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ABSTRACT

Previous research demonstrated environmentally persistent free radicals (EPFRs) will
form on particulate surfaces under combustion conditions (temperature range of 150-400 °C)
from reactions of organic precursors with redox-active transition metals. With an understanding
of how these EPFRs form, it is necessary to determine how they behave in a natural environment
after emission. To better understand this, the nature of EPFRs in ambient PM; s under simulated

atmospheric conditions was investigated.

Ambient PM; s samples were collected at a roadside ambient monitoring site near heavy
interstate traffic and major industrial activity. The EPFR concentration and general radical
structure were determined with EPR spectroscopy. Studies of EPFR decay in ambient air
demonstrated four decay patterns to emerge from analysis: a fast followed by a slow decay (47%
of samples), a slow decay (24% of samples), no decay (18% of samples), and a fast decay
followed by no decay (11% of samples) with half-lives for the decays lasting from several days
to several months. All decays were suggested to result from reaction with oxygen and
strengthened from an overall shift in the EPR g-factor. This shift implied an increased presence

of oxygen centered radicals.

The negative health impacts of PM; 5 were studied by the generation of hydroxyl radicals.
These studies revealed dissolved oxygen coupled with the presence of PM,s necessary to

generate significant levels of hydroxyl radicals without the addition of H,O,.

Exposure of PM;s to ozone and NO revealed no effect on the organic radical (EPFR)
signal, while NO, exhibited a 5-8 time increase. When these exposed EPFRs were evaluated by

hydroxyl radical generation, the NO and ozone exposed samples maintained the same levels as
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the unexposed sample, while NO, exposed samples displayed a decreased ability due to the

formation of acid.

When PM,s was exposed to simulated solar exposure, the EPFR concentration was
observed to increase substantially in all samples. Decay from irradiation followed a 2 decay
pattern with the shorter, solar decay demonstrating a half-life of 8 hours and the longer decay 9

days. Irradiation also increased the amount of hydroxyl radicals generated from PM; s.
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CHAPTER 1. INTRODUCTION

The research described herein is from studies on environmentally persistent free radicals
(EPFRs) in ambient PM, 5. This research is divided into four parts with two overall goals. The
first is assessing the EPFR concentration and how they are transformed from common
atmospheric reactions. The second is evaluating how these reactions affect the EPFRs’ ability to

generate biologically damaging hydroxyl radicals.

Previous research already identified EPFRs as an inherent constituent from combustion
emissions in addition to ambient PM;s [1-4]. However, how these EPFRs are affected by
common atmospheric reactions, such as with oxygen, nitrogen oxides (NOx), ozone, and solar
radiation, are not yet known. For the first study, PM; s samples were collected from a Louisiana
Department of Environmental Quality ambient air monitoring site. This site is near heavy
interstate traffic from I-10 in addition to a major industrial corridor of the Mississippi River.
Investigations were performed to ascertain the initial EPFR characteristics of PMj;s using
electron paramagnetic resonance (EPR) spectroscopy. The PM,s EPFRs were aged in an
ambient environment at two different temperature and humidity settings to elucidate how their
behavior changed over time. Additional studies were performed to detect the presence of
precursors identified from previous research utilizing GC/MS. Correlations were calculated to
identify if any common pollutants or meteorological conditions impact the formation or stability
of the EPFRs. Also considering the similarity of EPFRs in PM; s and cigarettes, a comparison of

health effects for EPFRs between PM; 5 and cigarettes was calculated.

PM,; s is documented as producing a toxic response from inhalation [5-14]. The exact

mechanism is not completely understood, but this research group has identified a catalytic cycle



involving EPFRs bound to model PM as a possible source. Confirmation is needed for this cycle
in ambient PM;s. Accordingly, the ability of EPFRs in PM; 5 to generate hydroxyl radicals was

investigated as the second study.

Due to the constant presence of ozone and NOy in the atmosphere, the interaction of these
atmospheric oxidizers with PM; s bound EPFRs is of interest. Therefore, in the third study, the
effects of ozone and NOy exposure on the EPFR signal and the subsequent generation of

hydroxyl radicals were examined.

The sun generates a large amount of UV radiation and corresponds to wavelengths
matching normal bond energies [15]. Given this information, the effect of solar radiation may be
an important pathway to EPFR formation. Therefore, the effect of simulated solar radiation on
the EPFR signal and the resulting generation of hydroxyl radicals were determined in the fourth

study.

1.1 Particulate Matter

Particulate matter (PM) is airborne particles resulting from natural and anthropogenic
sources. They contain solid particles in addition to liquid droplets and described as a whole by
total suspended particles (TSP). This can be further divided into three size categories based on
the aerodynamic diameter of the particle, which is the diameter of a sphere with the same
terminal velocity as the particle [16]. The largest size is PMjy, also known as coarse PM, and
defined as PM of 10 to 2.5 um. PMj,s, also known as fine PM, is the intermediate size and
represented as PM of 2.5 to 0.1 um. The smallest is PMj j, also known as ultrafine PM (UFPM),

and assigned as PM of 0.1 pm or smaller.



Due to its small size, UFPM mass demonstrates only a few percentage of the TSP mass
but constitutes over 90% of the number concentration [17-20]. In PM; s, UFPM composes only
20% of the mass but fulfills 80% of the number concentration [21, 22]. Due to UFPM’s small
size but large number concentration, this allows a large surface to volume ratio for uptake of
toxic pollutants, such as organic compounds, nonvolatile species, and transition metals [19, 23].
Additionally, these properties permit UFPM to remain airborne for extended periods of time and
transported over extended distances [24, 25]. For example, studies calculated PM in the US can

travel approximately 60 — 600 miles and comparable distances in Asia [26-28].

PM is physically and chemically complex with composition changing between locations,
time of the year, and time of the day [29-34]. For example, differences in PM and its oxidative
capacity were found between the morning and afternoon [35]. This study cited the reason as PM
undergoing atmospheric processes changing the PM composition. This is also applied to
differences from a more industrial urban setting to those of a more rural setting [36]. Despite
large variations, there is some common components of PM; that is, PM will contain elemental
carbon, organic carbon, sulfates, nitrates, natural minerals from alumina/silica, and transition

metals, such as iron, manganese, and copper [37-41].

In addition to outdoor PM emissions, PM was identified from indoor activities, such as
cigarette smoking, gas stoves, pet dander, and fireplaces [42, 43]. These indoor emissions also

include the same kind of composition, though different in concentration, as outdoor sources [44].

1.2 Origin of Combustion Generated EPFRs and PM

PM;s and its ultrafine component are mainly derived from combustion and thermal

processes [37, 45], such as engine exhaust, biomass burning, and industrial processes [30, 31, 46-



52]. Combustion and thermal processes are documented to initiate by radical chain processes

and continued due to the intense temperatures dissociating molecules [53-55].
The zone theory of combustion explains this formation in further detail, as displayed in

Figure 1.1 [56-58]. This theory branches the combustion process into 4 separate and distinct
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Figure 1.1 Zone theory of combustion in the formation surface-mediated radicals “Reprinted
with permission from Reference 58. Copyright 2006 American Chemical Society.”

zones. In zone 1, the fuel is vaporized as well as mixed, and this is noted as the preflame zone.
In zone 2, the fuel is introduced into the high temperature flame where the molecular fuel is
dissociated into radical products. In zone 3, these radical species proceed by gas phase reactions
to condense into nanoparticles or recombine into molecular compounds. In zone 4, the gases are
cooled and surface-mediated reactions with transition metals occur. Zone 4 is where the

formation of persistent radicals occur from combustion processes [1, 59].

The reactions in zone 4 are what led to the discovery of EPFRs. Previous research

revealed the formation of polychlorinated dibenzo-p-dioxins and furans (PCDD/F) resulted from



precursors adsorbed onto the surface of metal oxides at temperatures below 600 °C, the same as
in zone 4, from the result of surface mediated radical processes [60, 61]. This was a new
mechanism for PCDD/F formation due to the established de novo pathway needing higher

temperatures [62].

Further research established a mechanism for EPFR formation as demonstrated in Figure
1.2. This mechanism is dependent on a catalytically active transition metal, displayed as Cu(I1)O
and an organic precursor, displayed as hydroquinone. Initially, the organic precursor physisorbs
to the surface of the metal oxide. This is followed by chemisorption via elimination of water or
in chlorinated organics, hydrochloric acid. The metal is subsequently reduced from the
chemisorbed organic precursor via electron transfer. This step was confirmed from X-ray
measurements indicating the metal oxide was indeed reduced from the chemisorbed organic [63].
The overall mechanism results in the formation of a surface-associated organic radical [60].
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Figure 1.2 Formation of EPFRs from hydroquinone on a Cu(II)O containing particle.
“Reprinted with permission from Reference 70. Copyright 2008 American Chemical
Society.”



Free radicals, unlike EPFRs, have very short half-lives, such as the highly reactive
hydroxyl radical exhibiting a half-life of 10™ s [64]. Detection of these free radicals can be quite
difficult resulting in the use of low temperature or various spin trapping techniques [65-68];
however, EPFRs associated onto the particle surface imparts additional stabilization to these
radicals [59, 69]. This results from the EPFR’s dual radical property allowing it to be oxidized
enough to be detected by EPR yet reduced enough to allow stability and relatively non-reactivity
[60]. Consequently, this allows EPFRs to persist in the environment, hence the name

environmentally persistent free radicals (EPFRs) [70].
1.3 EPFRs in Soot

Soot formation has many different formation routes, such as gas phase nucleation,
molecular growth, and aggregation of organic species. Previous research demonstrated soot
from the combustion of charcoal, coal, diesel, and plastics contain an EPFR signal [69, 71-73].
Due to the broadness of the signal, exact identification was not established and merely noted as a
soot radical [73, 74]. Part of this signal was attributed to the radicals entrapped in the bulk of the
soot with the unpaired electron delocalized over many conjugated or aromatic bonds [69, 72, 73].
This observation was concluded from stability of the radical signal as well as its apparent
unreactive nature to oxygen [69, 72, 73]. These radicals do not migrate to the surface and

accordingly cannot undergo oxidation in air allowing them to persist indefinitely.

Soot generated from halogenated hydrocarbons established EPFRs in hazardous waste
incinerators with implications for incinerators as a whole [75]. The EPR spectra from this study
are given in Figure 1.3. These radicals were mainly carbon centered radicals with two of the

soot samples, tetrachloroethylene and bromoform, demonstrating an oxidized carbon or



semiquinone-type radical [75]. More recently, studies on radical species formed from the
oxidative pyrolysis of 1-methylnaphthalene were performed [76]. Using low temperatures, the
gas phase radicals were identified as carbon centered radicals with trace amounts of an oxygen
centered radical [76]. The presence of these species was enhanced when Fe(III),O3; was added
suggesting metal nanoparticles act as a surface mediated mechanism for soot growth by forming

and stabilizing PAH radicals [76].
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Figure 1.3 EPR spectra of soot from the combustion of toxic halocarbons. “Reprinted with
permission from Reference 75. Copyright 2000 American Chemical Society.”

1.4 EPFRs in Soils

Demonstrating EPFR formation in combustion, EPFRs were also believed present in soils

due to the same redox transition metals present. These transition metals arise from the clay and



mineral component of soil. The differences between soils and combustion systems are the
reaction times and temperatures [77]. In the combustion systems, the reaction times are in
seconds under high temperatures; in soils, the reaction times are over the course of years at

ambient temperatures.

In order to understand how soil components, minerals, and organic matter aid in the
formation of organic pollutants from contaminated soils, investigations into EPFR formation in
soils were performed. From these studies, EPFRs were confirmed present in contaminated soils
from superfund sites [77]. Non-contaminated soils outside a superfund site were compared to
pentachlorophenol (PCP) contaminated soils inside a superfund site. This finding is displayed in

Figure 1.4. The contaminated soil was demonstrated to contain an increase in EPFRs over the
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Figure 1.4 EPR spectra of contaminate soils (red) and non-contaminated soils (blue).
“Reprinted with permission from Reference 77. Copyright 2011 American Chemical
Society.”



non-contaminated site. This increase was attributed to the additional presence of PCP, and this
was verified from PCP extracts of the contaminated soils in addition to dosing gas phase PCP

onto a clean model soil [77].

Despite remaining outside of the contamination, radicals were still detected in the soil.
This stems from humic acid, a major organic component of soil, containing a semiquinone or
quinhydrone-type radical [78]. These radicals are generated during formation of humic acid

from organic matter through radical polymerization [79-82].

1.5 EPFRsin PM;;s

As stated above, combustion processes generate particulate matter (PM;,s), and these
particles are directly emitted into the atmosphere. PM; s is also documented as a by-product of
metal processing, such as smelting [1, 84-86]. Once the particles are emitted from the
aforementioned sources, they undergo atmospheric processes, like photo-oxidation as well as
uptake of other gas phase species [87-90]. These gas phase species can include VOCs and other
combustion emissions [1, 91, 92]. This suggested ambient PM, 5 would likely contain EPFRs.
To determine this hypothesis, PM; s was collected from five US cities and analyzed by EPR [1].
Findings from this study are given in Figure 1.5. Despite the diverse locations for the sample
collection, all signals were similar to each other. Perhaps more remarkable was the similarity of

the EPR signal from the PM; s EPFR and the signal from smoking one cigarette.

The radicals observed from PM; 5 were suggested as semiquinone radicals [1]. Quinones,
including semiquinones, are emitted from combustion processes [93-95], and further
investigation revealed quinones were also present in PMjs [3, 96]. Cigarette smoke is

additionally documented to contain semiquinone radicals [97, 98]. Despite both PM,5 and



cigarette radical signals attributed to semiquinone radicals, the signals do not exactly match.
This was suggested to arise from inhomogeneity of the PM; 5 in addition to various degrees of
interactions from metals ions [1]. Another implication from this study, although not explicitly
stated, is EPFRs will persist for long periods of time from the combustion source, even in the

oxidizing and photochemical conditions of the atmosphere.

These processes listed above are not limited to combustion generated PM. They can
occur from atmospheric reactions of natural terpenes, such as limonene, pinene, efc., from

biogenic emissions [99-102]. These reactions result in aerosol formation and subsequent
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Figure 1.5 EPR spectra of EPFRs in PM; 5 from 5 US cities. “Reprinted with permission from
Reference 1. Copyright 2001 American Chemical Society.”
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agglomeration. After these atmospheric processes occur, these particles are referred to as

secondary organic aerosols (SOA).

1.6 Decay of EPFRs

As stated earlier, EPFRs associated onto the particle surface imparts additional
stabilization to these radicals and consequently allows them to persist in the environment [59,
69]. This behavior was observed in the long half-lives of radicals from the combustion of
charcoal [103], wood, and coal [73]. In the cases of wood and coal, there were two consecutive
decays resulting from reaction with oxygen where the relative intensity but not the AH_, of the
radical signal decreased [73]. Other decay behaviors are also reported. The organic radical
decay in peanuts exhibited a fast decay followed by stabilization of the signal, in addition to
temperature independent decay behavior [104]. Stabilized organic radical signals were
additionally observed in soot from the combustion of plastics [69] as well as the indefinite
persistence of semiquinone radicals from cigarette smoke [105]. In addition to natural samples,
investigations on radical decay from a model soot system of 1-methylnapthalene and Fe,O; were
performed [106]. These studies demonstrated two decays with the presence of Fe,O3; generating

longer half-lives than just the 1-methylnapthalene soot alone [106].

Previous decays from model EFPR systems demonstrated a range of half-lives in addition
to the presence of multiple decays in some cases [70, 107-109]. Organic precursors on CuO
displayed one decay with the longest half-life from phenol at 74 min [70]. Decays from Fe,O;
also indicated one decay exhibiting an average half-life of 3.1 + 1.5 days [107]. When the same
experiments were performed on Ni, a two decay pattern was observed from the chemisorption of
phenol, a faster decay of 0.56 days and a slower decay of 5.2 days [108]. Zn bound EPFRs

exhibited two decays from half of the precursors studied [109]. Additionally, Zn bound EPFRs
11



demonstrated the longest decays with phenol displaying half-lives of 10 days for the faster decay
and 23 days for the slower decay [109]. The decays from Zn bound EPFRs is given in Figure
1.6. All decay studies implied phenoxyl radicals are the short lived species, while semiquinone
radicals are the long lived species [70, 109]. Semiquinone radicals, however, were suggested to
decompose into phenoxyl radicals [70, 109].
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Figure 1.6 Decay of EPFRs on ZnO. HQ is hydroquinone, CT is catechol, PH is phenol, 1,2-
DCBz is 1,2-dichlorobenzene, MCBz is monochlorobenzene, and 2-MCP is 2-
monochlorophenol. All half-lives given are 1/e half-lives. “Reprinted with permission from
Reference 109. Copyright 2011 American Chemical Society.”

1.7 Health Implications from PM and EPFRs

Research in mortality from PM exposure demonstrated higher associations with PM; s
than PM;o indicating the smaller size fractions are responsible [110-113].  Additional
correlations with PM; s found any increase in PM; s levels increase mortality and morbidity [5-
14]. These results were verified from a more recent report of association from PM; s exposure
and early death in the United Kingdom [114].

12



Adverse health effects are implicated from PM; s, including cardiovascular [115-117] and
respiratory diseases [118] in addition to lung cancer [12, 119]. These effects are observed to
generate the most damage to prone populations, such as the elderly, children, and those already
exhibiting cardiovascular and respiratory problems [118, 120, 121]. Even at safe levels, PM; s is
associated with a higher risk of ischemic stroke [122]. A report demonstrated both short and
long term exposure to PM,s leads to increased hospital visits [123]. More ancillary effects
suggested a link to faster cognitive decline in older women from an increase in PM; 5 levels over
a long term, and this is believed to arise from cardiovascular influences [124]. Indoor PM

pollution has also been linked to higher incidents of lung cancer for nonsmokers [125].

Other studies investigated the exposure of different PM with common atmospheric
oxidizers NOy and ozone. The oxides of nitrogen are common from combustion of both mobile
and stationary sources contributing to the formation of photochemical smog, a known health
hazard [126-129]. Reports suggested there were health effects from exposure to NO, even below
the national air quality standard [130]. When comparing PM alone and with exposure to NO,,
one study observed only minor differences for enhancing acute cardiovascular effects [131].
Others did not notice an effect from exposure of NO, with PM suggesting some antagonism

between the two [132].

