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Abstract

Background: Early disruption of the microbial community may influence life-long health. Environmental toxicants

can contaminate breast milk and the developing infant gut microbiome is directly exposed. We investigated whether

environmental toxicants in breastmilk affect the composition and function of the infant gut microbiome at 1 month. We

measured environmental toxicants in breastmilk, fecal short-chain fatty acids (SCFAs), and gut microbial composition from

16S rRNA gene amplicon sequencing using samples from 267 mother-child pairs in the Norwegian Microbiota Cohort

(NoMIC). We tested 28 chemical exposures: polychlorinated biphenyls (PCBs), polybrominated flame retardants (PBDEs),

per- and polyfluoroalkyl substances (PFASs), and organochlorine pesticides. We assessed chemical exposure and alpha

diversity/SCFAs using elastic net regression modeling and generalized linear models, adjusting for confounders, and

variation in beta diversity (UniFrac), taxa abundance (ANCOM), and predicted metagenomes (PiCRUSt) in low, medium,

and high exposed groups.

Results: PBDE-28 and the surfactant perfluorooctanesulfonic acid (PFOS) were associated with less microbiome diversity.

Some sub-OTUs of Lactobacillus, an important genus in early life, were lower in abundance in samples from infants with

relative “high” (> 80th percentile) vs. “low” (< 20th percentile) toxicant exposure in this cohort. Moreover, breast milk

toxicants were associated with microbiome functionality, explaining up to 34% of variance in acetic and propionic SCFAs,

essential signaling molecules. Per one standard deviation of exposure, PBDE-28 was associated with less propionic acid (−

24% [95% CI − 35% to − 14%] relative to the mean), and PCB-209 with less acetic acid (− 15% [95% CI − 29% to − 0.4%]).

Conversely, PFOA and dioxin-like PCB-167 were associated with 61% (95% CI 35% to 87%) and 22% (95% CI 8% to 35%)

more propionic and acetic acid, respectively.

Conclusions: Environmental toxicant exposure may influence infant gut microbial function during a critical

developmental window. Future studies are needed to replicate these novel findings and investigate whether this has any

impact on child health.
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Background
During a critical period for developmental programming,

infants may be exposed to both environmental toxicants

and multiple microbiome-altering factors. Breastmilk is

a unique and complex substance that has evolved to

provide nutrition and crucial immune support at a time

when the gut microbiome changes from low diversity at

birth to a rapidly evolving ecosystem [1]. Breastfeeding

has clear health benefits such as protection from infec-

tions, particularly in low- and middle-income countries

[2]. However, breastmilk can also be contaminated with

persistent toxicants [3], which may directly affect health

or indirectly through interaction with the gut micro-

biome. These chemicals once commonly used in agricul-

ture as pesticides and fungicides, and in manufacturing,

as flame retardants or non-stick substances, are persist-

ent organic pollutants, which bind to lipids or proteins

and thus bioaccumulate and biomagnify through the

food chain and are ubiquitous in the environment and

human food such as fish, meat, and dairy [4, 5]. The ma-

ternal body burden of these toxic chemicals accumulates

during her lifetime and is transferred to her baby in

utero and through breastfeeding [6, 7]. These chemicals

can affect immune, endocrine, and metabolic systems in

humans, particularly following in utero exposure [8, 9].

Experimentally, some chemicals have been shown to

alter the gut microbiome, although many studies were at

high doses, with the effect of environmentally relevant

doses less clear [10, 11].

Early toxicant exposure and the development of the

gut microbiome occur during critical windows for devel-

opmental programming and immune system maturation

[12], influencing later health [8, 13, 14]. Short-chain fatty

acids (SCFAs) are signaling molecules primarily pro-

duced by gut microbiota during fermentation of

non-digestible fibers and protein and are immunomodu-

latory [15] and neuromodulatory [16]. Emerging evi-

dence suggests that neurodevelopment and metabolic

disorders are associated with both less microbiome di-

versity [17] and chemical exposure [18, 19].

We investigated whether exposure to multiple envir-

onmental toxicants that are globally present in breast-

milk [3, 20] is associated with gut microbiome composition

and function among infants at 1 month.

Results
Characteristics of the study cohort

NoMIC is a Norwegian prospective birth cohort, where

mothers were recruited in Østfold county hospital, two

term for every preterm delivery [21–23]. Our analyses

included 267 mother-child pairs where at 1-month post-

partum both infant gut microbiota and breastmilk con-

centrations of chemicals have been characterized. Twins

and infants who had antibiotics 2 weeks prior to

sampling were excluded from the analyses. Mothers had

a mean age of 30.4 (± 4.4) years, with a normal body

mass index (mean 24.3 ± 4.5 kg/m2), were non-smokers

(90%), educated more than 12 years (72.8%) and Cauca-

sian (99.6%), and with 22.5% preterm deliveries due to

the oversampling scheme (Additional file 1: Table S1).

Table 1 shows the distributions of toxicants measured in

this study. Overall, toxicants were detected in more than

96% of samples, with the exception of PBDE-154 (11.2%

< LOD). In particular, there were low concentrations and

variability of the polybrominated diphenyl ethers

(PBDEs). There were statistically significant correlations

within and between classes of toxicants. The highest

cross-class correlations were between organochlorine

pesticides and polychlorinated biphenyls (PCBs) (46% of

the correlations r = 0.6 to 0.85), while flame retardant

PBDEs and per- and polyfluoroalkyl substances (PFASs)

were not strongly correlated with other toxicant classes

(r < 0.56) (Additional file 1: Figure S1). Child fecal sam-

ples were characterized by 16S rRNA gene amplicon se-

quencing of the V4 region. We used Deblur, a novel

sub-operational taxonomic-unit (sub-OTU) approach

that provides a higher resolution than OTU-based ana-

lyses [24]. At 1 month, infants had a median Shannon

diversity index of 2.3 (IQR 1.8–2.7) (Additional file 1:

Table S2), and their gut microbiome was dominated by

Bifidobacterium, followed by Streptococcus, Erwinia, and

Bacteriodes (Additional file 1: Figure S2).

PFOS and PBDE-28 associate with infant gut microbiome

α-diversity

To test which of the 28 chemicals were associated with

α-diversity (Shannon diversity, Faith’s phylogenetic diver-

sity, and number of observed sub-OTUs), we used elas-

tic net regression, a penalized regression method to

select among correlated chemicals [25, 26], adjusting for

C-section, preterm delivery, maternal α-diversity 4 days

after birth, and proportion of meals given through

breastfeeding at 1 month. Elastic net selected 2 of 28

toxicants as the best predictors associated with less

α-diversity, although more PBDEs were associated in

single pollutant models (Additional file 1: Figure S3). In

the unpenalized model, a one standard deviation (SD)

increase of 0.5 ng/g milk lipid of PBDE-28 was associ-

ated with less Shannon diversity (− 4%, 95% confidence

interval [CI]: − 7% to − 2%, relative to mean Shannon),

explaining 2% of variance. In the same model, preterm

delivery was associated with less Shannon diversity (−

15%, 95% CI − 23% to − 7%), any formula feeding with

more (11%, 95% CI − 1% to 24%), while none of the

other potential confounders were associated. A 1SD in-

crease of 63 ng/L of perfluorooctane sulfonate (PFOS)

was associated with less phylogenetic diversity (− 5%,

95% CI − 9 to − 1%), explaining 4% of variance. Of the
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potential confounders in that model, only C-section was

significantly associated with phylogenetic diversity (− 9%,

95% CI − 18% to − 1%). PFOS was also associated with

number of observed sub-OTUs (− 7%, 95% CI − 12 to −

1%) (Additional file 1: Figure S3).

Sensitivity analyses (restricting to complete case,

breast milk sample collection age < 60 days, exclusive

breastfeeding, and excluding extreme values) attenuated

effect estimates or altered precision in some cases, but

in general did not affect the overall interpretation. When

restricting to term births, elastic net additionally selected

PCB-167 associated with significantly less phylogenetic

diversity and number of sub-OTUs (Additional file 1:

Table S5). We found no material influence on results

from the inclusion/exclusion of additional variables or

interactions (including preterm delivery) as described in

the methods.

