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Abstract

The search for the genetic factors underlying complex neuropsychiatric disorders has pro-

ceeded apace in the past decade. Despite some advances in identifying genetic variants

associated with psychiatric disorders, most variants have small individual contributions to risk.

By contrast, disease risk increase appears to be less subtle for disease-predisposing environ-

mental insults. In this study, we sought to identify associations between environmental pollu-

tion and risk of neuropsychiatric disorders. We present exploratory analyses of 2 independent,

very large datasets: 151 million unique individuals, represented in a United States insurance

claims dataset, and 1.4 million unique individuals documented in Danish national treatment

registers. Environmental Protection Agency (EPA) county-level environmental quality indices

(EQIs) in the US and individual-level exposure to air pollution in Denmark were used to assess

the association between pollution exposure and the risk of neuropsychiatric disorders. These

results show that air pollution is significantly associated with increased risk of psychiatric disor-

ders. We hypothesize that pollutants affect the human brain via neuroinflammatory pathways

that have also been shown to cause depression-like phenotypes in animal studies.

Editor’s Note

This Short Report received both positive and negative reviews by experts. The Academic

Editor has written an accompanying Primer that is published alongside this article (https://

doi.org/10.1371/journal.pbio.3000370). The linked Primer presents a complementary

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000353 August 20, 2019 1 / 28

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation: Khan A, Plana-Ripoll O, Antonsen S,

Brandt J, Geels C, Landecker H, et al. (2019)

Environmental pollution is associated with

increased risk of psychiatric disorders in the US

and Denmark. PLoS Biol 17(8): e3000353. https://

doi.org/10.1371/journal.pbio.3000353

Academic Editor: John P. A. Ioannidis, Stanford

University School of Medicine, UNITED STATES

Received: January 12, 2019

Accepted: July 17, 2019

Published: August 20, 2019

Copyright: © 2019 Khan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The raw

epidemiological data are available from IBM Health,

subject to ethics review and a license agreement.

Funding: This work was funded by the NordForsk

project 75007: Understanding the Link Between Air

Pollution and Distribution of Related Health

Impacts andWelfare in the Nordic countries

(NordicWelfAir); the DARPA Big Mechanism

program under ARO contract W911NF1410333; by

National Institutes of Health grants R01HL122712,

1P50MH094267, and U01HL108634-01; and by a

http://orcid.org/0000-0002-6470-7465
http://orcid.org/0000-0002-7580-9547
http://orcid.org/0000-0003-2549-1750
http://orcid.org/0000-0002-1282-9962
http://orcid.org/0000-0001-6959-7405
https://doi.org/10.1371/journal.pbio.3000370
https://doi.org/10.1371/journal.pbio.3000370
https://doi.org/10.1371/journal.pbio.3000353
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000353&domain=pdf&date_stamp=2019-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000353&domain=pdf&date_stamp=2019-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000353&domain=pdf&date_stamp=2019-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000353&domain=pdf&date_stamp=2019-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000353&domain=pdf&date_stamp=2019-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000353&domain=pdf&date_stamp=2019-08-20
https://doi.org/10.1371/journal.pbio.3000353
https://doi.org/10.1371/journal.pbio.3000353
http://creativecommons.org/licenses/by/4.0/


expert perspective; it discusses how the current study should be interpreted, given the mod-

est effect size, potential biases, and other limitations.

Introduction

The increasing prevalence of mental disorders is a major global problem that affects millions

of people every year. In addition to personal suffering, psychiatric disorders are associated

with significant societal costs [1]. A number of putative contributors to the etiology of these ill-

nesses have been identified, but the majority of risk factors remain unknown. Mental illnesses

such as bipolar disorder and schizophrenia develop due to a complex interplay of genetic pre-

dispositions and life experiences or exposures [2–5]. In the last decade, the genetic underpin-

nings of mental disorders have been extensively studied. For instance, recent work has

identified 145 genome-wide significant associations for schizophrenia [6, 7]. However, genet-

ics alone cannot account for full phenotypic variation in mental health and disease, and it has

long been believed that genetic, neurochemical, and environmental factors interact at many

different levels to play a role in the onset, severity, and progression of these illnesses. The

major neuropsychiatric disorders cover a broad range of heritability values, leaving ample

room for environmental influences to play a role. From a comprehensive twin meta-analysis

[8], environmental effects contribute to a 55% to 66% risk for major depression, 32% risk for

bipolar disorder, and 23% risk for schizophrenia. Increased knowledge of environmental risk

factors is therefore vital for a more comprehensive understanding of disease causation.

What aspects of human environments are driving psychiatric and neurological disease preva-

lence? Recent umbrella reviews of epidemiological studies analyzing putative risk factors associ-

ated with common psychiatric and neurological disorders suggest several contributing factors to

mental health and well-being, such as individual attributes and behavior (medical illness, stress-

ful life events, substance abuse, cognitive and/or emotional immaturity), social circumstances

(poor access to basic services, unemployment, poverty, neglect, social injustice, relationship con-

flicts, work stress, exposure to violence, and abuse), and environmental factors (occupational

exposure, and exposure to pollution) [9–11]. These reviews stressed that well-designed and ade-

quately powered studies are necessary to map the environmental risk factors for psychiatric dis-

order. Studies of gene-environment interactions in the context of psychiatric disorders likewise

point to a wide range of factors interacting with genotype in mental disorder prevalence [2, 12–

15]. Historically, most of the attention to the environment as a causal factor in these studies has

focused on home or family environments, with an empirically-justified emphasis on childhood

adversity and trauma, [16] and, more recently, on prenatal influences [17].

Far fewer studies have explored the links between physical environments and mental ill-

nesses (see [18–22]), with a small subset of these specifically focused on environmental pollution

or its constituent toxicants [23]. Yet concern has been growing about the diverse negative health

effects of air pollution, raising the possibility that air quality may play an important role in men-

tal health and cognitive function. While the study of air pollution and health was originally

driven by dramatic events and drastic outcomes such as mortality during 1930 Meuse Valley

fog [24] due to the combination of industrial air pollution and climatic conditions, and the 1952

Great London Fog event [25–27], in which a multiple day temperature inversion concentrated

coal-based air pollutants and resulted in thousands of deaths, attention has been turning to the

question of chronic exposures and chronic diseases, including neurodevelopmental and neuro-

degenerative conditions [28, 29]. More recent events, such as the Eastern China smog in 2013

[30] and the New Delhi smog in 2017 [31] saw air pollution measurements reach record levels,

conditions that led to significant increases in morbidity and mortality rates. Such events have
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led to considerable debate, along with an upsurge of environmental research, new government

regulation (e.g., the Clean Air Act of 1956 in the UK and the Chinese Air Pollution Control Law

in 2015), and heightened public awareness of the relationship between air quality and health.

Increasing interest in the effect of pollution on neuropsychiatric disorders has only recently

begun to direct attention toward the brain, with in vitro and animal model studies lending

mechanistic insight into how air pollution components can be neurotoxic [32, 33].

Our exploratory analysis and conclusions concerning the significant associations between

environmental quality and the rates of neuropsychiatric disorders are based on 2 independent,

very large datasets. The first dataset is the IBMHealth MarketScan Commercial Claims and

Encounters Database [34], comprising insurance claims for 151,104,811 unique US individuals

from 2003–2013. MarketScan was previously used for numerous studies involving, for exam-

ple, estimation of prevalence of diseases in the US: traumatic brain injury [35, 36], attention

deficit-hyperactivity disorder (ADHD) [37], epilepsy [38, 39], and depression [40]. The second

dataset is the collection of Danish national treatment and pollution registers [41] comprising

all individuals born in Denmark between January 1, 1979, and December 31, 2002, who were

alive and residing in Denmark at their 10th birthday (1,436,702 unique individuals).

The environment for the US part of this study appears as 3 sets of variables at the county

level: (i) quality of air, water, land, and “built” environment (e.g., amount of vehicular traffic,

transit access, and pedestrian safety); (ii) weather indices split into number of days with at least

4 hours of pleasant weather (defined according to the design standards for climate-controlled

buildings) and number of days with at least 4 hours of harsh (either too hot or too cold)

weather (this last group of factors is useful in dissecting the outdoor environment’s positive

[open-air activities] and negative [pollution] influences); and (iii) sociodemographic factors,

such as median income, population density, and urbanicity, which are known risk factors for

many psychiatric disorders. Therefore, individuals’ exposures to pollutants were measured at a

county level for the US data. For the Denmark counterpart of our analysis, the environmental

factors were estimated as exposure to air pollution during the initial 10 years of life. Our

hypothesis was that these environmental factors causally contribute toward the onset and

development of the psychiatric disorders in exposed individuals.