Ozone, a secondary pollutant resulting from reactions of NOx, volatile organic
compounds (VOCs), and solar radiation, is documented to induce airway inflammation [133-
136]. When exposing ozone and diesel PM, increases in cell epithelial injury or inflammation
markers were observed suggesting a cumulative or synergistic effect [137-139]. Other studies
distinguished airway hyper-responsiveness when exposed to ozone and carbon black [140].

Even when PM;s and ozone levels were far below the national standard, decreases in lung

13



function were reported [141]. In addition to exposure studies, correlations between ozone and

reactive oxygen species (ROS) generation from PM were observed [142].

Investigators of PM toxicology implicated the importance of particle size in
understanding these adverse health effects [143]. PMj( contains toxic components but not
considered due to filtering by the nose with deposition mainly occurring in the upper respiratory
tract [144, 145]. These depositions are eliminated by the mucociliary escalator, where the mucus
in the lungs transports foreign objects up the trachea, into the pharynx, and subsequently
swallowed [144, 145]. PM;s has a small aerodynamic radius allowing deeper penetration into
the lungs consequently depositing in the alveoli, bronchi, and lower respiratory system [115-
117]. Correlations demonstrated PM; 5 and its ultrafine component can increase asthma in both
adults and children resulting from inflammation of the respiratory tract [113, 146-148]. The
smaller component of PM, 5, UFPM, even penetrates into the bloodstream and the cell depositing
into the mitochondria where structural damage occurs [149]. UFPM also translocates across the

blood-brain barrier and ultimately the brain exerting damaging effects [117, 150-153].

Toxicological effects result from oxidative stress triggered when the cell is overwhelmed
by ROS generated from the PM [154-158]. ROS includes hydrogen peroxide, superoxide anion,
and hydroxyl radical with hydroxyl radical the most biologically damaging of all ROS [159-
162]. Superoxide is needed in some normal biological functioning, such as phagocytosis [163],
and is naturally created in the body from inefficiencies in the electron transport chain within the
mitochondria [164, 165]. Only when the body is overwhelmed with ROS does it become a
problem accruing in cellular component damage [149]. When this happens, the body is in a state

of oxidative stress resulting in a stress response [144, 166-173]. Maintaining such a state for

14



extended periods of time has been postulated to result in acute and chronic diseases [174, 175]

originating from chronic inflammation [176, 177].

However, the exact nature of ROS formation and its source are still debatable. PM, 5 is
already documented to induce a toxic response from ROS generation whether from wood smoke,
other biomass burning, or ambient PM, s, but the specific components responsible are not yet
agreed upon [1, 172, 178, 179]. Metals in PM are already established to generate ROS, especially
in the presence of hydrogen peroxide due to metal mediated formation of superoxide [156, 180-
186]. Specifically, iron was implicated in many of the pro-inflammatory effects because of its
ability to generate hydroxyl radicals from hydrogen peroxide [171, 187-195]. Exogenous iron in
PM was once thought to be inactive towards the Fenton reaction, because iron exists in its more
oxidized form, Fe3+, rather than its reduced form, Fez+, in addition to immobilization in the
particle [196]; however, in the presence of biological reducing agents, iron, as well as other
redox active metals, was demonstrated to generate ROS [183, 185, 187, 197]. Furthermore, iron
in PM was observed to become partially soluble once introduced into an aqueous solution

thereby increasing its bioavailability [2, 4, 171, 195, 198-201].

Along with metals, the adsorbed organic carbon on PM; 5 exhibited ROS formation [35,
149, 184, 202-204]. One such organic component was the semiquinone-type radical. The
semiquinone radical, capable of redox cycling, produced the superoxide anion by reducing
oxygen [97, 98, 168, 172, 173, 205-209]. The superoxide anion underwent dismutation [210]
with biological reducing agents producing hydrogen peroxide, and this further reacted with
transition metals present in the PM via the Fenton reaction. This resulted in hydroxyl radicals
causing biological damage, such as DNA strand breaks and scission [168, 207-210]. In addition

to dismutating to hydrogen peroxide, superoxide was observed to attack Fe-S clusters in proteins
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releasing the bound iron and concomitantly allowing availability for the Fenton reaction [211]. A
schematic depicting the mechanism of ROS production from a surface-stabilized semiquinone-

type radical is given in Figure 1.7.
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Figure 1.7 Generation of ROS catalyzed by a surface-bound semiquinone radical.
“Reprinted with permission from Reference 68. Copyright 2011 American Chemical
Society.”

Recent evidence demonstrated ROS was generated from the red-ox cycling of a model
EPFR system consisting of 4-monochlorophenol bound to CuO demonstrating the importance of
both the adsorbed organic and metal [68, 212]. In this study, EPFRs were found to generate

significant levels of superoxide anion and hydroxyl radical in vitro. Hydroxyl radical production

16



was decreased when catalase, known to eliminate hydrogen peroxide, and superoxide dismutase,
known to eliminate the superoxide anion, were added. Furthermore, EPFRs are indicated as
biologically active [1, 168, 172]. Studies demonstrated oxidative stress, leading to pulmonary

[213-215] and cardiac dysfunction [216-218], resulted from exposure to the model EPFR system.

1.8 Research Objectives

There are four objectives for this research. First is to investigate the concentration of
EFPRs in ambient PM;s; observe if the radicals mirror similar decay behavior as the model
EPFR system; and determine if any conditions affect the decay. The second is to establish if
EPFRs in PM,s are capable of generating ROS in vitro and resolving if the proposed ROS
catalytic cycle holds true for ambient PM. The third objective is to expose common atmospheric
oxidants to EPFR containing PM;s and observe any interactions from the exposure and
concomitant hydroxyl radical generation. Finally, the fourth objective is to expose the EPFR
containing PM;s to simulated solar radiation and discern any change in the observed EPFR

signal in addition to its resulting ability to generate hydroxyl radicals.

The first objective was achieved by collecting PM; s in an urban environment with heavy
interstate traffic and industrial complexes nearby and monitoring their initial concentration and
decay over time with electron paramagnetic (EPR) spectroscopy. GC/MS analysis of common
organic precursors found in previous model system EPFR research was performed to elucidate
and identify, at least partially, the EPFRs in PM,s. Correlations of common meteorological and
pollutant conditions collected from the same sampling site were calculated to determine if any of
these conditions have any bearing on the initial EPFR properties or decays. In addition to this,

calculations comparing the EPFR content of both PM,s and cigarettes were performed
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demonstrating the number of equivalent cigarettes one must smoke to gain the same health

effects from inhaling PM; s.

The second objective was accomplished by in vitro studies of EPFRs in PM;s to
determine if biologically damaging hydroxyl radicals were generated. Due to the short half-life
of the hydroxyl radical, spin trapping studies utilizing 5,5-dimethyl-pyrroline-N-oxide (DMPO)
as the spin trap were performed. These studies were carried out under different aeration
conditions to ascertain how the presence of dissolved oxygen can influence the generation of the
hydroxyl radical. Studies also compared freshly collected samples with aged samples to observe
if the EPFR concentration alters the generation of hydroxyl radicals. H,O, was also added to

confirm the generation of hydroxyl radicals through Fenton reaction.

In the third objective, collected PM, s was extracted from a filter and used as a powder.
This powder was subsequently exposed to NOyx and ozone at different concentrations and
reaction times to determine if these oxidants have any effect on the EPFR signal. The exposed
samples were compared to unexposed samples to determine if exposure to the oxidant impacted
the ability of EPFRs in PM,s. After exposure, the same exposed and unexposed samples’

generation of the hydroxyl radical were compared.

The final objective was realized by exposing thin portions of PM,s powder to a xenon
lamp equipped with an AM1.5 filter. The lamp intensity matched insolation levels comparable
to the midday intensity for Baton Rouge during the summer. The decay and half-lives resulting
from the solar exposure were measured and compared to the previous decay study. The ability to
generate altered levels of hydroxyl radicals due to the simulated solar exposure were compared

to an unexposed sample.
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CHAPTER II. EXPERIMENTAL

2.1 PM; ;s Sampling Site Description

PM, s samples were acquired from a Louisiana Department of Environmental Quality
(LDEQ) ambient air monitoring station situated 30 ft away from roadside and 10 ft off the
ground. This site is located on the north side of the LSU campus in Baton Rouge, LA near heavy
traffic from Interstate 10 and a major industrial corridor of the Mississippi River. An aerial view

of the location is displayed in Figure 2.1.

§e
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Figure 2.1 Aerial view of the PM; s sampling site. The arrow shows the exact location of the
PM,; s samplers.
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2.2 PM;s Sampling

Samples were collected using a Thermo Scientific Partisol-Plus Model 2025 equipped
with a PM;s fractionator. The flow rate was 16.7 L/min, and samples were collected on a
Whatman 2 pm polytetrafluoroethylene (PTFE) 46.2 mm diameter filter with a polypropylene

supported ring for 24 hours.

In addition to the Thermo sampler, samples were collected using a Tisch Environmental
TE-6070V with a PM; 5 size selective inlet. Each sample was allowed to collect 24 hours at a

flow rate of 1100 L/min on a glass fiber filter (Whatman GF/A 8 x 10 in).

2.3 Extraction of PM, s from Various Filters

2.3.1 Extraction from PTFE Filters

The extraction procedure closely followed extraction procedures in the literature [1].
After collection, filters had the support ring removed, analyzed for an initial radical
concentration and transferred into 0.01 M PBS solution prepared in ultra-pure double distilled
H,O (UP H,0) to maintain the pH at 7.4. The solution with filters were shaken for 15 min on a
Daigger Vortex Genie 2, sonicated 5 min (Fisher Scientific FS20) at 40 W, and shaken again for
15 min. The filter was removed from suspension, dried, and the difference in weight determined

how much PM; 5 was removed [1, 2].

2.3.2 Extraction of PM, ;s from Binder Free Glass Fiber Filters

This extraction procedure closely followed extraction procedures found in the literature
[3]. After collection, the PM loaded filter was cut into several small pieces and placed in a flask

with 50 mL of ultrapure double distilled H,O (UP H,O). The flask was manually shaken until
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the filter had mostly broken down in solution forming a thick suspension. After which, the
suspension was sonicated for 20 min (Fischer Scientific FS10 at 40 W) to facilitate additional
removal of PM from the filter. The filter pieces were removed from the PM solution and
centrifuged to remove any remaining filter fibers. This was decanted and dried in a crucible at
102 °C for 5 hours. The resulting powder was removed from the crucible and measured by EPR

spectroscopy.

2.4 PM, s Analysis

2.4.1 PM, s Metal Analysis

The metal content of PM,s samples was quantified by utilizing Inductively Coupled
Plasma — Atomic Emission Spectroscopy (ICP-AES). The whole filter, in the case of the PTFE
filter, or part of the whole filter, in the case of the GF/A filter, was placed in a beaker. The
sample was digested in 10 mL ICP grade HNO; solution for 48 h in a preheated block at an
approximate temperature of 50 °C. This was subsequently diluted with 10 mL of 3% HNO;
solution. A 1 mL aliquot was taken and diluted to 100 mL with 3% HNOj; solution. The samples
were analyzed for all the metal content, including: Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb,

Si, and Zn.

2.4.2 GC/MS Analysis of Substituted Phenols

An Agilent 6890 Gas Chromatograph (GC) coupled with a 5973 Mass Selective Detector
(MS) in the manual injection mode was utilized with the following parameters: column type 50
J&W DB5 MS 60 m x 0.25 mm i.d. x 0.25 pum, preceded by 5 m of 0.25 mm deactivated
retention gap; injection type and temperature - splitless / 250 °C; column temperature program -
initial 60 °C hold for 6 minutes, ramp 10 °C/min to 180 °C, 15 °C/min to 300 °C, hold for 2
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minutes; total run time was 28.0 minutes; carrier gas - Helium; transfer line temperature — 280
°C; injection volume - 1 pL; column flow - 1 pL/min (constant flow); solvent Delay - 14
minutes; MS source temperature — 230 °C; MS quadrupole temperature — 150 °C; MS mode -
SIM; ion dwell time — 100 ms. The mass-spectral library (NIST 98 version 1.6d) was used to

identify the extraction products.

2.4.2.1 Sample Preparation

The filter was placed in a 50 mL conical flask containing 10 mL of tert-butyl methyl
ether (TBME) and 0.16 mg of o-chlorophenol as the internal standard. The mixture was shaken
for 20 min, and 250 pL of the sample extract was transferred to an amber vial with an additional
500 pL of TBME as well as 250 pL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) for a
total volume of 1000 puL. The vial was capped using Teflon/Silicone 11 mm crimp caps and
mixed. The contents of the vial were heated in a preheated heating block for 30 min at 76 °C (x

5°C).

Table 2.1 Standard calibration concentrations for

GC/MS
Calibration [Volume (mL) of| Final Volume
Standard | Stock Solution (mL)
1 0.10 50
2 0.25 50
3 0.50 50
4 1.00 50
5 1.50 50
6 2.50 50
7 3.50 50
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2.4.2.2 Standard Calibration Preparation

A standard stock solution was prepared by adding 40 mg phenol, 10 mg o-cresol, 10 mg
m-cresol, 10 mg p-cresol, 100 mg catechol, 10 mg resorcinol, 80 mg of hydroquinone, 16 mg o-
chlorophenol to TBME in a 100 mL amber volumetric flask. From this stock solution, aliquots,
as presented in Table 2.1, were taken and diluted to 50 mL with TBME in a 50 mL volumetric

flask. The concentrations of each standard are shown in Table 2.2.

Table 2.2 Substituted phenol standard calibration concentrations

Concentration (pg/mL)

Compound Standard | Standard | Standard | Standard | Standard | Standard | Standard
1 2 3 4 5 6 7
Phenol 0.8 2.0 4.0 8.0 12.0 20.0 28.0
o-Cresol 0.2 0.5 1.0 2.0 3.0 5.0 7.0
m-Cresol 0.2 0.5 1.0 2.0 3.0 5.0 7.0
p-Cresol 0.2 0.5 1.0 2.0 3.0 5.0 7.0
Catechol 2.0 5.0 10.0 20.0 30.0 50.0 70.0
Resorcinol 0.2 0.5 1.0 2.0 3.0 5.0 7.0
Hydroquinone| 1.6 4.0 8.0 16.0 24.0 40.0 56.0

2.4.2.3 Analysis and Calculation

The substituted phenol concentrations were calculated using equation 1 by calculating the
peak area ratio of the sample analyte to o-chlorophenol. This was compared to the standards
from the 7 point calibration curve and divided by the sample weight to obtain the concentration

of the analyte from the sample in ppm (pg/g).

R*S*V
C =

= equation 1
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where C (ug/g) is the concentration of the substituted phenol in the sample; m is the mass of the
sample; V (mL) is the dilution factor of the sample; R is the peak area ratio of the analyte to o-
chlorophenol; and S is the estimated concentration of the sample derived from the linear equation

of the calibration curve.
2.4.3 EPR Analysis

PM, 5 loaded filters or PM, 5 powder were positioned in high purity quartz EPR tubes and
analyzed at room temperature with a Bruker EMX -- 10/2.7 EPR Spectrometer. Samples were
measured in a dual cavity with modulation and microwave frequencies of 100 kHz and 9.76
GHz, respectively. The parameters used to measure the radical concentration signal were: 2.05
mWatt power; modulation amplitude of 4.0 G; scan range of 100 G; time constant of 40.96 msec
corresponding to a conversion of 163.84 msec; sweep time of 167.77 seconds; receiver gain
3.56x10% and three scans using 1024 points. Before any sample measurement, a vacuum sealed
DPPH standard was measured at the same parameters listed above. This was performed to
ensure proper working operation of the EPR. The DPPH standard, in vacuum, was not observed

to decay and maintained a stable signal within +11%.
2.4.3.1 Analysis and Calculation

All AHp., and g-factors were measured and calculated with the Bruker WINEPR data
processing software. The radical concentrations were calculated by using the formula found in
equation 2. Overall, this was calculated by comparing the area of the 1% derivative signal peak,

as calculated by the AHp_p2 * relative intensity, to a DPPH standard 4-point calibration curve [4].
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A*RG
C = DPPH

" Apppu*RG¥m equation 2
where: C, is the radical concentration of the sample in spins/g; A is the area count of the sample;

RGpppy is the receiver gain used to acquire the DPPH signal; Apppy is the area count of DPPH;

RG is the receiver gain used to acquire the sample; and m is the mass of the sample analyzed.
2.4.3.2 Calibration Curve

A calibration curve was prepared to determine the quantitative radical concentration of
samples measured by EPR. 5.4 mg of DPPH was weighed using a microbalance with 1 pg
readability. This was dissolved in 100mL of benzene to make a stock solution of 54 pg/mL.
From this, a 1 mL aliquot was removed and subsequently diluted to 10 mL with benzene. The
concentration of the diluted standard was analyzed using a UV-Vis-NIR spectrophotometer
(Shimadzu, model UV-3101PC, double beam) with the following parameters: Ay.x at 520 nm and
a molar extinction coefficient (g) of 12,800 Mlem™! [5, 6]. This verified the concentration of the
original stock solution, after accounting for dilution, as 1.37x10* M. Using the original DPPH
standard solution, four different aliquots of the DPPH solution were taken (20 pL, 60 pL, 80 uL,
and 100 pL) and placed in a high purity quartz EPR tube. This range was used to correspond to
the normal concentration range of all radicals measured. The samples were dried by flowing
nitrogen. Additional nitrogen was slowly flowed in the tube to keep the dry DPPH under an inert
environment until EPR analysis. The area counts were determined by AH,.,” * relative intensity
of the DPPH 1% derivative signal [4]. The area count was plotted against the amount of DPPH
used to generate the calibration curve. The calibration curve was found to have an R value of
0.98, and the calibration curve generated was used for the quantitative calculation of all samples

in these studies.
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2.5 Determination of Half-Lives of EPFRs in PM; 5

After obtaining a final weight, the filter was removed from the polypropylene supported
ring and analyzed by EPR to ascertain its initial spin concentration. The sample was placed in a
controlled temperature and humidity incubator to age in order to determine the persistency of the
bound radicals. Two separate temperature and humidity settings were employed for this
investigation. One setting at room temperature and humidity while the other at a temperature of
30 °C and a relative humidity of 50 (+ 5%). The incubator was maintained under ambient air
circulation with the aim of reproducing previous decay experiments. Subsequent analyses were
performed intermittently, normalized to the initial spin concentration, and plotted against time
from the initial analysis. An exponential regression was performed on the plotted data in order

to calculate the decay rate and 1/e half-lives of the radicals.

