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Abstract

Classical Computer Science approaches to navigation by autonomous robots continue to make good progress. However, we have only a

limited understanding of how navigation is implemented in the neural networks of animals, which still perform very much better in

navigational tasks than robots. In this paper we explore the implementation of neural network based navigation in a simple robot. We use a

modular navigation system that contains separate representations of visual input and the path integration process. These representations are

combined to influence the behavior of a robot. Both representations are encoded within recurrent neuronal networks. The outputs of the

representations are vectors of polar values that encode the location of the nearest object, or of a specific place in the environment. The robot

manoeuvres in relation to these attended locations, in the context of its egocentric spatial map. During ego-motion towards a goal, the

network representation of the goal moves in a counter-movement due to applied motor feedback. The robot’s position is continuously

compared against its visual input, and mismatches between the visually perceived goal position and its spatial representation are corrected.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Exploration is a foundation of animal economies. It is the

search for materials to be transformed into the energy and

protective structures that sustains them and their societies.

Animals often use a strategy that involves exploratory

sorties from a protective home base. Consequently methods

of pilotage and navigation that enable the animal to forage

far from home, are crucial behavioral skills. For example,

visual piloting and path integration (Gallistel, 1990), also

named dead reckoning, and the related abilities of landmark

recognition, location fingerprinting, odometry and

compass sense sensory cues are used efficiently by insects

and vertebrates for navigation and foraging (Hartmann &

Wehner, 1995).

The construction of autonomous robots with navigational

and foraging skills similar to animals is a great intellectual

challenge, and would have great economic implications. Of

course, Computer Science approaches to navigation by

autonomous robots continue to make good progress in

location detection, environmental mapping, and path

planning (Bruce & Veloso, 2002; Choset, 2001; Fox,

Burgard, & Thrun, 1998; Montemerlo, Thrun, Koller, &

Wegbreit, 2002). However, those approaches are based on

explicitly procedural methods, rather than being based on

neural networks.

In contrast to the procedural approaches, we have only a

limited understanding of how navigation is implemented in

the neural networks of animals, which still perform very

much better in navigational tasks than robots (Arkin, 1998;

Pfeifer & Christian, 1999). The problem, then, for

computational neuroscientists is to identify the principles

of neural network based navigation in animals, and

transpose these to robots. Here, we offer a step in that

direction by exploring how a simple robot can manoeuvre in

relation to an ‘imagined’ goal that is not always present in

its sensory input; and how visual information concerning

that goal, can be used to maintain the calibration of the

robot’s egocentric representation of the environment. The

behavior of the robot is driven by interacting neural

networks. We use a modular navigation system that contains

separate representations of visual input and the path

integration process. These representations are combined to
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influence the behavior of a robot. We take our inspiration

from the growing literature on rodent navigation, which

is one of the most studied animal navigation systems

(Redish, 1999).

In 1996, Redish and Touretzky (Redish & Touretzky,

1998a) proposed that the rodent navigation system has

five different representations: local view, head direction,

path integration, place cells and goal memory (Redish &

Touretzky, 1998b) (Fig. 1). These representations work in

parallel, are partially redundant, and exchange infor-

mation. Biological inspired models of the head direction

system (Blair, 1996; Zhang, 1996) or place code have

been simulated (Samsonovich & McNaughton, 1997), and

also tested on robots (Burgess & O’Keefe, 1996; Burgess,

Donnett, Jeffery, & O’Keefe, 1997). In these models, path

integration is only used as an idiothetic input (i.e. related

to the ego-motion of the animal) to learn the allocentric

place code (Arleo & Gerstner, 2000; Trullier & Meyer,

2000). These models do not take into account the animal’s

ability to perform path integration from the moment of its

first experience in an environment (Redish, 1999), nor do

they explain the transformation from egocentric percep-

tion to allocentric place code (Guazzelli, Bota, & Arbib,

2001).

We followed McNaughton (McNaughton et al., 1996;

Redish, 1999; Samsonovich & McNaughton, 1997) and

represent the path integration process in a two-dimen-

sional attractor network. However, our path integration

process is based on a ‘pointer-map’ architecture (Hahn-

loser, Douglas, Mahowald, & Hepp, 1999). This archi-

tecture has the useful property that it combines directly, in

a single recurrent network, two complementary represen-

tations: a map, an array of neurons with similar excitatory

and inhibitory connections each encoding a stimulus

variable, and a vector that encodes an attended location in

the map. Thus, we could use the network to perform

vector guided navigation (Alyan, Jander, & Best, 2000;

Mittelstaedt, 2000; Redish, 1999). In particular, the

attentional property can be used to maintain the activity

of an imagined goal that is not necessarily present in the

robot’s sensory input. As the robot manoeuvres in relation

to this goal, its location is adjusted by proprioceptive

feedback, so providing path integration. Furthermore, the

vectorial representations of the egocentric map can be

combined with those of object detection in a visual map.

In this way the robot’s position can be continuously

compared against its visual input, and mismatches

between the visually perceived goal position and its

spatial representation can be corrected.

In the following sections we describe the modular

navigation system, and its performance. First, we

describe the performance of the egocentric spatial

representation alone, in simulation and in an experiment

in which the robot has to move to different imagined

locations in the environment. Then, in a second series of

experiments we placed an obstacle in the environment

and let the robot move towards it. During the run we

match the vectors of the two representations pointing

both to the obstacle and use them in a path integration

task to analyze the influence of the visual self-correction

in order to improve the navigation accuracy of the

robotic system.

Nomenclature

M Egocentric spatial map

Mxy Activity of neuron at position ðx; yÞ in egocentric

spatial map

mxy Input to neuron at position ðx; yÞ in egocentric

spatial map

ap Strengthening factor for angular coupling

ar Strengthening factor for radial coupling

aPp Strengthening factor for Pp; with p [ 1; 2; 3; 4;

for the motoric coupling

Pi Activities of angular pointer neurons

Rj Activities of radial pointer neurons

pi Input to angular pointer neurons

rj Input to radial pointer neurons

k
p

Strengthening factor for nearest neighbor con-

nections in the rings

h
p

Strengthening factor for nearest neighbor con-

nections along the radials

I Global inhibition

b Input to global inhibitory neuron

V Visual map

Vxy Activity of neuron at position ðx; yÞ in visual map

vxy Input to neuron at position ðx; yÞ in visual map

ah Strengthening factor for horizontal coupling

av Strengthening factor for vertical coupling

Zl Activity of pointer neuron, left of visual map

Zr Activity of pointer neuron, right of visual map

Zb Activity of pointer neuron, back of visual map

Zf Activity of pointer neuron, front of visual map

zl Input to pointer neuron, left of visual map

zr Input to pointer neuron, right of visual map

zb Input to pointer neuron, back of visual map

zf Input to pointer neuron, front of visual map

dx Angular spacing in x direction

dy Angular spacing in y direction

b Strengthening factor for inhibition

C Input vector of motor map

Cstop Motor neuron, stop

Cforward Motor neuron, forward

Cturnleft
Motor neuron, left turn

Cturnright
Motor neuron, right turn

xðtÞ Rotatory component of the path

yðtÞ Translatory component of the path
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2. The modular navigation system

The modular navigation system is implemented on a two-

wheeled circular Khepera robot.

