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ABSTRACT Vibrio cholerae is a natural inhabitant of aquatic ecosystems. Some

strains of V. cholerae can colonize human hosts and cause cholera, a profuse watery

diarrhea. The major pathogenicity factors and virulence regulators of V. cholerae are

encoded either in mobile genetic elements acquired in the environment (e.g., patho-

genicity islands or lysogenic phages) or in the core genome. Several lines of evi-

dence indicate that the emergence of numerous virulence traits of V. cholerae oc-

curred in its natural environment, due to biotic and abiotic pressures. Here, we

discuss the connections between the human host and the potential ecological roles

of these virulence traits. Elucidating these connections will help us understand the

emergence of this organism and other facultative bacterial pathogens.

KEYWORDS Vibrio cholerae, virulence, environment, emergence, pathogen ecology,

evolution, virulence factors

Facultative pathogens do not rely on their human hosts for survival and long-term

persistence. Some members of the family of aquatic bacteria Vibrionaceae represent

several distinct paradigms of facultative and emergent pathogens. Although some

species, such as Vibrio vulnificus, Vibrio parahaemolyticus, or Vibrio cholerae, can cause

disease in humans, they are natural inhabitants of estuarine and brackish environments

and most strains are nonpathogenic (1–4). V. cholerae, the etiological agent of the

severe diarrheal disease cholera, is the most widely studied pathogenic species of the

Vibrionaceae. Cholera remains a major scourge in places with limited access to clean

drinking water and with poor sanitation (5, 6). There have been cholera outbreaks in

places as diverse as South America, the Caribbean, South Asia, Africa, and the Middle

East. Although cholera cases are often unreported, there are an estimated 3 to 5 million

cases per year globally (5, 6). The largest epidemic in the world is currently taking place

in Yemen, where there have been over 1,000,000 suspected cholera cases (7–10).

Among the �200 known serogroups of V. cholerae, only the O1 and O139 sero-

groups have been associated with cholera symptoms (5, 6). Both serogroups belong to

a clade of phylogenetically confined strains of V. cholerae, the pandemic genome (PG)

group (11–13). To date, only strains from this group have been found to cause cholera

in humans; however, other strains of V. cholerae (non-O1/non-O139) can cause gastro-

intestinal infections (14, 15). Numerous virulence factors of V. cholerae are encoded

within mobile genetic elements and were horizontally acquired by pathogenic strains

(16). For instance, cholera toxin (CT), the source of profuse watery diarrhea, is encoded

within the CTX� lysogenic phage (17) and toxin-coregulated pilus (TCP), an essential

colonization factor (18), is encoded within Vibrio pathogenicity island 1 (VPI-1) (19).

However, other factors, such as N-acetylglucosamine-binding protein A (GbpA), an

adhesin involved in attachment to intestinal epithelial cells, and the inner membrane-

localized virulence regulator ToxR, are encoded in the core genome of both clinical and

environmental strains (20, 21).

In its natural environment, V. cholerae is frequently found in association with other
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aquatic organisms, such as copepods and crustaceans (22–25), arthropods and chi-

ronomid egg masses (26–28), cyanobacteria (29, 30), shellfish (31, 32), waterfowl (33),

and fish (34–36) (Fig. 1). In addition, V. cholerae generally faces a wide range of abiotic

and biotic stressors that pose threats to its survival, such as nutrient limitations, pH

changes, temperature and salinity fluctuations, grazing by protozoa, and phage pre-

dation (Fig. 1) (37–44). It appears that some of the mechanisms that allow the bacteria

to colonize and to persist in their natural environment provide preadaptations for

virulence in human hosts (Fig. 2).

Humans play an unquestionable role in the emergence and evolution of pathogenic

V. cholerae, by selecting and amplifying virulent clones and their traits (44–46). In recent

years, however, several virulence and colonization factors of V. cholerae have been

found to play roles in the survival and persistence of the bacteria in their natural

environment (Fig. 2). In this review, we discuss the environmental roles of several V.

cholerae virulence factors that are involved in a wide variety of functions, such as

colonization, motility, adhesion, biofilm formation, quorum sensing (QS), and toxin

secretion. Overall, we highlight some of the factors that, together with host selective

pressures, could have led to the emergence of pathogenic traits in V. cholerae.