2.5.1 Calculation of 1/e Half-Life

A pseudo-first order decay where oxygen is the reactant in excess was applied to all
samples, because molecular oxygen is documented as the principle pathway for organic radical

removal by peroxide radical formation or radical decomposition [7-10]. This can be written as:

R+0,-S

where R is the radical and S is the product. The rate decay for this reaction is written as:

% = K[0,][R] equation 3

As stated above, the oxygen is in excess, therefore its contribution is negligible. In other

words, there is a steady state of oxygen, or
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With that, equation 3 then integrates to
din[R] = kdt where k=K [O;]

Rf t
dIn[R] = —J k dt
0

Ro

In—=—kt equation 4
Ro
R
L = g7kt equation 5
Ro

resulting in the normalized radical concentration as a function of the decay rate and time. The

1/e half-life is the time it takes for the initial radical concentration to decay to 1/e, that is,
R =1/e xR,

Substituting this into equation 5 gives,
—Ry = Rye™ ¥t
o o 0
equation 6

For a first order reaction, the 1/e half-life results in the reciprocal of the rate constant. As shown,
using a 1/e half-life allows for easier conversions from the reaction rate and used instead of a

normal half-life.
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2.6 Meteorological Data

All meteorological data was retrieved from the LDEQ ambient monitoring station as
sample collection, except for solar and ultraviolet (UV) radiation measurements which were

obtained from the capitol monitoring site less than a mile away.
2.7 Calculation of Pearson’s Correlation Coefficient

In order to observe a direct (linear) dependence between two factors, the Pearson’s

correlation coefficient was calculated using the formula in equation 7

p = n@xy)-Ex)Ey)
VIEx2-Cx)?nX y2-(E )

equation 7

where p is the correlation coefficient, n is the number of samples correlated, x is the first item,
and y is the second item. Calculating the correlation between the two items resulted in a
correlation coefficient between -1.0 and 1.0, where 1.0 indicated a perfect direct relationship
(linear) between the two items and -1.0 indicated a complete anticorrelation. In the case of an
anticorrelation, this implied the two items are inversely related to each other. If the correlation
coefficient was 0, then there was no correlation or an insignificant correlation. Correlations were

considered significant when p >0.05 or when p <-0.05.

2.8 Calculation for Equivalent Cigarettes Smoked from Inhaling PM, 5

The number of equivalent cigarettes smoked from inhaling PM, s was calculated first by

converting the PM; 5 radical concentration to radicals inhaled daily using equation 8:

where Rlpy is the radicals inhaled from PM,s (radicals/day); RCpy is the averaged radical
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concentration in PM,5 (radicals/g); F is the conversion from g to pg; PCpy is the particle
concentration of PM, 5 (ug/m3); and V is the volume of air breathed daily for an adult male (20
m?/day)[11]. This was then compared to the number of radicals inhaled from smoking a cigarette

using equation 9:

— _ Ripm .
ko= (RCcig*Crar) equation 9

where EQ is the number of equivalent cigarettes smoked; RC,;, is the radical concentration in

cigarette tar (radicals/g tar)[12-16]; and Cy, is the amount of tar per cigarette (g tar/cigarette).

2.9 Spin Trapping of Hydroxyl Radical
2.9.1 Materials

2,2-diphenyl-1-picrylhydrazyl (DPPH), deferoxamine mesylate (DFO, assay 92.5%,
TLS), and 0.01 M phosphate-buffered saline pH 7.4 (PBS, NaCl 0.138 M, KCl 0.0027 M) were
all purchased from Sigma-Aldrich. High purity 5,5-dimethyl-1-pyroline-N-oxide (DMPO,
99%+, GLC) was obtained from Enzo Life Sciences and used without additional purification.
Hydrogen peroxide (Assay, 30%) and diethylenetriaminepentaacetic acid (DETAPAC, 99%)
were purchased from Fluka Analytical. In the few experiments using DFO and DETAPAC, the
solutions were made to a final concentration of 0.ImM DFO or DETAPAC in sample solution.
A 0.03% H,0; solution was made by diluting 100 uL. of H,O; in 100 mL ultrapure H,O. The
concentration was verified by UV-VIS absorption to be 0.0104 M. This was further diluted with

sample to give a final concentration of approximately 2 mM H,0,.

Compressed air was utilized to prepare aerobic samples and compressed UHP N, for

anaerobic samples. Unless otherwise stated, aeration or N, purging times were 10 min.
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2.9.2 Chelex Treatment of H,O

1.3 g of Chelex resin was added to 10 mL PBS solution and mixed rigorously for 1 hour.
The PBS solutions with resin were left overnight before use and filtered from solution using a

Fisherbrand PS5 filter paper.
2.9.3 In Vitro Studies

A 0.01 M PBS solution was prepared in H,O to maintain the pH at 7.4 and aerated for 10
min using compressed air. PM suspensions were made for each sample and subsequently diluted
with additional PBS to a volume of 190 pL containing a final concentration of approximately
400-500 pg/mL. DMPO (10 pL from a freshly prepared solution of 3 M) was added to the
dilutions and vigorously shaken for 30 s at a final volume of 200 puL. This concentration of
DMPO (150 mM) was found to prevent secondary reactions, such as dimerization [17] and
decomposition reactions with molecular oxygen. 20 pL of the suspension was transferred to an
EPR capillary tube (i.d. ~1 mm, o.d. 1.55 mm) and sealed at one end with sealant (Fisher brand).
The capillary was inserted in a 4 mm EPR tube and placed in the EPR resonator. The EPR
spectra of DMPO-OH adducts were taken at specified times from initial DMPO addition using
the following parameters: scan range of 100 G; time constant of 40.96 msec corresponding to a
conversion of 163.84 msec; sweep time of 167.77 seconds; receiver gain 3.56x104; modulation
amplitude of 0.80 G, a power of 10.25 mW, and two scans. The resulting 4-line peak areas for
DMPO-OH adducts, as calculated by AHp_p2 * relative intensity for each peak and reported in
arbitrary units, were summed together for each time interval collected. The calculated area was
then plotted against the time from the initial DMPO addition. This resulted in a DMPO-OH

curve for each sample.
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2.10 Effects of NO4 and O3 on EPFRs in PM, 5

2.10.1 Materials

2,2-diphenyl-1-picrylhydrazyl (DPPH), copper turnings, phosphate buffered saline pH
7.4 (PBS, NaCl 0.138 M, KCI 0.0027 M), and potassium iodide (Reagent Plus, 99%) were all
purchased from Sigma-Aldrich. Concentrated nitric acid and boric acid were purchased from
Fischer Scientific, and high purity 5,5-dimethyl-1-pyroline-N-oxide (DMPO) came from Enzo

Life Sciences and used without any additional purification.

All nitrogen and air used was ultra-high purity (UHP) grade. All water employed was

double distilled milli-Q water.

2.10.2 O3 Exposure

An Enmet Corporation model 04052-011 ozone generator was operated so a minimal air
flow was maintained (100 mL/min), as a Teflon tube was inserted within 2 - 3 mm of the PM
powder inside an EPR tube (inner diameter 9.07 mm, length 178 mm). The slow flow prevented
any PM from being blown out of the tube while still exposing to adequate amounts of ozone.
The exit went to a gas washing bottle where an ozone indicator solution was maintained. The
ozone indicator solution was prepared using the KI method [18] of detection by mixing 3.1 g
H;BO; with 5.0 g KI in 500 mL of H,O. Total ozone exposure was found to be 2 ppm which

converts to 2.760 x107® torr.

2.10.3 NO Exposure

Approximately 5 g of Cu turnings was added into a stoppered flask connected to a gas

line and collection flask. N, was purged through the collection system for 1 hr to remove any
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O,. Nitric acid was added to the flask by a globe funnel to start the reaction. The line was
flushed with freshly formed NO for an additional 30 min, allowing time to react with any trace
O, still present before condensing the NO in a flask using liquid N,. The gas was purified by gas
distillation using a vacuum system before use. Samples were placed in a vacuum line and
evacuated down to less than 10 torr before exposure to NO. The tube containing the NO and
sample was sealed and allowed to react over the specified time with the radical concentration
monitored periodically. After exposure, unreacted NO was removed by vacuum for 30 min and

the radical concentration was inspected again.
2.10.4 NO/NO; Exposure

NO; was produced by further oxidation of NO by air. The collection flask was opened to
ambient air to form NO; and confirmed by the presence of orange fumes in the system. The
NO/NO, was condensed back in the collection tube using liquid N,. The entire system was
evacuated out again and purified from traces of oxygen by gas distillation. The exact ratio of

NO/NO; was not determined. The procedure for sample exposure was the same as NO.
2.10.5 Spin Trapping of Hydroxyl Radical After Exposure

Spin trapping of hydroxyl radicals generated from a reference and sample exposed to the

oxidant of interest are described in Section 2.9 on page 46.
2.11 Simulated Solar Exposure of EPFRs in PM; 5
2.11.1 Irradiation of Sample.

5 - 8 mg of sample was loaded in a high purity quartz EPR tissue flat cell. An initial

radical concentration of the sample was measured. The loaded flat cell was placed in a Model
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3940 Series Forma Environmental Chamber and irradiated by an Oriel Universal Xenon Arc
Lamp at 150 W equipped with an Air Mass (AM) 1.5 filter. Using a LP02 pyranometer,
insolation of the sample at 950 W/m? was verified. This value corresponded with the Baton
Rouge June/July midday maximum insolation as recorded by a Louisiana Department of
Environmental Quality ambient air monitoring station. After exposure, the sample radical signal
was measured. The procedure was repeated for 15 min, 30 min, 60 min, and 90 min exposure

time resulting in a total of 195 min insolation.
2.11.2 Spin Trapping of Hydroxyl Radical After Exposure

Spin trapping of hydroxyl radicals generated from a reference and sample exposed to the

simulated solar radiation are described in Section 2.9 on page 46.

A

B,=0
In no magnetic
field, electrons
are
degenerate

Energy

Magnetic Field (B,)

Figure 2.2 The Zeeman Effect
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2.12 Basics of EPR Spectroscopy

EPR spectroscopy is used to detect species with one or more unpaired electrons by the
Zeeman effect. In the absence of a magnetic field (By), the two electron states, o (+1/2, the high
energy electron) and B (-1/2, the low energy electron), are degenerate, and the electrons are
oriented randomly. When an external magnetic field is applied, the unpaired electrons align
either parallel or antiparallel to the external magnetic field. This results in the o and P states

having different energies. This is called the Zeeman effect (cf. Figure 2.2).

Due to the electrons favoring the lower energy state, the Boltzman population in the 8

g-factor

Absorption
Curve

i
15t Derivative
Relative Curve
Intensity
\_________-___________
2.0100 20060 2.0020 1.9980

Figure 2.3 Example of an absorption and first derivative EPR spectrum
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state is more than a state. Keeping the microwave radiation frequency constant, the magnetic

field is scanned until the energy splitting of the two states is matched by the incident radiation.

When these conditions are met, a field of resonance is achieved, and given by equation

10:
hv = gu,B equation 10

where: h is Plank’s constant (h = 6.63x107* Js); v (in Hz) is the frequency of the incident
microwave radiation; yy is the Bohr magneton (uy = 9.27x107*J T'l); and B (in Tesla or Gauss) is
the magnetic field. An example of an absorption and a first-derivative EPR spectra are given in

Figure 2.3.

Microwave Water Cooled Magnet
Bridge \
-
. — e |-
[ 1
lllllllllllllllllllllllllllll —

le Cavit
Computer >ample Cavity

EPR Console
Woater Chiller

Figure 2.4 Schematic representation of EPR instrumentation
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2.13 EPR Instrumentation

The Bruker EMX EPR utilized for all experiments is depicted in Figure 2.4. Samples
were loaded into the sample cavity with a continuous nitrogen flow to maintain a water free
environment. This is important as water, with a high dielectric constant, will absorb part of the
microwave radiation resulting in false measurements. The sample cavity is located between 2
water cooled (65 °F) magnets, and the microwave radiation enters into the sample cavity by the
microwave bridge. All EPR component control is operated through the EPR console with a user
interface observed on a computer. All data acquisition and processing are also performed

through the computer.
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CHAPTER III. EPFRS AND THEIR HALF-LIVES IN PM; 5
3.1 Detection of EPFRs in PM, 5

The first objective was to investigate if EPFRs decayed in ambient air similar to the
previous reports of the model EPFR system, and this was performed by an expansive study of
collected PM;,s. The samples decayed in two temperature settings, one at ambient conditions
and another at 30 °C and 50% relative humidity. Correlations with the metal content of the
sample as well as the conditions during collection were calculated to explain the radical content

and decay behavior.
3.1.1 Initial Radical Concentrations

All collected PM,s samples initially displayed a single, unstructured organic peak
exhibiting an average AHp, of 5 - 8 Gauss. The relatively wide peak in addition to a lack of
hyperfine splitting implied multiple organic species of the same radical family present or signal
broadening by organic-metal interactions [1-4]. These signals displayed initial g-factors of

2.0035 £ 0.0004 suggesting semiquinone-type radicals in a complex matrix [1-3, 5-10]

In addition to an organic peak, the presence of paramagnetic metals was detected. These
metal peaks were persistent throughout the decay and not observed to degrade. The most
common peak was Fe’* at an approximate g-factor of 2.1 attributed to Fe** distributed in clusters
[11, 12]. The presence of Mn(I=5/2) was also noticed in two samples collected on April 30" and
May 1* of 2010, and this is believed to result from the in situ oil burn in the Gulf of Mexico.
Aside from the noticeable smell of these fumes in Baton Rouge, the NOAA HYSPLIT model
calculated air trajectory during this time shows air from the burns passing over our sampler (data

not shown).
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The average initial radical concentration along with the number of samples for each
decay category (vide infra) are displayed in Table 3.1. The displayed concentrations resulted
from an average weight of 512 + 300 pg collected per day. The overall radical concentration is
comparable to the same concentration range from cigarette smoke [1], corresponding to 69 ppm
as a semiquinone radical. A complete list of samples’ initial radical concentration, decay rate,
and 1/e half-lives are given in APPENDIX 1 on page 120.

Table 3.1 Range of initial radical concentration and
the number of samples for each decay category

Range of Initial
Decay Radical #
Category Concentration Samples
(radicals/g)
Fast Decay 16 13
2.32x107° - 3.48x10 54
/Slow Decay X X

Slow Decay | 2.02x10'° - 1.34x10"® 27
No Decay | 2.65x10'° - 1.17x10" 21

Fast Decay
/No Decay
Overall 2.02x10™ —3.48x10™ 94

5.92x10'° - 1.99x10'® 12

3.2 Decay of Radical Signal

Decay of a well behaved radical signal is presented in Figure 3.1. All decays resulted
from a diminishing relative intensity. There was no consistent broadening or narrowing of the
signal during decay with the AH,., maintaining an average 6.49 + 1.69 Gauss for all samples.
The g-factor slightly increased throughout the decay by an average of 0.0002, and this is
attributed to sample oxidation, therefore consistent with the elimination of organic radicals by
reaction with oxygen [2, 13-15]. Although, there is also the possibility of losing more of the

carbon centered radicals thereby shifting the g-factor higher.
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There was no difference in decay behavior between the two temperature-humidity
settings chosen. With PM; s constituents changing daily, any differences in decay rate from
temperature are not apparent; however, only 30 samples were analyzed using the lower
parameters, so analyzing more samples at the lower conditions might identify an observable

trend.

Day 29 9=2.0034
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Relative Intensity

Day 54 9=2.0034
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g factor

Figure 3.1 Decay of organic radical signal over 2 months as
observed by EPR spectra. The g-factors are included to indicate
oxidation of the radicals as the signal decays.

3.3 Categories of Decay

As displayed in Figure 3.2, four categories of decay were observed. The majority (47%)
exhibited two consecutive decays with a relatively fast decay followed by a slower decay, Figure
3.2A. The fast decay rate was 0.05 — 0.002 hr™' corresponding to a 1/e half-life of 1 — 21 days,

and the slow decay rate was 0.002 — 8x10° hr”' equivalent to a 1/e half-life of 21 — 5028 days.
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The large range for the slow decay results from seven samples decaying extremely slowly yet
consistently with 1/e half-lives of 1000 — 5000 days. When these samples were removed, the

slow 1/e half-life was 21 — 417 days.

A single slow decay was observed from approximately a quarter (24%) of the samples,
Figure 3.2B. The decay rate was 0.01 — 2x10” hr' indicating a 1/e half-life of 4 — 2083 days.

Comparable to the previous category, there were two samples shifting the range. When these
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Figure 3.2 Representation of the 4 categories of decay observed. All represented decays
occurred at 30 C and 50% RH. All displayed half-lives are 1/e half-lives. A. Representation
of samples exhibiting two consecutive decays, a relatively fast decay followed by a slower
decay (47% of samples). B. Representation of samples exhibiting one slow decay (23%). C.
Representation of samples exhibiting no decay (18%). D. Representation of samples
exhibiting a relatively fast decay followed by no decay (11%).
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were removed, the 1/e half-life was 4 — 595 days. This range is similar to the previous category
suggesting these samples may also exhibit a fast decay; however, due to a long atmospheric

residence time, they decayed before an initial measurement.

The last two decay types were no decay (18%), Figure 3.2C, and a relatively fast decay
followed by no decay (11%), Figure 3.2D. Similar to the first category, fast decay rate was
0.159 — 0.002 hr' analogous to a 1/e half-life of 0.25 — 21 days. Due to the unknown range of
residence times in the atmosphere, decay 2C may just be after the fast decay in 2D was

completed.

