turns out, is the crux of the problem in the clear separation
between mathematical operations and the representation of spatial data.

Fortunately, algorithms which can be used to convert one spatial data model to others
are widely available and implemented in many different forms (e.g. standalone software
modules, contour modeling packages, full-scale GISs).  However, in some cases there are
several different ways one representation of reality can be converted to another
representation.  The choice of which procedure to use should be determined by the reality
being represented rather than by the form of the representation itself.  We need to consider
both the interpolation procedure which can be used to conceptually create a continuous
surface from the discrete model and the sampling procedure which is used to sample the
continuous surface for representation in the discrete target model.  This implies that the
appropriate conversion procedure should be determined by the characteristics of datasets
themselves rather than by the modeling environment.  This, in turn, supports the contention
that the mathematical operations of a mathematical model should be treated separately from
issues related to the form of spatial discretization.

Most of the operations which must be performed to convert spatial data from one
representation to another can be determined simply by a consideration of the characteristics
of each spatial data model.  These conversions were considered in depth in Chapter 5 and
summarized in two conversion matrices, one for numerical data and the other for categorical
data.  However, since similar spatial data models can be used to represent very different
phenomena, in a few cases it is desirable that information about how a spatial dataset should
be manipulated be to attached to specific datasets.  In particular, since point models do not
explicitly include rules or assumptions about how values vary between the points where
values are known, knowledge about the reality being represented should be used to determine
appropriate interpolation procedures.  For example, in irregular point data models, the values
at the points included in the dataset may be representative of the neighborhood of each point
or they may be the critical points in the field (i.e. if the variable value of the field is
visualized as a topographic surface these would be the pits, peaks, ridges and other places
where breaks in slope occur).  In the first case a kriging approach may be appropriate
whereas in the second case a triangulation procedure might be used.  This information cannot
be deduced from the representation itself but must be supplied externally.  Since the
appropriate conversion is determined by the representations of the phenomena rather than the
operations to be performed on them, we suggest that such information should be attached to
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the datasets at the time of their creation since this is the only time when reality and its
representation can be directly compared.  Such expert knowledge about the phenomenon can
be used to encapsulate appropriate procedures with the data about each field before they are
incorporated into the model.  Since encapsulation is currently the exception rather than the
norm, in most cases this information must be deduced and appended by the modeler him or
herself who, it is hoped, understands at least a little about the nature and sampling of the
phenomenon being represented.  In any case, it seems clear that the addition of any relevant
knowledge must improve the modeling results.

The conversion of categorical fields also requires special attention since the
manipulation of such fields can rarely be handled in a simple mathematical context.  Rules
about how to perform model conversions can only be determined by consideration of the
phenomena represented by the datasets.  However, such rules can be specified independently
of any mathematical operations that will be performed.

A strategy for dealing with spatial continuity

In order to promote the desired separation of operations from representation that is
sought in the theses of this research, we have developed a strategy for dealing with spatial
continuity in mathematical models.  This development has been driven by a realization that
designing and coding a mathematical model is an entirely different task than accessing and
manipulating spatial data in a GIS.  On the one hand modelers can use well-known and well-
structured algebraic and computer languages, following widely accepted and proven rules for
substitution and solution.  On the other hand, when manipulating spatial data for use in the
models, modelers have only the idiosyncratic language of a specific GIS to work with.  There
are no widely accepted common rules and defaults to guide how spatial data are used in
environmental models and no simple way to express the transformations and manipulations
that are necessary to incorporate the spatial data into the model.  The strategy we have
developed for handling field variables addresses part of this problem.  Specifically this
strategy seeks to:

• allow expression and manipulation of variables and data about continuous
phenomena in common symbolic languages.  In other words, the strategy should
be capable of being incorporated into computer language implementations of
environmental models.  This is in direct contrast to the natural language-like
structure of Tomlin's map algebra and is more amenable to the scientific
environment.

• eliminate the necessity to consider the form of the spatial discretization (the data
model) whenever possible.  While we believe it is desirable and possible to
achieve this objective for most operations, it is necessary to provide for input of
additional information for some operations.

• provide a syntax for incorporating primitive operations appropriate for
environmental modeling with fields which are not yet available in GIS or
common programming languages.  These include operations to perform discrete
versions of "differentiation" and "integration" on variables representing fields and
the incorporation of the concept of vector fields.