Results

For the US cohort, we studied 4 psychiatric and 2 neurological conditions: bipolar disorder,

major depression, personality disorder, schizophrenia, epilepsy, and Parkinson disease, each

defined by sets of specific International Classification of Diseases, Ninth Revision, Clinical

Modification (ICD-9-CM) codes (see Methods section). When we refer to these 6 conditions

below, we are explicitly referring to data captured by IBMMarketScan database, which is the

treated prevalence inferred from US insurance claims (see Table 1); because the data were

potentially influenced by reporting biases, we refer to the IBMMarketScan disease rates as raw

rates, to be further adjusted for confounders.

Spatial patterns of putative environmental risk factors in the US

Spatial distribution of environmental risk factors varies significantly across the US (see Fig

1A–1D). Air quality (Fig 1A) is predictably worse near larger cities on both the US East and

West Coasts while generally much better in the middle of the country. Water quality (Fig 1B)

measurements showed very little variation across the US and is generally worse in the western

US, as well as in some interior states (e.g., Wyoming and Illinois). Resolution of the water qual-

ity data facet is not very high, as county water quality descriptors closely follow state bound-

aries. Land quality (Fig 1C) appears to be worse in the north of the continental US as well as in

Pollution and mental health

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000353 August 20, 2019 3 / 28

https://doi.org/10.1371/journal.pbio.3000353


the west. Importantly, land quality is not highly correlated with air quality across geographical

space, facilitating the disentanglement of associations between factors. Built quality (Fig 1D) is

patchy rather than continuous across counties. Regarding fair- and poor-weather days (Fig 1E

and Fig 1F), central US counties far from coasts tend to have many poor-weather days,

whereas coastal areas tend to be enriched with fair-weather days. Continental counties are cor-

related with a higher number of poor- and fair-weather days. The sociodemographic factors,

including population density, urbanicity, insurance status, and poverty, showed variable pat-

terns across the US (S1 Fig).

Raw prevalence, sex ratio, and spatial disease patterns in the US

From the health insurance claims analysis of over 151 million individuals represented in the

IBMMarketScan database (during 2003–2013), the observed spatial patterns for the raw preva-

lence of 4 psychiatric and 2 neurological disorders in the US differ geographically to a remark-

able extent (Fig 2A–2G, S2 Fig and S3 Fig). The raw (unadjusted) prevalence rates for bipolar

and personality disorders were 0.82% and 0.15%, respectively, with both disorders 1.6 times

more prevalent among female patients. The prevalence of major depression was 6.64% and was

2.1 times more common among women. Prevalence of schizophrenia and epilepsy was 0.55%

and 0.62%, respectively, with both disorders at 1.2 times higher prevalence among female

patients. In contrast, Parkinson disease was 1.3 times more common in males, with an overall

prevalence of 0.16% (see Table 1). Note that after correcting for potential confounders [regres-

sion analysis], we found that the adjusted rates of bipolar disorder and personality disorder

Table 1. Demographics of unique persons in IBMMarketScan database with at least one health insurance claim with diagnosis of bipolar disorder, schizophrenia,
Parkinson disease, personality disorder, epilepsy, or major depression during 2003 to 2013.

Category Total (% of
total)

Bipolar
disorder

Schizophrenia Parkinson
disease

Personality
disorder

Epilepsy Major
depression

Public sources (see S1 Table) Prevalence US
population

2.8%
(NIMH, 18+)

0.5%–1.0%
(NIMH)

0.1%–0.2%
(NIH)

1.4%
(NIMH)

1.2%
(CDC)

6.7%
(NIMH, 18+)

IBMMarketScan Unique
cases

151,104,811
(100%)

1,238,255
(0.82%)

831,426
(0.55%)

243,493
(0.16%)

234,341
(0.15%)

937,933
(0.62%)

10,041,023
(6.64%)

Sex Male 73,565,201
(48.69%)

476,315
(38.47%)

379,449
(45.64%)

137,854
(56.61%)

91,464
(39.03%)

433,571
(46.23%)

3,224,124
(32.1%)

Female 77,539,610
(51.31%)

761,940
(61.53%)

451,977
(54.36%)

105,639
(43.39%)

142,877
(60.97%)

504,362
(53.77%)

6,816,899
(67.9%)

Age 0–5 13,596,589
(9%)

6,607
(0.53%)

3,806
(0.46%)

251
(0.1%)

3,967
(1.69%)

70,296
(7.49%)

31,135
(0.31%)

6–17 24,381,821
(16.4%)

174,027
(14.05%)

74,494
(8.96%)

586
(0.24%)

38,542
(16.45%)

149,807
(15.97)

907,981
(9.04%)

18–30 30,976,117
(20.5%)

276,735
(22.35%)

92,948
(11.18%)

1,342
(0.55%)

53,858
(22.98%)

148,636
(15.85%)

1,747,820
(17.41%)

31–40 23,030,236
(15.24%)

241,809
(19.53%)

70,647
(8.5%)

2,890
(1.19%)

41,575
(17.74%)

118,967
(12.68%)

1,913,715
(19.06%)

41–50 23,563,254
(15.59%)

248,854
(20.1%)

104,391
(12.56%)

10,586
(4.35%)

42,987
(18.34%)

143,477
(15.3%)

2,195,617
(21.87%)

51–65 27,259,464
(18.04%)

238,454
(19.26%)

187,510
(22.5%)

63,903
(26.24%)

39,884
(17.02%)

197,255
(21.03%)

2,478,835
(24.69%)

65 plus 8,297,330
(5.49%)

51,769
(4.18%)

297,630
(35.8%)

163,935
(67.33%)

13,528
(5.77%)

109,495
(11.67%)

765,920
(7.63%)

Subjects mappable to US counties
in IBMMarketScan

Unique
cases

100,316,345
(66.4%)

918,065
(74.1%)

422,654
(50.8%)

63,575
(26.1%)

170,693
(72.8%)

633,954
(67.6%)

7,170,269
(71.4%)

Abbreviations: CDC, Centers for Disease Control and Prevention; NIH, National Institutes of Health; NIMH, National Institute of Mental Health

https://doi.org/10.1371/journal.pbio.3000353.t001
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were 1.5 times higher among women. The rate of major depression was twice as high—and the

rate of epilepsy was 1.12 times higher—among female patients. There was no significant differ-

ence in the adjusted rate of schizophrenia in male and female populations. These MarketScan

prevalence estimates are in excellent agreement with those published previously (S1 Table).

Areas of the country distant from large bodies of water (in the continental US) are the most

enriched for neuropsychiatric disorders across the board. This is particularly evident for major

Fig 1. Spatial patterns of putative environmental risk factors in the US. The county-level environmental quality is assessed by the EQIs designed by the US EPA. (A)
A map showing the EPA air quality index across US counties divided into septiles such that Q1 represents the best and Q7 represents the worst air quality regions. The
EPA designed the index based on the measurements of 87 pollutants. (B) A map showing the EPA water quality index across counties constructed by the analysis of 80
water quality indicator variables. (C) EPA land quality index map constructed by the analysis of 26 land quality indicator variables. (D) EPA built quality index designed
by the analysis of 14 built quality indicators (e.g., amount of vehicular traffic, transit access, and pedestrian safety). (E) A county-level map showing the average number
of good weather days that indicated whether at least 4 hours in a diurnal cycle were in a “comfort zone,” defined as a 4-point patch with vertices in temperature and
humidity space (temperature [18˚C, 27˚C, 27 ˚C, 18 ˚C] and relative humidity [6.71%, 8.85%, 13.85%, 10%]). (F) A county-level map showing average number of bad
weather days that indicated whether at least 4 hours in a diurnal cycle were in an “extremely uncomfortable zone,” defined as<−5 ˚C or>35 ˚C. For both the “good
weather days” and “bad weather days,” the number per year was averaged over the years during the period 2003–2012. The underlying data for producing these maps
can be found in S1 Data. EPA, Environmental Protection Agency; EQI, Environmental Quality Index; NA, not available.

https://doi.org/10.1371/journal.pbio.3000353.g001
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depression and bipolar disorder, and in Kentucky and Missouri, when comparing Fig 2A to

the rest of the subfigures. At the state level, Alaska shows more psychiatric disorder diagnoses

than expected for the overall population size—particularly for personality disorders and

schizophrenia. Hawaii shows higher-than-expected rates of Parkinson disease and schizophre-

nia, whereas Michigan has an apparent increased prevalence of Parkinson disease, major

depression, bipolar disorder, and schizophrenia. Our mixed-effect regression analyses sug-

gested that Michigan’s apparent higher rate across all disorders is associated with reporting

biases, visible in our analysis as high, state-specific random effects. The US East Coast experi-

ences a higher prevalence of these phenotypes than the West Coast (S2 Fig and S3 Fig). Geos-

patial clusters with a high prevalence of major depression are observed among almost all

counties of Michigan, New Hampshire, and Maine (Fig 2E and S3 Fig).