In all cases, we attribute the faster decay (displayed as t~21 days) to decomposition of a
phenoxyl-type radical [3, 16]. This is further supported from correlations of phenol with the
initial radical concentration in addition to the fast decay rate (vide infra). The slow decay is
attributed to decomposition of a semiquinone-type radical (displayed as t~208 and 417 days)
[17]. The no decay pattern is explained by radicals entrapped in the bulk of PM; s or restricted in
a solid matrix (i.e. internal radicals) where the unpaired electron is delocalized over many
conjugated or aromatic bonds [3, 10, 18-21]. These radicals remain internal and cannot undergo

oxidation in air and therefore persist indefinitely.

3.4 Substituted Phenol Analysis

Of all the substituted phenols measured, only phenol was above the detection limit of the
instrumentation. The phenol concentration was correlated to the initial AHpp, initial radical
concentration, initial g-factor, and the fast/slow decay rate. As observed in Figure 3.3A, the
phenol data exhibited a strong correlation with the initial AH,, where the presence of more

phenol increased the initial AH,.,. This suggested agreement with the concept of concentration
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broadening [22, 23], where an increase in the same specific radical constituent will increase the

AH,,.
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Figure 3.3 Plots of phenol correlations. A. Initial AHp., vs. phenol concentration with a
correlation value of p=0.95. B. Initial spins/g vs. phenol concentration with a correlation
value of p=0.61. C. Initial g-factor vs. phenol concentration with a correlation value of

p=0.97
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There was a strong association from the initial radical concentration where an increase in
phenol resulted in an increased radical concentration, Figure 3.3B. This does not suggest only
phenoxyl radicals are present in PM,s. This is supported from the g-factor correlation, Figure
3.3C. A shift in g-factor occurs when there is a change in radical species. For example, existence
of a semiquinone-type radical, one of the persistent radicals, was considered present in tobacco
tar [24] and PM [2, 3], and more recently, semiquinone redox cycling was demonstrated in the
oxidative capacity of PM,5 [25]. The increased presence of a semiquinone-type radical, more
oxygen centered in nature when compared to the phenoxyl radical [26], will increase the g-
factor. This is corroborated by the radical signal, because the organic radical signal is a single,
broad, unstructured peak in all the samples studied; therefore, multiple superimposed radical

signals may be present [3, 10, 21].

Correlations of phenol with the fast decay conveyed a very significant correlation of
p=0.60 (n=7). In contrast to this, the slow decay exhibited a weak, negative correlation of p=-
0.20 (n=3). These associations further implicate the fast decay to occur from phenoxyl radical

decomposition.

3.5 Metals Analysis and Correlation

There was a wide variety and concentration of metals found in PM;s. Although, there
were weakly significant or no correlations observed with metals. The complete list of metal data
for all samples studied in addition to their correlations with the initial radical concentration and

decay rates are presented in APPENDIX 1 on page 120.
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3.6 Meteorological and Atmospheric Pollutant Correlations

In general, meteorological correlations were not strong. The highest positive association
for initial radical concentration resulted from ozone (p=0.28) implying the importance of
photochemical processes for EPFR formation. This is supported by positive relationships with
both solar (p=0.14) and UV radiation (p=0.12). Correlations for the fast decay indicated the
presence of ozone (p=-0.10) as well as solar (p=-0.45) and UV radiation (p=-0.42) decrease the
fast decay rate. Previous sets of relationships demonstrate the ability of all three to increase the
radical concentration; so consequently, their presence will slow down the fast decay rate due to
new radical formation. Correlations for the slow decay were the weakest overall and less clear.
Detailed data for meteorological conditions and atmospheric pollutants used in addition to their

respective associations are presented in APPENDIX 1 on page 120.

3.7 Comparison of Radicals Inhaled in PM, 5 to Cigarettes

Our research demonstrated EPFRs induce various types of heart and respiratory
dysfunction in rats and mice similar to those observed from smoking cigarettes [27-29]. While
direct comparison of EPFR effects in PM;s and cigarette smoke were not performed, the data

suggests common EPFRs in cigarette tar and PM; s result in very similar human diseases.

In order to assess the potentially negative health consequences of PM,s, the overall
average concentration of radicals from PM,s in Baton Rouge was compared to the average
concentration of radicals in cigarette smoke [24, 30-33]. The outcome is expressed as the
equivalent number of cigarettes a person smokes in a day from exposure to the same number of
EPFRs inhaled from polluted air, Table 3.2. An example calculation using the US 24-hour PM; 5

concentration average is given below.
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Table 3.2 Number of equivalent cigarettes smoked from inhaling
PM,; 5 with 95% Confidence Interval. All PM, 5 data is for
2007-2009 designation values from reference 34.

Average
Concentrations Concentration of | # of equivalent
and Regulatory PM, 5 (pg/m3) cigarettes
Standards
US 24 hour average 26.9 0.3£0.1 per day
US yearly average 10.6 47+16 per year
EPA 24 hour standard
2011) 35 0.4£0.1 per day
EPA yearly standard
2011) 15 67423 per year
24 Hour PM, ;s Non-Attainment Locations
PMZ,S 24-hour
Design Value # of equivalent
Region State (pg/m3) ! cigarettes
Chico CA 59 0.7+0.2
Cleveland-Akron-
Lorain OH 36 0.4+0.1
Fairbanks AK 57 0.7+0.2
Klamath Falls OR 47 0.6+0.2
Liberty-Clairton PA 50 0.6+0.2
Logan UT-ID 40 0.5+£0.2
Los Angeles-South
Coast Air Basin CA 49 0.6+£0.2
Milwaukee-Racine WI 37 0.5+0.2
Oakridge OR 41 0.50.2
Pittsburgh-Beaver
Valley PA 37 0.5+0.2
Provo UT 50 0.6+£0.2
Sacramento CA 51 0.6+£0.2
Salt Lake City UT 48 0.6+0.2
San Francisco Bay
Area CA 36 0.4+0.1
San Joaquin Valley CA 70 0.9+0.3
Seattle-Tacoma WA 46 0.6+0.2
OH-

Steubenville-Weirton WV 37 0.5+0.2
Yuba City-Marysville CA 42 0.5+0.2

"Desi gn Values are computed from PM, s monitoring data reported to the
EPA’s Air Quality System from the local agencies. Exceptional events
(wildfires, construction, volcanic eruption) are not included in the calculation.
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Based on the initial radical concentration and the US 24-hour air quality data, each
person in the US smokes the equivalent of 0.3 cigarettes per day from PM; s inhalation. The
same calculation using the US yearly average results in 47 cigarettes per year. In the more
polluted areas (based on air quality exceedances), such as San Joaquin Valley, each person

smokes nearly a full cigarette per day and as high as 101 cigarettes per year.
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CHAPTER 1IV. HYDROXYL RADICAL GENERATION FROM EPFRs IN PM, 5

4.1 Detection of Hydroxyl Radicals Utilizing Spin Traps

The second objective was to investigate whether a previously proposed catalytic cycle for
a model system remained true for PM, 5. Previous work demonstrated model EPFRs to generate
*OH by utilizing 5,5-dimethyl-N-oxide (DMPO) as a spin trapping agent. Spin trapping with
nitrones and nitroso compounds allow the detection of short-lived radical species [1, 2] by
reacting the spin trap molecule and a radical to produce a stable aminoxyl or nitroxide species,
respectively. This resulting formation is referred to as a spin adduct. The spin trap gives a
unique EPR spectrum depending on the radical trapped, and this allows the radical to be
identified. This can sometimes be difficult for more complicated species, but relatively simple

for the hydroxyl radical.

4.1.1 Proposed Mechanism for Hydroxyl Radical Generation

The proposed red-ox cycle for EPFRs associated with metals in PM; 5 [3-9] is displayed
in Figure 4.1. In this cycle, the EPFR is formed as the transition metal is reduced. The surface
bound EPFR is deprotonated in water and reduces oxygen to the superoxide anion. The
superoxide anion undergoes a dismutation reaction to form H,0O, followed by the Fenton reaction
using the surface bound metal to generate *OH and an oxidized metal. If biological reducing
agents were present, a reduction of the metal occurs, allowing electron transfer, and regeneration

of the original EPFR-metal system.

Detecting the red-ox reactions of EPFRs associated in a matrix with other metals and
organics is challenging. Many types of spin traps are used for spin trapping experiments, e.g.

DMPO, DEPMPO (5-diethoxyphosphoryl-5-methyl-1-pyroline-N-oxide), and fluorescent
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reagents, e.g. dichlorofluorescein, dithiothreitol. All these assays are sensitive to different types
of organics and metals found in PM [11]. Furthermore, there are many types of PM used in
these experiments, e.g. wood smoke, diesel exhaust, coarse (PMjp), fine (PM;s), and ultrafine
(PMy)) particles [5, 6, 12-17]. This can make comparison between studies difficult and therefore

only the general trends are discussed.
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Figure 4.1 Proposed mechanism for ROS generation by a semiquinone EPFR-CuO particle
system. The reactions in red denote proposed reactions for the reduction of O, to O, by a
surface bound semiquinone. This is followed by a dlsmutatlon to H,O, which undergoes a
Fenton reaction (in this example Cu'" instead of the usual Fe*"), indicated by the blue line,
to form *OH and an oxidized Cu. The remaining reactions marked in black complete the
cycle by regenerating the reduced metal followed by an electron transfer to produce the
original semiquinone-CuO system [2, 10]. “Reprinted with Permission from Reference 9.
Copyright 2011 Bentham Science Publishers.”
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4.2  EPR Spectra

The EPR examination of all PM; s samples exhibited a single, unstructured peak with a
AH,., between 5-8 Gauss, indicating multiple organic species of the same radical family present
or broadening by organic-metal interaction [4, 18-20]. All sample g-factors were in the range of
2.0030-2.0043, indicating a group of semiquinone-type or other oxygenated radicals [4, 5, 18,
19, 21-25] (cf. Figure 4.2). The concentrations were in the range of ~10"°-10" radicals/g of
PM,; s, which is comparable to the concentration range in cigarette smoke [4]. This corresponds

to 1.8 - 18 ppm as a semiquinone radical.
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Figure 4.2 EPR spectrum of EPFR in PM; 5. The radical concentration
was 5.57x10"7 radicals/g (AH,.,=5.28 G, g =2.0035). The drift in the
spectrum is from Fe* signal.

Transition metal concentrations in representative PM; s samples are presented in Table
4.1.; however, the data is for total metals, while there is only interest in surface-associated
metals. Because the metal concentrations varied significantly from sample to sample, the

variation in hydroxyl radical generation could not be tested between samples. Instead, the
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Table 4.1 Transition metals found in representative PM, s samples (ppm).

Sample

Al As Cd Co Cr Cu Fe Mn Ni Pb Si 7Zn
Name

102N 3294 0212 0.062 0.031 021 504 41.08 1.09 043 137 77.62 9.57
108 2176  0.059 0.033 0.022 0.09 319 2730 071 020 056 52.63 8.92
112 19.60 0.097 0.044 0.024 0.08 291 25.09 0.66 0.22 0.75 52.47 9.00
141 4238 0212 0.027 0.027 0.11 262 36.08 128 020 068 9080 9.85
147 36.84 0.050 0.025 0.032 0.17 3.00 3446 126 034 0.62 86.24 5.62

36188 33171 1.648 0295 0368 093 5948 25397 1123 436 4.23 486.89 46.459
36191 101.01 0.000 0.094 0.078 038 732 84.09 399 127 173 181.59 17.389

suspended PM, s was allowed to decay over time, and the difference in the hydroxyl radical

generation in the original and decayed radical samples were compared.
4.3 Fresh vs. aged PM; ;s samples

The PM samples were aged at room temperature in PBS solution. Typical 1:2:2:1
spectra, indicative of the DMPO-OH spin adduct [24, 25] were observed in PBS solutions
containing PM;,s and DMPO. The comparisons of hydroxyl radical generation in two samples
are depicted in Figure 4.3. When the PM,s was left in a suspended solution for 2 days, a
reduction of 35% in the DMPO-OH intensity was seen in one sample, Figure 4.3A, and when
suspended in solution for 1 day, an 11% reduction in a second sample, Figure 4.3B . A reduction
in *OH generation after aging was also observed by others when H,0, was added [23].
Likewise, a reduction in integrated fluorescence activity or oxidative capacity after aging was
observed [14, 26-28]. Unfortunately, due to small extraction weights from the filter (on the order
of 200-300 pg) and subsequent measurements using the same small sample volume, an exact
radical concentration could not be established after the aging occurred. Previous experiments

have shown polar solvents can extract EPFRs from the particles but are eliminated after
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extraction either through hydrogen abstraction, radical dimerization, or radical-radical

recombination [29].
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Figure 4.3 Generation of the DMPO-OH adduct signal over time. A. Generation of
DMPO-OH adduct from blank solution of PBS + DMPO (green), a blank PTFE filter (red),
freshly extracted PM,s (black), and PM; 5 extract suspension aged in the dark for 2 days.
This was from sample 141, where the initial radical concentration was 3.37x10'” radicals/g.
B. Demonstration of another sample (#36191 with a radical concentration of 6.94x10'
radicals/g) to depress DMPO-OH adduct formation after aged in the dark for 1 day.
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The blank solution (PBS + DMPO) did not have any significant contribution to the
formation of *OH; however, the extracted blank PTFE filter was found to consistently generate
DMPO-OH, Figure 4.3A. This was expected as a result of the sonication readily removing any
loosely bound metals in the filter. Additionally, DMPO is well documented to be easily
hydrolyzed, in the presence of metals, into DMPO-OH as an experimental artifact [7, 8]. The
ability of the PTFE filter to generate low levels of the DMPO-OH adduct was also reported
elsewhere [30]. However, all sample signals in this report were at least 2x greater than the blank

filter.
4.4 Effect of Particle Concentration

The effectiveness of red-ox cycling (Figure 4.1) may be observed in dependence of the
DMPO-OH adduct concentration generated vs. incubation time at two different particle
concentrations, Figure 4.4. The larger particle concentration exhibited a larger DMPO-OH
adduct intensity. Similar behavior has been reported for PM samples with the addition of H,0,

and other ROS detection methods [6, 31].
4.5 Addition of H,O,

Addition of H,0O, into the PM;,s suspension resulted in an average doubling of the
DMPO-OH formation (data not shown). With the blank filter, there was a 60% increase of
DMPO-OH production, further suggesting the leeching of metals from the PTFE filter during
extraction. Data generated from H,O, addition is consistent with literature data demonstrating
metals in PM, s, or other analogous systems, can catalyze *OH formation in the presence of H,O,
[6-8, 16, 32-35]. Addition of H,0, to the system facilitates ROS formation via the exogenous

Fenton reactions (Figure 4.1). However, in these experiments, external addition of H,O, was not
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needed to generate *OH. What was observed in this study was a combination of EPFRs and

surface metals working in tandem towards ROS formation.
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Figure 4.4 Impact of particle concentration on DMPO-OH adduct

generation. This is from sample 36191.

4.6 Air Rich vs. N, Purged PM, s Suspensions

To determine the effect of dissolved oxygen on ROS production, a suspension was
purged with pure N, to remove dissolved O,. Without O,, the suspension, while containing
EPFRs, cannot generate hydroxyl radicals due to blocking the superoxide and H,O, formation
channel (cf. Figure 4.1). The non-purged samples generated 13% greater quantity of *OH than
the purged sample, Figure 4.5A. This is similar to the literature, where formation of *OH was
eliminated by N, purging, unless H,O, was added [6]. This was consistent with previous work
where the largest differences between the control (CuO on amorphous Si) and the EPFR model
system were observed when the suspensions were aerated resulting in the EPFR model system

having the larger DMPO-OH adduct formation [8].
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Figure 4.5 DMPO-OH adducts accumulation vs. time at different conditions for
sample # 36191: A. 10 min aeration (labeled as Non-purged Sample) and 10 min N,
purging (labeled as Purged Sample) of freshly extracted PM. B. Fresh and aged (19
days) samples aerated or purged by N,.

Following the 19 day decay in solution, the non-purged sample decreased by 18% from
when it was fresh, while only a 10% diminution was observed between the fresh and aged non-
purged sample (Figure 4.5B). A 5% decrease in DMPO-OH intensity was observed between the
aged non-purged and purged sample. The lesser effect in the aged sample is simply thought due

to a reduced presence of the organic radical. Overall, there was a 21% decrease from the fresh

non-purged sample to the decayed purged sample. This decrease demonstrates the impact
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EPFRs have on ROS formation as it was already documented the oxidation state of Fe*, the

main contributor to the Fenton reaction in PMj; s, changes little over the course of 40 days [15].
4.7 “Passive” vs. “Active” PM, s

There were a few samples not altering in hydroxyl radical formation under different

conditions (cf. 4.6A), which is referred to as passive, versus the samples developing differences
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Figure 4.6 Demonstration of a passive sample and comparison of active and passive
samples. A. Demonstration of a passive sample # 36188 with no impact from aeration. The
initial radical conentration was 1.84x10" radical/g. (a) - aeration for 10 min, (b) - aeration
for 1 hr, (c) - aeration for 2 hr, and (d) - purged with N, for 2 hr. B. DMPO-OH adducts
concentration vs. radical concentration for active (solid line) and passive (dashed line)
samples.
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in hydroxyl radical generation, referred to as active (cf. 4.6B). The active set produced fewer
hydroxyl radicals from a lack of oxygen or longer aging and corresponded to a reduction in
DMPO-OH intensity. The active set of samples exhibited an average increase of the DMPO-OH
signal when the samples increased in radical concentration, Figure 4.6B. Conversely, the passive
samples exhibited no dependence on aging time or aeration and were relatively independent of

the radical concentration.