TYPE VI SECRETION SYSTEM

Some non-O1/non-O139 strains of V. cholerae can cause gastrointestinal infections

(14, 15). V. cholerae V52, a strain that belongs to the O37 serogroup, encodes a

nanosyringe-like system termed the type VI secretion system (T6SS), which induces

inflammatory diarrhea, facilitates replication of V. cholerae within the rabbit intestine,

and plays a role in competing against the gut microbiota (Fig. 2A) (15, 47, 48). Since the

seminal discovery by Pukatzki et al. (15), T6SSs have been described in V. cholerae O1

FIG 1 Vibrio cholerae interactions in its natural environment. The associations of V. cholerae with reservoirs and antagonistic organisms
that shape its virulence potential are shown. Gray arrows indicate reservoirs, such as crustaceans, copepods, chironomid egg masses,
phytoplankton, fish, turtles, aquatic birds, shellfish, and protozoa. Red arrows indicate antagonistic relationships with protists,
bacteriophages, and predatory bacteria.

Meeting Review Journal of Bacteriology

August 2018 Volume 200 Issue 15 e00795-17 jb.asm.org 2

http://jb.asm.org


strains and other bacterial species (48–52). It was recently shown that T6SS inactivation

attenuates V. cholerae pathogenesis in Drosophila melanogaster (53). Interestingly, the

T6SS can be reactivated in the presence of commensal gut bacteria such as Acetobacter

pasteurianus (53). The roles of the T6SS in intestinal colonization, virulence, and

antagonistic interactions with gut microbes are governed by diverse regulatory mech-

anisms such as QS or carbon utilization and chitin-induced natural competency path-

ways (50, 52, 54, 55). Recent findings show a direct regulatory relationship between the

T6SS and QS; however, the possible contribution of the T6SS to the virulence regulatory

cascade needs further elucidation (see below) (48). Besides its critical role in the host,

the T6SS plays a major role in the environmental survival of V. cholerae (15, 49–52). In

the environment, the T6SS confers protection against predators, aids in competition

against antagonistic microorganisms, and facilitates gene acquisition and horizontal

gene transfer (48). The T6SS secretes self-protecting proteins (TsiV1, TsiV2, and TsiV3)

and toxic effector proteins (VasX, TseL, and VgrG-3), which provide a competitive

advantage over other bacterial species in the natural environment and mediate cyto-

toxicity to both mammalian cell lines and the soil-living amoeba Dictyostelium discoi-

deum (Fig. 2B) (15, 49–51). Secretion of toxins and effectors by the T6SS provides a

selective advantage during interspecies competition against numerous species, such as

Escherichia coli and Salmonella enterica serovar Typhimurium (47). Interestingly, besides

serving as a predatory killing device, the T6SS is part of the competence regulon in V.

cholerae (56, 57). Borgeoud and colleagues showed that the T6SS-encoding gene

cluster is under the positive control of the competence regulators TfoX and QstR and

fosters horizontal gene transfer by making exogenous DNA accessible to V. cholerae

cells (56, 57). All of these findings highlight the critical roles of the T6SS both in the host

and in the natural environment, allowing V. cholerae to prey on other microorganisms

and also acquire novel genetic traits (Fig. 2).

FIG 2 Convergence of the aquatic environment and the human host. Factors involved in Vibrio cholerae colonization, survival, and
toxicity in the human host (A) and the aquatic environment (B) are shown. MSHA, mannose-sensitive hemagglutinin; TCP, toxin-
coregulated pilus; GbpA, N-acetylglucosamine-binding protein A; VPI-2, Vibrio pathogenicity island 2; VSP-1, Vibrio seventh pandemic
island I; HAP, hemagglutinin protease; PrtV, Vibrio metalloprotease; CT, cholera toxin; MARTXvc, multifunctional autoprocessing
repeats-in-toxin; T6SS, type VI secretion system; VSP-2, Vibrio seventh pandemic island II; VBNC, viable but nonculturable. Question
marks indicate hypothetical roles or connections.
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QUORUM SENSING

QS is a phenomenon by which bacteria monitor their cell population density

through the extracellular accumulation of signaling molecules called autoinducers

(58–62). Expression of hapR, a negative regulator of virulence, is repressed at low cell

densities; however, during the late stages of colonization, when cell numbers are high,

hapR becomes derepressed, thus negatively affecting virulence gene expression (Fig.