Association between environmental factors and the risk of neurological
and psychiatric disorders in the US

We considered several environmental factors for the prediction of neurological and psychiatric

disease diagnosis among different age and sex groups at the US county level. These factors

included the quality of air, water, land, built environment, and weather conditions. In addition,

population density, median income, ethnic and racial composition, and the percentages of poor

and insured populations were also included in the model. All environmental predictors were

transformed into septiles, with Q1 representing the best-quality and Q7 representing the worst-

quality regions (US counties). Similarly, for weather variables and sociodemographic covariates,

Q1 and Q7 represent the regions with the least and highest percentages, respectively. We report

the comparison of disease rates between referent group Q1 with all higher septiles (Q2–Q7).

Reviewing results of the application of our mixed-effect Poisson regression model, we

noticed significant variability in the prevalence of neuropsychiatric disorders across different

racial/ethnic groups (Fig 3A–3F). The strongest predictor of mood disorders (major depres-

sion and bipolar disorder) in a county was its percentage of white individuals (using US Cen-

sus race/ethnicity categories). By contrast, a higher percentage of black non-Hispanic

individuals was associated with higher rates of schizophrenia and epilepsy.

The strongest predictor for bipolar disorder diagnosis, after a population’s ethnicity compo-

sition, was air quality (defined by the US Environmental Protection Agency [EPA] Environ-

mental Quality Index [EQI]). The worst air quality was associated with an approximately 27%

increase (95% credible interval [CrI] 15%–40%, pMCMC<10
−4) in the apparent rate of bipolar

disorder (Fig 3A and S2 Table). The estimated rate of bipolar disorder was 16.4% higher (95%

CrI 5.8%–29.6%, pMCMC = 0.0044) in the most densely populated counties (Fig 3A). For major

depression, a slight increase of 6% in the diagnosis rate (95% CrI 0%–12.4%, pMCMC = 0.05)

was observed only among the worst air quality regions (Q7). We also observed a positive asso-

ciation with a small effect size between population density, urbanicity, and the rate of major

depression diagnosis (see Fig 3D and S2 Table). Personality disorder was best predicted by

land pollution (Alaska and Hawaii were not included in this analysis because we did not have

matching high-resolution weather data). The regions with worst land quality (Q7) were

Fig 2. Cartogrammaps showing the spatial patterns of apparent neurological and psychiatric disorder prevalence inferred from IBMMarketScan database.
(A) Cartogrammap of the total patient population (151 million) present in the MarketScan database during 2003–2013. County and state land areas are rescaled in
proportion to their patient population, producing distorted maps. The squeezed regions contribute smaller shares of patient population compared to their
corresponding land area and vice versa. The total map area remains the same. The subsequent cartogrammaps show the prevalence of 4 psychiatric disorders: (B)
bipolar disorder, (C) schizophrenia, (D) personality disorder, and (E) major depression, and 2 neurological disorders: (F) epilepsy and (G) Parkinson disease. The
underlying data for producing these cartogrammaps can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3000353.g002
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associated with an estimated 19.2% increase (95% CrI 8.8%–29.9%, pMCMC<10
−4) in the

apparent rate of personality disorder (Fig 3C and S2 Table).

The apparent protective effect of pleasant weather days was high across all our target disor-

ders and was highest for bipolar disorder in our analysis. The counties with the highest num-

ber of pleasant weather days (Q7) were associated with an estimated 21.8% decrease (95% CrI

16.8%–26.8%, pMCMC<10
−4) in the rate of bipolar disorder (Fig 3A–3F). At first glance, it

seems counterintuitive that across all studied psychiatric and neurological disorders, both

mean numbers of pleasant and harsh days would appear to be associated with a protective

effect in neuropsychiatric disorders (Fig 3A–3F). However, this is not a contradiction or error

because, in the continental climate, the number of days with at least 4 pleasant hours is

strongly correlated with the number of days with at least 4 harsh hours. In these places, the

same day can contribute to both the pleasant and the harsh list (e.g., pleasant in the early

morning or late evening and harsh at midday). Therefore, it is likely that one effect, possibly

the protective days with harsh weather (keeping individuals indoors, away from environmental

exposure to contaminated air and land), is causal, and another effect—the number of pleasant

days—is driven by a secondary correlation.

Random effects at the state and county levels showed dissimilar distribution across all 6 dis-

orders studied here. For example, random effects for Michigan, Missouri, NewMexico, and

Georgia were consistently high, whereas those for South Dakota, Iowa, Wyoming, and North

Carolina were consistently low (see Fig 3G and S4 Fig). There were relatively few counties in

which the county-level random effect was consistently low or high. For example, several coun-

ties in Southern California were low: San Diego, Imperial, Orange, and San Bernardino. Like-

wise, several counties were consistently high: San Luis Obispo in California and Snohomish

and King inWashington (see Fig 3H and S4 Fig).

Sensitivity analysis for the association between air quality and bipolar
disorder

In order to correct for multiple testing, we applied false discovery rate (FDR) correction to the

p-values obtained from the regression analysis. The association between air quality and bipolar

disorder remain statistically significant after FDR correction, whereas a previously observed

weak association of major depression with only worst air quality regions (Q7) did not survive

Fig 3. Relationship between environmental factors and neurological and psychiatric disorders in US. The results
from the US data analysis in which all predictor variables are divided into septiles (7 groups) with each septile
representing approximately 400 counties. Septile 1 (counties with the least exposure or the least percentage) is used as a
referent to compare the disorder rates in the higher septiles (counties with systematically higher exposures or
percentages). For air, water, land, and built qualities, a higher septile corresponds to the group of counties with poor
quality. Similarly, for all other variables, a higher septile represents a higher fraction or the corresponding percentages.
The estimated disorder rate from the mixed-effects regression model is shown for (A) bipolar disorder, (B)
schizophrenia, (C) personality disorder, (D) major depression, (E) epilepsy, and (F) Parkinson disease. (G) Map
showing the aggregated state-level random effects. The random effects for the 6 disorders are aggregated to produce 1
representative map. States shaded red show higher disorder diagnoses, and those shaded blue show lower disorder
diagnoses that is not captured by our model. An apparent high neurological and psychiatric disorder rate in the states
of Michigan, Missouri, Georgia, and NewMexico, and the apparent low rate in the states of South Dakota, Iowa,
Wyoming, and North Carolina could be associated with reporting biases. (H) Map showing aggregated, county-level
random effects. Random effects for the 6 disorders are aggregated to produce 1 representative map. Counties in red
show higher disorder rates, and those in blue show lower disorder rates not captured by our model. County-level
random effects can be thought of as residual variations not explained by fixed-effect predictors and state-level random
effects. There are relatively few counties in which the county-level random effect is consistently low. For example,
several counties are consistently low (San Diego, Imperial, Orange, and San Bernardino Counties in Southern
California), and several counties are consistently high (San Luis Obispo County in California and Snohomish and King
Counties inWashington). The underlying data for this figure can be found in S2 Table.

https://doi.org/10.1371/journal.pbio.3000353.g003
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the multiple correction (S2 Table). We performed further sensitivity analysis to test the signifi-

cant association observed between air quality and the rate of bipolar disorder in the US. A vali-

dation study of bipolar disorder’s diagnosis in hospital discharge registers suggests that the

two-separate discharge diagnosis measure was sufficiently sensitive and specific for us to use

in our epidemiological study [42]. We further validated our model by considering a subset of

the population with at least 2 or more insurance claims diagnosed as bipolar disorder during

the study period of 2003–2013. A total of 906,175 individuals (345,318 males and 560,857

females) met this criterion. Validating the model with this new criterion showed similar trends

as reported above (S5A Fig and S6A Fig). Notably, air quality turned out to be the strongest

environmental predictor of bipolar disorder. The regions with worst air quality (Q7) showed a

29% increase (95% CrI 16.4%–43.4%, pMCMC<10
−4) in the apparent rate of bipolar disorder

(see S5A Fig and S6A Fig). Lithium is often considered as a gold standard for treating bipolar

disorder [43, 44]. We ran an additional model by redefining the bipolar disorder cohort to

include individuals with a history of at least 1 dispensed prescription of lithium (37,964 indi-

viduals) in addition to those who had at least 1 insurance claim of bipolar disorder. The results

and the trends from these models were comparable to the results reported earlier (S5B and

S5C Fig). Random effects at the state and county levels showed dissimilar distribution across

all neuropsychiatric disorders (see S6B and S6C Fig).