PFOS and PCB-167 associate with infant gut microbiome

β-diversity

For each toxicant, we tested whether infants exposed to

“low” (< 20th), “medium” (≥ 20–≤ 80th) or relative “high”

(> 80th percentile) breastmilk concentrations were more

or less similar based on β-diversity distances (weighted or

unweighted UniFrac), using permutational multivariate

analysis of variance (PERMANOVA) to test significance,

with Bonferroni correction for multiple testing. There

were significant differences in community composition

Table 1 Distribution of environmental chemicals in breast milk at 1 month post-partum (31.4 [± 19.9] days)

Class Exposure N % missinga % < LOD Mean (± SD) Min p25 p50 p75 Max

Dioxin-like PCBs PCB-105 266 0.3 0 1.64 (1.09) 0.41 0.99 1.4 1.93 12.72

PCB-114 266 0.3 1.4 0.39 (0.22) LOD 0.26 0.35 0.48 2.09

PCB-118 266 0.3 0 7.68 (5.01) 1.99 4.96 6.82 8.95 62.23

PCB-156 266 0.3 0 3.83 (2.34) 0.58 2.43 3.34 4.53 22.73

PCB-157 266 0.3 0 0.76 (0.55) 0.09 0.44 0.61 0.9 4.87

PCB-167 264 1 0 0.97 (0.65) 0.19 0.64 0.84 1.13 8.05

PCB-189 266 0.3 0.3 0.30 (0.21) LOD 0.19 0.25 0.35 2.48

Non-dioxin-like PCBs PCB-74 266 0.3 0 4.12 (2.35) 0.84 2.65 3.74 4.8 18.68

PCB-99 266 0.3 0 4.98 (2.66) 0.84 3.35 4.48 6.14 24.74

PCB-138 266 0.3 0 22.63 (12.85) 4.39 15.54 20.27 26.89 145.06

PCB-153 266 0.3 0 37.73 (22.50) 7.34 25.81 34.7 44.12 296.03

PCB-170 266 0.3 0 7.79 (4.44) 1.22 5.25 6.89 9.27 46.49

PCB-180 266 0.3 0 19.65 (12.05) 4.2 13.17 17.73 23.38 142.46

PCB-194 266 0.3 0.3 1.56 (1.10) LOD 0.94 1.37 1.85 11.76

PCB-209 225 14.2 3.7 0.12 (0.10) LOD 0.07 0.1 0.13 0.78

Organochlorine pesticides HCB 266 0.3 0 11.14 (4.72) 1.72 8.72 10.45 12.93 48.72

β-HCH 266 0.3 0 4.70 (2.98) 0.7 2.9 4.32 5.63 31.34

p,p′-DDE 266 0.3 0 66.03 (54.00) 5.37 38.08 53.48 77.16 617.26

p,p′-DDT 219 16.2 0.4 2.65 (2.80) 0.04 1.54 2.11 2.93 35.16

Oxychlordane 258 3 0 3.77 (2.69) 0.53 2.38 3.27 4.48 30.27

PDBEs PBDE-28 257 3.4 1.4 0.25 (0.47) 0.01 0.11 0.16 0.26 5.59

PBDE-47 257 3.4 0 1.99 (4.96) 0.18 0.74 1.1 1.74 59.19

PBDE-99 257 3.4 0 0.48 (1.18) 0.04 0.18 0.26 0.42 14.99

PBDE-100 257 3.4 0.4 0.41 (0.74) 0.01 0.19 0.26 0.4 7.5

PBDE-153 256 3.7 0 0.61 (0.48) 0.05 0.35 0.5 0.7 4.03

PBDE-154 257 3.4 11.2 0.04 (0.09) 0 0.02 0.03 0.04 1.18

PFAS PFOA 230 12.5 2.8 57.60 (33.98) 2.19 34.42 50.77 71.18 182.55

PFOS 230 12.5 0 126.70 (63.07) 22.99 80.39 116.73 158.05 370.63

Breastmilk concentrations in ng/g lipid except for PFOS and PFOA, which are ng/L

LOD limit of detection, PCB polychlorinated biphenyl, HCB hexachlorobenzene, β-HCH beta-hexachlorocyclohexane, p,p′-DDE dichlorodiphenyldichloroethylene, p,p

′-DDT dichlorodiphenyltrichloroethane, PBDE polybrominated diphenyl ether, PFOA perfluorooctanoic acid, PFOS perfluorooctanesulfonic acid
a
“Missing” because the breast milk samples had not undergone chemical analysis at the time of this study. Only compounds that had N > 200 and > 80% of

samples above the LOD were included
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between PFOS exposure groups, with greater dissimilarity

between high and medium exposed (p = 0.003), and be-

tween high and low exposed (p = 0.010) using unweighted

UniFrac (Fig. 1a). Community composition in infants rela-

tively highly exposed to PCB-167 was more diverse than

in low exposed infants (p = 0.001) with unweighted Uni-

Frac (Fig. 1c). There were no other significant differences

in unweighted UniFrac, nor any differences in weighted

UniFrac among other toxicant exposures.

Relative abundance of sub-OTUs belonging to Firmicutes

differ in infants in the “high” toxicant exposure group

Next, we tested differential abundance of microbes in in-

fants with relatively high vs. low exposure to individual

chemicals, using analysis of composition of microbiomes

(ANCOM) with a Benjamini-Hochberg correction, and

adjusted for gestational age [27]. We detected differential

abundance of some sub-OTUs in those exposed > 80th vs.

< 20th percentile, and assigned lineages following the pos-

ition of the sub-OTU sequence in the Greengenes refer-

ence tree and collecting taxonomic labels along the path

to the root. Infants in the high exposure group had some

differentially abundant sub-OTUs within Firmicutes, par-

ticularly the genus Lactobacillus (Fig. 2). Infants in the

high perfluorooctanoic acid (PFOA) exposure group

lacked a sub-OTU from the lineage of Lactobacillus zeae

(p < 0.001) and 1.1-fold more of a sub-OTU of the genus

Enterococcus (p = 0.03). Infants in the high dioxin-like

PCBs exposure group had 1.8-fold lower Lactobacillus

gasseri (p = 0.005) and 1.8-fold greater abundance of Clos-

tridium perfingens (p = 0.013). High organochlorine pesti-

cide exposure showed 0.9-fold more of a sub-OTU within

the genus Streptococcus (p = 0.001), while the high

PBDE-28 exposure group had 2.8-fold less Veillonella

Fig. 1 Environmental chemicals in breastmilk associate with infant gut microbiome β-diversity at 1 month by low, medium, and high exposure

groups. PFOS and unweighted UniFrac, a box plots and b PCoA plot. PCB-167 and unweighted UniFrac, c boxplots and d PCoA plot. P value from

PERMANOVA, * indicates significant after Bonferroni correction. There are three groups of boxplots per pairwise test showing distances within

each of two exposure groups (“low”/“high,” “medium”/“high,” or “medium”/“low”) and “inter” the distances between exposure groups, e.g., a) The

“inter” (gray) UniFrac distance between “low” PFOS exposed group (green) and “high” exposed group (purple) is greater than the distances within

either the low group or the high group. Samples of both clusters partially overlap, obscuring these differences in PCoA plot B. In (c), the

distances within the “low” (green) PCB-167 are lower (more similar) than the distances in the “high” (purple) group
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dispar (p = 0.017). The deblurred FASTA sequences are in

Additional file 1: Table S3. Using a closed-reference OTU

table for the same raw reads, more taxa were differentially

abundant in the high breast milk-toxicant exposure group,

notably PCB-167 (Additional file 1: Table S4). In addition

to differential OTUs within Firmicutes, we detected lower

Actinobacteria (Bifidobacterium bifidum, Corynebacter-

ium, Eggerthella lenta) and Bacteroidetes (Bacteroides fra-

gilis and other unidentified species of Bacteroides).

