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Abstract-  The  use  of  robotic  vehicles  for  environmental 
modeling is  discussed.  This  paper  presents  diverse  results  in 
autonomous marine missions with the ROAZ autonomous surface 
vehicle.  The  vehicle  can  perform  autonomous  missions  while 
gathering  marine  data  with  high  inertial  and  positioning 
precision.  The  underwater  world  is  an,  economical  and 
environmental, asset that need new tools to study and preserve it. 
ROAZ is used in marine environment missions since it can sense 
and monitor the surface and underwater scenarios. Is equipped 
with a diverse set of sensors, cameras and underwater sonars that 
generate 3D environmental models. It is used for study the marine 
life  and  possible  underwater  wrecks  that  can  pollute  or  be  a 
danger to marine navigation.  The 3D model  and integration of 
multibeam  and  sidescan  sonars  represent  a  challenge  in 
nowadays.  Adding that it is important that robots can explore an 
area and make decisions based on their surroundings and goals. 
Regard  that,  autonomous  robotic  systems  can  relieve  human 
beings of repetitive and dangerous tasks.

I. INTRODUCTION

Environmental  concerns  play  an  increasing  role  in  the 

contemporary society.  Human pressure and expanding nature 

resource exploration in the limited global ecosystem has raised 

awareness to our impact in the planet. 

These  concerns  created  a  larger  need  for  accurate  and 

widespread  monitoring  of  human  activity  environmental 

impact,  and  also  for  the  deeper  understanding  of  the 

environment dynamics and human interaction.

Robotic  technologies  play here  a  relevant  role  [1] due  to 

their  effectiveness  in dealing both with spatial  and temporal 

coverage along with precision information gathering at lower 

costs compared with other means. 

In  this  paper  we  present  recent  results  on  the  use  of  the 

autonomous surface  marine  vehicle ROAZ in environmental 

monitoring  missions.  These  missions  were  performed  in  a 

diverse  set  of  scenarios  ranging  from  different  river 

environments  to  ocean  autonomous  data  gathering  tasks. 

Moreover,  the  robotic  vehicle  has  effectively  been  used  in 

environment  monitoring  missions  in  a  commercial  setup  on 

contract from different users. This experience is also reported 

here.

One particular situation where robots can be highly efficient 

is in marine environment monitoring and risk assessment [2]. 

These  missions  can  be  translated  in  physical  bottom 

morphology  characterization  (bathymetry,  obstacles,  bottom 

sediment  accumulation,  geological  properties),  in  water 

volume  characterization  (water  parameters,  biological  and 

ecosystem information,  plume identification,  etc)  and  above 

water  environment  characterization,  either  in  the  air  or  air-

water layer or in land border modeling (such as coastal or river 

margin mapping or risk assessment [2]).

Autonomous  vehicles  have  been  used  in  environment 

monitoring  tasks,  both  surface  vehicles  [2],  [3],  [4] and 

underwater  unmanned  systems  [5],  [6],  [7].  An  extensive 

recent survey of the use of robots in environment monitoring is 

found in [1]. 

Traditionally autonomous surface vehicles (ASV) have been 

used either for monitoring in the above water zone [4], [1], [3], 

underwater  vehicle  support  [8],  [9] and  less  for  underwater 

assessment.  The  latter  has  been  addressed  in  the  robotics 

community through the use of AUV systems [10], [11], [5]. 

The use of our autonomous surface vehicle permits a high 

load capability and continuous on-line communications.  This 

allows  real  time  data  visualization  and  may  serve  as  a 

communications relay with aerial and underwater vehicles. The 

vehicle is all electric and so it is pollutant free and has very 

low acoustic/sound noise. It is capable of carrying a diverse set 

of payload and, due to its autonomous guidance and control 

operationality, perform very precise trajectories.

II. ROAZ AUTONOMOUS SURFACE VEHICLE

The ROAZ unmanned surface vehicle is a custom built robot 

for  marine  operations (see  figure  1).  It  was design  for  long 

endurance missions and to work in harsh environments, such 

as, medium sea state conditions and near-shore scenarios.



Figure 1. ROAZ_II autonomous surface vehicle

It has a catamaran shape with 4.2 x 2.2 x 1.7 m dimensions. 

In the middle platform has three watertight Peli cases, one for 

the computational and sensors system, and two for the power 

delivery  system.  The  central  tower  has  communication 

antennas,  GPS  antennas,  an  IR  video  camera,  two  GigE 

cameras,  a standard pan&tilt  camera,  and sometimes a radar 

system  for  mapping  and  collision  detection.  The  vehicle  is 

propelled by a differential system with two Torqeedo electrical 

motors that allows velocities till 10 knots.