The navigation system comprises three interacting maps

(Fig. 2): a spatial map; a visual map, and a motor map. Both

the spatial map and the visual map have a pointer-map

architecture. (Hahnloser et al., 1999). This network contains

two groups of neurons. The first group, the ‘map neurons’,

forms the representational map for the input pattern, and

the second, ‘pointer neurons’, form the components of a

vector pointing towards the highest hill of activity in the

map.

The spatial map (Fig. 2, ‘Egocentric spatial map’)

represents the egocentric environment. Its pointer vector

attends to a dynamic location in the environmental

representation that is encoded as a hill of neuronal activity.

Thismap location usually represents a goal, or a goal position

in the environment. Target attention is possible even when

the target is out of sensory (visual) contact. In this sense, the

robot can attend to, and manoeuvre in relation to, an

imagined goal that is on the map.

The visual map (Fig. 2, ‘Visual map’; and Fig. 7) is

derived from the input of a CCD camera, which has a 508

field of view. The camera is oriented at2108with respect to

the horizontal plane. In this way, the vertical axis of the

input scene covers a region that begins close to the front of

the robot and extends beyond the robot’s horizon. The visual

map represents the scene as motor actions based on a

triangular potential collision region. The base of this

triangle corresponds to the front of the robot, and the apex

of the triangle lies at the vanishing point on the robot’s

horizon.

The output of the spatial and visual map drive a motor

map, which in turn controls the speeds of the robot’s two

wheels. Motor feedback from the shaft encoders is used to

update the goal location on the spatial map. This is achieved

by changing the strengths of nearest neighbor connections

within the neuronal map. These changes have the effect of

moving the hill of neuronal activation that represents the

location of the goal.

2.1. Egocentric spatial map

2.1.1. One-dimensional pointer-map

The implementation of the egocentric spatial map is an

extension of the one dimensional recurrent pointer network,

that we have described (Hahnloser et al., 1999) previously.

We will briefly review the principles of operation of this

network.

The one dimensional network (Fig. 3A) consists of a 1D

map containing N map neurons with activities M1;…;MN

and two pointer neurons with activities P1 (left) and P2

(right):

_Mx¼2MxþmxþaðPþ
1 cosdxþP

þ
2 sindxÞ2b

X
x

M
þ
x ð1Þ

_P1¼2P1þp1þa
X
x

M
þ
x cosdx ð2Þ

_P2¼2P2þp2þa
X
x

M
þ
x sindx ð3Þ

All neurons of the attractor network are linear threshold

neurons. The activity of the topologically arranged map

neurons is determined by the external input mx and the

activities of the two pointer neurons P1 and P2 with

Fig. 1. Navigation between two locations is thought to require multiple

representations: local view, head direction, path integration, place code,

and goal memory. These five representations operate in parallel, are

partially redundant, and exchange information.

Fig. 2. The navigation system comprises an egocentric spatial map, a visual

map and a motor map. The spatial map is centered on the robot and

represents the location of the goal object in the environment as a hill of

neuronal activity within the map. The visual map views the goal object in

relation to a horizon (horizontal line), and a potential collision zone

(diagonal lines meeting at vanishing point). The egocentric map and the

visual map both drive the motor map using vector encodings of the location

of the attended goal within their respective representations. Proprioceptive

sensing of motor output modulates the nearest neighbor connections within

the egocentric spatial map, resulting in feedback adjustment of the goal

location.
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the inputs p1 and p2: Between pointer neurons and

map neurons, symmetric, excitatory synaptic weights

are given by trigonometric functions (Lewis & Kristan,

1998a,b): cosdx and sindx; where dx¼ðx21Þp=2N with x[

½1;…;N� defines the angular spacing of the map neurons

around the unit circle, as shown in Fig. 3B. The coupling

factor a defines the strength of the synaptic coupling, while

b is the coupling factor indicating the strength of the global

inhibition. There is no direct synaptic coupling between the

map neurons.

Trigonometric synaptic weights are chosen so as to

support a vector whose direction encodes the angular

position of the highest neuronal activity in the map.

Consequently the neurons of the map are arranged along

the first quadrant of the unit circle (Lewis & Kristan, 1998a).

The vector components are encoded by the activities of the

two pointer neurons (P1; P2). The map neurons and

the pointer neurons form a recurrently connected network.

Consequently, the direction of the pointer, and the location

of activity on the map are intimately linked (Hahnloser et al.,

1999). The advantage of this architecture for our spatial and

visual maps is that place and vectorial encodings are

intimately combined.

In the network described so far, the hill of activity will

remain stationary at one location, for a constant input.

This means that the network can memorize a goal

location, but it has no internal means of shifting the

location. We modified the architecture to provide

controlled goal motion, by introducing excitatory lateral

synaptic coupling between nearest neighbors (kn in

Eq. (4)) on the map (Fig. 4A). When the coupling is

symmetrical, then as in the uncoupled case, the hill of

activity remains stationary on the map. Asymmetric

coupling results in motion of the hill towards the more

Fig. 3. (A) A one-dimensional recurrent pointer network comprises map neuronsMx and the two pointer neurons, P1 (left) and P2 (right). All neurons are linear

threshold neurons. The strength of the reciprocal, excitatory, synaptic coupling between pointer neurons and map neurons is given by trigonometric functions.

The pointer neuron P1 has a stronger coupling to the left side of the map, while the pointer neuron P2 has a stronger coupling to the right side of the map. The

map neurons receive external sensory input mx (not shown), and the pointer neurons receive external attentional input p1 and p2 (not shown). The map neurons

also receive a global inhibition (not shown). (B) Map neuronsMx lie along the first quadrant of the unit circle, with angular location dx ¼ ðx2 1Þp=2N for the x-

th neuron in the map with x [ ½1;…;N�: The pointer, which points to the maximum of activity in the map, has angle f:

Fig. 4. (A) A one-dimensional recurrent pointer map with nearest neighbor connections has two pointer neurons P1 and P2; which encode the angular positions

of the map neurons with which they are recurrently coupled. In addition to connections with their pointers, map neurons have nearest neighbor connections to

one another. The strengths of these couplings are k22; k21; k0; k1 and k2: (B) Nearest neighbor connections have two configurations: symmetric coupling, in

which the strengths of the nearest neighbor connections on both sides are the same; and asymmetric coupling in which the strengths to one side are stronger than

to the other. Symmetric coupling holds the neuronal activity at a fixed position. Asymmetric coupling causes the activity to shift towards the side of stronger

coupling. This control of location of activity is used to update the attended position in the map in relation to the movement of the robot.
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strongly coupled neighbors. In this way the direction and

speed of motion can be controlled. This principle can now

be used to update the attended position in the map in

relation to the movement of the robot. Zhang (1996) has

used a similar approach for head-direction encoding in a

one dimension network without a pointer.