• guide and enable the rapid development of direct linkages between
environmental models and any GIS.

The core of this strategy is the definition of the field variable type  and the
development, in Chapter 6, of a syntax for declaring the characteristics of a specific field
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variable.  The earlier examinations of the characteristics of the various spatial data models
and the operations which are performed on spatial data provided the means by which to
determine the critical characteristics which need to be specified.  Required characteristics
include information about the spatial data model and its density and the measurement system
used (i.e. numerical or categorical).  These specifications allow the spatial operations
required by the mathematics of the model to be performed without external control, such that
the implementation and manipulation of the spatial data can be considered extraneous to the
modeling task

In addition to the declaration of field variables, the strategy outlines several other
parameters that may be defined for use in the mathematical operations of the model.  These
include establishing the specific algorithms which will be used for specific model-to-model
conversions and defining the spatial structure which will be used for the computation of the
model.  The definition of a computational structure allows a finite difference grid or a set of
finite elements to be specified and used as the default target structure during execution of the
mathematical operations in the model.  All of these additional parameters  are designed to
establish everything needed to conceptualize and manage the manipulation of the spatial
operations separately from the mathematical operations.

Working with field variables

Once field variables have been declared they can be used directly in mathematical
statements.  Whenever a field variable is invoked, its declared characteristics will determine
how operations will be performed upon it.  As well, given the existence of field variables, it
is possible to formulate new functions designed specifically for fields.  In particular,
integrate is an operation that has wide application in models working with continuous
phenomena.  Its implementation can be relatively easily specified for each of the field spatial
data models.  Slope  and aspect , variables which are important in many environmental
models, can be seen as field functions.  While these are currently implemented in traditional
forms in many GISs, their expression as field functions would be useful in the context of this
strategy.  Certain statistical operations like mean  and standard deviation  have special
meanings when performed on fields, but their implementation is simply a matter of defining
appropriate algorithms for the various data models.

As well, we suggest the identification of two reserved field variables, lat and long.
Like other fields, latitude and longitude can be determined for any location.  Since
mathematical statements using field variables must be performed on values about individual
locations, it is easy to evaluate the values of these reserved variables for use in mathematical
operations.

The problems of working with categorical data which represent continuous
phenomena have also been explored.  We have already reviewed the approach which has
been devised to specify rules about how to perform model conversions on categorical data.
The strategy also outlines a technique for defining new operations for categorical data (i.e.
the "overloading" of standard operators for certain fields) so that this data can be used
directly with numerical fields.

In addition to relatively easily implemented scalar field variables, the concept of field
variables also allows the consideration of vector fields.  Since vector fields have not been
available in GISs, their use has been restricted to a small group of very specialized, highly
technical mathematical models that have little in common with current GISs.  Vector fields
and related operations such as divergence and gradient do provide some useful new ways of
conceptualizing interactions in continuous phenomena.  However, before vector fields and
the related operations can become widely used by environmental modelers using spatial data
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stored in GISs, it is necessary that vector fields become accessible and manageable within
available software.  Vector field variables provide a first step in this direction.

B.  CRITIQUE AND ANALYSIS OF RESULTS

How successfully have the objectives of this research been achieved?  Let us
consider, first, the main theses outlined above.  The first thesis which states that separation of
mathematical operations from the spatial discretization is possible has been clearly supported
by the development of the strategy which allows details about the manipulation of spatial
data to be handled independently from the mathematics.  That this is desirable has been
demonstrated in the clarity that the strategy brings to the manner in which data about
continuous phenomena can now be handled during the development stage of mathematical
models.  The second thesis which suggests that manipulation of the spatial data can be
handled extraneously to the modeling task has been the focus of much of the latter part of this
document.  Field variables, their declarations and related aspects of the strategy are designed
specifically to demonstrate that this thesis can be achieved.

The objectives which the strategy has been designed to meet are also listed above in
this chapter.  The first objective seeks to ensure that the strategy can be immediately useful in
the current modeling environment.  Chapter 8 discusses some of the implementation issues
for this strategy and points out that there are many ways in which it can be used.  Each of
these uses allows incorporation of the strategy at a different level into existing modeling and
programming procedures.  The second objective, elimination of consideration of the form of
spatial discretization, has been achieved through the separation of mathematics from spatial
data manipulation.  Several primitive operations devised for field variables, the theme of the
third objective, have been described.  Finally, as Chapter 8 has outlined, the clarity brought to
the distinction between mathematics and spatial data should encourage and aid the
development of direct linkages between GIS and environmental models.