In  the  diverse  field  operations  where  ROAZ  normally 

intervenes it is used has a testbed for several sensors and data 

gathering/monitoring missions. 

For  environmental  purposes  ROAZ can  be  equipped with 

Sonar systems: altimeters, multi-beam sonar, side-scan sonar, 

imaging  sonar,  sub  bottom  profiler;  with  video  cameras: 

pan&tilt visual camera, Infra-Red camera, underwater cameras; 

CTD  and  sound  velocity  probe;  and  diverse  water  quality 

sensors and samplers.

III. VEHICLE NAVIGATION SYSTEM

A  GPS/INS  data  fusion  is  the  basics  of  our  vehicle 

navigation  systems  that  can  be  aided  by  other  systems. 

Normally,  visual  and  IR  cameras,  bottom/forward  looking 

altimeters  and  the  Radar  collision  detection  system.  The 

navigation  sensor  fusion  is  based  in  an  Extended  Kalman 

Filter.

ROAZ uses a  Septentrio dual frequency RTK-GPS system 

with three L1/L2 antennas for high positioning accuracy. It can 

be  connected  to  a  base  station  for  continuous  DGPS/RTK 

position corrections.

For  high-precision  positioning  and  attitude  the  vehicle  is 

equipped  with  a  high-cost  IMAR inertial  fiber  optical 

navigation system (specs: 0.75º/h, 1.5 mg, 400 hz).

In missions where there’s no need for high quality sensors it 

is  equipped with a low-cost  Microstrain INS and a  Novatel  

smart-antenna GPS receiver.

Besides the high quality sensors that equip our ASV and the 

pose estimation filters we also use post-processing techniques 

to improve our data quality.

Our  GPS  positioning  data  is  post-processed  with  correct 

satellite orbits. With this high-accuracy geodetic correction one 

can get GPS data with centimeter precision.

The sonar systems data like multibeam and sidescan sonar 

are visualized on-line while the vehicle is doing is mission. But 

for  seafloor  mapping  or  high-resolution  sonar  mission  it  is 

done a post-processing routine to improve the data quality and 

remove outliers. 

Our navigation high-quality sensors are very important due 

to the amount of sensor mounted systems that need referential 

transformations matrix and high-accuracy pose.

Regard  that  having  an  autonomous  robot  with  long 

endurance capability and mission control maneuvers,  give us 

an  important  tool  for  marine  environments  patrol  and 

monitoring.  In  this  type  of  environments  the  AUVs  are  the 

most common used vehicles, but our solution, gives absolute 

positioning with high quality and for near-bottom operations it 

can have towed sensors or use a tether vehicle attached.

IV. UNDERWATER MODELLING PROCESSING

Studying our lakes, rivers and oceans is a key factor in an 

economical  and  environmental  way on this  global  world.  A 

well treated environment allows us a good income of goods; 

access  to fisheries, sources of energy,  rich natural  resources, 

and  major transportation of goods on waterways reducing the 

carbon  footprint.  An  important  science  for  this  idea  is 

hydrography,  a  science  that  involves  the  mapping  and 

surveying  of  inland waters,  rivers  and oceans  which  reveals 

information about what the seafloor and movement of water 

above looks like.

Using this tool it is possible to study environmental issues. 

The  seafloor  mapping  allow  us  to  research  the 

increase/decrease  of  a  reef  colony or  fish  population;  or  to 

search for potentially hazardous material or pollutant wrecks in 

a waterway.

ROAZ is used in several environmental scenarios, such as: 

underwater  bathymetry  to  search  for  underwater  hazardous 

material, long term monitoring of underwater sediments; sonar 

inspection of underwater pipeline conditions.

The vehicle is equipped with a set of underwater sensors to 

model the bottom morphology. 

Starting from an  Imagenex Sportscan dual-frequency sides-

scan  sonar  that  provides  us  acoustic  images  of  the  seabed. 

Besides,  the  near-visual  representation  of  the  bottom it  also 

give  general  indication  about  the  nature  of  the  seafloor. 

Depending on the signal reflectiveness it indicates the bottom 

texture:  low  reflection  is  silt  or  mud,  and  high  reflection 



presents a rocky or gravel floor  [12]. The side-scan sonar is 

physically  attached  to  the  vehicle  gaining  an  accurate  GPS 

positioning and INS measurements corrections (roll, pitch and 

yaw  angles).  It  can  also  be  used  as  a  tow fish  that  allows 

greater  deep  ranges.  The side-scan  sonar  is  used in  shallow 

water (<100 meters) and its images faithfully reproduce small 

details on the bottom due to its resolution of a few centimeters.