The mathematical description of a one-dimensional

recurrent pointer map with nearest neighbor connections

can be summarized as follows:

_Mx ¼2Mx þ mx þ aðPþ
1 cosdx þ P

þ
2 sindxÞ

þ k0M
þ
x þ k1M

þ
xþ1 þ k21M

þ
x21

þ k2M
þ
xþ2 þ k22M

þ
x22 2 I ð4Þ

I ¼ iþ b
X
x

M
þ
x ð5Þ

_P1 ¼ 2P1 þ p1 þ a
X
x

M
þ
x cosdx ð6Þ

_P2 ¼ 2P2 þ p2 þ a
X
x

M
þ
x sindx ð7Þ

2.1.2. Two-dimensional pointer-map

We use a periodic extension of the pointer-map network

with nearest neighbor connections to support the egocentric

spatial map (Fig. 5). The two-dimensional representation

imposed on this network is in polar coordinates. One

(circular) dimension of the network encodes the angle

(^1808) of the object with respect to the orientation of the

robot. The other (radial) map dimension encodes the distance

from the robot to the object. The maximum distance was

chosen to be half of the length of the robot’s arena.

Four pointer neurons Pi; with i [ 1; 2; 3; 4; encode the

center of activity in the four quadrants for all rings. The

strength of their recurrent connections with the map neurons

are set according to the cosine function with the angular

spacing dx ¼ ðx2 1Þp=2N with x [ ½1;…;N�: The overall

strength of the recurrent coupling to the pointer neurons Pi

is given by ap:

The multi-ring arrangement that encodes distance is

coupled to another pointer pair Rj with j [ 1; 2:

The excitatory synaptic weights between this radial pointer

pair and the map neurons in the different rings, are as for the

one-dimensional case cosdx and cosdy; where

dx ¼
p

2

�
x

N
þ i

�

and

dy ¼
p

2

y

N
2 j

� �

with x; y [ ½1;…;N�: The factor ar is the recurrent coupling

strength to this pointer pair Rj: Only one pair of pointer

neurons is necessary to encode the distance. Each additional

pointer pair would only strengthen the radial recurrent

coupling, but such an effect can also be achieved if the

single radial pointer pair receives positive input. The global

inhibition I is given by the sum of activities of all map

neurons and the inhibitory input b, weighted with the

inhibitory coupling factor b:

The complete mathematical formalism to describe the

circularly structured attractor network used to build the

egocentric spatial map is as follows:

_Mxy ¼2Mxy þ mxy þ
X4
i¼1

ap

�
P
þ
i

����cos p2
�
x

N
þ i

�����
�

þ
X2
j¼1

ar

�
R
þ
j cos

p

2

�
y

N
2 j

��
þ

X2
k¼22

kkM
þ
xþk;y

þ
X2
l¼22

hlM
þ
x;yþl 2 I ð8Þ

I ¼ bþ b
XN
s¼1

XN
t¼1

M
þ
st ð9Þ

_Pi ¼ 2Pi þ pi þ ap

XN
x¼1

XN
y¼1

M
þ
xy cos

p

2

x

N
þ i

� �����
���� ð10Þ

_Rj ¼ 2Rj þ rj þ ar

XN
x¼1

XN
y¼1

M
þ
xy cos

p

2

y

N
2 j

� �����
���� ð11Þ

where _Mxy is the temporal derivative of the activity of the

neuron at position ðx; yÞ in the egocentric spatial map.

Fig. 5. The recurrent pointer network of the egocentric spatial map has a

circular structure. Two of the angular pointer neurons Pi span a quadrant of

the unit circle and each further angular pointer neuron is used to span a

further quadrant of the unit circle. The resulting structure is a ring of map

neurons with four pointer neurons encoding the four directions: back, right,

front and left. This particular arrangement of the pointer map uses cosine

functions for the strengths of the recurrent coupling between pointer

neurons Pi and map neurons. A second set of pointer neurons Rj is used to

span the rings, and so encodes distance. Each node in the mesh corresponds

to one map neuron, each of which has additional connections to its nearest

and second-nearest neighbors in the same ring, and to its radially nearest

and second-nearest neighbors, as indicated for one neuron by small arrows.
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The network can be unfolded into a square, N £ N matrix

if each ring contains xmax ¼ N neurons and the distance is

also coded with ymax ¼ N: This square form of the network

was chosen to simplify the implementation of the algorithm.

Each map neuron also receives nearest-neighbor con-

nections from the first and second neighbor map neurons

along the radials and in the rings. The values of k22; k21;

k0; k1 and k2 specify the connection strengths to the

neighbors on both sides within the rings. Radially, the

coupling factors h22; h21; h0; h1 and h2 define the synaptic

coupling strengths to the nearest neighbors.

2.1.3. Dynamic modification of lateral excitatory coupling

During the movement of the robot, the translatory and

rotatory components of the movement of the robot are

obtained by odometry. The rotatory component is used to

modify the symmetry of the nearest neighbor connections in

the rings while the translatory component is used to modify

the symmetry of the nearest neighbor coupling along the

radials. Consequently the hill shifts in a counter motion to

that of the robot as it moves towards the attended location

(Guazzelli et al., 2001). The shifting hill of activity can be

interpreted as a representation of path integration. The

interaction between the egocentric spatial map and the

motor map is shown in Fig. 6.