Dioxin-like PCB-167 associates with relative abundance

and more α-diversity of the predicted functional profile

Since a taxonomic group might be replaced by an-

other while preserving its functional contribution to

the microbial community, we used PICRUSt to infer

the microbiome functional profile based on clusters

of orthologous groups of proteins (COG) and alterna-

tively by players in metabolic pathways of the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [28].

We tested relative abundance of the various features

in “high” vs. “low” exposure groups, and compared α-

and β-diversity of the functional profile across expos-

ure groups. Infants exposed to milk with higher

PCB-167 had a larger functional spectrum: signifi-

cantly higher Shannon diversity in COG (Fig. 3a) and

KEGG (Fig. 4a). The microbiome of higher exposed

infants also had 0.2-fold enrichment of “cell motility”

associated predicted proteins (p = 0.003) and 0.05-fold

less abundant “carbohydrate transport and metabol-

ism” (p = 0.006) (Fig. 3b). They also had upregulated

predicted proteins of “cellular processes,” “human dis-

eases,” and “unclassified” pathways, and less abun-

dance of predicted proteins involved in “genetic

information processing” and “metabolism” pathways

(Fig. 4c). Seven enzymes involved with amino acid

synthesis, one carbon pool by folate, and lipid metab-

olism pathways were less abundant in the high

PCB-167 exposure community compared with low

(Fig. 4d). Other toxicants were less consistently asso-

ciated with differences in the predicted metagenome

(Additional file 1: Figures S4 and S5).

Toxicants associate with lower concentrations of short-

chain fatty acids, except PCB-167 and PFOA, which

associate with higher concentrations

We studied SCFAs measured in fecal samples (n = 70).

At 1 month of age, infant fecal samples were dominated

by acetic (91.7 ± 7.4%) and propionic acids (5.4 ± 5.1%)

(Additional file 1: Table S2). Elastic net selected a num-

ber of toxicants as predictors of acetic and propionic

Fig. 2 Differentially abundant sequences in the high vs. low chemical exposure groups. Restricted to exclusively breastfed infants with exposure

> 80th percentile or < 20th percentile (N = 90), differential abundance tested using ANCOM, adjusting for gestational age. P values for Mann-

Whitney test comparing mean log relative abundance where p < 0.05 after Bonferroni correction. We assigned lineages by starting from the sub-

OTU tip, following the path up to the root and collecting taxonomic labels along this path. Deblurred FASTA sequences are in Additional file 1:

Table S4. Taxa are differentially abundant where the proportion of rejected hypotheses within each taxon is greater than 0.7 (more conservative),

except for PCB118 (0.6)
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acid in models adjusting for confounders (C-section,

preterm delivery, maternal diversity 4 days after birth,

and proportion of meals given through breastfeeding at

1 month). Multipollutant models explained 20% and

34% of variance in acetic and propionic acid, respect-

ively, increasing to 25% and 48% when the confounders

were included (Fig. 5). PCB-209 and PBDE-47 were as-

sociated with less acetic acid (− 15% [95% CI − 29% to

− 0.4%] and − 11% [95% CI − 31% to 9%], respectively,

statistically non-significant for the latter). Brominated

flame retardants were also associated with less propionic

acid (− 24% [95% 95% CI − 35% to − 13%] for PBDE-28,

and − 16% [95% CI − 35% to 3%] for PBDE-47), as was

PCB-170 (− 40% [95% CI − 102% to 21%], statistically

non-significant for the latter two). Conversely, dioxin-like

PCB-167 and PFOA were associated with more acetic acid

(22%, 95% CI 8% to 35%) and propionic acid (61%, 95% CI

35% to 87%). Associations were generally imprecise for

other SCFAs (low concentrations and large proportion

below LOD) (Additional file 1: Figure S6).

Discussion
Children are developmentally exposed to environmental

toxicants abundant in breastmilk. At 1 month postpar-

tum, some of these chemicals were associated with as-

pects of infant gut microbial composition and function.

These novel findings could reveal a mode of action for

persistent toxicants not previously considered; However,

these findings should be interpreted with caution and re-

quire replication in other studies.

Fig. 3 Metagenome prediction based on clusters of orthologous groups of proteins (COG) for the infant gut microbiome according to low,

medium, and high breast milk PCB-167 exposure groups. These plots show the significant results from Mann-Whitney test where p < 0.05 after

Bonferroni correction. Shannon diversity of COG features is higher in the medium and high PCB-167 exposure groups (a). There is differential

abundance of COG pathways in the high versus low PCB-167 exposure groups (b)
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PBDEs

PBDE-28 was associated with 4% less Shannon diversity.

Additionally, infants highly exposed to PBDE-28 had

samples with relatively less abundance of Veillonella.

PBDE-28 and PBDE-47 were also associated with less

propionic and acetic acids, the signaling metabolites that

play an important role in immune system development

[29]. We speculate that these lower levels of SCFAs may

in part be explained by relatively lower abundance of

Veillonella in the high exposed, as these bacteria are

known to utilize lactate in the intestine, fermenting it to

both propionic and acetic acids [30]. The potential of

brominated flame retardants for disrupting microbiome

composition and function has been demonstrated experi-

mentally. In a small study, mice fed PBDE-47 or PBDE-99

had decreased microbial richness, differential abundance

of some taxa, and disrupted bile acid metabolism com-

pared with control mice [31]. The acute doses of PBDEs

by oral gavage (48.5 mg/kg body weight for BDE-47), al-

though higher than environmental exposures, were esti-

mated to result in circulating levels at concentrations

similar to that found in human populations. PBDE-71 ex-

posure at environmentally realistic concentrations led to

decreased bacterial diversity of the zebra fish gut micro-

biome and disrupted metabolic functions such as energy

metabolism, virulence, respiration, cell division, cell sig-

naling, and stress response [32]. However, we also note

that for Shannon diversity, the differences associated with

PBDE-28 were much less than that from either preterm

delivery (15% less than term delivery) or any formula feed-

ing (11% more compared to exclusive breastfeeding).

PFASs

PFOS was associated with 5% less microbiome α-diversity.

By comparison, C-section, known to disrupt the micro-

biome, was associated with 9% less phylogenetic diversity

in this population (while preterm delivery and full formula

feeding were not associated). The PFOS finding was ro-

bust to sensitivity analyses including the addition/exclu-

sion of other potential confounders and restriction to

term births. Furthermore, there was greater dissimilarity

between the communities in the low and high PFOS

Fig. 4 Metagenome prediction of metabolic pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG) for the infant gut microbiome

according to low, medium and high breast milk PCB-167 exposure groups. These plots show the significant results from Mann-Whitney test

where p < 0.05 after Bonferroni correction. Shannon diversity of KEGG pathways (a) and enzymes (b) is higher in the medium and high PCB-167

exposure groups. There is differential abundance of KEGG pathways (c) and enzymes (d) in the high versus low PCB-167 exposure groups
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exposure groups than within them. In an experimental

setting, mice fed PFOS through oral gavage had a signifi-

cant decrease in abundance of bacteria [33]. However, an-

other study of mice with dietary exposure to PFOS at

doses corresponding to general population and occupa-

tional exposure found no significant differences in gut mi-

crobial diversity relative to the control group [34]. They

did observe differential abundance of bacteria within Fir-

micutes and Bacteroidetes, and high-dose PFOS exposure

significantly induced butanoate metabolism. Here, we did

not find a statistically significant association between

PFOS and the SCFA metabolites. In contrast, higher

PFOA exposure was associated with both more propionic

acid, absence of a sub-OTU within the genus Lactobacillus,

and greater relative abundance of a sub-OTU of Enterocco-

cus. In rodents, propionic acid enhances adipocyte differen-

tiation of 3 T3-L1 pre-adipocytes via increased expression

of GPR43 and peroxisome proliferator-activated receptor γ

(PPARγ) [35], as does PFOA [36]. PFASs continue to be a

concern for human health, as evidenced by the recent

lowering of the European Food Safety Authority’s tol-

erable weekly intake [37], and the interaction between

these compounds and the gut microbiome requires

further investigation.