It  is  also  equipped with  two echo-sounders;  an  Imagenex  

863 altimeter and a new Tritech Micron DST. The latest uses 

CHIRP  technology  that  dramatically  improves  the  range 

resolution compared with conversational sonars.

It uses an underwater sound velocity probe (Reson SVP71) 

to continuously correct  the underwater  sound velocity value, 

since the sonars use the sound velocity value to calculate the 

echos time-of-flight.

Finally,  an  Imagenex  Delta-t  837 multi-beam  sonar   that 

performs  large  mapping  sweeps  of  the  seafloor.  Our  multi-

beam can operate from 120 till 480 beams and with an aperture 

of  120  degrees.  Compared  to  single  beam  sonars  or  near 

bottom AUVs,  this  near  surface  multi-beam sonar  can  map 

wide areas rapidly and accurately.

The accuracy of a bathymetry survey is highly sensitive to 

perturbations of the angular measurements, and movements of 

the  vehicle  must  be  very  accurately  compensated.  The  data 

from our sonars systems, GPS and INS sensors are all recorded 

and synchronized for post-processing.

After  the  data  is  gathered,  the  acoustic  measurements  are 

corrected with the high-precision INS measurements. Also, if 

the sonar measurements wasn't supported by the sound velocity 

probe values, one can also post-process the data and refine the 

measurements. Finally the sounding data is georeferenced with 

the position from the RKT-GPS (with corrected orbits).

In  the  example  of  the  DeltaT multi-beam  we 

receive/recorded data for the beamforming process, then using 

an Imagenex software we get a set of points that are corrected 

by the INS and GPS measurements and form a point cloud that 

later creates an underwater mesh of the bottom.

To visualize  the  multibeam and side-scan  information  we 

use the manufacture software, or we work the data and plot the 

point  cloud (or  triangulation  mesh) on  Matlab.  We are  also 

starting to integrate the multi-beam and side-scan data for high 

resolution image mosaic in the MB-System. MB-System is an 

open-source software package for the processing and display of 

bathymetry imagery data [13].

All data can be seen on-line while the vehicle is performing 

autonomously its mission. ROAZ as real-time communications 

with the base station and on-line transmission from all data, 

including all sonars. This allows the base station supervisor to 

assess preliminary on-line data from side-scan and multi-beam 

and if needed change the mission. The human supervisor on 

the  loop  can  decide  to  survey  another  area  or  to  refine  the 

mapping  in  some  hotspot,  and  can  do  it  on-the-fly  without 

waiting  for  the  mission  conclusion  like  the  majority  of  the 

AUV systems.

V. VEHICLE OPERATION IN REAL SCENARIOS

On field operational scenarios our setup involves the ASV 

and  a  base  station  with  communications  to  the  vehicle. 

Normally the ASV is transported in a trailer, and depending on 

the water access, it can be deployed from the trailer or it might 

need a crane to hoist it. A few sensors are mounted on site and 

the computational and power cases need to be connected and 

all systems boot up and tested. On the other hand we have to 

setup  the  base  station,  a  rough  computer  with  a  sun-light 

readable monitor running a Linux distribution (see figure 2). 

Figure 2. Sun readable operation and supervision console on board of a support 
boat.

The command and control  console uses  a GTK2 software 

that allows the creation of all mission maneuvers and on-line 

control over the mission cycle. The console allows control over 

the vehicle by teleoperation or to create a mission with several 

maneuvers and goals to be achieved and command the vehicle 

to  execute  it  autonomously.  In  the  console  we visualize  the 

mission  performance  and  data  from  all  sensors  that  where 

deployed.  Figure 3 shows a deployment mission and how one 

can  activate/deactivate  systems  or  rearrange  the  mission 

maneuvers  on-line  and  re-send  it  to  the  vehicle.  The  base 

station computer is a central network system that allow other 

computers/vehicles  to  connect  and operate.  The base  station 

has  WiFi communications to the vehicle that  allows a high-

bandwidth with 1-2 miles range.

The initial  setup  and the  final  pick  up takes  normally 30 

minutes  each  and  depending  on  the  missions  objectives  the 

ROAZ ASV is on the water operating till 8 hours.

In a real scenario operation ROAZ can be on-board guided 

by a human operator; can be teleoperated from the base station 

or  other  computer  connected  to  the  network  centric 

communications;  or  performing  autonomous  missions  with 

perception and control.  The unmanned autonomous missions 

are of  high value,  given that,  it  performs repeated  task with 

high-precision trajectories in risk assessment scenarios.



Figure 3. Screenshot of one of the supervision console views in a sidescan and 
multibeam sonar mission off the coast of Sesimbra

ROAZ is involved in several operational missions but on this 

work  we'll  only  address  the  ones  regarding  environmental 

issues.