The active radicals are probably external (or sterically available) enabling reaction on the
exposed surface. The passive radicals are probably internal where no species can react with
them. Other researchers reference the presence of internal radicals and no change in the EPR
signal of combusted plastics after 6 months [25]. DEP samples generate little *OH and may also

be internal radicals [6].
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CHAPTER V. EFFECTS OF NOx AND OZONE ON EPFRs IN PM, s AND THEIR
ABILITY TO GENERATE HYDROXYL RADICALS

The previous chapters indicated oxygen reduces the EPFR concentration in PM; 5 as well
as reducing hydroxyl radical formation. Thus, the third objective was to determine how the
presence of other oxidizing species, NOx and ozone, affect the EPFRs in PM,s. Subsequently,
understanding how exposure of these oxidizing agents altered hydroxyl radical generation was of

interest.

5.1 Initial EPR Measurements of PM, s and Extraction

The initial EPR examination of all PM; s samples displayed a single, unstructured organic
radical peak [1]. The average AHp., was 6-7 Gauss, and this implied multiple organic species of
the same radical family present or broadening by organic-metal interactions [2-5]. All initial g-
factors were in the range of 2.0038 — 2.0043, characteristic for a group of semiquinone radicals
or more oxygenated radicals in a complex matrix [2-4, 6-11]. All PM, 5 samples immediately

before exposure exhibited an average initial radical concentration of 2.08x10"7 + 0.66x10"

Table 5.1 Radical concentration of PM, 5 after extraction from filter *.

Number of Radical
Date of ) Concentration
. collection .
collection D After Extraction
ays (radicals/g)
1/30/2012 7 5.38x10'°
2/6/2012 19 2.43x10"
2/24/2012 7 2.78x10"
3/2/2012 13 8.05x10'°
3/14/2012 6 1.66x10"
3/20/2012 8 1.43x10"

* Due to difficulties to measure the radical concentration on the glass fiber filter,
only the radical concentration following extraction is given as accurate data.
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radicals/g, Table 5.1. This radical concentration is comparable to the same concentration range

from cigarette smoke [2], corresponding to 37 ppm as a semiquinone radical.

The effect of extraction from the binder free glass fiber filter on the PM; 5 radical signal
is displayed in Figure 5.1. Inspection of the wide magnetic range indicated the presence of Fe**
at g-factors of 4.2950, from a strong rhombic distorted tetrahedral or octahedral position [12-16],
and 2.1343, from Fe** distributed in clusters [16, 17], (black spectrum in Figure 5.1). As
observed in Figure 5.1, the Fe’* peaks are significantly diminished after extraction (red

spectrum), and this arises from surface associated Fe* dissolving into solution.

._,_,,———/ =

After Extraction

Fe3* g=4.2950

Fe3* g=2.1343

Before Extraction

Organic Signal
g=2.0042

6 5 4 3 2

g factor

Figure 5.1 Effect of extraction on the PM, s powder spectrum collected from 3/14/12 (1150
G - 5500 G range). Inset is a close up of the organic radical signal (singlet) overlaid on Mn
signal (6 equidistant lines) in the range 3200 — 3600 G.
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At the same time, the extra signals (the red inset of Figure 5.1) resulting from extraction
are attributed to a strong Mn** (I=5/2) presence. The singlet line among the spectrum of Mn?* at
g = 2.0042 (highlighted by the red asterisk) is the organic radical. After extraction, the organic
radical concentration was indicated to decrease [18]. Overall, this data indicates care must be
taken in the identification of radicals when the soluble fraction dissolves in solution thus

drastically changing the EPFR environment, Figure 5.1.

5.2 Effect of Ozone on PM, 5

The outcome of ozone exposure to the radical signal is displayed in Figure 5.2 A and B.

In regards to the organic radical, the g,,, remained the same at 2.0039, Figure 5.2B, and there

After 2.5 hr O,

Exposure
Before
Exposure
I T T T T T T T L T L T s T ¥ T L T 2 T X 1
50 45 40 35 3.0 25 20 15 26 24 22 20 18 16 1.
g factor g factor

Figure 5.2 Effect of ozone on the PM,s powder spectrum collected from 2/24/12. A.
Inorganic radical EPR spectrum (1300 G - 5500 G) B. Organic radical in magnetic range
3420 G - 3500 G with Mn peaks present. The peaks in the red box are the organic signal.
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was no significant change in the AH,, after exposure. The radical concentration slightly
diminished from 1.90x10"" to 1.83x10"7 radicals/g after 2 hr of exposure and 1.69x10'” radicals/g
after 4 hr of exposure. The radical concentration from the control (open to lab air) also
decreased from 1.96x10"" to 1.84x10" radicals/g at the same time. Essentially, there was no

appreciable change in the organic radical signal after exposure of PM; 5 to ozone.

However, there was some interaction of ozone with the other paramagnetic species in
PM,; 5; the Fe* g-factor at 4.2950 slightly diminished, Figure 5.2A. One relevant explanation
here might be Fe’* (as Fe,03) is acting as a catalyst [19] to remove ozone resulting in a change
of Fe* coordination (a strong rhombic distorted tetrahedral or octahedral position [12-16]).
Because of this expected physical change of the Fe* environment, a small diminution in the
signal will occur. In addition, a new signal at g = 2.9995 appears after exposure of ozone and the

new peak is suggested to result from Fe in a complex matrix [20], Figure 2A.

Generally, the interaction mechanism of ozone with organics is complex. For instance,

Table 5.2 Concentration of soot in PM, sand diesel

Soot PM; 5 Percentage of
Concentration’ Concentration’ | soot in PM,; 5
(ng/m’) (ng/m’)

1.7 17.2 9.9%

1.9 26.5 7.2%

1.6 16.5 9.7%

4.1 22.9 18.1%

1.9 17.9 10.6%

Percent Concentration of Soot in Diesel[28, 30]
47.9%
48%

TAIl values used were given or averages of all measurements [26, 27, 29, 31, 32]
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interaction with unsaturated hydrocarbons induces formation of radicals through Criegee
intermediates in the gas phase [21, 22] or during the formation of secondary organic aerosols
[23]. In the latter case, formation of new, short lived radicals, such as alkyl, alkoxyl, and
peroxyl, were detected using electrospray ionization/tandem mass spectrometry in the ozonolysis
of a-pinene [23]. However, there is controversial information in the literature concerning direct
interaction of ozone with PM, in particular soot and carbon black. One study observed ozone to
decrease radicals found in soot [24], while another indicated the radical concentration to increase
when ozone was exposed to carbon black [25]. In our study, the alteration of EPFRs in PM; s
was not observed from the interaction of ozone, Figure 5.2B. The main difference between this
and the previous studies [24, 25] is a significantly diminished amount of soot detected in
different PM; s samples [26-32], Table 5.2. In addition, the EPFRs in these samples might be
located in the inner layers of PM,s [1]. Remaining in the inner layers, those radicals are
inaccessible to oxidizers as also observed during exposure of PM,s5 to NO (vide infra). The
existence of these types of samples, abbreviated as “passive” (in term of *OH generation), was

advocated earlier, CHAPTER IV on page 68.

5.3 <OH Generation After Exposure of PM; 5 to Ozone

The effects of ozone exposure on PM; 5 and concomitant *OH generation is displayed in
Figure 5.3. Clearly, there was no significant change in the *OH generating capabilities between
the exposed sample and its control, but the ozone exposed sample generated marginally more

*OH.

However, other PM, notably soot and diesel exhaust particles (DEP) with a high content

of soot (~48% [28, 29]), report greater oxidant yield after exposure to ozone [33, 34]. Even low
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Figure 5.3 Effect of ozone exposure on *OH generation from PM,s. This sample was
collected on 3/2/12. Both points were taken at the maximum *OH generation i.e. after 5
hours of incubation.
levels of ozone exposure increases the potency of DEP to induce lung injury [35]. In these cases,
oxidation by ozone contributed to the organic carbon content (similarly to other work [25]) of
the DEP by possibly forming quinones [36, 37] which may generate reactive oxygen species [7,
38]. Concerning to the present case, a much lower amount of soot in PM;s (Table 5.2) in

addition to the possibility of EPFRs internal location in PM;s [1] might be the reasons nearly

identical levels of *OH were generated in the control and exposed PM; s, Figure 5.3.
5.4 Effect of NO on Radical Signal and *OH Generation

Exposure to NO (starting from 2 torr) demonstrated no statistical effect on the radical
EPR signal. The gu,p, AH,.,, and the intensity of the signal remained the same as the control
(PM; 5 powder exposed to air). Even exposing to high levels of NO (up to 395 torr) for 3 days at

room temperature only slightly decreased the radical concentration, from 2.47x10"” radicals/g to
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2.42x10" radicals/g; however, the control also exhibited a slight decline, from 2.38x10"7
radicals/g to 2.31x10" radicals/g, in the radical concentration. This indicated, overall, there was
no fluctuation in the radical signal intensity from exposure to NO. Subsequently, there was no
effect from NO exposure on the PM;s’s ability to generate altered levels of *OH, Figure 5.4.

These results are similar to the ozone exposure.
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Figure 5.4 Effect of NO exposure on *OH generation from PM;,s. This sample was
collected 3/20/12. Both points were taken at the maximum *OH generation.

5.5 Effect of NO/NO; on Radical Signal

The effect of NO/NO, exposure on the wide magnetic range radical signal is displayed in
Figure 5.5. After 30 min of exposure, the Fe’* peak at a g-factor of 2.1343 (Fe’* distributed in
clusters [16, 17]) is sharpened. After an overnight exposure to NO,, the Fe™* peak at the g-factor
of 2.1343 is significantly diminished. In the sample displayed in Figure 5.5A, there was no Fe®*

peak at a g-factor of 4.2950, but for the samples exhibiting the Fe* peak, introducing NO; to the

PM completely eliminates the Fe™* peak at g = 4.2950, Figure 5.5B. There was also a sharpening
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of the Mn signal in the same sample after exposure, Figure 5.5B. This implied a geometry

change of Fe** and Mn after exposure, similar to the ozone exposure (vide supra, Figure 5.2A).

A B
After overnight
NO/NO, exposure After NO/NO,
Exposure

After 30min
NO/NO, exposure

Before Exposure

Before Exposure

7 6 5 4 3 2 5 4 3 2

g factor g factor

Figure 5.5 Effect of NO, on two different PM, s samples. A. Effect of NO, on PM,s EPFR
spectrum collected from 3/14/12 illustrated in wide range magnetic field, 1500- 5500 G. B.
Demonstration of NO, to eliminate the Fe** peak at a g-factor of 2.1343 for sample collected
from 3/2/12. The extra peaks are from Mn.

The organic radical signal exhibited a noticeable difference after NO/NO, exposure,
Figure 5.6, with a drastic increase in the organic radical concentration. Before exposure, the
sample displayed 1.28x10" radicals/g, and after only 15 min of NO/NO, exposure, the radical
concentration intensified to 2.40x10"" radicals/ g. Further exposures over a short time scale (1 hr)

maintained approximately the same radical concentration. When exposed overnight, another
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large escalation to 8.33x10'" radicals/g was observed. This increase was confirmed by
comparison to the control, only diminishing from 1.56x10"" to 1.39x10"” radicals/g. Subsequent
evacuation and re-exposure of NO, to the same sample (8.33x10"" radicals/g) affected the
organic signal little, marginally increasing to 8.45x10'” radicals/g with no variation in the other

spectral features.

After Exposure
NO, overnight

N\

Before
Exposure

| ! | I ! I

—
24 22 20 1.8 1.6
g factor

Figure 5.6 Effect of NO, exposure on the organic radical signal for PM, s collected from
3/14/12 (same exposure as Figure 5.5A). The organic peak (assigned by asterisk) is overlaid
on Mn signal.

Several suggestions may explain the different behavior of the PM; 5 NO, exposure. The
activity of NO; in the gas phase at low and ambient temperature is well documented, and the

addition of NO, to tobacco smoke or mixtures of unsaturated hydrocarbons form alkyl and
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alkoxyl radicals [39-42]. There are few articles demonstrating heterogeneous interaction of NO,
on other adsorbed substrates [43-45]. For catechol thin films, there was no reaction of NO, with
catechol alone, and only when catechol was complexed with beznophenone did formation of 4-
nitrocatechol occur [43]. Under dark conditions, the mechanism was implied to occur through
hydrogen bonding of catechol with benzophenone stabilizing formation of the o-semiquinone
radical [43]. However, when catechol was adsorbed on aerosol surrogates, formation of 4-
nitrocatechol was observed without the addition of other substituents [45]. The unpaired electron

on the surface was suggested to react with other paramagnetic species, such as NO, [46, 47].

NO is also relatively unreactive with organic species when compared to NO, [39]. This
was observed with carbon blacks generating nitrated product formation from reactions of NO,
but not NO [48]. Other correlations of NO, with nitrated and oxygenated PAHs were deemed

significant (Spearman correlation p < 0.10) to an insignificant correlation with NO [49].

The large difference in activity between ozone and NO; is suggested by assuming an
interaction of these components with soot constituents in PM;s. For simplicity, the rates of NO,

addition to conjugated butadiene were compared to Oz addition according to reaction 1 and

reaction 2
NO; + CH,=CH-CH=CH, - Products reaction 1
O3 + CH,=CH-CH=CH, - Products reaction 2

using known rate constants of k1= 1.87x10* cm® / moles [50] and k2 = 4.0x10° cm® / moles [50]
at room temperature in addition to concentrations of [NO,] ~ 100 torr, [O3] = 2.76x10°® torr.

The ratio of the rate expression for reactions 1 and 2, R1/R2, was ~ 300. This indicated the
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formation rate from NO, exposure will be dominant over the ozone exposure because of the

large concentration difference.

5.6 *OH Generation after Exposure of PM; 5 to NO/NO,

In all cases, NO/NO, exposed PM,s demonstrated a lower affinity to generate *OH,
Figure 5.7. At first, this fact appears to contradict previous results [1]. In this study, a direct
dependence was observed between EPFR concentration and the *OH generation ability of PM; 5
samples. Nevertheless, oxidants like ozone as well as NOy drastically change the PM;;
environment (for example Figures 5.1 and 5.5, respectively), and this is observed here as a
change in the pH of extracted PM,s solutions. All NO, exposed PM,s suspensions were
observed to be more acidic than the control; the control maintained a constant pH of 7.0 - 7.5,

while the pH for the NO, exposed PM; s samples was dependent on the NO, concentration. For

160

140 Control

120 1 PM, ¢ Exposed

to NO,

100 -

80 -

60 -

40 -
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O .
Figure 5.7 Effect of NO, exposure on *OH generation from PM; s powder collected from
3/14/12.
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example, when exposed to 354 torr NO,, the resulting pH was 4.5, but when exposed to 36 torr
for the same amount of time, the pH was 6.5. This might result from formation of nitric acid as
a result of introducing NO; exposed PM, 5 to an aqueous solution. Consequently, as the pH
between the exposed sample and control were more closely matched, the generation of *OH

would converge to the same adduct intensity.

The proposed catalytic cycle for *OH formation from EPFRs, as well as previous
research [51], illustrates the importance of the solution pH [52-54]. In acidic solutions, there is
diminished deprotonation from the surface bound EPFR (Figure 5.8), thus reducing formation of
the superoxide anion and consequently *OH [52-54]. This behavior could explain why there

were no increased health effects from exposures of NO, and PM [55, 56].

+ H)0O «—> H;0* +

Cu(l) Cu(l)
Figure 5.8 Deprotonation of the EPFR in water resulting in acid formation. Additional acid
pushes reaction in the reverse direction.
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CHAPTER VI. SIMULATED SOLAR IRRADIATION OF EPFRs in PM; 5

With an understanding of how oxygen, ozone, and NOy can affect the EPFRs in PM; s,
there is still one major contributor to common atmospheric processes, solar radiation. Therefore,
the fourth objective was to investigate how simulated solar radiation affects EPFRs in PM; 5 and
the subsequent ability to generate hydroxyl radicals. These experiments were performed with the
use of a Xenon lamp and an AM1.5 filter simulating the solar spectrum when the sun is 48° from

zenith (directly above).
6.1 Initial EPR Measurements of PM; s

The initial EPR examination of all PM; 5 powder after extraction from the filter displayed
a single, unstructured organic peak exhibiting an average AH,., of 6 - 7 Gauss [1, 2]. The
relatively wide peak in addition to a lack of hyperfine splitting implied multiple organic species
of the same radical family present or broadening by organic-metal interactions [3-6]. These
signals displayed initial g-factors of 2.0038 — 2.0043, suggesting a group of semiquinone radicals
or more oxygenated radicals in a complex matrix [3-5, 7-12]. In addition to an organic peak, the
presence of Fe* was detected at an approximate g-factor of 2.1 and attributed to Fe’* distributed
in clusters [13, 14]. The presence of Mn(I=5/2) was also noticed. These peaks were not

observed to be effected from the irradiation.

The two PM, s powders’ (collected on binder free glass fiber filters for six weeks each)
initial radical concentration is given in Table 6.1; however, this radical concentration did not
remain constant before each simulated solar exposure. This is due to EPFRs in PM; 5 decaying
from exposure to air [1]. Between illumination experiments, the PM, s powder was maintained

in a sealed vial at -20 °C to slow this decay. Immediately before irradiation, all PM, 5 exhibited
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an average initial radical concentration of 6.27 x10'° radicals/g resulting from 5 - 8 mg of PM, 5

powder used for each irradiation.

Table 6.1. Initial radical concentration for the two powdered PM, s collected

. Initial Radical
Collection .
Period Concentration
(radicals/g)
April/May 2012 1.85x10"
June/July 2012 1.54x10"

6.2 Effect of Simulated Solar Exposure on the PM; s EPFR Signal

The effect of simulated solar exposure, 45 minutes at 950 W/m?, on the organic radical
signal from freshly extracted PM, s powder (loaded in an EPR tissue cell) is displayed in Figure
6.1. There was an average 4x increase in the organic radical signal after irradiation
demonstrating the importance of solar radiation on forming new EPFRs. This resulted from an
escalation in the relative intensity and an average broadening of the AH,., by 1.02 Gauss. The g-
factor increased by an average of 0.0002 implying photo-oxidation of the sample during
irradiation in ambient air [1]. Exposure beyond 45 min affected the signal little (c.f. Figures 6.2

and 6.4).