Dioxin-like PCB-167 was associated with greater

β-diversity of the gut microbiome, enriched metabolic

Fig. 5 Environmental chemicals in breast milk associate with short-chain fatty acids at 1 month. Exposure units are ng/g lipid except for PFOA

and PFOS (ng/L). All models adjusted for proportion of feeding from breast milk, gestational age, and C-section (yes/no). The point indicates the

β estimate, the horizontal line the 95% CI, as percentage change relative to the mean of the SCFA, per 1 SD increase in exposure. ENET selected

exposures (SDs in above units): p,p′-DDE (54), PCB-167 (0.7), PCB-170 (4.4), PCB-194 (1.1), PCB-209 (0.1), PBDE-28 (0.5), PBDE-47 (5.0), PFOA (34.0).

ENET (green triangle) indicates chemical selected by and estimate derived from penalized elastic net using the minimum CV-MSE. Multipollutant

model estimate (blue circle) from unpenalized linear regression with exposures selected via elastic net. For propionic acid, we excluded PCB-194,

the exposure collinear with PCB-170 that had the lowest ENET estimate. Substitution of PCB-170 with PCB-194 did not materially affect results.

Single pollutant models (orange circle) are unadjusted for other toxicants
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activity, and more acetic acid. This may indicate a more

heterogeneous response to exposure, leading to a larger

functional spectrum in more exposed communities. In

experimental studies, the AhR mediates dioxin-like com-

pounds’ toxicity and exposure increased butyrate and

propionate in AhR+/+ but not AhR−/− mice [38], while

larval exposure to PCB-126 increased phylogenetic di-

versity in the frog gut [39]. Exposure may perturb com-

munity structure, selecting for specialized/more tolerant

microbes able to degrade the chemical [40]. This could

allow colonization by potential opportunistic microbes;

here, infants with higher PCB-105 exposure had greater

abundance of Clostridium perfringens. In mice,

dioxin-elicited changes in the host decreased B. fragilis

[41], which, in our study was relatively lower in abun-

dance in the higher breastmilk toxicants exposure group,

as were some Lactobacillus. Due to financial constraints,

we only had measured levels of the less toxic of the

dioxin-like PCBs; however, we expect these to be moder-

ately correlated with dioxins and other more toxic

dioxin-like compounds [3]. Given our findings and ex-

perimental studies, a more detailed investigation of di-

oxins and the human gut microbiota is warranted.

Organochlorine pesticides

There were fewer associations with organochlorine pesti-

cides. High oxychlordane and dichlorodiphenyltrichloro-

ethane (p,p′-DDT) exposed communities were associated

with greater relative abundance of a sub-OTU of the

genus Streptococcus, while the metabolite dichlorodiphe-

nyldichloroethylene (p,p′-DDE) was selected as a pre-

dictor of less propionic acid. In rats, coliform bacteria

metabolize p,p′-DDT to p,p′-DDD [42], which is probably

relevant for humans.

Non-dioxin like PCBs

These compounds were associated with gut microbial

function (decreased acetic and propionic acid), with less

evidence for a disturbed community composition. Limited

experimental evidence reports that mice orally exposed to

non-dioxin-like PCBs had decreased abundance of gut

bacteria, primarily Proteobacteria [43].

Strengths and limitations

This study is based on a prospective birth cohort with rich

questionnaire data to assess potential confounding. We had

extensive exposure assessment of persistent chemicals at

the time when fecal samples were collected, providing sub-

stantial information on the multiple breast milk toxicants

to which gut bacteria were exposed. Our methods allowed

for adjustment for confounding from co-occurring toxi-

cants in linear regressions, although we could not consider

the exposure profile of co-occurring toxicants when asses-

sing low, medium, and high exposure groups of individual

toxicants. PCB-167 influenced a number of microbiome

metrics; however, given the high correlation with other

PCBs (r = 0.77 – r = 0.92), these may represent common ef-

fects. Additionally, other unmeasured compounds may be

more influential confounders (i.e., arsenic [44]). We

assessed breast milk concentrations as direct exposure for

the bacteria and not child blood concentrations (although

they are correlated in early life [45]), which could influence

gut microbiota through host physiology.

Using Deblur increases resolution, and reduces false

positive annotations [24]. We detected more differentially

abundant taxa using a Greengenes closed-reference table,

thus some taxonomic differences may be expressed in spe-

cies- to genus-level rather than sub-OTU level. This could

be followed up with in vitro studies of toxicant effects on

strains and species from the same genus.

We had a reasonable sample size for the α-diversity ana-

lyses; however, SCFA analyses were in 70 infants, and

should be interpreted cautiously. Arsenic and diazinon per-

turb the gut microbiata in a sex-specific manner in mice

[46, 47]; there was no interaction between toxicants and

sex on α-diversity, but for SCFAs we could not test this.

All toxicant classes were associated with some alter-

ations in composition and function, but not consistently

across all metrics, or toxicants. This could be due to

specific chemicals only affecting particular aspects of the

microbiome, misclassification of exposure, statistical

methods, or chance findings. The sensitivity and resili-

ence of gut microbiota to environmental toxicants has

been demonstrated in fish [48], and it may be difficult to

detect small, transient effects in an observational design.

Preterm babies, whose gut microbiota could be more

susceptible to the effect of toxicants due to immaturity

of their immune system, were over-represented. In the

linear regressions, adjusting for preterm delivery did not

influence the toxicant effect estimates, although restrict-

ing to term births (22.5% reduction in study population)

affected the interpretation of PCB-167, which became

associated with decreased α-diversity.

Forty percent of mothers in the NoMIC cohort did

not deliver milk, and these women were not breastfeed-

ing (15%), or preterm (39% vs. 26% of those who deliv-

ered milk), or if they were breastfeeding exclusively

breastfed for a shorter period (2.3 vs. 4.2 months), pos-

sibly indicating difficulties breastfeeding. However, there

were no significant differences in infant gut diversity in

the full cohort compared with our study population, so

we do not expect this to bias our results.

Breast milk is an evolutionary development containing

numerous specialized bioactive substances. Oligosaccha-

rides, milk lipids, secretory IgA, and hormones are re-

leased into the milk and are uniquely adapted to the

individual baby in response to the mother’s living condi-

tions. Protection against infections and a small beneficial
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effect on IQ are well documented health benefits of

breastfeeding [2]. Furthermore, there is a growing under-

standing of the role of breast milk bacteria in seeding

the infant gut [49]. Here, maternal-reported formula

feeding at 1 month (i.e., non-exclusive breastfeeding)

was associated with more Shannon diversity in their in-

fants (with stronger effect size than from the toxicants),

and the implications of such on child health should be

investigated in a targeted study. Although the toxicant

concentrations were lipid-normalized, we recognize that

there is a complex relation between lipophilic chemicals

and fatty acids, with a possible effect on the gut micro-

biome. Potential interactions between lipids, bioactive

substances, bacteria, and environmental toxicants in

breast milk are an avenue for future research.

The milk was sampled between 2002 and 2006 from

women in Norway. In World Health Organization surveys

2005–2010, breast milk from Norway had higher levels of

dioxin-like PCBs (expressed as toxic equivalency factor, 3 pg

TEQs/g lipid) and sum of 6 indicator PCBs (62 ng/g lipid)

than the less industrialized countries of the southern hemi-

sphere (i.e., Australia 1.8 pg TEQs/g lipid and < 20 ng/g

lipid), but not among the highest (i.e., Czech Republic 7 pg

TEQs/g and 380 ng/g lipid). However, regardless of level,

surveyed countries had levels of dioxin-like PCBs and sum

of PCBs in human milk at one to two orders of magnitude

above those considered toxicologically safe in early childhood

[3, 50]. By contrast, the sum of DDT in Scandinavian breast

milk was the lowest (< 100 μg/kg lipid), with other

European countries comparatively higher (i.e., Czech

Republic 130 μg/kg lipid, and the highest in the tropical

countries using DDT for vector control i.e. India > 1000 μg/

kg lipid). PBDE levels are also relatively low in Norway [51].