Model validation and adjustment for spatial autocorrelation

The six neuropsychiatric disorders considered in this study showed variable degrees of spatial

autocorrelation at the county level. These spatial dependencies could potentially artificially

reduce variance in observations and inflate the effect size of the covariates, leading to biased

parameter estimates. To probe the importance of the spatial dependency of outcomes, we

tested both nonspatial and spatially explicit (conditional autoregressive [CAR]) models. Bayes-

ian analysis of very large datasets with hierarchical mixed-effects models and spatial correction

was computationally very expensive. Therefore, for this comparative analysis, we did not strat-

ify data by age and gender groups, and therefore the models do not represent age- and sex-cor-

rected estimates. Parameter estimates, analyses of residual spatial autocorrelation, and

Bayesian posterior predictive checks were used to compare model performances. For the non-

spatial model, we used a mixed-effect Poisson regression with the same exposure and covari-

ates as used previously (except for age and sex) and measured random effects at the state and

county levels. For the spatial model, we used county adjacency information (from the US Cen-

sus Bureau) to design binary, first-order adjacency weight matrix and corrected for spatial

autocorrelation using a CAR model. We tested for spatial autocorrelation among the residuals

using Moran’s I test and found no autocorrelation among the residuals.

Comparing 2 versions of spatial analysis, we observed slight variations in some of the

model estimates after accounting for spatial autocorrelation (S7 Fig and S3 Table). For bipolar

disorder, the comparison of best (Q1) and worst (Q7) air quality regions suggests that risk

increases by 29.7% (95% CrI 17.3%–43.3%) under nonspatial setting and by 23.4% (95% CrI

12.7%–36.3%) under spatial correction (S7 Fig and S3 Table). It should be noted that correc-

tion for spatial dependencies slightly reduced the estimated effect of air quality on the rate of

bipolar disorder, but the association remains strong and statistically significant. On the other

hand, a marginally higher rate of major depression (only among the worst air quality regions

[Q7]) remained consistent across the models. After correcting for spatial autocorrelation, the

estimated rate of personality disorder in the worst land quality regions (Q7) increased from

19.7% (95% CrI 9.4%–29.7%) to 25.9% (95% CrI 13.9%–37.7%) compared to the best land

quality regions (Q1) (S7 Fig and S3 Table). In general, for all disorders, the correction of spatial
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dependencies slightly reduced the estimates for ethnicity, population density, and weather var-

iables (S7 Fig and S3 Table). With leave-one-out cross-validation, the comparison of nonspa-

tial and spatially explicit models suggests that the predictive performance decreases marginally

in all 6 models after adjusting for spatial autocorrelation. We tested for spatial autocorrelation

among the residuals by computing Moran’s I statistics and found no signs of spatial correlation

in any of the models, suggesting that first-order binary adjacency weights were sufficiently able

to eliminate spatial dependencies.

To further evaluate the robustness of the models, we split the data into 2 subsets (subset 1

and subset 2). For each state, we randomly assigned equal numbers of counties to both subsets.

The 2 subsets included representative samples from 49 states (excluding Alaska and Hawaii),

with subset 1 consisting of 1,532 and subset 2 consisting of 1,557 counties. For each neuropsy-

chiatric disorder, we produced separate models from subset 1 and subset 2 and tested them

against each other. In general, with few exceptions, the model estimates from subset 1 and sub-

set 2 were mostly consistent and comparable (S8 Fig). The association between air quality and

bipolar disorder remained significant in both the models. Importantly, model 1 suggested a

33.6% increase (95% CrI 16.1%–53.5%) and model 2 suggested a 29.6% increase (95% CrI

11.6%–50.7%) in the rate of bipolar disorder when comparing the worst air quality regions

(Q7) with the best air quality regions (Q1). When tested against one another, the 2 indepen-

dent models showed robust prediction capability, with Bayes R-Square for the bipolar disorder

models as follows: subset 1 (0.989) when tested on subset 2 (0.95), and subset 2 (0.987) when

tested on subset 1 (0.948). Models for other phenotypes similarly showed strong prediction

strength when tested with independent datasets (S9 Fig). These independent model validations

indicate robustness of the associations reported earlier in this study.

Childhood individual-level exposure to air pollution and the risk of
psychiatric disorders in Denmark

We used Danish national registers comprising all individuals born in Denmark between January

1, 1979, and December 31, 2002, who were alive and residing in Denmark at their 10th birthday

(1,436,702 unique individuals) to study 4 psychiatric disorders: bipolar disorder, schizophrenia,

personality disorder, and depression. We estimated air pollution exposure for all individuals from

birth until age 10 and studied the association between childhood exposure to air pollution and 4

psychiatric disorders. We performed principal components analysis (PCA) on 14 air quality indi-

cators to obtain a summarized measure of exposure to the air pollution (see S10 Fig, S11 Fig, and

Methods for details). We transformed air pollution exposure into septiles, with Q1 representing

the least exposure and Q7 representing the highest exposure to the air pollutants. It is important

to highlight here that, though the general concept and pipeline are similar, the exposure composi-

tion and the statistical model used for the Denmark data analysis are technically different from the

one used for the US analysis (see Methods for details). The high resolution of the Danish national

registers made it possible to estimate the exposure to air pollution at the individual level—in con-

trast with the US data analysis reported earlier, in which the exposure is measured at the county

level. These differences were primarily dictated by the availability and resolution of the data. Cau-

tion should be made in direct comparison of the results from cross-country analysis.

Results from the Cox regression models suggest that, for all 4 psychiatric disorders, the rate

of disorders increases with increasing levels of exposure to air pollution. The estimated rate of

schizophrenia was 148% higher (95% confidence interval [CI] 119%–180%, p< 2 × 10−16)

among individuals in the group with the highest exposure to air pollution (Q7) compared with

those with the least exposure (Q1, the referent group; shown in Fig 4 and S4 Table). The esti-

mated rate of bipolar disorder was 29.4% higher (95% CI 9.4%–52.9%, p< 3 × 10−3) and
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24.3% higher (95% CI 4.5%–47.9%, p< 0.014) in the exposure categories Q6 and Q7, respec-

tively, compared with Q1. The strongest association was between air pollution and personality

disorder, showing a 162% increase (95% CI 142%–183%, p< 2 × 10−16) in the disorder rate

Fig 4. Association between air quality and the risk of psychiatric disorders in Denmark. The results from the Danish data analysis in which the individual-level
estimates of air quality exposure are divided into septiles, with each septile representing approximately 200,000 individuals. Septile 1 (representing the least exposure) is
used as a referent to compare disorder rates in the higher septiles for bipolar disorder, schizophrenia, personality disorder, and major depression. Higher septiles
represent individuals with systematically higher exposure to low-quality air. Five different models (labelled M0–M4) were run for each phenotype, briefly as follows: M0:
crude model with 7 air-quality–exposure groups; M1: M0 + calendar time using splines; M2: M1 + sex; M3: M2 but restricted to subset of population with no missing
covariates; and M4: M3 + socioeconomic status + urbanization. Further, to cross-validate the models, whole data were split into 2 equal subsets (subset A and subset B),
separate models were run on each subset, and the parameter estimates were compared. The figure shows estimates from subset A, subset B, and from the model using all
the data. The underlying data for this figure can be found in S4 Table.

https://doi.org/10.1371/journal.pbio.3000353.g004
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among category Q7 compared with category Q1. The estimated rate of major depression

increased by 50.5% (95% CI 42.8%, 58.7%], p< 2 × 10−16) among the group with the highest

exposure to air pollution (Fig 4). (Note: The complete within-group comparison of estimated

rates can be found in Fig 4 and S4 Table.) The association between air quality and the risk of

all 4 psychiatric disorders remained statistically significant even after correcting for multiple

comparisons (see S4 Table).