The first ROAZ missions involved the inspection of water 

surface oil spills or pipeline leakage and single beam mapping 

inside the harbor. The latest missions are more complex and 

we'll a few different scenarios.

One  mission  that  our  autonomous  surface  vehicle  was 

involved  occurred  in  the  Tua  river,  Portugal.  The  Tua  is  a 

narrow canyon river,  with rapid shallow waters,  sharp rocks 

near surface, and with  several inaccessible places from land; 

was a perfect scenario to use an unmanned surface vehicle  and 

don’t risk human lives or high value hydrographic vessels. A 

major Portuguese company wants to construct an hydropower 

dam in Tua river and we use the ASV to map the riverbed. The 

riverbed  multibeam mapping was  merged  with surface  laser 

scanning from Artescan [14] and a final 3D map of surface and 

underwater  was  created  (see figure  4  for  the  digital  terrain 

modeling).  Regarding the construction and the river  changes 

the company wanted to survey the environmental surroundings 

to assess future changes. Also to monitor continuous changes 

on the riverbed and margins by the water dam outfalls.

Figure 4. Shows the ROAZ ASV risk assessment bathymetry survey for laser 
scanning and bathymetric data integration in the Portuguese Tua river.

We performed  an  interesting  contract  service  with ROAZ 

where it had to monitor the near-shore bottom morphology and 

sand  movements.  ROAZ  performed  several  perpendicular 

trajectories  along  the  coastline  till  the  surf  zone  while 

gathering bathymetric data. For this work it was very important 

the GPS precision, the depth measures quality and the vehicle 

need to perform accurate straight line trajectories. This mission 

was repeated for each year  season and allowed to study the 

effects  of  sand  transport  dynamic  movements  and  the  sea 

bottom  morphology  changes  after  a  major  breakwater 

construction.

In  another  set  of  missions,  on the  Douro  river  (near  Vila 

Cova),  the  ROAZ  system  performed  underwater  visual  and 

mapping  surveys  to  find  underwater  wrecks.  Besides, 

scientific data gathering, the vehicle also mapped several small 

shipwrecks and several hazardous material from a construction 

site nearby.

One of the latest operational missions was developed at sea 

(near  a  city  called  Sesimbra,  Portugal). This  mission  was 

carried out to develop new scientific contributions and test new 

autonomous capabilities: From above water visual inspection; 

through  new  lawnmower  autonomous  maneuvers;  and  by 

underwater modeling and dataset gathering.

Figure 5. ROAZ_II deployed at Sesimbra sea

ROAZ  performed  a  two  day  mission  in  this  Sesimbra 

improvement exercise. In the first day it was deployed in the 

Sesimbra  harbor  and  was  use  to  do  surveillance  of  surface 

pollution spills with Infra-Red and visible cameras. It was also 

used to map the harbor seabed and some underwater structures. 

The harbor is a place where a few environmental crimes can 

occur form pollutant liquids disposal till waste material thrown 

overboard.  The seafloor  map showed several  tires  and other 

man  made  structures  in  the  bottom  of  the  harbor  that  can 

concern a problem for the marine life.

On  the  second  day  ROAZ  performed  its  missions  at  1-2 

miles from the coast at high sea as it is depicted in  figure 5. 



The  ASV carried  out  several  different  missions;  from early 

mission with visual and IR cameras; a mission using the side-

scan and multi-beam to detect and identify objects in the water 

column (school of fish or buoy chains); till seafloor mapping 

integrating  multi-beam  and  side-scan  information  with  long 

endurance autonomous lawnmower sampling trajectories.

 

VI. RESULTS

The  ROAZ  ASV  proven  to  be  an  important  tool  for 

environmental  monitoring  missions.  This  section  presents 

some results of the data obtained in field operations.

Figure  4  shows  the  integration  of  multibeam  data  and 

surface laser scan in the Tua river. A continuous site mapping 

allows  a  time  evolution  monitoring  of  the  surrounding 

environment.

The next figure shows an example of an acoustic image from 

our synthetic aperture sonar with a few shipwrecks and some 

marine life.

Figure 6. A sidescan sonar acoustic image showing three shipwrecks in Douro 
river.

Figure 7. Autonomous trajectories made by ROAZ for environmental 3D 
modeling of the seafloor.

During the high sea mission the vehicle performed several 

lawnmower  trajectories  for  underwater  environmental 

modeling with multibeam and sidescan sonars. Figure 7 shows 

a few trajectories made along Sesimbra coastline and figure 8 

presents an extract of the multibeam environmental modeling 

of the seafloor.

Figure 8. A point cloud from the multibeam sonar
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