Due to restrictions, these chemicals are in decline [52],

although exposure continues through dust and food, espe-

cially in countries with lower environmental controls. These

findings are relevant for the general population due to con-

tinued contamination of fish and meat.

Conclusions
Our results suggest that environmental toxicants in breast

milk, notably PBDE-28, PFOA, PFOS, and dioxin-like

PCB-167, influence infant gut microbial composition and

function. These novel findings must be interpreted with

caution, and should be replicated in independent popula-

tions. It is unclear whether these potential toxicant-induced

alterations have implications for child health, and this needs

studying both in this cohort and in countries with higher

contamination.

Methods

Study population and data collection

The Norwegian Microbiota Cohort (NoMIC) is a pro-

spective birth cohort [21–23]. Mothers were recruited at

the maternity ward of Østfold county hospital (2002–

2005), two consecutive term births per preterm delivery.

Fluency in Norwegian and residency in the county were

inclusion criteria. Mothers were asked to collect and

freeze one fecal sample from themselves at 4 days post-

partum, as well as samples from their infants when they

were 4, 10, 30, 120, 365, and 730 days old. Participants

were asked to collect by hand a 25-ml breast milk sam-

ple each morning for eight consecutive days, between

2 weeks and 2 months postpartum [20], but minor

changes in sampling protocol were also accepted. Sam-

pling was undertaken on multiple days to reduce

within-subject variability in estimated level of exposure.

The milk was stored in a 250-ml container in the

freezer. When the mothers had filled the container, the

milk samples and fecal samples were collected by study

personnel, kept frozen during transport to the Norwe-

gian Institute of Public Health (NIPH), and stored at −

20 °C upon arrival. DNA was extracted after all samples

were collected [21, 53]. Six hundred one women agreed

to participate, 89% returned fecal samples, leaving a co-

hort of 552 children. Three hundred twenty-one

mothers also delivered breastmilk samples with mea-

sured toxicants, corresponding to 333 children (includ-

ing multiple births); 5 did not have microbiome

information due to lost samples leaving 328 children

with measurement of toxicants and gut microbiome di-

versity at any time point. We focused on 1 month, a sen-

sitive period when the microbiome undergoes rapid

development [54], and 87% of women were exclusively

breastfeeding; whereas feces sampled at later time points

could be influenced by other factors such as antibiotic

use, introduction of solid food, and diet. Three hundred

seven infants had both chemicals measured and fecal

samples at 1 month. We excluded twins and triplets who

may have different feeding patterns and thus the toxi-

cants sampled in milk were not representative of their

exposure (n = 26), infants whose mothers reported no

breastfeeding at 1 month (n = 3), or infants with antibi-

otics use 14 days prior to fecal sampling (n = 3). Two

hundred sixty-seven infants were in our α-diversity ana-

lysis (Additional file 1: Figure S7). To assess differences

in microbiome composition between infants grouped by

low (< 20th), medium (≥ 20th–< 80th), and high (≥ 80th

percentile) breast milk toxicant exposure, we restricted

to exclusively breastfed babies, since we could not adjust

for confounders in those analyses (n = 239). SCFAs were

not available for all children due to lack of sample vol-

ume, thus we studied microbiota function in a subset of

participants (n = 70).

We obtained information on gestational age, maternal

smoking, and birth weight and length through the

Norwegian Medical Birth Registry, and additional import-

ant covariates, including maternal education, antibiotics
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use, breastfeeding, and C-section, from the 1-month

questionnaire.

Exposure variables

Mothers sampled their breast milk at a mean (SD) age of

31.4 (19.9) days using the WHO protocol [20]. Due to fi-

nancial constraints, 28 chemicals were analyzed in breast

milk samples in 3 laboratories: non-dioxin-like PCBs,

mono-ortho dioxin-like PCBs, organochlorine pesticides,

PBDEs, and PFAS (Additional file 1: Table S6). University

of Life Sciences-NMBU measured PCBs and organochlor-

ine pesticides in 15 samples using liquid-liquid extraction,

gravimetrical lipid determination, and clean-up with sul-

furic acid [53, 55, 56]. Following this, the laboratory at

The Department of Environmental Exposure and Epi-

demiology, Norwegian Institute of Public Health (NIPH)

established methods and analyzed the lipophilic chemicals

using liquid-liquid extraction and gas chromatography–

mass spectrometry (GC/MS) with negative chemical

ionization [57, 58]. The majority of PFAS samples were

measured in breast milk using high-performance liquid

chromatography/tandem mass spectrometry (LC-MS/MS)

at the NIPH [57, 59], with additional samples measured at

Vrije University, Institute for Environmental Studies [60].

Measured concentrations of the lipophilic chemicals were

normalized by dividing by total lipid content in the spe-

cific milk sample. We replaced values below the limit of

detection (LODs) by a randomly imputed number be-

tween zero and LOD.

Outcomes

Mothers were in close contact with health personnel

and reminded to collect fecal samples at 1 month using

a standard protocol.

Sequencing and data processing

We extracted DNA using the Earth Microbiome Project

protocol: (http://press.igsb.anl.gov/earthmicrobiome/

emp-standard-protocols/dna-extraction-protocol/). We

sequenced 100 nt from the V4 region of the 16S rRNA

gene with the Illumina HiSeq instrument. We used a re-

cently developed sub-operational-taxonomic-unit ap-

proach, Deblur, which uses error profiles to obtain

putative error-free sequences from Illumina sequencing

platforms [24]. By removing noise, Deblur gives a higher

resolution than OTU-based analyses or analyses of raw

sequence data, and because it is reference free, it may

pick up sequences of novel bacteria that are not repre-

sented in existing databases. To control for variation in

sequencing coverage, the data were rarified at a depth of

20,000 sequences per sample, which lead to the removal

of 8 samples. Data processing was performed in the

Quantitative Insights Into Microbial Ecology (QIIME)

pipeline version 1.9.1. [61]. More detailed information

on DNA extraction, sequencing, and data processing is

provided in the Supplemental Material.

Gut microbiota composition: α-diversity, β-diversity,

differential abundance of taxa

We used three α-diversity measures: (i) Shannon diver-

sity, the total number of species (species richness)

weighted for their relative abundances (species even-

ness); (ii) Faith’s phylogenetic diversity, the amount or

proportion of branch length in a phylogenetic tree that

leads to different organisms (species richness); and (iii)

the number of observed unique sub-OTUs. To study

variation in diversity in the bacterial community in the

exclusively breastfed children based on low, medium, or

high toxicant concentrations, we calculated β-diversity

using unweighted and weighted UniFrac [62]. In order

to obtain a phylogenetic tree for diversity computation,

we used Qiime2’s fragment-insertion [63] to phylogenet-

ically place the sub-OTU sequences into the reference

Greengenes 13.8 99% identity tree [64].

We also tested for differentially abundant taxa (sub-O-

TUs) as described below.

SCFAs

Two laboratories analyzed fecal samples for eight

SCFAs using published analytical methods [65–67].

Briefly, distillates of fecal material were analyzed with gas

chromatography and quantified using flame ionization de-

tection. We assessed SCFAs with > 50% above LOD:

acetic, propionic, n-butyric, i-butyric, and i-valeric acids

(Additional file 1: Table S2).

Covariates

We selected potential confounding factors a priori using

directed acyclic graphs (Additional file 1: Figure S8). The

minimum adjustment set to assess the effect of breast

milk toxicants on gut diversity/SCFAs at 1 month was

proportion of meals given through breast milk (vs. for-

mula feeding, continuous 0–1), preterm delivery (Yes/

No), maternal gut α-diversity, and C-section (Yes/No).