UV radiation is suggested to effect metal oxide surfaces by forming radical species which
recombine to form more complex species [15]. Furthermore, irradiation of metal oxides, sand,
ash, and sea salt generate radicals on the PM surface with various terpenes, hydrocarbons, and
halocarbons [16]. This is in addition to enhancing the chemisorption of volatile organic
compounds [16, 17]. In the case of aromatic hydrocarbons on metal oxides, these were observed

to bind incomplete oxidation and degraded products to the metal oxide surface. These species
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were not identified until desorption from the surface at elevated temperatures [18], and this

suggests irradiation forms very stable species on the surface of metal oxides in PM.
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Figure 6.1. Effect of simulated solar irradiation on the organic radical signal from PM;5
powder collected from June/July of 2012. In the displayed case, the radical concentration
increased three fold from 1.54 x10'7 radicals/g to 4.54 x10'” radicals/g.

Polycyclic aromatic hydrocarbons (PAHs) are well documented to absorb sunlight in the
visible and UV regions due to delocalized electrons in conjugated m systems [19, 20], and they
undergo photolysis at the solid-air interface by a charge transfer mechanism [21]. In
atmospheric conditions, photo-oxidized PAHs can subsequently degrade other organic
compounds [19, 20]. This was confirmed from the photo-degradation of aliphatic hydrocarbons
on oxidized PAHs [20]. In soot, photolysis decreased PAH concentrations [22, 23]. When
exposing fresh soot to O, as well as simulated sunlight, formation of oxygen containing species,

such as aromatic aldehydes, ketones, or quinones, was observed [19, 20, 24-27], and when the
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organic carbon was removed, there was a drastic decrease in photolysis activity [27]. This

indicated the organic carbon fraction as a major contributor to photochemical aging [27].

In addition to metal oxides and PAHs, previous studies on the photochemistry of 4-
chlorophenol supported on cellulose revealed the organic fraction absorbed photons upon
irradiation [28]. After irradiation, there was a slow chemical decomposition resulting in the
formation of the 4-chorophenoxy radical based on the product distribution. The same experiment
on silica revealed benzoquinone and hydroquinone were the two major photo-degradation

products [28].

Based on the above, we postulate the metal as well as organic fraction (hydroquinones,
semiquinone, quinones, hydroxylated organics, etc.) in PM;,s will follow similar radical-
mediated, photochemical pathways and form additional radicals (EPFRs) on the surface. The
UV region is chemically active as the wavelengths match normal bond energies [29], and
photolysis reactions can generate radical species by bond breaking [20]. The amount of metals,
or generally the mineral fraction, in PM samples was suggested to determine the photochemical
activity [30, 31], and PM;, s previously collected by us was demonstrated to contain a wide
variety and concentration of metals [1, 2]. PM;5 is also well documented to contain quinones
and aromatic carbonyls which, under irradiation, will oxidize and degrade PAHs in addition to
other species adsorbed on the PM [20, 32, 33]. Given both metals and quinones as well as
aromatic carbonyls are present in PM;s, this further strengthens the hypothesis of EPFRs

forming on the surface of PM; s due to irradiation.
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6.3 Comparison of Simulated Solar Exposure Between the Collected Samples

The two PM; 5 powders were irradiated after extraction and compared for trends, Figure

6.2. As displayed, both samples at this point in their decay demonstrated similar affinity towards

simulated irradiation. The April/May and June/July increased from their initial (before

exposure) organic radical concentration by 3.20 and 3.25, respectively. The appearance of the

April/May sample accumulating additional radicals results from a slightly larger initial radical

concentration.
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Figure 6.2. Comparison of simulated solar irradiation between the two PM,s powders

collected.

6.4 Decay of Irradiated EPFRs

To determine the persistence of these newly formed EPFRs, the PM,s powder was

allowed to age in ambient air after 1 hr of irradiation. This decay was monitored until

approximately reaching the radical concentration before irradiation, and the resulting decay,
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relative to the initial radical concentration, is plotted in Figure 6.3. The first decay, designated as
the “solar” decay, demonstrated a decay rate of 0.002 min" (0.12 hr'") corresponding to a 1/e
half-life of 8 hours, while the second decay, designated as the “slower” decay, exhibited a decay
rate of 0.00008 min"' (0.00480 hr'') corresponding to a 1/e half-life of 9 days. Although the
second decay is designated as the “slower” decay, it is much faster than the previously reported

slow decay rate (0.0028 - 0.0005 hr' corresponding to an average 1/e half-life of 214 — 402

days) of non-irradiated PM; s [1].

In the previous decay study, samples were collected for 24 hours from 9AM. The

irradiation for this study corresponds to midday solar radiation levels. Therefore, this allowed
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Figure 6.3. Decay of EPFRs after irradiation for PM,s powder collected in June/July of

2012. All half-lives displayed are 1/e half-lives. The radical concentration before exposure
was 4.95x10' radicals/g.
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the radicals generated from the solar irradiation ample time to decay before an initial radical
measurement was acquired the next morning. Diurnal sample collection was attempted at the
time of the first decay study, but due to small PM;s collection, on the order of 200 ug, an

accurate quantitative radical concentration was not established after the first 2 - 3 days.

6.5 Multiple Exposures on the Same Sample

Since PM,s stays airborne for extended periods of time, multiple exposures from
sunlight, although at longer times and lower average intensities, will occur. Thus, to mimic
natural conditions, the same portion of the PM, s powder was irradiated and allowed to decay in
air until the next morning (~18 hours). After the first exposure, an additional exposure was
performed and the procedure repeated. The first exposure displayed normal behavior with a 5.8x
increase in the organic radical concentration from the initial value (Figure 6.4) and a shift in the
g-factor from 2.0040 to 2.0043. When initially investigated the next day, the irradiated radical
concentration dropped by 72% in this powder portion and the g-value decreased to 2.0041.
When irradiated for the second time, the radical concentration increased by only 3.0x, a much
lesser amount than the previous day, and the g-value shifted to 2.0043 again. This became even
more reduced by the third exposure, demonstrating 62% reduction from the previous day’s
irradiation and a reduction of the g-value to 2.0041. This was followed by a 2.4x increase in the
organic radical concentration and an increase in the g-value from 2.0041 to 2.0043 upon further

irradiation.

The subsequent exposures’ initial measurement not maintaining the initial radical
concentration before exposure is explained by the radical decay. Considering the 1/e half-life for

the longer decay is 9 days, 18 hours is not enough time for the irradiated radical concentration to
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decay to its original unexposed concentration. This suggests PM;s will increase its baseline

radical concentration everyday it is exposed to high levels of solar radiation.

The species responsible for radical concentration increasing after subsequent exposure is
suggested to be quinones or other aromatic carbonyls present in PM [20, 32, 33], as they are
documented photosensitizers [32, 33]. These species are also demonstrated as extremely
persistent in an oxygen environment [1, 34] thereby allowing multiple photo-absorptions. There
might be other multiple mechanisms, but due to the complexity of PM, s and a lack of literature

investigating these effects, they are not currently elucidated.
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Figure 6.4 Demonstration of multiple simulated solar exposures on the same PM; s powder
portion collected from April/May of 2012. Subsequent exposures did not reach the radical
concentration of the initial irradiation nor the initial concentration before exposure.

6.6 *OH Generation from Simulated Solar Irradiation

A comparison of *OH generations between an irradiated PM, 5 sample to an unexposed

sample is displayed in Figure 6.5. As observed in the figure, the irradiated sample generated
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more *OH than the unexposed sample. This increase may be due to the increased concentration
of radicals participating in red-ox cycling thoroughly described in CHAPTER IV on page 68.
These radicals represent organic radicals initially existing in PM, s as well as the new radicals
formed from the organic carbon [19, 20, 24-27] by solar irradiation. However, simulated solar
irradiation may also drastically change the PM; 5 surface environment. For example, a change
might occur in the oxidation states of some transition metals, therefore permitting them to be
Fenton active in generating *OH. There is also the possibility a change in both the radicals from
organic carbon and metal fraction could augment the formation of *OH. Despite an uncertainty
in the mechanisms dominant in *OH generation, this data suggests there are more adverse health

effects gained from inhaling PM; 5 in the afternoon hours during summer due to solar radiation.
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Figure 6.5. Generation of DMPO-OH adduct from an irradiated and control (non-irradiated)
sample collected from April/May of 2012. The irradiated sample corresponded to a radical

concentration of 2.53x10" radicals/g. The control sample radical concentration was
1.23x10" radicals/g.
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CHAPTER VII. SUMMARY AND CONCLUSION

7.1 EPFRs and Their Half-Lives in PM; 5

This study demonstrated the concentrations of EPFRs from a complex variety of point
sources in an industrial corridor, and their decay followed pseudo-first order kinetics. A slight
average increase of the g-factor by 0.0002 implied the EPFRs were oxidized during decay or an
elimination of carbon centered radicals. Four patterns of decay were observed from the samples
collected. The majority of the decays (47%) exhibited two consecutive decays with a fast decay
displaying an average 1/e half-life of 7 days followed by a slow decay with an average half-life
of 402 days. The second most abundant decay (24%) was a single slow decay exhibiting an
average 1/e half-life of 214 days. The last two types of decays were no decay (18%) and a fast
decay accompanied by no decay (11%) where the average 1/e half-life for the fast decay was 6.
However, one of the decay categories may not actually be present, due to long residence times in
the atmosphere eliminating radicals associated with the fast decay before analysis. Therefore,

only 3 decays may exist, a fast decay, a slow decay, or no decay.

The two decays are implicated to result from the decay of two different radical species.
The fast decay was suggested to result from decay of the phenoxyl radical. This was
corroborated from other analysis where phenol was observed present in PM;s and correlated
well with the fast decay (p=0.60 n=7). The slow decay was attributed to decomposition of
semiquinone type radicals to phenoxyl radicals[1]. The no decay pattern was explained by
radicals entrapped in the bulk of PM; s (or internal radicals) restricted in a solid matrix with the

unpaired electrons delocalized over many conjugated or aromatic bonds[2-7].
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Although there were no strong correlations with the metal data, a few interesting
associations with the meteorological data were found. Correlations with photochemical
processes (ozone, solar radiation, and UV radiation) were found to significantly correlate
(p=0.28, p=0.14, p=0.12, respectively) with initial radical concentration and fast decay. Since
the photochemical processes increased the radical concentration, their presence would slow

down the fast decay rate as they are forming new radicals.

In order to assess the potentially negative health consequences of PM,s in an easily
understandable way, the EPFRs in cigarette tar were compared to those in airborne PM, 5. Based
on initial radical concentrations, a resident of the U.S. inhales enough radicals in PM,5 to be

equivalent to smoking 0.3-0.9 cigarettes a day.

7.2 Hydroxyl Radical Generation from EPFRs in PM; 5

Freshly captured PM, 5 was demonstrated to generate hydroxyl radical without the need
to add H,O,. The generation of hydroxyl radicals is believed to arise from a catalytic cycle
involving EPFRs attached to a reduced metal species on the surface of PM,s. This cycle
depends on the presence of oxygen, which is reduced by EPFRs to form the superoxide anion,

H,0,, and ultimately form hydroxyl radicals.

Due to drastically different metal concentrations, the variation in hydroxyl radical
formation could not be tested between samples. Instead, the suspended PM,s was allowed to
decay over time and a decrease in the hydroxyl radical formation was observed from when it was
fresh. This decrease was attributed to a reduced presence of the organic radical. Other

experiments demonstrated hydroxyl radical generation was dependent on the suspended particle
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concentration where higher particle concentrations exhibited increased generation of hydroxyl

radicals.

The other steps in the cycle were confirmed in experiments where the suspension reduced
formation of hydroxyl radicals by purging dissolved oxygen from solution with nitrogen;
however, some PM;s samples did not generate altered levels of hydroxyl radicals under the
aforementioned conditions. This was believed due to the radicals being internal, rather than
surface associated. Remaining internal, they are not accessible to react with O, or DMPO and

thus unable to generate hydroxyl radicals.

7.3 Effects of NOx and O3 on EPFRs in PM; 5 and Their Ability to Generate Hydroxyl
Radicals

Collected PM; 5 was extracted from a filter and the radical signal was observed to change
after the extraction. This resulted in a significant reduction of the Fe’* peak at the g-factor of
4.2950, from Fe’* in a strong rhombic distorted tetrahedral or octahedral position[8-13]. There
was also a partial elimination of the organic radical either from dissolved oxygen in solution or
losing some PM fraction in the extraction process. When the extracted PM;s powder was
exposed to ozone, there was no effect on the organic radical signal or concomitant hydroxyl
radical generation. This was believed to result from a reduced presence of soot in PMs s as
others observed exposed ozone to change the organic radical concentration for soot and carbon
black[14, 15] as well as generate greater oxidant yields for DEP[16, 17] which has an inherently
large amount of soot present. Ozone did, however, impact the transition metal environment by
creating a new peak at a g-value of 2.9995. Even though this peak was not empirically

elucidated, the presence of Fe in a complex matrix was suggested[18].
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There was no effect from exposure to NO, and thus, no effect on the ability of the PM; s
to generate altered levels of hydroxyl radicals. This is suggested to result from the radical’s
internal nature in these particular samples. However, the exposure to NO, displayed a significant
effect on the radical signal. After exposure to NO», there was a significant decrease in the AH,,
and an immense growth in the organic radical concentration. This might arise from the
formation of alkoxyl or alkyl radicals[19]. The diminished activity of ozone compared to NO,
was explained by high concentrations of NO, (up to hundreds of torr) vs. 2.760 x10°® torr of
ozone. When suspending the NO, exposed PM; s in solution, the pH was found to become acidic
from the formation of an acid and therefore diminished the ability of the PM;s to generate
hydroxyl radicals. This behavior was supported from the proposed catalytic cycle where acidic
solutions diminish the deprotonation of the surface bound EPFR, thus reducing the formation of

the superoxide anion and consequently the hydroxyl radical.
7.4 Simulated Solar Exposure of EPFRs in PM,; 5

The extracted PM, s powder was exposed at an insolation of 950 W/m? corresponding to
the maximum solar radiation Baton Rouge receives during midday in June. After 45 min
exposure in ambient air, the organic radical concentration was observed to increase by three to
four times the original radical concentration. Further irradiation demonstrated the radical
concentration to remain relatively constant. Corresponding with the increase of the organic
radical concentration was an average increase of the g-factor by 0.0002 implying photo-
oxidation of the PM,s. We proposed the formation of new radicals on the surface derives from a

combination of metal and organic factors inducing a radical-mediated photochemical pathway.
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The newly formed radicals exhibited a two stage decay, a faster solar decay of 8 hr and a
slower decay of 9 days. The slower decay here correlated well with the previously observed
decay studies of EPFRs in PM;,s. Multiple simulated solar exposures on the same portion of
PM,; s was found to consistently generate more radicals but at reduced quantities for subsequent
exposures. Spin trapping experiments demonstrated the irradiated sample to generate more
hydroxyl radicals than the unexposed sample. Therefore, solar irradiation might be an important

pathway for adverse health effects from EFPRs in PM;s.

7.5 Conclusion

These results demonstrate EPFRs were found in all collected PM; s, and subsequently,
they can undergo important atmospheric and toxicological reactions. The long half-lives
observed indicate EPFRs in ambient PM, s are extremely stable to oxygen and follow similar
behavior as previous studies on the model EPFR system. The spin trapping experiment
demonstrates EPFRs in PM,s can generate ROS, and this further strengthens the EPFR
mechanism for PM;s’s toxicity. Reactions with ozone and NO demonstrate them, at least for
these particular samples, to not impact the organic radical concentration or the altered generation
of hydroxyl radicals. Exposure to NO, exhibited a large increase in the EPFR concentration but
a drastic decrease in the formation of hydroxyl radicals. This observation might support some of
the previous medical exposure studies of NO, and PM. In these studies, either minor differences
or a slight antagonism between the two were observed[20, 21]. The simulated solar exposure
consistently generated an increased concentration of EPFRs in PM; s and confers an important
pathway for EPFR formation in the atmosphere. This ROS generation after exposure implies
any heavy exertion, such as running or biking, during midday in the summer may exacerbate any
adverse health effects from inhaling PM; 5.
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7.6 Recommendations for Future Research

Based on the results of this investigation, the author suggests future research on EPFRs in
ambient PM,s. Perhaps the most important is a more accurate analysis of PM,s’s organic
fraction before and after different simulated atmospheric exposures. Due to the small masses
used in these experiments, an accurate GC/MS analysis was quite difficult, because the quantities
of the organics were in the detection limit region for the present instrumentation. If a specialized
method for organic extraction of the PM; s is not developed for the present instrumentation, then

other methods should be explored, such as a time-of-flight mass spectrometer.

In regards to the simulated solar exposure, there are many studies to perform. Initial
studies should confirm if photo-oxidation increases the organic carbon fraction in PM;s, and
consequently, if this increase in organic carbon is the cause of a greater hydroxyl radical
accumulation. Other intensities closely matching winter insolation should also be explored and
compared to the impact from summer. In addition to these studies, a simpler exposure system

should develop to only use single gases, such as O, or Ny, during irradiation.

There is also the need to understand how simultaneous atmospheric exposures, such as
ozone and NOy or NOy and simulated solar irradiation, will affect PM,s. After simple
combinations, the end result should culminate to a system where ozone, NOy, and simulated
sunlight are exposed at the same time. From there, simple VOCs, such as formaldehyde, are
added into the system to observe if any additional radical generation results from uptake of the
irradiated VOCs onto the PM,s surface. Additionally, the resulting generation of hydroxyl
radicals from these combined, simple or otherwise, exposures must be performed to understand

if these exposures result in any additional adverse health effects.

117



7.7 References

1.

10.

11.

12.

13.

Vejerano, E., S. Lomnicki, and B. Dellinger, Formation and Stabilization of Combustion-
Generated Environmentally Persistent Free Radicals on an Fe(Ill)203/Silica Surface.
Environ. Sci. Technol., 2011. 45: p. 589-594.

Borg, D.C. Oxygen free radicals and tissue injury: a reference outline. 1993.
Birkhaeuser.

Jankovic, J., et al., Measurement of short-lived reactive species and long-lived free
radicals in air samples from structural fires. Appl. Occup. Environ. Hyg., 1993. 8: p.
650-4.