2A) (59, 62). The signaling molecules produced from QS at high cell densities also

facilitate cellular processes that cause increased motility, repression of Vibrio polysac-

charide (VPS) production, downregulation of TCP and CT, upregulation of the T6SS, and

protease secretion (58–64). At high cell densities, quorum regulatory small RNAs

become activated by HapR to activate T6SS genes, a phenomenon that is conserved

across V. cholerae strains (65). Zheng et al. reported that the activity of the T6SS in V.

cholerae is controlled by the combined actions of LuxO, a QS response regulator, and

TsrA, a global regulator of V. cholerae (54). The authors found that TsrA represses the

production of the T6SS substrate Hcp (54). Disruption of LuxO and TsrA activates the

T6SS, thus increasing intestinal colonization in the mouse model and inflammatory

diarrhea in infant rabbits (54). The influence of QS on the survivability and persistence

of V. cholerae in aquatic habitats has been discussed previously (66–68). The production

of HapR in the natural environment plays a role in preventing the bacteria from

protozoal grazing through secretion of PrtV and, at high cell densities, regulates the

transcription of hapA, which encodes a hemagglutinin protease (HAP) that cleaves

biofilm proteins (58–62). PrtV plays a role in bacterial survivability against predators

such as phages, protozoa, and bacteriovorous organisms such as Cafeteria roenbergen-

sis and Tetrahymena pyriformis (69, 70). In the human host, PrtV mediates degradation

of the epithelial extracellular matrix and blood components and induces an inflamma-

tory response (Fig. 2A) (69, 71). HAP is a HapR-regulated metalloprotease that cleaves

proteins in the biofilm matrix when the cell density increases, thus possibly facilitating

bacterial cell dispersal in the late stages of colonization (58, 59, 72, 73). In the aquatic

environment, HAP digests the gelatinous matrix of chironomid egg masses, mediates

associations with cyanobacteria, and aids in dissolving organic matter, thereby releas-

ing nutrients for V. cholerae cells (Fig. 2B) (74, 75). Recently, Kamareddine et al. reported

a direct relationship between QS and the intestinal colonization of an arthropod host

by V. cholerae (76). They showed that QS-mediated intestinal colonization promotes

Drosophila melanogaster survival and reduction of succinate uptake by the bacteria (76).

N-ACETYLGLUCOSAMINE-BINDING PROTEIN A

In its natural environment, V. cholerae can be typically found in association with the

chitinaceous exoskeleton of crustaceans (22, 37, 38). GbpA is a chitin-binding protein

that is highly conserved on the core genome of members of the family Vibrionaceae (20,

77, 78). GbpA promotes adherence, colonization, and interactions with various envi-

ronmental biotic surfaces, such as crustacean shells, mussel hemocytes, and bivalves

and their hepatopancreatic cells (Fig. 2B) (20, 77–79). Chitin is one of the most

abundant carbon sources in the aquatic environment; therefore, binding to and

degrading chitin provide a competitive advantage for V. cholerae outside the human

host (80, 81). Recently, Wang et al. showed active interactions of GbpA during the

intestinal colonization of soft-shelled turtles (Fig. 1) (82). These findings prompted the

authors to propose the turtle gut as an alternative model system for V. cholerae

colonization (82). In addition, GbpA has been shown to mediate attachment to human

intestinal epithelial cells and is required for successful gut colonization, which provides

a direct link between environmental and host colonization of V. cholerae (20).