To test the robustness of these model estimates, a cross-validation analysis was performed

on the Danish dataset. The whole cohort was randomly partitioned into 2 equal-size subsets

that were analyzed separately, and results of the analyses were compared (Fig 4). The two sub-

sets provided nearly identical results.

Harmonization of the US and Denmark data analysis

In the Denmark analysis, it did not make sense to aggregate data geographically by administra-

tive region when individual-level data at a resolution of 1 square kilometer were available. We

did run the analysis over the Denmark cohort using a Poisson model instead of Cox. The results

were very similar to the initial Cox regression analysis, as shown in the Supporting Information

(S12 Fig). To harmonize the analysis of data from 2 different countries, we adjusted the models

built on the Denmark data for potential socioeconomic confounders such as urbanicity, paren-

tal educational levels, income, and employment status (all measured at an individual level on

their 10th birthday). The information on these covariates was not readily available for the entire

study population, so a subset of the dataset was used for the subsequent analysis. The results

from the adjusted models were consistent and comparable to the results reported in the earlier

models (see Fig 4 and S4 Table). Notably, by adjusting for socioeconomic confounders, the pre-

viously estimated rate of bipolar disorder slightly diminished and that of personality disorder

increased, but the overall trend of association remained comparable.

The air quality index used in the US analysis (designed by the EPA) is a summary measure,

obtained from the PCA of mean exposure to the 87 air quality indicators, whereas for Den-

mark, the exposure is a summary indicator of 14 air quality indicators modeled from birth

until a patient’s 10th birthday. In an attempt to harmonize the 2 analyses, we performed a sen-

sitivity analysis by using the same air quality indicator variables across the 2 studies. First, we

recomputed the US county-level air quality index with a subset of 6 air components (carbon

monoxide [CO], nitrogen dioxide [NO2], ozone [O3], particulate matter smaller than 10 μm

[PM10], particulate matter smaller than 2.5 μm [PM2.5], and sulfur dioxide [SO2]) that were

available for both the US and Denmark. With a mixed-effect Poisson regression model, we

again observed a significant association between the air quality and risk of bipolar disorder in

the US. The counties with the worst air quality (Q7) showed an estimated 11.6% increase in

the rate of bipolar disorder (S13 Fig). Secondly, we reanalyzed Denmark data with the expo-

sure estimated from 6 air components discussed above. The estimates from these models were

again very similar and comparable. Specifically, the rate increase in the highest exposure group

(Q7) compared to the least-exposure group (Q1) was as follows: bipolar disorder 31.4% (95%

CI 7.4%–60.8%, p = 0.007), schizophrenia 104.3% (95% CI 76.3%–136.8%, p< 2 × 10−16), per-

sonality disorder 209.6% (95% CI 183.5%–238%, p< 2 × 10−16), and major depression 68.3%

(95% CI 57.9%–79.4%, p< 2 × 10−16) (S4 Table). (Note that we present complete results of this

analysis, for all 7 groups of environmental quality, in S4 Table.)

Analysis of individual air quality indicators

In this observational study, we hypothesized that different pollutants interact with each other

in a synergistic way that can be captured by PCA and represented by the first principal
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component (PC1) of variation over the 87 air quality indicators. A downside of this approach

is that interpretation of the PCA in terms of air pollution is not necessarily straightforward.

The full study of space of exhaustive combinatorial interactions among 87 environmental fac-

tors will be computationally intractable, especially in a setting of Bayesian multilevel mixed-

effect regression. In addition, most of the air pollutants were multicollinear, preventing easy

disentanglement of their individual contributions. We performed a mixed-effect Poisson

regression analysis of the full collection of 87 US air quality indicators and identified several

strong predictors of bipolar disorder prevalence: cyanide compounds (variable A_CN), acro-

lein (A_ Acrolein), acrylonitrile (A_C3H3N), bromoform (A_Bromoform), epichlorohydrin

(A_ECH), polychlorinated biphenyls (A_PCBs), and vinyl acetate (A_ VyAc). The strongest

predictors in a similar analysis conducted for individual air components in the Denmark data-

set (across all 4 neuropsychiatric conditions) included nitrate (variable NO3_mean), ammo-

nium (NH4_mean), sulfate (SO4_mean), EC (EC_mean), and organic carbon (OC_mean).

Full results are available in S5 Table and S14 Fig.

Discussion

The datasets representing US and Denmark populations in this study have different strengths.

The US dataset is 2 orders of magnitude larger than the Danish dataset but is at a county level,

whereas the Danish dataset allows for the computation of individual-level pollutant exposure

during the first years of a patient’s life with a spatial resolution of 1 square kilometer. In the US

data, patient early-life trajectories are not known, and we had to estimate exposure using

county-level pollution measurements, assigning patients to their county of residence during

the period recorded in the insurance data. As some US counties are very large, we should

expect that the estimated quality for individual exposure would be degraded for such counties.

US environmental data have additional variables (e.g., land, built, and water quality) that are

not available for this study for Denmark. Data from Denmark included all eligible individuals,

with information from all psychiatric treatment facilities within the country in the context of

universal healthcare. The potential risk for selection or information bias is thus reduced.

Just as the 2 very large national datasets used in this study have different strengths, they also

have divergent limitations and biases. They reflect life in different cultures, with diverging

approaches to healthcare, population tracking, and environmental monitoring. For example,

apparent disease prevalence is affected by the ascertainment biases, diagnostic biases, social

stigma, and healthcare practices specific to a geographic area, and the variability across the

racial/ethnic categories in the data should be read with these qualifications in mind. Given

these many differences, it is all the more significant that the patterns we see in findings across

2 diverse countries are consistent for bipolar disorder. The Denmark analysis suggests that

poor air quality during the initial years of an individual’s life increases the risk of all 4 psychiat-

ric disorders studied here (bipolar disorder, schizophrenia, personality disorder, and major

depression). In the US data, we see a similar trend for bipolar disorder (and to some extent for

major depression) as that in Denmark, but the signal for schizophrenia and personality disor-

der is absent. It is likely that this difference is due to the limited resolution of the pollutant

exposure estimates for the US data. It is also possible that this difference is partially caused by

differences in study design, exposure composition, or country-specific genetic variation. Our

US analysis was, by necessity, focused on association of disease with recent influence of pollu-

tion, while Denmark data allowed for evaluating corresponding association with cumulative

long-term effect.

In our exploratory analysis, we found that poor air quality is associated with apparently

higher rates of bipolar disorder and major depression in both US and Danish populations. Air
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pollution is a complex and variable mixture of small particulate matter (PM), gases, metals,

and organic contaminants generated by transport vehicles, industrial activity, and fires. To

quantify air pollution in the US, we used the EPA air quality index, which is a summary mea-

sure, obtained from the PCA of 87 potential air pollutants. These pollutants include PM10 and

PM2.5, as well as diesel emissions and NO2, itself often used as a proxy measure of air pollution,

and organic substances such as polycyclic aromatic hydrocarbons (PAHs). There are multiple

substances that contribute to the PC1 of the air pollution index shown in S15 Fig. Because mul-

tiple pollutants are collinear in their presence, we are unable to narrow the list of “suspect”

causal pollutants to a specific compound. It is likely that multiple pollutants contribute to dele-

terious effects on the human nervous system in an additive or synergistic way. It is also possi-

ble that measured pollutants serve as surrogate variables to an unmeasured pollutant that

causally affects human disorders. Ultrafine PM (<100 nm) and nanoscale PM (<200 nm), for

example, are not separately assessed in the EPA air quality index yet are likely to track other

indicators. Noise pollution likewise is outside the scope of these indices but is likely to track

other indicators of vehicular and industrial emissions [45].

Growing evidence from human, animal, and in vitro studies demonstrates that airborne

pollutants target the brain and are implicated in neurological and psychiatric disorders etiol-

ogy [46–49]. Yet bipolar disorder’s and depression’s links to air pollution have not been exam-

ined to the same degree as other environmental factors such as psychosocial stressors; at the

same time, studies of air pollution and the central nervous system have focused on disorders of

neurodevelopment and aging such as autism and Alzheimer disease. The patterns uncovered

in our data underline the potential importance of the physical milieu to bipolar disorder and

depression research.