The strength of the nearest neighbor couplings is updated

in relation to the extracted rotation xðtÞ of the perceived

motor feedback:

k22ðtÞ ¼ max 0;
1

2
ksrmllxðtÞl

� �
þ kark22ðt2 1Þ þ kcr

k21ðtÞ ¼ maxð0; ksrmllxðtÞlÞ þ kark21ðt2 1Þ þ kcr

k0ðtÞ ¼ 0

k1ðtÞ ¼ maxð0; kslmrlxðtÞlÞ þ kalk1ðt2 1Þ þ kcl

k2ðtÞ ¼ max

�
0;

1

2
kslmrlxðtÞl

�
þ kalk2ðt2 1Þ þ kcl

kNðtÞ ¼ 0 for lNl . 2

ð12Þ

The strength of the self excitation is k0 ¼ 0; while the

strengths of the couplings for the four nearest neighbors

k
p
are given by three terms. The first term ks; with p ¼ r

for couplings to the right side and p ¼ l for couplings to

the left side, depends entirely on the rotatory motion

component, which is multiplied by the motor settings mr

or ml: These settings are for turns to the right mr ¼

21;ml ¼ 1 and for turns to the left mr ¼ 1;ml ¼ 21:

The signs of the motor settings are used to define the

signs of the nearest neighbor couplings k
p
that decide

between left and right shifts of the hill of activity.

During a left turn, the couplings to nearest neighbors on

the right k21 and k22 are strong, while couplings on

the left k1 and k2 are set to a constant low value. In a

right turn the coupling strengths are reversed. The second

Fig. 6. The egocentric spatial map and the motor map are coupled in a feedback loop. The activities of the pointer neurons P1; P2; P3 and P4; and the pointer

neurons R1 and R2; encode the angle and distance of the goal respectively. The activity of the pointer neurons is high if the goal is inside the part of the map they

encode. The pointer neurons drive the motor map. The translatory and rotational component of the robot’s movement are extracted by odometry and fed back to

the egocentric spatial representation, in order to move the goal location. The rotatory component is used to modify the nearest neighbor connections along the

rings, while the translatory component influences the change in the strengthening of the radial nearest neighbor connections.
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term kap is chosen in relation to its strength in the

previous timestep. The last term kcp is a constant term.

The factors ksl ¼ 3:3 and ksr ¼ 3:2 are made unequal to

compensate for a slight leftward drift of the robot due to

defects in its mechanical construction which were

detected before the present experiments were begun.

The other factors are kal ¼ 0:3; kar ¼ 0:3; kcl ¼ 0:25

and kcr ¼ 0:25: During the turn phase, the nearest

neighbor couplings along the radials are kept

constant with h
p
¼ 0:25 and the self excitation is set to

zero with h0 ¼ 0:

When the robot starts to move forward, the nearest

neighbor couplings change. The concentric nearest neighbor

couplings are kept constant at k
p
¼ 0:25 and the self

excitation is set to k0 ¼ 0: Meanwhile, the nearest neighbor

couplings h
p
along the radials are set according to the

translatory component yðtÞ of the robot’s movement, as

follows:

h22ðtÞ¼max 0;
1

2
ksfmlyðtÞþkafh22ðt21Þþkcf

� �

h21ðtÞ¼maxð0;ksfmlyðtÞþkafh21ðt21Þþkcf Þ

h0ðtÞ¼0

h1ðtÞ¼maxð0;ksnmrð2yðtÞÞþkan

h1ðt21ÞþkcnÞ

h2ðtÞ¼max 0;
1

2
ksnmrð2yðtÞÞþkanh2ðt21Þþkcn

� �

hNðtÞ¼0for lNl.2

ð13Þ

Again the strengths of the nearest neighbor couplings

h
p
contain three terms. All these strengthening factors are

k
p
: The ksn are terms defining the strength of coupling to

the inner nearer neighbors and ksf define that to the outer

neighbors. The first ksp is set in relation to the translatory

component the robot had during its movement. The

forward motion of the robot is defined by mr¼ml¼2

which is equivalent to a speed of approximately 2 cm/s.

The second term kap is chosen as the strength of the

coupling one timestep before, and the last term kc is

constant. The sign of the coupling is given by the sign of

the translatory component: it is positive if the robot

moves forward and negative if the robot moves back-

wards. The factors are ksn¼ksf ¼1; kan¼kaf ¼0:4 and

kcn¼kcf ¼0:28:

2.2. Visual map

A two-dimensional recurrent pointer map is used to

represent the attended object within the visual input also as a

vector encoding the ‘where’ information of the object. One

white object is placed at the goal location within an empty

environment of the size of 0.95 m £ 1.35 m, with a gray

floor and white walls. The on-board camera provides input

images to the visual map. In the visual map the

object is characterized as groups of edges by a three step

pre-processing stage consisting of filtering, size

reduction and threshold-normalization (Mudra, Hahnloser,

& Douglas, 1999).

The two-dimensional visual pointer-map network V

consists of 25 £ 25 neurons. The input to this map is

provided by 131 £ 131 pixel images. These images are

filtered along both axes, using a one-dimensional

differential filter, having the kernel 1/10[21 24 25 0

5 4 1]. Then the image size is sub-sampled to 25 £ 25

pixels by summing over 5 £ 5 sub-matrices and thre-

sholded at one standard deviation above the mean of the

pixel values.

The visual map V is connected to two sets of visual

pointer neurons (named Z
p
in this map). There are two

horizontal pointer neurons Zl (left) and Zr (right), and two

vertical pointer-neurons Zb (back) and Zf (front).

The vertical pointers are named ‘back’ and ‘front’ because,

due to the inclination of the camera, the vertical axis of the

image can be interpreted as distance away from the robot.

The map receives input vxy; and the pointers receive

feedforward attentional inputs zb; zl; zr and zf :

The dynamic network equations for the two-dimensional

recurrent pointer network equations for the visual map are:

_Vxy ¼2 Vxy þ vxy þ ahðZ
þ
l cosdx þ Z

þ
r sindxÞ

þ avðZ
þ
b cosdy þ Z

þ
f sindyÞ2 b

X
x;y

V
þ
xy ð14Þ

_Z
p
¼ 2Z

p
þ z

p
þ

X
x;y

V
þ
xyf ðpÞ ð15Þ

Here _Vxy is the temporal derivative of the activity of the

neuron at position ðx; yÞ: The superscript þ denotes

the rectification of the threshold neurons. ah and av are

the horizontal and vertical coupling strength factors that

regulate the strength of recurrent connections between

pointer neurons Z
p
and the visual map neurons V. The p

denotes the four pointer neurons (p ¼ l; r; b; f ) and f ðpÞ

denotes ðahcosdxÞ; ðahsindxÞ; ðavcosdyÞ and ðavsindyÞ;

respectively.

The angles dx ¼ ðx2 1Þp=2N (dy ¼ ððy2 1ÞpÞ=2N) gen-

erate a regular spacing of synaptic weights between map

neurons and the horizontal (vertical) pointer neurons.

The significant property of the processing in the visual

map is that a negative input zb ¼ 25 to the attentional

pointer Zb can be used to bias the processing of the

network towards the most salient region in the image. In

the context of manoeuvring, a salient region is the base of

the nearest object, as shown in Fig. 7. The base edge is

selected because of attentional bias. The coupling between

the map neurons and the vertical pointer is chosen to be

three times stronger than the horizontal coupling

(av ¼ 3ah).