TOXIN-COREGULATED PILUS

TCP, a type IV pilus, is an essential colonization factor that mediates microcolony

formation in the intestine (18). Microcolonies are clusters of V. cholerae cells that confer

numerous properties to the bacteria (83). For instance, TCP enhances attachment to

intestinal epithelial cells, facilitates bacterium-bacterium interactions by tethering cells
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together, mediates secretion of the colonization factor TcpF, and provides protection

against antimicrobial agents (84–86). The ability to form microcolonies correlates with

the ability to colonize infant mice and humans (Fig. 2A) (18, 84–86). In addition, TCP

also acts as the receptor of the CTX� phage (17). In aquatic environments, together

with other pili such as mannose-sensitive hemagglutinin (MSHA) and chitin-regulated

pilus (ChiRP), TCP mediates attachment to and colonization of the chitinaceous surface

of copepods (Fig. 2B) (80, 87). Furthermore, it has been shown that mutant strains that

do not secrete TCP are unable to form differentiated biofilms on those surfaces, which

leads to increased sensitivity to stressors (87). Overall, it appears that the ability of V.

cholerae to colonize crustaceans provides the bacteria with the ability to form micro-

colonies in the human gut.

CHOLERA TOXIN

The production of CT in the intestine is directly responsible for the severity of the

profuse diarrhea associated with cholera (5, 6). CT constitutively activates adenylate

cyclase by ADP-ribosylating a coupled G-protein, which leads to increased intracellular

cAMP levels (5, 6). This prompts the cystic fibrosis transmembrane conductance regu-

lator (CFTR) chloride channel to be constitutively opened, Cl� to be effluxed with

sodium, and water to follow passively (5, 6). Although a direct environmental role of CT

has yet to be reported, it has been shown that, due to the lysogenic nature of the CTX�

phage, the insertion and deletion of this phage can enable gene recombination, which

leads to diversity within the pandemic strains (17, 88–90). This serves as an opportunity

to increase the pathogenic potential of pandemic strains (17, 88–90). Intriguingly, V.

cholerae secretes CT while associated with the cyanobacterium Rhizoclonium fontanum;

the biological reason behind this remains unknown (91). Furthermore, studies have

shown that CT causes protein trafficking and death of D. melanogaster (28). CT also

causes disruption of exocyst trafficking, which induces the breakdown of intestinal

adherens junctions in both D. melanogaster and mammalian intestines in a manner

dependent on Rab11, a conserved G protein (92). These unresolved associations

indicate that CT plays a role in the environment; however, more research needs to be

conducted in order to establish an evolutionary origin of the toxin. It was previously

hypothesized that, given its inherent function, CT might act as an osmoregulator when

produced in the gills of crustaceans, providing an advantage to the crustaceans as they

move into environments of increasing salinity (22, 23, 25, 93, 94). It is tempting to

speculate that V. cholerae might establish a symbiotic relationship with those crusta-

ceans, obtaining a suitable place to attach and to feed while providing the host with

a powerful osmoregulator.

ToxR AND OUTER MEMBRANE PORIN U

The transmembrane transcriptional activator ToxR is encoded in the core genome of

every sequenced member of the family Vibrionaceae (21, 95). It influences the expres-

sion of numerous genes (�150 genes) involved in diverse cellular functions (96–99). In

association with TcpP, ToxR is required for transcription of the gene encoding ToxT,

which regulates the expression of the major pathogenicity factors of V. cholerae (e.g.,

TCP and CT) (21, 100–105). When V. cholerae cells are exposed to nutrient limitations at

alkaline pH, ToxR is proteolyzed via a process that involves the site 2 protease RseP and

is dependent on the sigma E-dependent envelope stress response (106–109). The

proteolysis of ToxR is associated with the entry of V. cholerae into a dormant state called

viable but nonculturable (VBNC) (106, 107). When conditions are not suitable for

growth, V. cholerae enters a dormant state (VBNC) in which it loses culturability and

adopts a viable coccoid form, which appears to facilitate its survival and persistence in

the environment (106, 107). It seems possible that ToxR evolved as a nutrient sensor in

the Vibrionaceae and was adopted by the virulence cascade as a means to detect the

presence of the host, as it is intrinsically associated with nutrient abundance.