Statistics

For microbiome α-diversity analyses, we imputed miss-

ing values for exposures and covariates using multiple

imputation by chained equations to generate 20 imputed

data sets [68, 69]. Correlations between exposures were

assessed using Spearman’s rank correlation coefficients.

To assess associations between breastmilk toxicants and

gut microbiota α-diversity, we adopted two regression

approaches, in which we standardized exposures to one

SD, and adjusted for identified covariates. First, to select

among individual toxicants, we used elastic net regres-

sion modeling, a hybrid penalized method robust to ex-

treme correlations among the predictors [25, 26]. We
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selected α = 0.9 and optimized λ using tenfold

cross-validation repeated 10 times based on minimum

standard error, and unpenalized covariates [70], and re-

peated in each of the 20 multiply imputed datasets, con-

sidering the exposures which were selected (β ≠ 0) in

more than half of the models as noteworthy [71]. We

then used generalized linear models to obtain unbiased

(unpenalized) estimates and assessed all pollutants indi-

vidually for comparison, and then fitted multipollutant

models with the elastic net-selected exposures.

We investigated group differences for low (< 20th),

medium (≥ 20–≤ 80th), and high (> 80th percentile)

breast milk toxicants. First, we assessed β-diversity using

weighted and unweighted UniFrac, testing significance

of pairwise groups with PERMANOVA [72]. Second, we

investigated differences in sub-OTU abundance between

low vs. high groups using the analysis of composition of

microbiomes (ANCOM) framework [27]. ANCOM ac-

counts for the compositional nature of the taxa relative

abundances and is based on the analysis of difference in

pairwise log-ratios of microbial OTU abundances/rela-

tive abundances, between comparison groups of interest.

For each taxon, we computed a statistic indicating the

number of significantly different pairwise log-ratios

while controlling for false discoveries. We applied

ANCOM with a Benjamini-Hochberg correction at 5%

level of significance, and adjusted for gestational age. For

comparison with other studies, we assigned lineages to

the identified differentially abundant sub-OTUs. Instead

of using machine learning approaches like classifying

against the RDP, we used the phylogenetic tree produced

for diversity computation and its assigned Greengenes

taxonomy labels to obtain lineages for the sub-OTUs:

For every sub-OTU sequence, we started from the

inserted sub-OTU tip and followed the path up to the

root while collecting taxonomic labels along this path.

Third, we analyzed the predicted metagenome. We

tested for differentially abundant functions using a

discrete false-discovery rate correction [73]. For the

same relative abundances, we computed α-diversity of

the normalized relative PICRUSt abundances by apply-

ing the Shannon metric and used two-sided

Mann-Whitney tests to check for significant differences

between the three exposure groups. We then computed

β-diversity distances for the same relative abundances

via the Bray-Curtis metric and performed PERMA-

NOVA tests with 9999 permutations to check for statis-

tically significant differences within vs. between the

groups of “high,” “medium,” and “low” labeled samples.

We used Bonferroni correction for multiple hypothesis

testing with p < 0.05 to consider two groups as different.

Finally, we tested the relation between toxicants and

SCFAs, using elastic net regression and generalized lin-

ear models, with a natural logarithm to transform the

SCFAs and adjusting for confounders. We did not in-

clude maternal gut diversity in the SCFA analyses, as

there were 56% missing and the multiple imputation

models for the SCFAs would not converge. All regres-

sion models were tested for and met the assumptions of

normality, homoscedasticity, and linearity.

We used STATA 14.0 for multiple imputation and

generalized linear regression and R programme version

3.2 [74] for ANCOM and elastic net (using the glmnet

package [25]). We used scikit-bio 0.5.1 for PERMA-

NOVA tests.

Sensitivity of regression analyses

We tested the sensitivity of regression model estimates:

restricting to complete case, breast milk sample collec-

tion age < 60 days, exclusive breastfeeding, term births,

ln-transformed exposures, and excluding extreme values.

We tested the inclusion/exclusion of: household pets, in-

fant antibiotics in the first 2 weeks of life (as those with

antibiotics in the 2 weeks prior to sampling were ex-

cluded from the analyses), parity, smoking at the start of

pregnancy, maternal BMI, and education. We tested in-

teractions between the elastic net-selected compounds

sex, maternal BMI and preterm birth for the α-diversity

models.
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Table S3. Greengenes lineage for deblurred FASTA sequences. Table S4.

Differentially abundant taxa in the high (>80th percentile) vs. low (<20th

percentile) chemical exposure groups based on Greengenes 13.1 closed-

reference OTU Table (97% identity). Table S5. Association between indi-

vidual toxicants and Shannon diversity, phylogenetic diversity and observed
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gut microbiota samples of infants at 1 month. Figure S3. Environmental

chemicals in breastmilk associated with infant gut microbiome α-diversity at

1 month. Figure S4. Metagenome prediction based on Clusters of Ortholo-

gous Groups of proteins (COG) for the infant gut microbiome according to
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chain fatty acids at 1 month. Figure S7. Flowchart of participants in NoMIC

study. Figure S8. Direct acyclic graph of the relation between toxicants

in breast milk and infant gut diversity. Methods. Additional informa-

tion on extraction, sequencing and data processing. (DOCX 1150 kb)

Additional file 2: Sample R script and Stata syntax for unadjusted

analyses. (ZIP 8 kb)

Additional file 3: Data files. (ZIP 65 kb)

Abbreviations

ANCOM: Analysis of composition of microbiomes; ENET: Elastic-net;

HCB: Hexachlorobenzene; LOD: Limit of detection; p,p

′-DDE: Dichlorodiphenyldichloroethylene; p,p

Iszatt et al. Microbiome            (2019) 7:34 Page 12 of 14

https://doi.org/10.1186/s40168-019-0645-2
https://doi.org/10.1186/s40168-019-0645-2
https://doi.org/10.1186/s40168-019-0645-2


′-DDT: Dichlorodiphenyltrichloroethane; PBDE: Polybrominated diphenyl

ethers; PCB: Polychlorinated biphenyl; PERMANOVA: Permutational

multivariate analysis of variance; PFOA: Perfluorooctanoic acid;

PFOS: Perfluorooctanesulfonic acid; POP: Persistent organic pollutant;

QIIME: Quantitative Insights Into Microbial Ecology; β-HCH: Beta-

hexachlorocyclohexane

Acknowledgements

The authors are grateful to the participating mothers in the NoMIC cohort. We

thank Birgitte Moen and Knut Rudi (Norwegian University of Life Sciences) for

DNA extraction, Elisabeth Norin (Karolinska Institute) and Jørgen Valeur

(Lovisenberg Diakonale Hospital) for SCFA analyses, and Cathrine Thomsen and

Line Haug (Norwegian Institute of Public Health), Marja Lamoree (Vrije

University), and Anuschka Polder (Norwegian University of Life Sciences) for

chemical analyses.

Funding

This work was supported by the Norwegian Research Council grant

agreements “Human Infant Gut Microbiota” No 214324/F20, and "NON-

PROTECTED" No. 275903/F20.

Availability of data and materials

Sample R script and Stata syntax for unadjusted analyses have been included

as Additional file 2. Alpha diversity metrics, OTUs and corresponding

deblurred FASTA sequences, toxicant metadata, and short-chain fatty acids

have all been included as Additional file 3 (Datafile_1 to Datafile_5 respect-

ively). Pursuant to the Norwegian Health Research Act and the Norwegian

Data Protection Act, approval from the Regional Ethical Committees is re-

quired for use (and storage) of personal data related to health. The full data

used for this study can be shared when a study protocol has been approved

by the Norwegian Regional Ethical Committees and a data transfer agree-

ment has been signed. Requests should be directed to the corresponding

author, Merete Eggesbø (merete.eggesbo@fhi.no) at the Norwegian Institute

of Public Health. The raw sequences and limited personal information about

participants, including age and sex, are available from the European Bioinfor-

matics Institute (EBI) https://www.ebi.ac.uk/ena/data/view/ERP111347 (accession

ERP111347).