Value of the strategy

Chapter 8 outlined a number of ways this strategy may be used.  It was suggested that
it may be used as a thinking tool to aid in the conceptualization of the mathematical model.
Alternatively, it has value as a pedagogic tool through its emphasis on the distinction
between the spatial data and the reality that it represents.  Perhaps most importantly, the
strategy can be used to help map out how a linkage between a specific mathematical model
and a GIS may be implemented.

The strategy presented here provides a flexible approach to handling variables
representing continuous phenomena.  Modelers can express as much or as little as they prefer
about how these variables are to be represented and manipulated.  The use of field variables
allows the spatial data to be incorporated into the models in a form which is similar to their
conceptual form in mathematical equations.  This strategy also provides a means by which
the manipulations which are to be performed on spatial data can be explicitly described.

A significant feature of this approach is that it does not assume a homogeneous
database.  Data can be stored in the form closest to that in which they have been collected.
Conversion to the spatial data model required by a particular mathematical model is
performed only when necessary.  This helps to keep to a minimum the number of model
conversions that are performed on a particular spatial dataset and thus reduces the inevitable
information loss that occurs with each conversion.
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Weaknesses in the strategy

The weaknesses in this strategy may be seen to stem from its generic form.  Since the
intent was to map out a strategy which could be used in the broad range of environmental
modeling domains, it has been difficult to provide specific solutions to individual problems
or to suggest tools that may be particularly useful in some cases.  During the development of
this strategy, specific details of the implementation of the strategy, such as how to implement
specific interpolation procedures for specific spatial data models, often obscured the larger
picture which was being sought.  It was necessary to constantly pull back, to remember that
implementation is not the difficult issue since many of these specific problems have already
been addressed by other researchers.  It is hoped that this strategy will allow a framework
within which these specific solutions can be organized and made accessible to the widest
audience.

These generic aspects may also lend an air of indecisiveness to the conclusions
generated.  Many issues were assumed away in order to prepare the groundwork for the
development of this strategy.  This is not to imply that accuracy, generalization, data
modeling and so on are not important themes.  What we have sought to do here is to provide
a framework within which these diverse themes can be joined and dealt with explicitly and
comprehensively.  However, future research should explore these issues in the same detailed
manner as mathematical operations have been explored here so that commonalties between
procedures and operations can be uncovered and methods for codifying critical properties can
be devised.

C.  DIRECTIONS FOR THE FUTURE

Implementation of the strategy is the next step which must be made.  The obvious
relationship between the conceptual framework outlined here and the concepts of object
orientation must be explored in detail.  While many mathematical models will continue to be
developed in traditional procedural languages, object orientation does provide a conceptual
structure in which field objects can be defined and related procedures encapsulated.

There are many directions that implementation of this strategy should pursue.
Implementation in a number of different environmental modeling domains would provide
considerable opportunity for refinement of the generic concepts outlined here.  The
development of interfaces between various programming languages and GISs which interpret
statements about field variables and translate them into computable elements is also highly
desirable.  Finally, the creation of libraries of field variable functions would be useful
extensions to existing programming languages.

There are also several opportunities for extensions to the strategy outlined here.
Certainly three dimensional fields merit examination within the framework developed in this
document.  Consideration of other types of continuous variables such as tensors and
statistical fields could be an interesting and useful extension.  Many of the issues raised and
solutions provided are applicable in areas beyond the limited range of applications in the
environmental modeling domains considered.  Models of human activities frequently make
use of density variables modeled as fields and thus may benefit from treatment similar to that
given to models of physical processes.  As well, the continuity of time was not considered in
this analysis but it is apparent that a similar approach to the development of a general
theoretical framework for handling time data may be useful.
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Environmental modeling is an important and growing enterprise.  The expanding
availability of spatial databases and the rapid evolution of GIS software are encouraging
many modelers to turn to GIS as a means of handling their spatial data needs.  GIS
developers must work to understand the needs of these modelers and to incorporate facilities
which meet their current and future needs.  This strategy is one step in this direction.
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