Yordanov, N.D. and R. Mladenova, EPR study of thermally generated free radicals in
nuts. Int. J. Food Sci. Technol., 2007. 42: p. 1384-1389.

Lomnicki, S., et al., Copper Oxide-Based Model of Persistent Free Radical Formation on
Combustion-Derived Particulate Matter. Environ. Sci. Technol., 2008. 42: p. 4982-4988.

Valavanidis, A., et al., Persistent free radicals, heavy metals and PAHs generated in
particulate soot emissions and residue ash from controlled combustion of common types

of plastic. J. Hazard. Mater., 2008. 156: p. 277-284.

Tian, L., et al., Carbon-Centered Free Radicals in Particulate Matter Emissions from
Wood and Coal Combustion. Energy & Fuels, 2009. 23 (5): p. 2523-2526.

Castner, J.T., et al., Note on the Paramagnetic Resonance of Iron in Glass. The Journal of
Chemical Physics, 1960. 32 (3): p. 668-673.

Griffith, J.S., Theory of the isotropic g value of 4-27 found for some high-spin ferric ions.
Molecular Physics, 1964. 8 (3): p. 213-216.

Kedzie, R.-W., D.H. Lyons, and M. Kestigian, Paramagnetic Resonance of the Fe"{3+}
lon in CaWO_{4} (Strong Tetragonal Crystal Field). Physical Review, 1965. 138 (3A):
p- A918-A924.

Loveridge, D. and S. Parke, Electron spin resonance of Fe3+, Mn2+, and Cr3+ in
glasses. Phys. Chem. Glasses, 1971. 12 (1): p. 19-27.

Ardelean, 1., et al., EPR and magnetic susceptibility studies of iron ions in
70Te02-25B203-5PbO glass matrix. Solid State Communications, 1997. 102 (4): p. 341-
346.

Kumar, B., C. Chen, and S. Lin, Effects of melting atmosphere on properties of a glass in
the calcia-phosphorus pentoxide-iron sesquioxide system. Phys. Chem. Glasses, 1992. 33
(5): p- 204-6.

118



14.

15.

16.

17.

18.

19.

20.

21.

Repine, J.E., et al., Effects of fine carbonaceous particles containing high and low
unpaired electron spin densities on lungs of female mice. Transl Res, 2008. 152 (4): p.
185-93.

Peebles, B.C., et al., Physicochemical and toxicological properties of commercial carbon
blacks modified by reaction with ozone. Environ Sci Technol, 2011. 45 (24): p. 10668-75.

Li, Q., A. Wyatt, and R.M. Kamens, Oxidant generation and toxicity enhancement of
aged-diesel exhaust. Atmospheric Environment, 2009. 43 (5): p. 1037-1042.

Holder, A.L., et al., Increased cytotoxicity of oxidized flame soot. Atmos. Pollut. Res.,
2012. 3: p. 25-31.

Davydov, R. and B.M. Hoffman, EPR and ENDOR studies of Fe(Il) hemoproteins
reduced and oxidized at 77 K. J Biol Inorg Chem, 2008. 13 (3): p. 357-69.

Church, D.F. and W.A. Pryor, Free-Radical Chemistry of Cigarette Smoke and Its
Toxicological Implications. Environmental Health Perspectives, 1985. 64: p. 111-126.

Gong, H., Jr., et al., Respiratory responses to exposures with fine particulates and
nitrogen dioxide in the elderly with and without COPD. Inhalation Toxicol., 2005. 17: p.
123-132.

Huang, Y.C., et al., Synergistic effects of exposure to concentrated ambient fine pollution
particles and nitrogen dioxide in humans. Inhal Toxicol, 2012. 24 (12): p. 790-7.

119



APPENDIX 1. SUPPORTING INFORMATION FOR EPFRS AND THEIR HALF-LIVES
IN PM; 5

Al.1 Complete List of Samples’ Decay

Displayed below is a list of all samples according to their decay behavior in order from
most abundant to least abundant. Samples displaying a fast decay followed by slow decay are
given in Table A1.1; samples demonstrating a single slow decay in Table A1.2; samples with no
decay in Table A1.3; samples exhibiting a fast decay followed by no decay are given in Table
Al.4. Included at the end of each table are the averages, standard deviations, and number of

samples for that category.

Table A1.1 Samples exhibiting a fast decay followed by a slow decay

Initial Radical T(1/e Fast i)
Sample Concentration Fast Decay Slow Slow
Date (radicals/g Decay (in Decay Rate Def:ay
1 017) Rate Days) (in
Days)
11/3/2008 2.79 -0.07 0.60 -0.002 20.83
7/11/2009 2.26 -0.002 | 20.83 -0.0004 104.17
7/12/2009 0.366 -0.012 3.47 -0.0003 138.89
7/13/2009 9.22 -0.014 2.98 -0.0001 416.67
7/14/2009 0.232 -0.019 2.19 -0.0002 208.33
7/15/2009 4.23 -0.029 1.44 -0.0003 138.89
7/16/2009 2.15 -0.016 2.60 -0.00004 | 1041.67
7/17/2009 3.92 -0.047 0.89 -0.0005 83.33
7/20/2009 1.69 -0.007 5.95 -0.0008 52.08
7/21/2009 8.71 -0.016 2.60 -0.0008 52.08
7/22/2009 0.262 -0.031 1.34 -0.0009 46.30
7/26/2009 0.415 -0.006 6.94 -0.0004 104.17
7/27/2009 8.19 -0.013 3.21 -0.0002 208.33
7/31/2009 1.27 -0.006 6.94 -0.0005 83.33
8/1/2009 0.260 -0.008 5.21 -0.0007 59.52
8/2/2009 1.55 -0.017 2.45 -0.0001 416.67
8/4/2009 0.818 -0.003 13.89 -0.0008 52.08
8/5/2009 1.51 -0.014 2.98 -0.001 41.67
8/12/2009 2.18 -0.004 10.42 -0.0003 138.89
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Table Al.1 continued

Initial Radical

T(1/e) Fast

T(1/e)

Concentration Fast Decay Slow Slow
Date . Decay . Decay
(radicals/g (in Decay Rate .
% 1017) Rate Days) (in
Days)
8/13/2009 3.72 -0.006 6.94 -0.0003 138.89
8/15/2009 0.743 -0.014 2.98 -0.0001 416.67
8/18/2009 5.70 -0.004 10.42 -0.0005 83.33
8/19/2009 2.17 -0.018 2.31 -0.0008 52.08
8/21/2009 1.17 -0.018 2.31 -0.0006 69.44
8/22/2009 0.584 -0.002 | 20.83 -0.0002 208.33
8/24/2009 34.8 -0.004 10.42 -0.0004 104.17
8/25/2009 240 -0.014 2.98 -0.0005 83.33
8/26/2009 2.12 -0.015 2.78 -0.0003 138.89
8/27/2009 1.83 -0.008 5.21 -0.0009 46.30
8/28/2009 1.35 -0.014 2.98 -0.0009 46.30
8/30/2009 1.32 -0.008 5.21 -0.0007 59.52
8/31/2009 1.18 -0.004 10.42 -0.001 41.67
3/6/2010 0.620 -0.008 5.21 -0.00005 833.33
3/7/2010 7.12 -0.012 3.47 -0.00004 | 1041.67
3/8/2010 6.50 -0.007 5.95 -0.00005 833.33
3/9/2010 4.40 -0.01 4.17 -0.0005 83.33
3/10/2010 11.8 -0.004 10.42 -0.0006 69.44
3/14/2010 10.9 -0.004 10.42 -0.00003 | 1388.89
3/29/2010 10.5 -0.01 4.17 -0.000008 | 5208.33
3/30/2010 10.4 -0.012 3.47 -0.0001 416.67
4/4/2010 2.07 -0.032 1.30 -0.0008 52.08
4/9/2010 3.06 -0.002 | 20.83 -0.0001 416.67
4/29/2010 23.8 -0.051 0.82 -0.002 20.83
5/1/2010 2.07 -0.003 13.89 -0.0002 208.33
5/7/2010 2.05 -0.005 8.33 -0.0007 59.52
5/8/2010 7.04 -0.025 1.67 -0.001 41.67
5/14/2010 2.75 -0.002 | 20.83 -0.0002 208.33
5/2/2011 5.82 -0.017 245 -0.00009 462.96
5/5/2011 254 -0.016 2.60 -0.0001 416.67
5/24/2011 4.62 -0.002 | 20.83 -0.00001 | 4166.67
7/18/2011 3.25 -0.002 | 20.83 -0.0001 416.67
7/26/2011 6.68 -0.003 13.89 -0.0006 69.44
8/2/2011 5.20 -0.005 8.33 -0.0002 208.33
9/3/2011 3.94 -0.003 13.89 -0.0002 208.33
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Table A1.1 continued

# Samples: 54

Average 5.02 0.0129 | 7.05 | 0.00047 | 402.38
Standard 6.51 0.0132 | 6.14 | 0.00043 | 902.63
Deviation

Table A1.2 Samples demonstrating a slow decay

Initial Radical

Concentration Slow Tare Slow
Date . Decay Decay
(radicals/g .
e 1017) Rate (in Days)

11/2/2008 0.898 -0.0009 46.30
11/4/2008 0.765 -0.002 20.83
11/6/2008 1.28 -0.002 20.83
11/8/2008 1.38 -0.004 10.42
11/11/2008 0.223 -0.003 13.89
11/12/2008 2.37 -0.005 8.33
11/13/2008 2.40 -0.006 6.94
11/14/2008 1.69 -0.01 4.17
11/16/2008 1.01 -0.004 10.42
11/17/2008 1.06 -0.001 41.67
11/18/2008 0.246 -0.009 4.63
11/19/2008 3.23 -0.011 3.79
7/28/2009 0.377 -0.0009 46.30
7/29/2009 0.295 -0.009 4.63

8/6/2009 0.753 -0.0002 208.33

8/7/2009 0.413 -0.0001 416.67

8/9/2009 0.202 -0.0001 416.67
8/21/2009 3.57 -0.004 10.42
8/23/2009 0.447 -0.0005 83.33
3/13/2010 6.90 -0.0001 416.67

5/3/2010 4.00 -0.001 41.67
5/15/2010 13.4 -0.002 20.83

5/4/2011 10.5 -0.00002 2083.33
7/17/2011 2.82 -0.00005 833.33
7/25/2011 4.04 -0.00007 595.24

8/9/2011 1.31 -0.0002 208.33

9/2/2011 2.99 -0.0002 208.33

# Samples: 27

Average 2.54 0.00283 214.31
Standard 3.16 0.00340 |  430.42
Deviation
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Table A1.3 Samples with no

decay
Initial Radical
Date Concqntration
(radicals/g
*10) Table A1.4 Samples exhibiting a fast decay

117172008 0.508 accompanied by no decay

11/5/2008 0.343 Initial Radipal Fast T(1/¢) Fast
11/7/2008 0.592 Date Concgntratlon Decay Def:ay
11/21/2008 0.347 (radlc.?%s/ g Rate (in
11/22/2008 0.265 *107) Days)
11/23/2008 0.338 7/23/2009 5.05 -0.009 4.63
8/8/2009 0.408 7/24/2009 2.30 -0.005 8.33
3/11/2010 117 7/25/2009 0.785 -0.022 1.89
4/1/2010 24 7/30/2009 1.90 -0.015 2.78
4/3/2010 1.48 8/3/2009 0.687 -0.014 298
4/5/2010 0.626 8/11/2009 6.67 -0.008 5.21
4/6/2010 0.597 8/17/2009 1.73 -0.006 6.94
4/7/2010 142 8/29/2009 0.592 -0.005 8.33
4/8/2010 24 3/12/2010 7.07 -0.007 5.95
4/10/2010 0.755 5/2/2010 1.27 -0.002 20.83
4/30/2010 1.94 5/10/2010 6.90 -0.007 5.95
5/5/2010 453 5/3/2011 19.9 -0.159 0.26
5/13/2010 1.43 # Samples: 12

5/13/2010 2.77 Average 4.57 0.0216 | 6.17
8/172011 5.54 puandard 5.46 0.0436 | 5.25
8/8/2011 1.42

# Samples: 21

Average 1.98

Standard

Deviation 2.63

Al.2 Metals Analysis and Correlation

A list of metals found in PM;s is given in Table A1.5. Samples were analyzed for Al,
As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Si, and Zn after decays were

measured. The listed metals were found in most samples with notable exceptions for As
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(observed in 7 of the 24 samples), B (observed in 4 of the 24 samples), and Cd (observed in 14 of
the 24 samples). The most abundant metals averaged from all the samples were Si (133.28 +
184.22 ppm), Na (122.34 + 163.34 ppm), Ca (113.46 £ 114.15 ppm), Fe (65.38 £+ 74.58 ppm),
and Al (87.48 £ 133.33 ppm). This demonstrates a wide range of metal concentrations found in
ambient PM; 5 from day to day in Baton Rouge. Considering the large industrial activity in and
around Baton Rouge, as well as being downwind from major industrial and manufacturing point

sources in Houston, such deviations are expected.

To understand the role of metals in reference to the current study, correlations were
calculated with the metal data against the initial radical concentration and the fast/slow decay
rates for trends, Table A1.6. Boron was not correlated due to a lack of data points obtained from
the metal analysis. The metal with the best correlation for all 3 factors was As, although this
metal had the least amount of data points used for the correlation. Therefore, As might not have

as strong a correlation as displayed.

Correlations of metals with the initial radical concentration conferred the strongest
associations of the three parameters. The two strongest positive correlations, even though weak
overall, came from Cr and Cu with a correlation factor of 0.153 and 0.162, respectively. The
strongest negative correlations came from Na and Mg with a correlation factor of -0,372 and -
0.309, respectively. Surprisingly, there was a negative correlation with Fe and Zn. Previous
research performed in this laboratory has demonstrated EPFRs to form on the surface of Fe,O3
and ZnO, so it was expected for these metals to have an overall positive correlation [1, 2].
Overall, there were no strong correlations between the metal data and the initial radical

concentration.
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Table A1.5 List of metals found in PM, s samples (in ppm) from ICP-AE analysis.

Collection Date] Al As B Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni | Pb Si Zn
7/15/2009  [499.89] 0.000 | 0.00 | 9.86 | 541.39 [ 0.000 [ 0.000 | 0.13 | 5.65 | 251.52 | 137.28 | 119.77 [ 645 | 00 [2.52]354] 0.00 [ 11.86
8/15/2009 | 0.000 | 0.000 | 0.00 [1.743] 109.45 | 0.000 [ 0.000 [ 0.000 | 4.086 [253.037| 0.00 | 29.30 [0.286] 0.0 [2.886]2.366| 0.000 | 0.000
3/6/2010 | 19.605] 0.000 | 2.05 [2.430 66.3 | 0.044 [ 0.024 | 0.080 | 2912 | 25.089 | 5152 | 7.6 [0.660] 28.8 [0.222]0.754] 52.469 | 8.995
3/712010  [27.453] 0.000 [ 0.00 [2.105] 13.8 [0.034 [ 0.015 | 0.160 | 2.340 | 24.631 | 1357 | 19.0 [0.748] 118.3 [0.360[0.799| 68.654 | 4.045
3/9/2010  [10.943] 0.097 | 0.00 [1.173| 69.641 [ 0.000 | 0.003 | 0.061 | 1.516 | 9.789 | 21.773 | 4.540 [0.349] 1.988 [1.038]0.161] 30.417 | 2.009
3/112010  [54.260( 0.000 | 0.00 [2.503] 77.282 [ 0.019 | 0.036 | 0.372 | 2.346 | 54.462 [ 29.518 | 19.528 [1.177] 81.889 [0.604]1.228] 118.903 | 17.610
3/14/2010  |21.755] 0.059 | 0.00 [2.489[ 80.397 [ 0.033 [ 0.022 | 0.087 | 3.187 | 27.208 | 23.199 | 6.627 [0.709] 10.209 [0.2040.562| 52.626 | 8.919
3/29/2010  [32.939] 0.212 [ 0.00 [3.885] 95.450 [ 0.062 | 0.031 | 0.207 [ 5.039 | 41.076 [ 22.773 | 11.687 [1.087| 8.877 |0.434|1.375 77.622 | 9.565
3/30/2010  [29.207] 0.063 | 0.00 [1.677 86.571 [ 0.036 [ 0.025 | 0.173 | 2219 | 27.125 | 34.267 | 11.596 [0.955| 16.491 [0.400[0.756] 76.470 | 9.652
4/13/2010  |94.389] 0.000 | 0.00 | 2.34 [120.562] 0.024 [ 0.039 | 0.182 | 4.67 | 67.88 | 45367 | 31.755 [1.234] 12022 | 0.85 [0.623] 129.87 | 7.233
4302010  [230.68] 0.000 | 0.00 | 1.80 [ 56.1 | 0.00 [0.0540] 0225 [ 0.59 | 103.75 | 77.84 | 682 [2.034] 3903 [0.436/0.296] 407.60 | 3.93
5/1/2010  [458.189] 0.000 |1.583]3.494[127.576| 0.00 [ 0.169 | 0.468 | 1.022 [229.344 | 114.570 | 142.436 [5.270] 609.323 [ 0.433 | 0.264 | 874.227 | 3.498
5212010  [137.396] 0.114 [ 0.00 |1.533] 41.284 [ 0.009 | 0.053 | 0.156 | 1.245 | 73.628 | 38.879 | 36.986 |1.601]137.560]0.407]0.150| 263.180 | 5.037
5/32010  |42.379] 0212 [2.573]2.306[ 92.152 | 0.027 [ 0.027 | 0.109 | 2.620 | 36.075 | 21.719 | 18.300 [1.276] 39.784 [0.201]0.683] 90.797 | 9.853
5/5/2010  [36.836[ 0.050 [0.502]2.319]130.758 0.025 | 0.032 | 0.174 | 2.996 | 34.464 | 17.017 | 17.216 [1.265] 20.734 [0.341]0.616 86.244 | 5.625
5712010 | 87.41 | 0.000 | 0.00 | 1.74 | 150.7 [0.0084[0.1020] 0.182 | 3.844 | 4524 | 6038 | 357 [1.299] 1602 [0.447]0.285] 17051 | 633
51012010 | 45.14 [ 0.000 [ 0.00 | 238 | 87.1 [0.0062[0.0135] 0.105 [ 0.543 | 26.74 | 19.84 | 157 [1.181] 41.6 [0344[0.292| 92.97 | 3.24
5/13/2010 | 36.20 | 0.000 | 0.00 | 1.20 [ 89.1 [ 0.000 [0.0228] 0.096 | 0.842 | 24.43 | 28.88 | 41.4 [0.887] 289.2 [0.360[0.259] 8553 | 2.56
5/14/2010  [36.215] 0.000 [ 0.00 [1.018] 69.7 [ 0.000 [ 0.013 [ 0.097 | 0.647 [ 23324 | 19.93 | 37.8 [0.681] 231.6 [0.668]0.228] 93.468 | 2.622
5212011 |28.586] 0.000 | 0.00 [1.209| 64.3 [ 0.000 [ 0.002 | 0.049 [27.527] 17.709 | 19.64 | 28.7 [0.563| 1792 [0.561]0.147] 68.577 | 1.774
5/3/2011  |16.861] 0.000 | 0.00 [1.189] 22.0 [0.000 | 0.003 | 0.113 | 4.874 | 15652 | 637 | 5.1 0627 7.7 [0.398[0.462] 36.632 | 4.149
5/4/2011  [23.874] 0.000 [ 0.00 [1.969] 69.6 | 0.026 [ 0.006 | 0.159 | 3.285 [ 25.436 | 15.66 | 9.7 [0.996| 123 [0.036]1.446] 53.672 | 3.546
5/5/2011 | 35.15 | 0.000 | 0.00 [ 2.95 [ 112.0 [0.0342[0.0457] 0.254 | 5.886 | 49.82 | 1820 | 129 [2.504] 182 [0.509|0.873] 83.22 | 8.71
5/24/2011 [ 101.01] 0.000 | 0.00 | 4.77 | 356.9 [0.0944[0.0783] 0379 | 7.318 | 84.09 | 157.52 | 73.6 [3.990] 409.4 [1.271]1.732] 181.59 | 17.39

Table A1.6 Correlations of metal data with the initial radicals/g, fast decay, and slow decay.