In response to the nutritional status of the cell, ToxR also reciprocally regulates the

expression of the outer membrane porin genes ompU and ompT (96, 109–112). It has
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been shown that OmpU provides resistance to bile and organic acids and confers an

advantage in intestinal colonization (113–115). OmpU also confers resistance against

phage predation, facilitates survival inside the amoebal lysosome, and is involved in

biofilm formation (44, 116, 117). These traits provide an evolutionary advantage in the

natural environment of V. cholerae that likely led to the emergence of virulence traits

(Fig. 2B) (44, 116, 117).

VIBRIO SEVENTH PANDEMIC ISLANDS

El Tor strains are responsible for the seventh and current pandemic of cholera. There

are numerous traits that distinguish El Tor from classic as strains, among them the

presence of two gene clusters, i.e., Vibrio seventh pandemic (VSP) islands I and II (118).

Although the phenotypic functions provided by these clusters are not completely

understood, recent work has revealed some roles of the VSP islands (119). Davies et al.

showed that VspR, a transcriptional factor encoded in VSP-I, is regulated by the master

regulator of virulence in V. cholerae, ToxT, through the small RNA TarB (119). Repression

of VspR by TarB is associated with lower levels of intestinal colonization as well as

decreased chemotaxis (119). Interestingly, VSP-I was also found in nonpandemic strains

of V. cholerae, and it has been suggested to have an environmental role related to

chemotaxis (120). It has also been reported that the presence of VSP-II in clinical and

environmental strains might be associated with environmental survival and fitness of

the bacteria (121–123). Comparative genomic analysis of V. cholerae El Tor N16961 and

a group of V. cholerae strains that caused an outbreak in Florida associated with oyster

consumption revealed the presence of a novel bacteriocin and a pyocin protein in the

VSP-II elements of the V. cholerae Florida group (123). Numerous microorganisms

secrete bacteriocin and other antimicrobial peptides in order to protect themselves

from other microorganisms (124). Furthermore, pyocin mediates cytotoxicity toward

other inhabitants of its natural environment, such as the fish pathogen Vibrio anguil-

larum (123, 125). Overall, these findings indicate that VSP-II might provide a compet-

itive advantage to V. cholerae El Tor versus other microbial marine dwellers.

VIBRIO PATHOGENICITY ISLAND 2

VPI-2 is a 57.3-kb horizontally acquired region present in pandemic strains of V.

cholerae (16, 126). VPI-2 includes genes for sialic acid (N-acetylneuraminic acid) utiliza-

tion (16, 126). Sialic acids or nonulosonic acids constitute a family of 9-carbon amino

sugars that are prevalent in mucus-rich environments (127). VPI-2 includes the genes

necessary for the scavenging, transport, and catabolism of sialic acid (127, 128). NanH,

a neuraminidase that allows for the scavenging of sialic acid, converts higher-order

gangliosides found in the intestinal mucus into GM1 gangliosides, thus unmasking the

CT receptors (129, 130). The capacity to utilize sialic acid as a carbon and energy source

provides V. cholerae with a competitive advantage in the mucus-rich environment of

the gut, where sialic acid availability is extensive (131). The ability to use sialic acid likely

confers a competitive advantage in the natural ecosystem of V. cholerae, as the

molecule is present in the mucilaginous sheath of cyanobacteria, the guts of fish, and

the mucus-rich gills of oysters (31, 35, 132, 133). Furthermore, the catabolic pathways

of sialic acid and N-acetylglucosamine (the monomer of chitin) converge, suggesting a

synergistic relationship between the two pathways and the different hosts of V.

cholerae.