Potential mechanisms

The associations detected in this observational study necessitate an explanation via likely bio-

logical mechanisms linking environmental exposures to neurological and psychiatric disor-

ders. The most causally convincing studies involve experiments with animals. Significantly, a

growing number of experimental animal studies tie environmental factors to inflammatory

and cytotoxic damage to neural tissues and to psychiatric disorders. Below, we highlight those

studies lending mechanistic insight into potential causal pathways underlying our observed

associations.

In an early seminal study, healthy feral dogs chronically exposed to traffic-related pollution

were studied by detailed analysis of tissue pathology [46]. Exposed dogs showed marked

increases in cytopathological, immunological, and genetic damage responses in the lung and

nasal epithelium, blood-brain barrier, and cortical and subcortical cells. Three pathways by

which PM is likely to affect the brain were suggested, as follows. (A) Indirect transport of pollut-

ants via the lungs leads to systemic inflammation. Fine PM first induces respiratory tract inflam-

mation, which then leads to systemic inflammation of peripheral sensory nerves. This results in

the production of brain cytokines, activation of microglia, and genomic oxidative damage; (B)

direct transport by way of intravascular brain macrophages, the downstream effects of which are

the same as the first pathway; and (C) direct transport of pollutants to the brain via nasal respira-

tory damage. In this pathway, olfactory neurons transport fine PM directly to the brain, produc-

ing direct toxic damage to the limbic system and brain degeneration due to oxidative stress.

All 3 pathways of brain exposure to pollution are likely to be present in humans, supported

by postmortem brain tissue studies indicating the physical presence of vanadium and nickel

PM from air pollution, as well as evidence of microglial activation and neuroinflammation

[50]. Recent rodent model studies similarly point to both systemic and nose-to-brain routes
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for pollution impacts on the brain. Analysis of rats exposed to different fractions of airborne

PM captured from Riverside, California, showed that 1- to 3-month exposures to PM2.5–10

resulted in both metal accumulation in the brain and up-regulation of genes in inflammatory

cytokine pathways as well as some linked to tumorigenesis [47]. In another study, healthy

4-week-old male mice were exposed to urban-like ambient fine airborne PM pollution in labo-

ratory conditions for 10 months [48]. The animals were subjected to behavioral tests and a bat-

tery of analyses. Analysis of tissues of the exposed animals revealed inflammation of brain

tissues [51], especially in the hippocampus. Moreover, exposed animals showed signs of cogni-

tive impairment in spatial learning and memory and depression-like behavioral symptoms.

Neuroinflammation, excitotoxicity, and psychiatric disorders

Thus, is it clear that both systemic and direct nose-to-brain routes generate neuroinflammation

and oxidative stress. This is important for the current analysis because neuroinflammatory and

excitotoxic processes have been linked to psychiatric disorders generally and bipolar disorder in

particular in animal models and human patients. Because microglia shift from a quiescent to an

activated state and secrete pro-inflammatory cytokines and reactive oxidants when the brain is

injured or their microenvironment is perturbed, the activation of microglia and the cytokines

they produce have come under particular scrutiny. Analysis of postmortem frontal cortex tissue

from bipolar disorder patients compared to matched controls showed higher mRNA and pro-

tein levels of biomarkers of neuroinflammation, as well as signs of increased excitotoxicity [52].

Studies of neuroinflammatory markers in cerebrospinal fluid show increased levels of interleu-

kin-8 (IL-8) in euthymic bipolar patients versus controls, which also correlated with lithium

treatment [53]. A study of heightened neuroinflammation markers in relation to clinical out-

comes was inconclusive; the authors hypothesize that these markers may indicate a vulnerability

to the disorder rather than a reflection of disease course [54].

Depression has also been linked to neuroinflammation andmicroglia dysregulation, for exam-

ple, after traumatic brain injury [55]. Animal models of depression generated using chronic stress

frameworks such as repeated social defeat or foot-shock show activation and increased branching

of microglia and related inflammatory markers, supporting the hypothesis that microglial

homeostasis perturbations are part of depression’s underlying disease process [56]. Interestingly,

stress-induced depression may also be associated with microglial decline and senescence [57].

As noted above, there is a strong tendency to equate “environment” in neurological and

psychiatric disorders with psychosocial family milieu or infectious disease. Our results indicate

that the physical environment, in particular air quality, warrants further attention in research

seeking to elucidate environmental contributors to neurological and psychiatric disease risk.

In conclusion, we observed a strong positive association between exposure to environmental

pollution and an increase of prevalence in psychiatric disorders in affected patients. Converg-

ing data points to neuroinflammatory mechanisms linking environmental compounds to their

putative psychiatric consequences. However, these strong associations do not necessarily

mean causation; further research will be needed to assess whether air pollution’s neuroinflam-

matory impacts share common pathways with other stress-induced conditions.

Methods

Ethics statement

The University of Chicago IRB determined that the study is IRB exempt, given that patient

data in both countries were preexisting and de-identified.

We first present the materials and methods used for the analysis of the US cohort followed

by a similar description for the Danish cohort.
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Data sources for the US analysis

We used the IBMMarketScan health insurance claims database [34] that includes both inpa-

tient and outpatient claims, medical procedures, and prescription medications for 151,104,811

unique patients for the period of 2003 to 2013. The IBMMarketScan health claims database is a

compilation of patient records from over 100 insurance carriers and large, self-insuring compa-

nies in the US. The approved claims are linked across years and geocoded at the county level. In

addition to diagnostic and prescription medicine claims, records include patient’s age, sex, and

geolocation aggregated to the county level. Individual-level race/ethnicity was not available in

the MarketScan database; therefore, 2010 US Census [58] data were used to link county-level

percent racial distributions for the following groups: American Indian, Asian, black Hispanic,

black non-Hispanic, Pacific Islander, white Hispanic, and white non-Hispanic.

We used the EQI [59, 60], a summary measure constructed by the US EPA, to represent the

environmental quality of all counties in the US. The EQI represents 5 US county-level environ-

mental domains (air, water, land, built, and sociodemographic) that are further incorporated

into a single index for the years 2000 to 2005. Data sources and the construction of the EQI

have been described in detail by the EPA [59, 60]. Briefly, 187 data sources were evaluated for

inclusion; those that were retained for their data quality and availability at the county level for

the entire US enabled the use of 219 unique variables across each of the 5 domains: air (87),

water (80), land (26), built (14), and sociodemographic (12). A PCA, performed individually

on each domain, produced 5 domain-specific indices for the corresponding environmental

domain. For most states, the water quality showed very little variation within the state. Two

additional datasets, DAYMET [61] and North American Land Data Assimilation Systems [62],

were used to link weather-related variables.

Disease outcomes

The IBMMarketScan dataset includes time-stamped patient treatment episodes with individ-

ual patient diagnoses. These treatment episodes, both inpatient and outpatient, are represented

with ICD-9 codes; patient sex and age were also recorded, with each patient visible from 1 to

11 years (during 2003 to 2013) in the dataset. The de-identified version of the dataset used

here also contains limited data about the geographic location of patients at the US county

level, which helped us in estimating the environmental exposures.

We studied 4 psychiatric and 2 neurological disorders: bipolar disorder, major depression, per-

sonality disorder, schizophrenia, epilepsy, and Parkinson disease, each disorder defined by sets of

specific ICD-9 codes. We framed our analysis around bipolar disorder and performed compara-

tive analysis with schizophrenia, Parkinson disease, personality disorder, major depression, and

epilepsy. The outcome, bipolar disorder, observed in either inpatient or outpatient settings, was

defined as patients with a bipolar disorder claim over the period of 2003–2013, identified inMar-

ketScan database by ICD-9 code 296.x (where x refers to 296.00, 296.01, 296.02, 296.03, 296.04,

296.05, 296.06, 296.10, 296.11, 296.12, 296.13, 296.14, 296.15, 296.16, 296.40, 296.41, 296.42,

296.43, 296.44, 296.45, 296.46, 296.50, 296.51, 296.52, 296.53, 296.54, 296.55, 296.56, 296.60,

296.61, 296.62, 296.63, 296.64, 296.65, 296.66, 296.7, 296.80, 296.81, 296.82, 296.89, 296.90, and

296.99). Similarly, we used ICD-9 codes to capture a broad definition of schizophrenia (295.x,

298.x, and 293.82 for psychotic disorder with delusions and 293.82 for psychotic disorder with

hallucinations); 332.x for Parkinson disease; 301.x for personality disorder; 296.2x, 296.3x, and

311 for major depression; and 345.x for epilepsy. When we refer to these 6 conditions, we are

explicitly referring to data captured by IBMMarketScan, which is the treated prevalence inferred

fromUS insurance claims; because the data was potentially influenced by reporting biases, we

refer to the IBMMarketScan disease rates as raw rates, to be further adjusted for confounders.
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Environmental risk factors

The environment appears in our model as 3 sets of variables at the US county level: (i) quality

of air, water, land, and “built” environment (e.g., amount of vehicular traffic, transit access,

and pedestrian safety). These data were divided into septiles, with septile 1 representing the

best and septile 7 the worst environmental quality (Fig 1A–1D); (ii) weather indices split into a

number of days with at least 4 hours of pleasant weather (defined according to the design stan-

dards for climate-control buildings), and number of days with at least 4 hours of harsh (either

too hot or too cold) weather (Fig 1E–1F). This last group of factors is useful in dissecting the

outdoor environment’s positive (open-air activities) and negative (pollution) influences; and

(iii) Population density and urbanicity status (S1 Fig), known risk factors for many psychiatric

disorders.