Authors’ contributions

ME is the guarantor of the study from conception and design to conduct of

the study and acquisition of data, data analysis, and interpretation of data. All

co-authors have contributed substantially to the data processing, analysesand/

or interpretation of the data, or provided important intellectual input, and read

and approved the final manuscript. NI was responsible for primary analysis and

interpretation of data and drafting the manuscript. SJ contributed with analysis

and interpretation. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The Regional Ethics Committee for Medical Research in Norway (S-02216)

and the Norwegian Data Inspectorate (2002/1934) approved the study.

Written informed consent was obtained from each participant prior to

enrollment.

Consent for publication

Not applicable.

Competing interests

In the interest of full disclosure of what may be perceived or potential

competing financial interests, the authors R.K., A.G., and S.J. declare that they

have been partially supported by a grant from the United States National

Institute of Health R01 DK 110793-01 and the Gerber Foundation titled

“Effects of Human Milk Oligosaccharides on the Developing Infant Gut

Microbiome and Adiposity Changes in Early Infancy.” Furthermore, RK is on

the Scientific Advisory Board for Commense Inc. Commense is pioneering a

deep understanding of the microbiome early in life and its fundamental role

in promoting a lifetime of health. Drawing insights from natural exposures to

beneficial microbes, Commense is developing approaches to guide the

priming, seeding and maintaining of the microbiome in infants and children.

The remaining authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1Department of Environmental Exposure and Epidemiology, Infection Control

and Environmental Health, Norwegian Institute of Public Health, PO Box 222,

Skøyen, 0213 Oslo, Norway. 2Department of Pediatrics, University of California

San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. 3Department of

Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine

University Dusseldorf, Dusseldorf, Germany. 4Department of Community

Medicine and Global Health, University of Oslo, Kirkeveien 166, Fredrik Holsts

hus, 0450 Oslo, Norway. 5Department of Non-communicable Disease,

Norwegian Institute of Public Health, PO Box 222, Skøyen, 0213 Oslo,

Norway. 6Center for Microbiome Innovation, University of California San

Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. 7Department of

Computer Science and Engineering, University of California San Diego, 9500

Gilman Drive, La Jolla, CA 92093, USA. 8Public Health Foundation of India,

Delhi NCR, Plot No. 47, Sector 44, Institutional Area Gurgaon, Gurgaon

122002, India. 9Biostatistics Branch, National Institute of Environmental Health

Sciences (NIEHS), 111 T.W. Alexander Drive, Durham, NC 27709, USA.
10Department of Microbiology, Tumor and Cell Biology, Karolinska Institute,

Nobels väg 16, Solna Campus, Box 280, SE-171 77 Stockholm, Sweden.

Received: 28 September 2018 Accepted: 3 February 2019

References

1. Koleva PT, et al. Microbial programming of health and disease starts during

fetal life. Birth Defects Res C Embryo Today. 2015;105(4):265–77.

2. Victora CG, et al. Breastfeeding in the 21st century: epidemiology,

mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–90.

3. van den Berg M, et al. WHO/UNEP global surveys of PCDDs, PCDFs, PCBs

and DDTs in human milk and benefit-risk evaluation of breastfeeding. Arch

Toxicol. 2017;91(1):83–96.

4. UNEP. Stockholm Convention on Persistent Organic Pollutants. Sweden: U.

N.E. Programme; 2001.

5. UNEP. Stockholm Convention on Persistent Organic Pollutants. Geneva,

Switzerland: United Nations environment Programme (UNEP); 2009.

6. Mogensen UB, et al. Breastfeeding as an exposure pathway for

perfluorinated alkylates. Environmental Science & Technology. 2015;49(17):

10466–73.

7. Lehmann, G.M., et al, Environmental chemicals in breast milk and formula:

exposure and risk assessment implications. 2018. 126(9): p. 096001.

8. Schug TT, et al. PPTOX III: environmental stressors in the developmental

origins of disease—evidence and mechanisms. Toxicol Sci. 2013;131(2):343–50.

9. Vrijheid M, et al. Environmental pollutants and child health—a review of

recent concerns. Int J Hyg Environ Health. 2016;219(4–5):331–42.

10. Jin Y, et al. Effects of environmental pollutants on gut microbiota. Environ

Pollut. 2017;222:1–9.

11. Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in

the toxicity of environmental pollutants? Npj Biofilms And Microbiomes.

2016;2:16003.

12. Gensollen T, et al. How colonization by microbiota in early life shapes the

immune system. Science. 2016;352(6285):539–44.

13. Kaplan JL, Shi HN, Walker WA. The role of microbes in developmental

immunologic programming. Pediatr Res. 2011;69(6):465–72.

14. Wang M, Monaco MH, Donovan SM. Impact of early gut microbiota on

immune and metabolic development and function. Semin Fetal Neonatal

Med. 2016;21(6):380–7.

15. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat

Rev Immunol. 2016;16(6):341–52.

16. Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the

SCFAs and gasotransmitters produced by the human symbiotic microbiota.

Microb Ecol Health Dis. 2016;27(1):30971.

17. Flint HJ, et al. The role of the gut microbiota in nutrition and health. Nat

Rev Gastroenterol Hepatol. 2012;9(10):577–89.

18. Heindel JJ, Newbold R, Schug TT. Endocrine disruptors and obesity. Nat Rev

Endocrinol. 2015;11(11):653–61.

19. Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism

spectrum disorders: a systematic review. Transl Psychiatry. 2014;4(2):e360.

Iszatt et al. Microbiome            (2019) 7:34 Page 13 of 14

https://www.ebi.ac.uk/ena/data/view/ERP111347


20. WHO. Fourth WHO-coordinated survey of human milk for persistent organic

pollutants in cooperation with UNEP -guidelines for developing a national

protocol. Geneva: World Health Organisation; 2007.

21. Eggesbø M, et al. Development of gut microbiota in infants not exposed to

medical interventions. APMIS. 2011;119(1):17–35.

22. Rudi K, et al. Alignment-independent comparisons of human

gastrointestinal tract microbial communities in a multidimensional 16S rRNA

gene evolutionary space. Appl Environ Microbiol. 2007;73(8):2727–34.

23. Mandal S, et al. Fat and vitamin intakes during pregnancy have stronger

relations with a pro-inflammatory maternal microbiota than does

carbohydrate intake. Microbiome. 2016;4(1):55.

24. Amir A, et al. Deblur rapidly resolves single-nucleotide community

sequence patterns. mSystems. 2017;2(2)

25. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear

models via coordinate descent. J Stat Softw. 2010;33(1):1–22.

26. Zou H, Hastie T. Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology).

2005;67(2):301–20.

27. Mandal S, et al. Analysis of composition of microbiomes: a novel method

for studying microbial composition, vol. 2015; 2015. p. 26.

28. Langille MGI, et al. Predictive functional profiling of microbial communities

using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814.

29. Kabat AM, Srinivasan N, Maloy KJ. Modulation of immune development and

function by intestinal microbiota. Trends Immunol. 2014;35(11):507–17.

30. Kumari M, Kozyrskyj AL. Gut microbial metabolism defines host metabolism:

an emerging perspective in obesity and allergic inflammation. Obes Rev.

2017;18(1):18–31.

31. Li, C.Y., et al., PBDEs altered gut microbiome and bile acid homeostasis in

male C57BL/6 mice. 2018. 46(8): p. 1226–1240.

32. Chen L, et al. Acute exposure to PBDEs at an environmentally realistic

concentration causes abrupt changes in the gut microbiota and host health

of zebrafish. Environ Pollut. 2018;240:17–26.

33. Xu C, et al. Estrogen receptor beta mediates hepatotoxicity induced by

perfluorooctane sulfonate in mouse. Environ Sci Pollut Res. 2017;24(15):

13414–23.

34. Lai KP, et al. Dietary exposure to the environmental chemical, PFOS on the

diversity of gut microbiota, associated with the development of metabolic

syndrome. Front Microbiol. 2018;9:2552.

35. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body

weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11(10):577–91.