MANNOSE-SENSITIVE HEMAGGLUTININ AND BIOFILM FORMATION

V. cholerae O1 El Tor and O139 strains produce a second type IV pilus, MSHA

(134–137). MSHA promotes attachment of V. cholerae to abiotic surfaces and the

exoskeleton of crustaceans and mediates biofilm formation (134–137). Strains with

functional MSHA are able to adhere to and colonize both abiotic and biotic surfaces,

independent of the surface chemistry (77, 78, 137). MSHA provides a major advantage

for persistence of V. cholerae in its natural environment, due to its role in attachment

to various substrates (Fig. 2B) (37, 38, 77, 78, 137). Furthermore, biofilm acts as a
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reservoir of VBNC Vibrio cholerae O1 cells between epidemics and promotes long-term

survivability of the bacterium in the ecological niches it colonizes (138, 139). Interest-

ingly, the role of MSHA and biofilm formation in human pathogenesis remains puzzling

(140). V. cholerae cells that are ingested as part of a biofilm can successfully survive the

low pH of the stomach (141). Furthermore, while forming biofilm, V. cholerae can be

found in a hyperinfectious physiological state that reduces its infectious dose (142,

143). However, the inability of V. cholerae cells to repress MSHA biosynthesis prevents

colonization of the mouse intestine in the presence of secretory IgA (144). Furthermore,

TcpJ, a prepilin peptidase encoded within the TCP operon, cleaves the primary struc-

tural pilin of MSHA, indicating that TCP and MSHA play antagonistic roles in vivo (145).

Thus, it appears that biofilm formation and MSHA biosynthesis have a precise spatio-

temporal pattern that provides advantages at some specific stages during host and

environmental colonization (Fig. 2) (140).

OTHER TOXINS

Cholix toxin. Cholix toxin has been found to be cytotoxic toward eukaryotic cell

lines (146, 147). The cytotoxic effect is caused by protein synthesis inhibition in the

cytoplasm of the host cells (146). The inhibition can potentially damage cellular

functions due to a modification of translational elongation factor 2 in the eukaryotic

ribosome (146). The diversity of cholix toxin genes is high among different strains that

have been isolated from both the environment and patients (148). Cholix toxin also

plays a role in the environmental survivability and fitness of V. cholerae strains, as it is

cytotoxic toward yeast cells, Artemia nauplii, and other crustaceans (147, 149).

Multifunctional autoprocessing repeats-in-toxin. Multifunctional autoprocessing

repeats-in-toxin (MARTXvc) has been found to enhance the colonization ability of V.

cholerae in vivo (150–152). MARTXvc inhibits phagocytosis and intestinal clearance of

the bacterial cells (150–152). MARTXvc has also been hypothesized to play a part in

niche adaptation and to be involved in the pathogenesis of various marine organisms

(150). Some members of the repeats-in-toxin (RTX) family play a defensive role in the

environment as bacteriocins, indicating that these effectors evolved as a natural

defense mechanism for bacteria (150, 153, 154).

CONCLUSIONS

Humans play an undisputable role in the emergence and selective amplification of

virulence traits in V. cholerae (44–46). As discussed above, however, the environmental roles

of some virulence factors of V. cholerae appear to confer prolonged survivability of the

bacterium in the aquatic environment and also increase its the ability to colonize and infect

the human host (e.g., GbpA) or express virulence factors (e.g., ToxR) (Fig. 2). It remains to be

determined which other abiotic and biotic factors have driven the emergence of virulence

traits of V. cholerae in its natural environment. We recently discovered that pandemic V.

cholerae strains encode allelic variations in core genes in the form of virulence adaptive

polymorphisms (VAPs) that enhance their pathogenic potential (117). VAPs confer pread-

aptations to virulence prior to the acquisition of virulence genes such as CT or TCP and are

also encoded by environmental strains (117). Since some of the virulence traits of V.

cholerae appear to have evolved prior to host colonization, we speculate that VAPs circulate

in nonpathogenic environmental populations of V. cholerae and are selected for and

enriched in the environment. Combined with the presence of selective pressures such as

grazing, phage predation, and environmental fluctuations, it is possible that the bacteria are

prompted to regularly adapt and to develop novel defensive strategies, which might drive

the emergence of virulence properties (155–157). Multidisciplinary approaches that inte-

grate fields such as genomics, evolutionary ecology, and pathogenesis might provide us

with the knowledge and tools to understand the sets of conditions and the environmental

drivers that lead to the emergence and acquisition of virulent traits in bacterial populations.
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