In this way the visual map combines salient (‘what’) and

‘where’ processing and outputs a vector that can be used for
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avoidance or attraction, and visual correction of path

integration.

2.3. Motor map

Khepera (K-Team, 1995) has two wheels mounted on a

common axis. The wheels are driven separately by two

motors. In our model, these motors are driven by a motor

map that is a kind of Winner-Take-All (WTA) look-up table

(Fig. 8). Within the map, each motor neuron encodes a

particular motor setting for the left and right motor. The four

motor control neurons are the ones for go forward (ml ¼ 2;

mr ¼ 2), stop (ml ¼ 0; mr ¼ 0), turn right (ml ¼ 1;

mr ¼ 21) and turn left (ml ¼ 21; mr ¼ 1), where a speed

setting of one stands for approximately 1 cm/s.

The motor map input is given by a vector C ¼

ðCstop;Cforward;Cturnleft
;Cturnright

Þ; where each component spe-

cifies an input to one specific motor neuron. The input to the

motor neurons is derived from the activities of the pointer

neuron activities from the visual map and the egocentric

spatial representation, further details will be described for

the different applications. The outputs of the motor map are

Motorleft and Motorright, which are equal to ml and mr of the

winning motor neuron. The WTA property ensures that the

motor neuron receiving the largest input wins, and so its

encoded motor settings become active. The output of

the motor map is then one pair of motor settings given by the

winning motor neuron.

3. Methods

We tested our navigation model on the miniature

Khepera robot (K-Team, 1995). This robot has a diameter

of 5.4 cm and a height of 10 cm including a video camera

and its mounting board. The camera was oriented at 2108

with respect to the horizontal plane. The Khepera is

connected via a light and flexible serial connection cable

to host PCs and an external power supply. In this ‘tethered’

mode, the robot is simply a platform for sensory input and

motor actuation. Computationally intensive processing is

performed on the static host PCs. Khepera has two wheels

powered by DC motors. They are side-mounted on an axis

of symmetry. The arrangement of the wheels allows the

robot to rotate about its central axis, and to execute smooth

curves in both the forward and backward direction. Shaft

encoders on each wheel measure their speeds, and total

distances covered.

The robot operated in an empty arenaof 0.95 m £ 1.35 m

with a gray floor and white walls. Its behavior was monitored

by an observation CCD camera mounted in a central position

above the arena.

The navigational processing of the robot was

performed on two 600 MHz PCs. A third 1 GHz PC

was used for monitoring. For convenience and speed of

development, most of the functionality of the robot

was programmed in MATLAB (Mathworks, Inc., Nat-

wick, MA). The trajectory of the robot was measured

using the Kanade–Lucas–Tomasi Feature Tracker

(KLT) (Birchfield, 1998), a tracking software package

written in C.

To facilitate tracking, three LEDs were mounted on top of

the robot in a triangular configuration. The triangle points

in the forward direction, which is also the viewing direction

of the on-board CCD camera. The object at the goal position

was also marked with an LED.

During a test run, the sequence of positions of the

three LEDs was stored. Snapshots at the start and end of

Fig. 7. The pre-processed visual input is fed into a 25 £ 25 map of neurons,

in which the goal location is encoded by the recurrently coupled pointer

neurons. The vertical coupling is set three times stronger than the horizontal

coupling (av ¼ 3ah). This arrangement results in a stronger weighting of

horizontal edges as compared to vertical edges. The input to the pointer

neuron Zb is chosen to be negative, zb ¼ 25; so that the attentional pointer

is attracted more strongly to input in the lower part of the image. In this way

the pointer-map tends to focus on the base of the goal object (white), and

neglect the upper parts of objects, and objects which are further away (light

grey).

Fig. 8. The motor map is a Winner-Take-All network, in which each neuron

encodes a pair of motor settings for the left and right motor. The motor map

receives the input vector C, containing the four elements Cstop; Cforward;

Cturnright
and Cturnleft

; which drive motor neurons with the corresponding

motor settings. The motor neuron with the highest input C
p
wins, and

provides the actual motor setting.
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the run were used to extract the absolute length of the

path of the robot. The observation system was calibrated

to compensate for the non-linear distortion of the lens,

which had a viewing angle of 1208 (Mudra, 2002).

The observation process extracted the start position and

heading of the robot. This origin and direction information

was used to define the observed egocentric spatial frame of

the robot. At the start of a trial, the robot was given the goal

position in network coordinates of this egocentric spatial

map. It then moved to its estimate of this goal position, and

halted. A translational error rerror and a rotational error aerror

were computed in relation to the start position, i.e. the origin

of the egocentric map. Negative values are undershoots in

angle or distance, while positive values are overshoots.

4. Results

4.1. Performing the goal task in simulation

We begin by demonstrating the operation of the network

under controlled conditions, by simulating the actions and

proprioceptive feedback of the robot. We examine the case

of the robot moving towards an imagined goal location in

the environment.

The path integration over the egocentric spatial map

during this task is shown in Fig. 9.

The initial situation in the environment is shown in B1.

The robot is located at an arbitrary location, but ‘aware’

that there is an object (or goal location) behind it on the

right. A1 shows the initial situation in the egocentric

spatial map, where a hill of activity encodes the location

of the attended object. The activity that corresponds to

this attended object has been initialized at the appropriate

map location by the experimenter, by applying a brief

external input to the relevant neurons. The dynamics of

the pointer-map ensure that activity is maintained

(memorized) in the spatial map, even after the initializing

pulse has ended.

The activity of the six pointer neurons (four angular and

two radial) now encode a vector pointing to the goal. These

six components of the vector activate the motor neurons in

the motor map and so cause the robot to act. The robot

moves towards the goal by the shortest path. It begins by

rotating towards the right (Fig. 9 B2). During the turn, the

counter-clockwise nearest neighbor connections are

strengthened in proportion to the rotatory component of

the robot movement, which is determined by odometry (as

explained in Section 2.1). Consequently the hill of activity

representing the goal moves along the ring of neurons

counter to the direction of the robot’s rotation (Fig. 10). This

counter-movement of the hill continues (Fig. 9 A3 and B3)

until the robot is orientated towards the goal.