36. Yamamoto J, et al. Perfluorooctanoic acid binds to peroxisome proliferator-

activated receptor γ and promotes adipocyte differentiation in 3T3-L1

adipocytes. Bioscience, Biotechnology, and Biochemistry. 2015;79(4):636–9.

37. Chain, E.P.o.C.i.t.F., et al., Risk to human health related to the presence of

perfluorooctane sulfonic acid and perfluorooctanoic acid in food 2018.

16(12): p. e05194.

38. Zhang L, et al. Persistent organic pollutants modify gut microbiota-host

metabolic homeostasis in mice through aryl hydrocarbon receptor

activation. Environ Health Perspect. 2015;123(7):679–88.

39. Kohl KD, et al. Larval exposure to polychlorinated biphenyl 126 (PCB-126)

causes persistent alteration of the amphibian gut microbiota. Environ

Toxicol Chem. 2015;34(5):1113–8.

40. Yan T, LaPara TM, Novak PJ. The reductive dechlorination of 2,3,4,5-

tetrachlorobiphenyl in three different sediment cultures: evidence for the

involvement of phylogenetically similar Dehalococcoides-like bacterial

populations. FEMS Microbiol Ecol. 2006;55(2):248–61.

41. Stedtfeld RD, et al. Modulatory influence of segmented filamentous bacteria

on transcriptomic response of gnotobiotic mice exposed to TCDD. Front

Microbiol. 2017;8:1708.

42. Mendel JL, Walton MS. Conversion of p,p-DDT to p,p-DDD by intestinal

Flora of the rat. Science. 1966;151(3717):1527–8.

43. Choi JJ, et al. Exercise attenuates PCB-induced changes in the mouse gut

microbiome. Environ Health Perspect. 2013;121(6):725–30.

44. Lu K, et al. Arsenic exposure perturbs the gut microbiome and its metabolic

profile in mice: an integrated metagenomics and metabolomics analysis.

Environ Health Perspect. 2014;122(3):284–91.

45. Needham LL, et al. Partition of environmental chemicals between maternal

and fetal blood and tissues. Environmental Science & Technology. 2011;

45(3):1121–6.

46. Chi L, et al. Sex-specific effects of arsenic exposure on the trajectory and

function of the gut microbiome. Chem Res Toxicol. 2016;29(6):949–51.

47. Gao B, et al. Sex-specific effects of organophosphate Diazinon on the gut

microbiome and its metabolic functions. Environ Health Perspect. 2017;

125(2):198–206.

48. Narrowe AB, et al. Perturbation and restoration of the fathead minnow gut

microbiome after low-level triclosan exposure. Microbiome. 2015;3:6.

49. Pannaraj PS, et al. Association between breast milk bacterial communities

and establishment and development of the infant gut microbiome. JAMA

Pediatr. 2017;171(7):647–54.

50. Van den Berg M, et al. The 2005 World Health Organization reevaluation of

human and mammalian toxic equivalency factors for dioxins and dioxin-like

compounds. Toxicol Sci. 2006;93(2):223–41.

51. Frederiksen M, et al. Human internal and external exposure to PBDEs—a

review of levels and sources. Int J Hyg Environ Health. 2009;212(2):109–34.

52. Nost TH, et al. The impacts of emission trends of POPs on human

concentration dynamics: lessons learned from a longitudinal study in

Norway (1979-2007). Int J Hyg Environ Health. 2017;220(4):776–81.

53. Eggesbø M, et al. Levels of hexachlorobenzene (HCB) in breast milk in relation

to birth weight in a Norwegian cohort. Environ Res. 2009;109(5):559–66.

54. Morelli L. Postnatal development of intestinal microflora as influenced by

infant nutrition. J Nutr. 2008;138(9):1791S–5S.

55. Eggesbø M, et al. Associations between brominated flame retardants in

human milk and thyroid-stimulating hormone (TSH) in neonates. Environ

Res. 2011;111(6):737–43.

56. Polder A, et al. Levels of chlorinated pesticides and polychlorinated

biphenyls in Norwegian breast milk (2002-2006), and factors that may

predict the level of contamination. Sci Total Environ. 2009;407(16):4584–90.

57. Thomsen C, et al. Changes in concentrations of perfluorinated compounds,

polybrominated diphenyl ethers, and polychlorinated biphenyls in

Norwegian breast-milk during twelve months of lactation. Environmental

Science & Technology. 2010;44(24):9550–6.

58. Thomsen C, Liane VH, Becher G. Automated solid-phase extraction for the

determination of polybrominated diphenyl ethers and polychlorinated

biphenyls in serum—application on archived Norwegian samples from 1977

to 2003. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;846(1–2):252–63.

59. Haug LS, Thomsen C, Becher G. A sensitive method for determination of a

broad range of perfluorinated compounds in serum suitable for large-scale

human biomonitoring. J Chromatogr A. 2009;1216(3):385–93.

60. Forns J, et al. Perfluoroalkyl substances measured in breast milk and child

neuropsychological development in a Norwegian birth cohort study.

Environ Int. 2015;83:176–82.

61. Kuczynski J, et al. Using QIIME to analyze 16S rRNA gene sequences from

microbial communities, in current protocols in microbiology: Wiley; 2005.

62. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing

microbial communities. Appl Environ Microbiol. 2005;71(12):8228–35.

63. Janssen S, et al. Phylogenetic placement of exact amplicon sequences

improves associations with clinical information. 2018;3(3):e00021–18.

64. McDonald D, et al. An improved Greengenes taxonomy with explicit ranks

for ecological and evolutionary analyses of bacteria and archaea. The ISME

journal. 2012;6(3):610–8.

65. Zijlstra JB, et al. Pretreatment methods prior to gaschromatographic analysis of

volatile fatty acids from faecal samples. Clin Chim Acta. 1977;78(2):243–50.

66. Midtvedt A-C, et al. Development of five metabolic activities associated with

the intestinal microflora of healthy infants. J Pediatr Gastroenterol Nutr.

1988;7(4):559–67.

67. Hoverstad T, et al. Short-chain fatty acids in the normal human feces. Scand

J Gastroenterol. 1984;19(3):375–81.

68. Rubin DB. Multiple imputation for nonresponse in surveys. New York: Wiley; 1987.

69. van Buuren S. Multiple imputation of discrete and continuous data by

fully conditional specification. Stat Methods Med Res. 2007;16(3):219–42.

70. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data

mining, inference, and prediction. 2nd ed: Springer-Verlag; 2009.

71. Wood AM, White IR, Royston P. How should variable selection be

performed with multiply imputed data? Stat Med. 2008;27(17):3227–46.

72. Anderson MJ. A new method for non-parametric multivariate analysis of

variance. Austral Ecology. 2001;26(1):32–46.

73. Jiang L, et al. Discrete false-discovery rate improves identification of

differentially abundant microbes. mSystems. 2017;2(6):e00092–17.

74. R Core Team. R: A Language and environment for statistical computing.

Vienna, Austria: R Foundation for Statistical Computing; 2013.

Iszatt et al. Microbiome            (2019) 7:34 Page 14 of 14


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Characteristics of the study cohort
	PFOS and PBDE-28 associate with infant gut microbiome α-diversity
	PFOS and PCB-167 associate with infant gut microbiome β-diversity
	Relative abundance of sub-OTUs belonging to Firmicutes differ in infants in the “high” toxicant exposure group
	Dioxin-like PCB-167 associates with relative abundance and more α-diversity of the predicted functional profile
	Toxicants associate with lower concentrations of short-chain fatty acids, except PCB-167 and PFOA, which associate with higher concentrations

	Discussion
	PBDEs
	PFASs
	Organochlorine pesticides
	Non-dioxin like PCBs
	Strengths and limitations

	Conclusions
	Methods
	Study population and data collection
	Exposure variables
	Outcomes
	Sequencing and data processing
	Gut microbiota composition: α-diversity, β-diversity, differential abundance of taxa
	SCFAs

	Covariates
	Statistics
	Sensitivity of regression analyses


	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