The domain-specific EQIs for air, water, land, and built quality were used as the main expo-

sure variables. We conducted analyses using septiles of the domain-specific EQIs to compare

higher septiles (7 = worse quality) to the lowest septile (1 = best quality) across all US counties.

Our model also included county-level median income, population density, and the percentages

of poor, insured, and urban population (see S1 Fig). In this study, we made use of 2 county-

level weather variables. The first weather variable was a measure for “good days” that indicated

whether at least 4 hours in a diurnal cycle were in a “comfort zone,” defined as a 4-point patch

with vertices in temperature and humidity space (temperature [18 ˚C, 27 ˚C, 27 ˚C, 18 ˚C] and

specific humidity [6.71%, 8.85%, 13.85%, 10%]). The second weather variable was a measure of

“bad days” that indicated whether at least 4 hours in a diurnal cycle were in an “extremely

uncomfortable zone,” defined as< −5 ˚C or> 35 ˚C. Good days and bad days are not mutu-

ally exclusive; for each, the number per year was averaged over the years during the period

2003–2012. The 4-hours-per-day measure was selected as a reasonable time interval that can

be used for outdoor activities. We did not perform a maximization of association of weather

predictors and disorder rates to select these indices.

Statistical analysis

We used a mixed-effects regression, modeling counts of neurological and psychiatric disorders

per (age and sex) group per county with a Poisson distribution, where the logarithm of the

Poisson rate is defined by a linear combination of predictors and random effects. We imple-

mented this approach using Markov chain Monte Carlo (MCMC) algorithms. Time in our

regression analysis was handled in the following way: for each county/demographic group, we

computed the “offset,” which we defined as the total number of patients in a given county, visi-

ble to the dataset within the 11-year interval (2003–2013). The IBMMarketScan database com-

prised a total of 151,104,811 unique individuals; 79.48% of them had at least 1 disease-specific

claim recorded in the dataset, and 53.89% had at least 1 medication-specific claim. Overall,

about 17.61% of the individuals did not have any disease- or medication-related claims and

were considered as healthy insured individuals. Our analysis consisted of a subset of the IBM

MarketScan database restricting to those individuals whose place of residence was known at

the US county level (Table 1). We used a county-identifiable IBMMarketScan population of

100,316,345 for computing the offset. For each disorder and county, we computed the unique

number of patients with a disorder diagnosis; we again stratified patients by sex and age within

the county. We then used both offsets and counts of patients with the disorder diagnosis in the

mixed-effect regression model. Fixed-effect covariates included individual-level sex (female as

a referent); individual-level age category (0–5 [referent], 6–17, 18–30, 31–40, 41–50, 51–65,

and 66 and above); county-level race/ethnicity; median income; the quality of air, water, land,

built, and weather; and percentages of poor and insured population.
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We transformed county-level sociodemographic variables, population density, weather var-

iables, and racial composition into septiles such that higher septiles represent higher numbers

and percentages. Similarly, we transformed air, water, land, and built EQIs into septiles such

that higher septiles represent worse quality. We modeled these variables comparing different

septiles to estimate relative prevalence ratios (PRs) and CrIs. In addition to the fixed effect,

random effects were measured at the county and the state levels. State-level random effects

likely absorbed state-specific differences in both disorder reporting and true prevalence,

whereas the county-level random effects can be thought of as residual variations not explained

by our fixed-effect predictors and state-level random effects. We ran several models and com-

pared them by using deviance information criteria. For each model, 120,000 MCMC iterations

were run with a burin of 20,000 and a thinning interval of 10. The statistical analyses were con-

ducted in R version 3.4.0 and RStudio version 1.0.143 using a mixed-effect regression model

implemented in MCMCglmm package [63].

Cross-validation and adjusting for spatial autocorelation

The 6 neuropsychiatric disorders considered in this study showed variable degrees of spatial

autocorrelation between the observations. These spatial dependences have tendency to artifi-

cially reduce variance in observations and inflate the effect size of covariates, leading to the

biased estimates from regression analysis. To uncover the consequences of overlooking this

spatial dependency component, we tested both nonspatial and spatially explicit (CAR) models.

The mixed-effects hierarchical models with big data and Bayesian framework were computa-

tionally very expensive with no guarantee of convergence, so we reduced the model complexity

and computation time by aggregating (previously age- and sex-stratified) disease data at the

US county level; for each county, we obtained the count of individuals with the respective dis-

ease diagnosis and the total number of individuals at risk. In other words, for comparing spa-

tially explicit and nonspatial models, we did not stratify data by the age and gender groups,

and hence the models do not represent age- and sex-corrected estimates. Parameter estimates,

analyses of residual spatial autocorrelation, and Bayesian posterior predictive checks were used

to compare model performance.

We used county adjacency information (from the US Census Bureau) to a design binary,

first-order adjacency weight matrix that has been previously reported to be a good choice for

Bayesian models [64]. Neighbors are defined as counties that share a common boundary, and

a weight of 1 was assigned if the 2 counties are neighbors and 0 otherwise. We used mixed-

effects Poisson regression with the same exposure and covariates as used previously (except for

age and sex) and measured random effects at the state and the county levels. In addition, we

corrected for spatial autocorrelation using a CAR model. Because we used a slightly different

implementation of the model in contrast to the one mentioned previously, we provide com-

parative analysis of nonspatial and spatially explicit models to make a fair comparison. We

evaluated the spatial autocorrelation among the residuals using Moran’s I test.

Thereafter, we validated nonspatial and spatially explicit models using leave-one-out cross-

validation. To further evaluate the robustness of the models, we split the data into 2 subsets

(subset 1 and subset 2), produced independent models from each subset, and tested them

against each other. In order to have a complete state-level sample representation, we randomly

picked a similar number of counties from each state and assigned them to either of the subsets.

Subset 1 and subset 2 represented 1,532 and 1,557 counties, respectively (note that we did not

match counties in subset 1 and 2 based on any predictor variable or covariates such as urbani-

city, environmental quality, weather quality, etc.). We evaluated the model predictive perfor-

mance by using Bayes R-Square [65].
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For each model, we ran 4 MCMC chains each with 3,500 iterations and burin of 1,500. We

used R version 3.4.0 and RStudio version 1.0.143 using a mixed-effect regression model with

spatial autocorrelation structure implemented in BRMS package [66].

Key assumptions

This is an observational study that has several limitations and assumptions. The results

reported in this study should be interpreted with these assumptions in mind. First, the “envi-

ronment” in our analyses refers to the outdoor environment. The EPA has converted these

outside environment measurements to EQIs, where the use of EQI as a measure of exposure

assumes that exposure to “environment” is consistent in all individuals but the extent of envi-

ronmental exposure was not assessable. Second, we generated the data corresponding to the

observed counts of people within each county diagnosed with bipolar disorder, schizophrenia,

Parkinson disease, personality disorder, major depression, and epilepsy using a Poisson pro-

cess with the rate varying over the counties. The logarithm of Poisson rate of disease rate

depends on a linear combination of fixed and random effects. Third, we used the count data

from the insurance claims resulting in diagnosis of specific conditions in which we did not

take disease severity into account. Finally, the MarketScan database has claims ranging from

the year 2003 to 2013, and the EPA’s EQI database was constructed based on the counties’ data

from 2000 to 2005. Using the air quality index, we grouped counties into septiles, with each

septile representing slightly over 400 counties. We assumed that the county-level environmen-

tal quality (in terms of septiles) did not change drastically between 2006 and 2013.