Now the robot is drawn towards the goal. Its motion

changes from rotation to forward motion (Fig. 9 B4). This

movement is transposed into the egocentric spatial map by

strengthening the inner nearest neighbor connections along

the radials, in proportion to the translational component of

the robot movement. At the same time the angular nearest

neighbor connection strengths in the rings are set to minimal

and equal values. As the robot moves towards the goal, the

hill of activity moves inward along the radial, approaching

Fig. 9. The movement of the robot and the counter movement of the goal representation during the goal task is shown in a sequence of sub-figures. Sub-figures

A1–A5 show schematics of the egocentric spatial representation, while sub-figures B1–B5 show corresponding top views of the environment and the

movement of the robot towards the goal. Sub-figures A1 and B1 show the situation at the start. The goal is placed to the right rear of the robot. In A2 and B2 the

robot begins to turn and the hill of activity representing the goal moves in counter rotation. By A3/B3 the robots rotation has brought it to face its goal, and it

begins to move towards the goal (A4/B4). A5 and B5 show the situation when the robot has reached its goal, and halts. The hill of activity representing the goal

has reached the innermost ring of the egocentric map.
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the ego-center (Fig. 9 A4). A5 and B5 show the situation at

the end of the run. The robot has stopped at the defined goal

position, while the hill has reached the ego-center.

4.2. Performing the goal task

Now, we repeat the above experiment in the real test

environment, using the Khepera robot.

Once again, only the angular and radial pointer neuron

activities of the egocentric spatial map were used to activate

the motor map. The four motor control neurons for go

forward (ml ¼ 2; mr ¼ 2), stop (ml ¼ 0; mr ¼ 0), turn right

(ml ¼ 1; mr ¼ 21) and turn left (ml ¼ 21; mr ¼ 1) must be

activated to turn the robot towards the bearing of the goal,

and then to move the robot forward until it reaches the goal

and stops. The activation patterns of the motor control map

that permit the robot to take the shortest route to the goal

were chosen heuristically. They are:

Cstop ¼ aP3
P3 þ

XN
x¼1

XN
y¼1

Mxy þ aR1
R1 þ aR2

R2 ð16Þ

Cforward ¼ aP3
P3 þ aR1

R1 þ aR2
R2 ð17Þ

Cturnleft
¼ aP1

P1 þ aP4
P4 þ aR1

R1 þ aR2
R2 ð18Þ

Cturnright
¼ aP1

P1 þ aP2
P2 þ aR1

R1 þ aR2
R2 ð19Þ

C ¼ ðCstop;Cforward;Cturnleft
;Cturnright

Þ ð20Þ

with the values of aP3
¼ 0:18; aP2

¼ 0:355; aP4
¼ 0:365

and aP1
¼ 4:23: The slight difference between aP2

and aP4

is due to mechanical differences between the two wheels.

We assessed the robot’s performance in the path

integration task by repeating a path to the same goal

location many times (Fig. 11), and also by traversing paths

to many random locations (Fig. 12). The neural network has

36 £ 36 neurons. Each neuron encodes a specific distance

and angular position. The nominal angular resolution of the

network is 108. The maximal radial extension of the network

was set to 74 cm, which implies that the nominal distance

represented between two concentric neurons was 2 cm. Of

course, the hill of activity is distributed across a number of

neurons, and so some interpolation is possible in both

angular and radial dimensions.

The results for repeated path series are shown in Fig. 11.

The random path series used 34 randomly chosen goals. The

map distance to the goal positions varied between 3 and 34

neurons, encoding distances between 6 and 68 cm. The two

inner and two outer circles of the egocentric spatial map

were excluded to prevent boundary effects. The angles to

different goal positions were specified to the nearest neuron

(i.e. in 108 increments) in the range 08 23508. The results

are shown in Fig. 12.

Overall, path integration by the neural network system is

reasonably good, but shows systematic angular bias and

undershoot (Fig. 13). It is these errors that we hoped to

correct by provided visual feedback to the path integration

mechanism. The correction mechanism exploits the fact that

the ‘where’ information about the attended goal, and

the location of the base of a visually detected object, are

Fig. 10. The simulated activity pattern of the egocentric map with a network

resolution of 36 £ 36 map neurons is shown. The angular resolution is 108,

while the maximal encoded distance of the map is chosen to be

dmax ¼ 74 cm. The black line indicates the frontal axis of the robot. This

activity pattern occurred in the situation shown in Fig. 9, sub-figure A2,

where the robot is performing the turn towards the goal. The black filled

circles indicate the trajectory of the pointer to the hill. Its present location is

at the top of the hill.

Fig. 11. The results of the goal task for five chosen goal positions are shown

on a polar plot of the egocentric map. Each goal position (square) was tested

twenty-five times. The goal positions were placed in front of the robot, and

also to its left, right, and rear. The frontal axis of the robot is marked with a

thick line. The end positions of the robot are marked with grey filled circles.

The mean error around each of the five goal position is marked by a dark

rectangle.
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both encoded as vectors. These two vectors can be matched

during the task once the robot has rotated far enough that the

goal falls into the camera’s field of view. The angular error

is the mismatch between the midline of the visual map (the

direction in which the robot is moving), and the angular

location of the goal encoded by the pointer neurons of the

visual map.

Now, we demonstrate the interaction between the

egocentric spatial representation and the visual map,

while the robot repeats the same task of moving

towards a goal (Fig. 14). Unlike the previous case, in

which the robot moved to an unmarked location, the

goal location is now marked by a white object in

the empty environment that the robot can detect in its

visual map.

The task for the robot is to move towards the predefined

goal position on the basis of the egocentric spatial map, and

then to correct its path near the goal position using the

additional visual information (Fig. 14).

When the visual input to the motor map causes a path

correction, the ego-motion feedback corrects the hill of

activity representing the object in the spatial map. Thus, the

contributions of the visual and spatial map are implicitly

coupled via robot action and sensory feedback.

4.3. Goal task with visual map

In the third test series, the modular navigation

system used both the visual map and the egocentric

spatial map. The conditions and settings for the

egocentric spatial map were the same as in the previous

series. However, for this series, the activities of the

motor neurons are given by the following equations,

which are based on the Eqs. (6)–(10) but extended to

incorporate the activities of the visual map’s pointer

neurons Zf ; Zl and Zr

Cstop¼aP3
P3þ

XN
x¼1

XN
y¼1

MxyþaR1
R1þaR2

R2þaZf
Zf ð21Þ

Cforward¼aP3
P3þaR1

R1þaR2
R2 ð22Þ

Cturnleft
¼aP1

P1þaP4
P4þaR1

R1þaR2
R2þaZl

Zl ð23Þ

Fig. 12. The results of the goal task for randomly chosen goal positions

(squares) shown on a polar plot of the egocentric spatial representation. The

frontal axis of the robot is marked by a thick line. End positions are marked

with a grey filled circles. The pairs of goal and end positions are linked by

short lines.