Al As Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Zn

Initial radicals/g| -0.214 [ 0.183 | 0.068 |-0.081| 0.054 |-0.195 | 0.153 | 0.162 [-0.239 [ -0.219 [ -0.309 | -0.008 | -0.372 | -0.168 | 0.071 | -0.259 [-0.072
# samples 2% | 7 | 24 | 24 | 14 | 2| 23 | 24 | 24 | 24 | 24 | 24 | 22| 24| 24| 22 |23
fast decay | -0.077 | 0.797 | -0.069 | -0.104 | 0.015 |-0.271 [ -0.178 | 0.086 [-0.096 | -0.207 | -0.161 | -0.099 | -0.246 | 0.008 | 0.028 | -0.192 [0.073
# samples 16 | 5 16 | 16 | 10| 15 16| 16| 16| 16| 16| 16| 15| 16| 16 15 | 16
slow decay | 0.064 | 0.628 |-0.065 | -0.005 | -0.466 | 0.129 [ -0.186 [ -0.184 [ 0.020 |-0.072| 0.051 |-0.025|-0.012 | 0.042 | -0.156 | 0.019 [0.067
# samples 15 | s 1515 10| 14| as |15 | as s |5 |15 ] 14| 15| 15 14 | 15
Range of metal [ 10.94- [ 0.050- [ 1.02- [ 13.8- [0.006- [ 0.002- [0.061- [0.596-] 9.79- [ 6.37- | 5.1- [ 0.20- [ 7.7- [0.036-[0.147- 30.42- [1.77-
(ppm) 499.89 0.212 | 9.86 | 541 |0.094 | 0.078 | 0379 | 27.53 [253.04|157.52[142.44| 6.45 [ 609.3 | 1.271 | 3.54 |874.227[17.61
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Correlation with the slow and fast decay rates also exhibited weak or no correlations
except for a strong negative correlation of Cd with the slow decay rate. This suggests the

presence of organics bound to Cd lengthen the slow decay rate.

Al1.3 Meteorological and Atmospheric Pollutant Correlations

Correlations of meteorological conditions and other pollutant information were
performed from data obtained at the same DEQ ambient monitoring station as the sampler with
the exception of solar and UV radiation data which came from a monitoring station one mile

away, Table Al.7. This data was averaged over the 24 hours for which the samples were

Table A1.7 Pearson correlations of meteorological data with initial radicals/g, fast decay, and
slow decay for samples collected between 7/12/09 to 8/31/09

%
S(.)la.r I?V, Temperature| Relative SO, Total
radiation | Radiation . Hydrocarbons
Humidity
Initial 0.139 0.119 -0.001 0.198 | -0.047 0.131
radicals/g

# Samples 46 46 46 46 46 46

Fast Decay -0.446 -0.417 -0.454 0.448 -0.235 -0.169
# Samples 39 39 39 39 39 39

Slow Decay 0.113 0.134 -0.170 -0.003 | -0.060 -0.062
# Samples 37 37 37 37 37 37

Non-methane
Ozone NO NO; NOyx |Methane| organic
carbon
Initial 0.278 0.223 0.191 0236 | 0.156 0.039
radicals/g

# Samples 41 42 42 42 46 46

Fast Decay -0.103 0.042 -0.072 -0.067 | -0.200 0.000
# Samples 35 36 36 36 39 39

Slow Decay -0.040 0.237 0.148 0.228 -0.033 -0.099
# Samples 33 34 34 34 37 37
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collected (9AM to 9AM), Table A1.8, and used to correlate samples collected from 7/12/09 to

8/31/09 to determine if the collected conditions had any bearing on the radical properties.

The strongest correlation for the initial radical concentration resulted from ozone
suggesting the importance of photochemical processes for EPFR formation in the atmosphere
and supported by positive correlations with both solar and UV radiation. NOy, NO, and NO,
demonstrated positive correlations suggesting formation of EPFRs while PM; s is suspended in
the atmosphere. Methane and total hydrocarbons had weaker positive correlations yet significant
when compared to the non-methane organic carbon. This is surprising and it was expected for
the non-methane organic carbon to have a significant positive correlation as previous research
has demonstrated non-methane organic carbon compounds form EPFRs when bound to a
transition metal [1-4]. The only significant negative correlation observed was with relative

humidity.

The correlation of the fast decay with relative humidity displayed the largest positive
correlation. The correlations with the fast decay indicate the presence of ozone as well as solar
and UV radiation to decrease the fast decay rate. Since the previous set of correlations
demonstrated the ability of all three to increase radical concentration, their presence would also
slow down the fast decay rate as they are forming new radicals. This explanation can also be
applied with the negative correlations seen with NO; and NOy. There were significant negative

correlations with SO,, methane, and total hydrocarbons.

The correlations with the slow decay are the weakest overall and less clear. The negative
correlations from SO,, non-methane organic carbon, and total hydrocarbons suggest these to

decrease the slow decay rate but very subtly. Correlations with solar/UV radiation, NO, NO,,
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and NOy all demonstrate an increase the slow decay rate in complete contrast to the other

correlations. This appears to advocate other pathways for the slow decay.

Table A1.8 Averaged meteorological and pollutant data for listed collection dates from 9AM
to 9AM the following day.

Solar Uv Temp RH SO, THC Ozone NO NO, NOx Methane NMOC
Date WM | (WM | (°C) (%) | (ppb) | (ppm) (ppb) (ppb) | (ppb) | (ppPb) (ppmc) PPMC)
7/12/2009 | 238.17 12.08 2546 | 86.04 0.10 2.34 3243 3.13 8.21 10.29 2.25 0.10
7/13/2009 | 316.29 15.79 25.50 | 76.13 0.10 2.24 30.22 3.46 7.46 9.79 2.17 0.08
7/14/2009 | 220.67 11.83 23.79 | 77.46 0.13 2.32 23.00 4.13 15.21 17.83 2.18 0.15
7/15/2009 | 227.71 11.79 23.38 | 88.13 0.14 2.15 21.13 221 5.54 6.88 2.09 0.07
7/16/2009 | 212.58 11.67 2296 | 86.42 0.10 2.23 14.79 3.25 9.21 11.25 2.11 0.14
7/17/2009 | 105.92 5.96 23.00 | 94.46 0.11 2.08 36.29 1.24 6.19 6.76 1.99 0.10
7/20/2009 | 287.54 15.17 24.50 | 70.67 0.93 2.10 36.08 2.36 7.45 8.73 2.06 0.05
7/21/2009 | 210.88 11.88 23.50 | 77.00 0.15 1.93 16.50 3.88 11.08 13.71 1.88 0.06
7/22/2009 | 110.29 6.13 23.83 | 89.29 0.20 1.37 24.67 3.96 14.79 17.21 1.37 0.02
7/23/2009 | 228.17 12.08 23.21 79.13 2.30 2.75 31.67 7.08 18.25 | 23.63 2.56 0.21
7/24/2009 | 314.29 15.79 22.63 | 64.50 1.97 2.13 42.33 1.64 6.41 7.05 2.06 0.09
7/25/2009 | 313.46 15.63 23.00 | 65.08 0.67 2.17 20.61 2.54 7.50 9.21 2.09 0.09
7/26/2009 | 217.13 11.29 23.38 | 83.46 0.34 2.19 13.79 3.63 9.38 11.92 2.09 0.11
7/27/2009 | 186.13 9.96 23.33 | 89.71 0.38 2.12 10.21 4.05 6.41 9.64 2.05 0.08
7/28/2009 | 169.04 9.46 23.29 | 86.67 0.40 2.10 11.50 3.46 5.38 8.04 2.03 0.08
7/29/2009 | 273.50 13.88 23.96 | 80.50 0.23 2.10 * * * * 2.04 0.08
7/30/2009 | 200.54 10.88 26.79 | 85.71 0.30 2.05 * * * * 1.97 0.09
7/31/2009 | 260.17 13.54 27.38 | 81.17 0.29 1.93 * * * * 1.90 0.05
8/1/2009 257.79 13.29 27.25 | 77.96 0.29 2.22 * * * * 2.13 0.10
8/2/2009 128.17 7.04 27.46 | 88.38 0.33 1.96 * 1.78 6.67 6.67 1.89 0.08
8/4/2009 274.13 13.96 25.92 | 73.67 0.48 2.18 17.17 3.08 11.00 13.50 2.04 0.15
8/5/2009 254.67 12.58 26.00 | 7542 0.73 2.23 19.25 6.79 10.71 17.04 2.08 0.17
8/6/2009 269.88 13.29 25.88 | 81.96 0.17 2.22 47.46 0.38 10.83 10.75 2.09 0.14
8/7/2009 240.17 11.79 26.08 | 73.63 0.15 2.04 28.50 0.77 6.18 6.59 1.97 0.08
8/9/2009 213.75 11.04 26.17 | 89.75 0.12 2.29 16.39 2.83 8.83 11.21 1.89 0.24
8/8/2009 281.38 14.25 25.92 | 80.04 0.18 2.09 20.75 3.79 10.50 13.92 2.03 0.07
8/11/2009 | 232.79 11.92 26.21 81.17 0.14 2.03 33.78 1.00 8.71 9.42 1.98 0.06
8/12/2009 | 272.50 13.29 25.96 | 78.08 0.49 2.12 33.88 0.71 9.75 9.96 2.08 0.05
8/13/2009 | 215.13 11.08 2596 | 75.21 0.16 2.12 33.25 1.29 10.75 11.58 2.03 0.10
8/15/2009 | 238.33 12.04 26.33 | 79.46 0.10 2.06 19.87 2.96 10.21 12.63 2.03 0.05
8/16/2009 | 170.96 8.79 26.57 | 86.63 0.10 2.02 20.22 2.65 8.96 11.30 1.97 0.06
8/17/2009 | 158.21 8.08 27.08 | 84.29 0.11 2.03 14.29 4.05 9.71 13.52 1.96 0.09
8/18/2009 | 186.50 9.54 26.67 | 84.46 0.18 2.07 17.57 2.79 8.17 10.58 2.00 0.07
8/19/2009 | 199.04 10.38 27.00 | 80.83 0.12 2.10 5.71 5.86 9.90 15.29 2.00 0.11
8/21/2009 | 102.33 5.58 26.75 | 92.92 0.15 2.03 31.13 1.18 8.64 9.27 1.96 0.08
8/22/2009 | 297.04 13.79 26.79 | 63.71 4.24 1.98 29.17 1.79 8.13 9.46 1.94 0.06
8/23/2009 | 301.54 14.21 26.54 | 59.71 0.60 2.01 29.25 2.29 9.71 11.42 1.95 0.07
8/24/2009 | 298.42 14.00 26.63 | 62.04 0.44 2.22 49.75 4.59 13.41 17.55 2.12 0.11
8/25/2009 | 265.13 12.13 25.92 | 65.88 2.83 2.30 48.61 5.95 14.45 19.73 2.18 0.14
8/26/2009 | 247.29 11.04 25.63 | 67.96 2.26 2.21 41.83 1.00 10.29 10.71 2.10 0.12
8/27/2009 | 253.67 11.67 2642 | 65.83 1.21 2.35 30.58 2.67 14.25 16.25 2.23 0.14
8/28/2009 | 181.75 9.00 26.71 80.96 0.47 2.06 34.67 1.33 6.48 7.52 1.97 0.09
8/29/2009 | 215.42 10.88 26.63 | 80.46 0.31 1.95 34.74 1.21 5.79 6.50 1.92 0.05
8/30/2009 | 242.13 11.67 26.79 | 76.54 1.35 1.93 33.29 1.17 6.33 6.96 1.90 0.05
8/31/2009 | 208.83 10.46 26.67 | 65.63 0.52 1.96 38.25 1.23 9.09 9.77 191 0.06

* no average was performed due to missing data points for that day
Solar is total solar radiation
UV is only UV radiation
RH is relative humidity
THC is total hydrocarbons
NMOC is nonmethane organic carbon
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APPENDIX 2. SUPPORTING INFORMATION FOR HYDROXYL RADICAL
GENERATION FROM EPFRs IN PM; s

A2.1 Chelex Treatment of PM, s Samples

In an attempt to more closely match previous studies[1-4], Chelex was utilized for
elimination of any trace metals present in the ultrahigh purity (UP) H,O. The manufacturer
batch method for preparation was adjusted to accommodate the smaller volume employed. This
involved adding approximately 1.3 g of Chelex resin to 10 mL PBS solution and mixing
rigorously for 1 hour. The PBS solutions with resin were left overnight before use and filtered

from solution using a Fisherbrand PS5 filter paper.

After multiple attempts, the Chelex treatment did not reduce the DMPO-OH signal as
expected[2-6]. Instead, the DMPO-OH signals increased by an average of 140%. Similar
phenomena was previously observed suggesting another pathway where Chelex participates in

the reaction[1]. To avoid any extra confounding factors, Chelex was not used in this study.

A2.2 Effect of Chelating Agents

Using a 0.1 mM solution of DFO corresponded to a 72% reduction of the DMPO-OH
signal from the PM, 5 suspension and this suggests an important role for Fe in the catalysis of
H,0, to *OH. Previous studies, regardless of assay type, had conflicting results from DFO.
Some reports observed a substantial or nearly complete elimination of the ROS signal[7-9].
These studies used samples stored for long periods of time (from months to years) or were
completely relying on the generation of *OH from H,O,. Therefore, these investigations were

biased in favor of DFO to completely eliminate the signal by metal complexation.

Other reports only reduced the signal suggesting other pathways[10-15]. Recognizing

DFO is very selective towards iron leaves the possibility of the other redox metals in the PM; s to

130



catalyze an exogenous Fenton reaction. Although the amount of the other redox active metals is
minor when compared to iron, they are still present on the surface to catalyze the exogenous

Fenton reaction.

Accompanying the complexation of metals, DFO was observed to scavenge the
tetrachlorosemiquinone anion radical[16]. Such elimination would suggest a role in scavenging
for other semiquinone type radicals. Either from metal complexation or eliminating the

semiquinone radicals, the addition of DFO reduced the adduct intensity in these experiments.

DETAPAC exhibited unpredictable behavior in PM;s solutions. Particularly, using
DETAPAC in this work reduced the *OH signal intensity by 53% while, in contrast, a previous

study exhibited a higher *OH signal[17].

Based on these observations, the above reagents were not included in the spin trapping
experiments for PM,s. Instead, a comparative method[18, 19], where the same sample was
utilized under different conditions (air vs. N, purging, fresh vs. aged), was chosen to monitor the

*OH generating capacity of ambient PM, 5 particles collected from Louisiana industrial corridor.

A2.3 Metal Dependence

Previous studies report a metal association for ROS generation in PM, such as As[20],
Ba[21], Cd[20], Co[5, 6, 22], Cr[6, 21, 22], Cul[9, 15, 21-27], Fe[5-7, 22-25, 28, 29], Mn[6, 22,
30], Ni[5, 20], V[20, 30], Zn[23, 30, 31], and Zr[21]. Most of the studies listed above included
the presence of reducing agents or H,O» thereby favoring the metal mediated generation of *OH.
In addition to total metals, correlations suggested associations with soluble Fe[7, 8, 31, 32].
Soluble transition metals from PM are suggested important due to their bioavailability[3, 6, 14,

30]. The soluble Fe oxidation state in PM; s also displayed no significant changes over 40
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days[33]. However, particle bound transition metals (or the particle itself) also demonstrated

increased ROS generation when compared to the soluble metals present[26, 34].
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Figure A2.1 Demonstration of no correlation between DMPO-OH intensity and metal
concentration from some “active” samples (the metals are shown on the graph).

Straightforward dependencies between metal content and DMPO-OH concentration were
not observed in this study; although, only the total metals from a nitric acid digestion were
studied. There was no investigation into the soluble metals. Using only the “active” samples,
there was no correlation between the DMPO-OH intensity and individual, Figure S1, or total
metals (not presented but similar behavior as Figure S1). When applying the “passive” samples

as well, there were still no correlations from the metals data (data not shown).
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