Validation on Danish national cohort

Study population. Since 1968, the Danish Civil Registration System [41] has maintained

information on all residents, including sex, date of birth, continuously updated information

on vital status, and a unique personal identification number that can be used to link informa-

tion from various national registries. The study included data about all Danes who were born

in Denmark between January 1, 1979, and December 31, 2002, and were alive and residing in

Denmark at their 10th birthday (N = 1,436,702) [41]. Individuals who were born between the

two dates but emigrated or died before their 10th birthday were excluded from the analysis. In

addition, there were 1,628 (0.1% of the total study population) individuals for whom there was

no information regarding exposure to air pollution who were excluded from the analysis. The

final study population consisted of 1,435,074 individuals who were followed from their date of

birth until the end of 2016.

Exposure estimation. The integrated Danish air quality dispersion modelling system

THOR [67, 68] was used to model the atmospheric concentration of 14 compounds; CO, ele-

mental carbon (EC), organic carbon (OC), ammonium (NH4), NO2, nitrate (NO3), nitrogen

oxide (NOX), O3, PM10, PM2.5, sea salt, secondary inorganic aerosols (SIAs), SO2, and sulfate

(SO4) for the period of 1979 and onwards with a spatial resolution of 1 km × 1 km. The THOR

system is a coupling between the regional model den Danske Eulerske Hemisfæriske Model

(DEHM) [69, 70] covering the Northern Hemisphere and the Urban Background Model

(UBM) covering Denmark with a spatial resolution of 1 km × 1 km. For this area, high-resolu-

tion emission data based on the SPatial high REsolution Distribution (SPREAD) model for

emissions to air [71] were included. The model simulations cover the period from 1979 and

onwards. We summed the daily mean concentration of 14 environmental compounds at each

individual’s residential address (extracted from the 1 km × 1 km dataset) from birth until their

10th birthday and subsequently divided the result by the total number of daily data points avail-

able to get a mean individual-level exposure to the air pollution. The completeness of Danish
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data was very high; indeed, a total of 1,401,515 persons (97.7%) had information on exposure

measurements available on 90% or more of the days from birth until their 10th birthday.

In accordance with the design of the US EPA’s air quality index [59], we performed a PCA

on the mean individual-level exposure to the 14 environmental compounds for complete

study population and retained the PC1 as being representative of the individual-level exposure

to air pollution (S10 Fig and S11 Fig). We further divided PC1 into 7 groups and compared

psychiatric disorder rate among individuals in each of the 6 highest PC1 groups (Q2–Q7),

with the rate among individuals in referent group Q1 (Fig 4).

Key assumptions. All the atmospheric components, with exception of O3 and sea salt,

had positive loadings on PC1 (S10C and S10D Fig). In other words, 12 of the 14 compounds

had a positive relationship with PC1, whereas O3 and sea salt had a negative relationship with

PC1. Though PC1 is a good representative for most of the putative pollutants, caution should

be made in interpreting the results reported in this study keeping the inverse relationship of

O3 and sea salt with PC1 in mind.

We observed a decrease in mean concentration levels of all measured air compunds in Den-

mark over time, except for O3 and sea salt, which showed an increase over time (see S11 Fig).

This is in line with the overall decreasing trend in the anthropogenic emissions of the main

pollutants in Europe (see, e.g., https://www.eea.europa.eu/data-and-maps/indicators/main-

anthropogenic-air-pollutant-emissions/assessment-4). Though we measured exposure for all

individuals from birth to age 10, individuals born earlier were more likely to have been

exposed to higher levels of air pollutants because overall pollution levels were higher in Den-

mark during the earlier years. This trend is reflected in the PCA as well; elderly subjects were

generally assigned to higher scores on the PC1 axis.

Note also that the low-quality air exposure for the US study was estimated from 87 different

compounds, while the exposure for Denmark study included estimates from 14 compounds.

There were 6 air components in common (CO, NO2, O3, PM10, PM2.5, and SO2). We per-

formed a separate analysis on all air compounds available to us and on mutually common

components between the 2 counties.

Disease outcomes. Information on 4 psychiatric disorders (bipolar disorder, schizo-

phrenia, personality disorder, and major depression) was obtained from the Danish Psychi-

atric Central Research Register (PCRR) [72], which contains records of all the admissions to

psychiatric inpatient facilities since 1969 and visits to the outpatient psychiatric depart-

ments and emergency departments since 1995. The diagnostic system was based on the

Danish modification of the ICD-8 from 1969 to 1993 and ICD-10 from 1994 onwards. The

following diagnostics codes were used to obtain the patient records: bipolar disorders (ICD-

10 codes F30–F31; ICD-8 codes 296.19, 296.39, and 298.19), schizophrenia (F20; 295.x9

excluding 295.79), personality disorders (F60; 301.x9 [excluding 300.49], 305.x9, 305.68,

and 307.99), and major depression (F32–F33; 296.09, 296.29, 298.09, and 300.49). The out-

comes listed were patients having at least 1 diagnostic visit related to bipolar disorder,

schizophrenia, personality disorder, or major depression. The total person-years of follow-

up for the 4 psychiatric disorders in the Danish data analysis were as follows: 21,954,767 for

bipolar disorder, 21,688,539 for depression, 21,761,562 for personality disorder, and

21,913,828 for schizophrenia.

Statistical analysis. A PC1 score representing the relative cumulative scores of an individ-

ual’s exposures to air pollution was divided into septiles, with each septile representing slightly

over 200,000 individuals. We performed a statistical analysis by using Cox proportional haz-

ards regression models with age as the underlying time scale (each person was compared only

to persons of the exact same age). We employed the models, which were adjusted for sex and

birth date using splines, to compare the disorder rate in referent group Q1 to the rest of the
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groups (Q2–Q7) separately for each of the 4 mental disorders. The analyses of Denmark data

were performed on the secured platform of Statistics Denmark using the packages “survival”

[73] and function “coxph” on R version 3.4.3 and RStudio version 1.1.383.

Harmonization of US and Denmark data analysis

In order to make US and Denmark data analysis more comparable, we first ran additional

models on the Denmark data by including potential socioeconomic confounders into the

models, such as urbanicity, parental educational level (primary school, high school/vocational

training, and higher education), parental labor market affiliation (employed, unemployed, and

outside workforce for other reasons), and household income (all measured at an individual

level on their 10th birthday). The information on all covariates was only available for a subset

of the population (n = 1,336,204; 93.1% of the total). We therefore performed these additional

analyses for all 4 psychiatric disorders only in this subset. We again divided the covariates into

different groups and observed the relative change in disorder rate among these groups.

To further harmonize the analysis from the two different countries, we ran a version of

analysis keeping only air pollutants that were measured in both the US and Denmark. The

EPA air quality index used in the US analysis is a summary measure, obtained from the PCA

of mean exposure to the 87 potential air pollutants, whereas for Denmark the exposure is a

summary measure of 14 pollutants modelled from birth until a patient’s 10th birthday. A sub-

set of 6 air pollutants (CO, NO2, O3, PM10, PM2.5, and SO2) were available in both the US and

Denmark. For the US, we reconstructed the county-level air quality index using the measured

levels of these 6 air pollutants, and for Denmark, we recomputed the individual-level exposure

to the above 6 air pollutants, both through the PCA as discussed earlier. After harmonizing the

exposure composition, a mixed-effect Poisson regression model was used for the US data anal-

ysis, and a Cox regression was used for the Danish data analysis in a similar manner as dis-

cussed previously. The results were compared by matching the psychiatric disorder rates in the

referent group (Q1) to the groups with systematically higher exposure (Q2–Q7) to the air

pollution.

Both datasets were, in principle, amenable to analysis with the same methodology, such as

Cox or Poisson regression. The major practical difference between these models was that the

Cox regression (or proportional hazards regression) represents subjects in the study separately,

with 1 row per individual. This representation works well for smaller datasets, such as the

whole Denmark population, but is practically intractable for very large samples, such as the US

dataset of over 150 million unique individuals. Poisson regression is similar to Cox regression

in interpreting the risk associated with individual factors but allows for pooling individuals

with the same characteristics (age, sex, county, state of disease) into one group, thus compress-

ing data and making it manageable for practical computation. For that reason, we applied Cox

regression to the smaller Denmark dataset but used Poisson regression with the US data. For

comparison of the 2 analyses, we also ran Poisson regression analysis over the Denmark data-

set; the results were virtually identical to the Cox regression version.
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