Fig. 13. (A) angle and (B) distance errors in the goal task performed with and without the assistance of the visual map. The mean value of the errors Merror

(midline of the boxes), the 25th (first edge up from the midline of the boxes) and 75th percentiles (topline of the boxes) of the samples, the variances and the

skewness are shown. Introduction of the visual map reduced angular and distance bias, and also the variance of angular errors.
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Cturnright
¼aP1

P1þaP2
P2þaR1

R1þaR2
R2þaZr

Zr ð24Þ

C¼ðCstop;Cforward;Cturnleft
;Cturnright

Þ ð25Þ

The activity of the visual map’s frontal pointer neuron

drives the motor neuron stop. The activity of the visual

map’s right pointer neuron drives the motor neuron turn

right, while the activity of the left one drives the motor

neuron turn left. The activities of the pointer neurons of

both representations show different behaviors over time.

In the first phase, the behavior of the robot is dominated

by the activities of the pointer neurons of the egocentric

spatial map, whereas in the second phase the pointer

neurons of the visual map have the stronger influence.

The activities of the pointer neurons increase as the robot

moves towards the goal object.

The results are shown in Fig. 15, compared with the

results of the second test series using no visual input.

Visual feedback reduces the variance and bias of angular

errors, and also reduces undershoot of distance (Fig. 13).

The null hypothesis that the variance in the angular errors

is unaffected by visual feedback could be rejected at a

significance level of aANOVA ¼ 0:0002; (ANOVA,

F ¼ 16:18; p , 0:0002). Similarly, the hypothesis that the

variance in distance errors is unaffected by visual feedback

could also be rejected, but at a lower level of significance:

aANOVA ¼ 0:0351; (ANOVA, F ¼ 4:63; p , 0:0351).

Fig. 14. The visually-mediated path correction mechanism occurs in two phases. At first, the robot takes a path towards a goal position specified within its

egocentric map. Later, when the goal falls within the visual field of the on-board camera, visually induced motor correction occurs. This correction is fed back

to the egocentric map by the proprioceptive-induced shift of the hill of activity within that map.

Fig. 15. The results of the goal task, now with visual assistance, for

randomly chosen goal positions (squares) shown on a polar plot of the

egocentric spatial map. The frontal axis of the robot is marked by a thick

line. End positions are marked with a grey filled circles. The pairs of goal

and end positions are linked by short lines (compare with Fig. 12).
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5. Discussion

In this paper we have described a biologically inspired

navigation system for a robot that is based on represen-

tations encoded in neural networks. We have explored

the properties of this system as a step towards understanding

how animals might manoeuvre in relation to a goal that it

knows is present in its local environment, but that is not

always directly detected by its sensory inputs.

The system has three separate representations. The first, a

recurrent network, encodes the region surrounding the robot

in form of a polar egocentric map. The second, also a

recurrent network, encodes the local view detected by a

forward-looking CCD camera as a rectangular map. The

third representation is a one dimensional winner-take-all

motor map that controls the wheel motors.

We have chosen to use a neural network foundation

for our model because we are interested, finally, in how

navigational abilities could be implemented in

both biological networks, and neuromorphic hardware

(Liu, Kramer, Indiveri, Delbrück, & Douglas, 2002). The

relationship between the detail of the model, and

biology on the one hand or hardware on the other, is

finally a matter of taste. To make a useful linkage to

biology, the model should of course respect experimental

data. However, there is also a trade-off between

biological fidelity and mechanisms that can be con-

veniently realized in silicon (Hahnloser, Sarpeshkar,

Mahowald, Douglas, & Seung, 2000).

It is also difficult to tread the ‘biologically-inspired’ path.

The data are incomplete, and often not congruent with the

specific task one would like to explore. Consequently,

abstract models such as ours, must often make quite radical

simplifications. For example, in our system, odometric

feedback modifies the synaptic coupling between neurons of

the egocentric map. A biological mechanism for system-

atically adjusting the degree of synaptic coupling between

neighbors, as we do in our model, is not exactly known.

However, we were more concerned to explore the general

properties of the pointer-map, than to model the underlying

biological detail of their synaptic interactions. And so, for

convenience, we programmed those synaptic changes

explicitly. This explicit code could be replaced by a more

biologically plausible mechanism. For example, the left and

right nearest neighbors could synapse on two symmetrical,

but electrotonically separated branches of the dendritic tree

of a map neuron. Then, the effect of neighbor inputs on the

left or right branches of all neurons could be scaled by

common ‘left’ and ‘right’ inhibitory synapses applied to the

respective branches.

The question of ‘biological-inspiration’ also raises the

general point that network based navigational systems such

as the one reported here are quite different from the

explicitly procedural navigation systems studied in stan-

dard computer science and engineering (Montemerlo et al.,

2002). The actual biological networks that support

navigation, do so by virtue of an algorithm implicit in

their network dynamics. These networks are not explicitly

programmed. This indirection is further increased by the

need to simulate the network on a general purpose

computer. Consequently, there is a large conceptual and

computational overhead in implementing ‘neurally

inspired’ navigation. So, the performance of these network

models is unlikely to match standard engineering

approaches until the actual biological systems are more

fully understood.

Most models of place representation use an allocentric

frame of reference (Arleo & Gerstner, 2000; Burgess,

O’Keefe, & Reece, 1993; Trullier & Meyer, 2000). The

current position of the animal is encoded by a hill of

activity, as observed in the CA3 cells of the rodent

hippocampus (Muller, Kubie, Bostock, Taube, & Quirk,

1987; Muller et al., 1991). In these models the path towards

a specific location is learned by changing the pattern of

connectivity between the place cells. The method for

constructing this map is to use random motoric behavior

to elicit perceptions that are correlated with place. This

strategy has the disadvantage that the (model) animal is

unable to move between specific locations before the map

construction phase is complete. By contrast, we require that

the navigator act competently from the moment that it enters

a novel environment. This requirement suggests the use of

an egocentric map that exploits the egocentric viewpoint of

perception, provides an immediate relationship between the

ego and its perceived goal, and supports path integration

between present location and that goal. Indeed, Mittelstaedt

(2000) claims that the path integration system is a purely

egocentric system.

Furthermore, there is biological evidence that the path

integration mechanism is physically separate from the

allocentric place code representation. It is possible that both

representations reside within the hippocampus (Redish,

1999; Redish & Touretzky, 1997; Samsonovich &

McNaughton, 1997; Sharp, 1997). But, Alyan (Alyan &

McNaughton, 1999; Alyan et al., 2000) has shown that a

rodent can perform path integration with a disabled

hippocampus, suggesting that the mechanism lies beyond

those limits.

We have explored a path integration mechanism that

guides an agent towards a goal. The mechanism operates

with an egocentric map, and is supported by a visual map,

both of which have pointer-map (Hahnloser et al., 1999)

architectures. This architecture combines a place encoding

in feedback with a vectorial encoding. The location of the

goal is represented by a hill of neuronal activity on the

egocentric map, and the direction to the goal with respect to

the agent’s location is reported by the pointer (or vector).

The hill of activity moves counter to the movements of the

robot or animal, and so provides effective path integration.

Such hills of activity have been proposed for movement

fields in the monkey superior colliculus by Sparks (Munoz

& Wurtz, 1995; Munoz, Pelisson, & Gitton, 1991; Sparks,
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Holland, & Guthrie, 1976). The concept of a shifting hill of

activity has also been used in models for the head direction

system (Blair, 1996; Skaggs, Knierim, Kudrimoti,&

McNaughton, 1995; Zhang, 1996) to represent the current

head direction of the rodent, or in models of place coding

(Samsonovich & McNaughton, 1997) to encode the current

position of the rodent in the environment.

Zhang (1996) has demonstrated a head direction network

that integrates direction changes by modifying the strength

of connections between neighbors in a one dimensional

map. He used symmetric and asymmetric weight settings to

hold, or shift a hill of neuronal activity. Zhang (1996)

showed that these principles could be extended also to two

dimensions, and suggested that this updating mechanism

could be used for path integration in the context of a map of

place cells. We have used Zhang’s mechanism for

controlling the location of activity, but we organized the

map in a polar grid, similar to the toroidal network discussed

by Redish (1999). This two-dimensional ring attractor

network provides the egocentric map, and is the substrate

for path integration.

Our integration mechanism is different from the one used

in the ant path integration model proposed by Hartmann

(Hartmann & Wehner, 1995). Rather than representing

location on a single egocentric map, their model uses

separate chains of neurons each of which integrates a

relevant path variable, such as displacement and angle of

locomotion.

Our approach goes further than simply implementing

‘taxon’ navigation (Redish, 1999), in which an animal

approaches its goal on the basis of a direct stimulus-

response schema (Arkin, 1998). In our system, the goal

location is mapped into a predefined egocentric spatial map,

which is also a reference frame for potential movements of

the robot. The vector output, given by the pointer of the

egocentric spatial map encodes ‘where’ to go, in egocentric

bearing and distance, and guides the robot towards its goal.

This taxic behavior can occur even when the attended object

is not present in the visual image. That is, the robot can

manoeuvre in relation to an imagined goal.

The egocentric spatial map allows the robot to track its

own movement relative to the goal by using counter-

movement of the goal as represented in the egocentric map.

This property implies a self-localization with respect to an

attended external cue or landmark. Such self-localization is

more sophisticated than a simple stimulus-response schema.

Self-localization does not require a complete allocentric

representation of the environment, as found in a place code.

It is enough to know the vectorial relationship between the

ego and the attended location. While the robot is moving

towards its goal, this vector can be combined with visual

information to correct the path as described above. The

correction of the path due to the visual input causes

correction movements towards the attended object, which

are then mirrored in the changes of the shift in the hill of

activity due to the ego-motion feedback. In this way,

the path-integration mechanism is stabilized in relation to

the attended object. It is unknown whether animals perform

path integration only in relation to external cues perceived

in the local view, or if they rely also on self-motion

feedback (Whishaw & Brooks, 1999).

The dynamic update of the goal depends on propriocep-

tive feedback obtained from the wheel encoders, which are

subject to inaccuracies (e.g. slip errors); and so path

integration may accumulate errors (Mittelstaedt, 2000).

Our system minimized these errors by a method of self-

correction based on vector matching. The method makes use

of the local view representation in the visual map. The

pointer of the egocentric map, which points to

the represented goal, is matched against the pointer of the

visual map, which points to actual goal in view. Their

difference is used as a motor correction.

We have shown, both in simulation and in real robots,

that the combination of egocentric map and motor map

alone was able to support egocentric navigation towards an

imagined goal. However, the real robot had quite large

navigation errors due to imperfections in odometry feed-

back to the egocentric map. These errors could be reduced in

the real robot by using visual feedback. Interaction

between the egocentric and visual maps is mediated via

their respective pointers (vectors). Thus, when the goal

finally falls within the scope of the on-board CCD camera,

the visualized goal location can be used to correct

navigational errors.

It is not surprising that the errors in path integration could

be reduced by using the spatial information contained in the

visual map. What is interesting is the simplicity of the

mechanism used for achieving this correction: the combined

effect of two pointers on the motor map.

The visual correction of angular error was more

successful than the correction of distance error. The poorer

distance correction may be due to the fact that the on-board

camera was mounted in such a way that there is a blind

region of 3 cm immediately in front of the robot. The

activities of the visual map pointer neurons (which cover

only the visual image) do not properly reflect the distance to

the attended object when it falls in this blind region.

Moreover, the visual map does not cover the entire distance

between ego and object, and the visual preprocessing is not

sufficiently sophisticated to decide whether the entire base

of the attended object is visible or only its vertical edge. The

integration errors could possibly be reduced by addressing

these short-comings. For example, the modular navigation

system could be extended to incorporate another external

representation of the near field, based on active infrared

sensors. These infrared sensors could measure the distance

to objects in the visual blind region. The self-correction

abilities of the robot could also be improved by additional

external sensor representations, such as audition in the

presence of an audible goal object.

Vector encoding of ‘where’ information offers a useful

method of combining sensory information from quite

R. Mudra, R.J. Douglas / Neural Networks 16 (2003) 1373–13881386



different representations. For example, our visual map

represents the egocentric view under a specific angle of the

robot, which is only a segment within the egocentric spatial

map covering 3608 of the near environment. Nevertheless,

they can be linked on the basis of their vectorial outputs,

which point to the same attended object. Because the

vectors represent the same ‘where’ information they can be

combined without regard for the nature or spatial extension

of the internal representation that they encode, vector

combination is a promising approach to the fusion of

representations of environmental cues (e.g. vision, audition,

and olfaction), and internal motor feedback information

(e.g. velocity, or efference copy of motor commands).

Although we have used visual information to correct

progress towards an already attended goal, the process

could be inverted. Processing of visual input entails

detection and localization of a salient feature or object.

The ‘where’ of the visual map is reported by a pair of

pointers coding for azimuth and distance away from the

robot. This information could, in principle, be used to

initialize the encoding of that object in the egocentric

map, and the pointers of the spatial map could be used to

guide the robot towards the attended object. Used in this

mode, our navigation system would be combining ‘what’

and ‘where’ information (Ungerleider & Mishkin, 1982)

about an object in the execution of its goal behavior, in

the manner supposed for visuomotor control in general

(Goodale & Milner, 1992; Goodale, 1998).
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