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ABSTRACT

We have, with our students, engaged in cross-disciplinary
research in design. We describe parameters and principles
that we have found helpful in organizing and conducting
this kind of work. A variety of projects that have been
developed in our group illustrate these parameters and
principles. Our group focuses on making and we have come
to see creativity as grounded in the ability to make things.
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INTRODUCTION

Everyone can be creative, because everyone has the ability
to create or make things.

Current interest in creativity stems at least in part from the
realization that the traditional models of professional
education may fall short in the changing economic context.
Simply producing the most technically skilled mechanical
or software engineers or architects no longer seems a
sufficient strategy. A new kind of comprehensive education
seems called for. Richard Florida in The Rise of the
Creative Class [9], talks about "the three Ts" - talent,
technology and tolerance. He observes that the trend of the
economy and recipe for successful business is not big
manufacturing, but instead a new type of knowledge-based,
creative companies. These companies attract and retain
smart people that bring “talents” to the table, invest in
innovative “technology,” and welcome new people, ideas,
and cultural diversity (“tolerance”). What are the ingredients
of academic environments that can attract and nurture this
kind of creativity? We have been working for a number of
years at various universities to create this kind of
environment. Here we reflect on this experience and some
of the challenges, factors, tradeoffs that we have
encountered.  

Making Things

In keeping with our own disciplinary background — we
were educated as architects and now teach in schools of
architecture (at least notionally a creative field) — we begin
with making things. Consider the Oxford English
Dictionary’s definitions of two words:

To create:

1. Said of the divine agent: To bring into being, cause to
exist; esp. to produce where nothing was before, ‘to
form out of nothing’

2 .  To make, form, constitute, or bring into legal
existence (an institution, condition, action, mental
product, or form, not existing before).

To make:

1 .  To produce (a material thing) by combination of
parts, or by giving a certain form to a portion of
matter, to manufacture; to construct, assemble, frame,
fashion.

2. Of God (also of Nature personified, etc.): to create (a
material or spiritual object).

 “Create” is a word of Latin derivation, and “Make” is a
northern one, but both mean much the same thing. Create
has stronger divine connotations, whereas make is
humbler

1
.

Creativity, in other words, is simply the propensity or
ability to make things. The things may be physical, such
as jewelry or bicycles, or they may be things that have no
material presence, such as songs, poems, or software. These
domains seem radically diverse, but based on our
experience in making different kinds of things we have
come to believe that there are strong commonalities
between being creative in different domains. However, it is
difficult to see these commonalities unless one has
experience with making in at least two different domains.

We see creativity not as an innate ability, but as a capacity
that can be cultivated through experience making things.
Making can be learned, largely through practice, which is
the dominant mode in schools of art and design. In our

                                                
1
 Use Visual Wordnet to compare “create” and “make” for
an interesting perspective on their noble and humble
connotations:
http://kylescholz.com/projects/wordnet/
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design computing studio-laboratories we have emphasized a
strategy of exploration by making things.

Materials and processes

If, as we argue, creativity is bound up in making things,
then we must look at how people learn to make things, and
how they learn to make things well. A look at a design
school curriculum, the Bauhaus foundation courses for an
historical example, or any contemporary school of
architecture or industrial design, reveals an emphasis on
materials and process.

A potter must know clays and glazes and the various
processes by which clays and glazes are prepared, formed,
and fired. A clothing designer must know fabrics and
fasteners, and the various processes for sizing, cutting, and
sewing.

The need to know materials and processes holds not only
for traditional domains of making. The same applies to
software and software-intensive systems. A programmer
must know hardware and software and the processes by
which code can be designed, written, debugged, and
maintained. Knowledge of materials and processes —
obtained through direct experience — is fundamental to the
ability to make things in any domain.

Space and the Studio-Laboratory

We have worked primarily, though not exclusively, with
students who are studying or have studied architectural
design: undergraduates, professional master students, and
PhD students in design computing. These students (and
indeed all students in design disciplines) are accustomed to
the studio model of learning and practice, described by Don
Schön in The Design Studio [39]. (Schön’s work on what
he aptly named “the reflective practitioner” expands on his
observations of architectural education in a Mellon
Foundation study [38].) The design studio and the research
laboratory both depend on a common space in which work
takes place and is visible for informal discussion and open
critique. A shared space for work is, we believe, a basic
ingredient of a creative community. Although this
observation may seem obvious to those familiar with this
pattern, it is not a universal model in the university. For
example, the lab model is virtually unknown in the
humanities [15].

Below, we review some projects that we have worked on
over the past few years. We do this to reflect on the creative
communities we have fostered at universities where we
have worked. We have never explicitly described our
research practice as a curiosity-based designer-as-maker
approach, but we engage problem solving and problem
seeking to encourage people to see no boundaries between
fields. We encourage exploration by constructing (interface,
interactions, software, and hardware) as a process that
creates, in Seymour Papert’s phrase, “objects to think with”
[32]. This approach is embedded deeply in the design
studio culture. We set up an environment to encourage and
nurture creative mindsets and approaches. Specifically, we
encourage the process of generating ideas and building
prototypes through incremental refinement.

All design involves a developmental process. The design
ideas and eventually the artifacts that stand for the ideas
(the prototypes) move from one developmental stage to the
next. The process is driven by the conditions of the
environment. Usually, a project remains in a particular
stage until some other conditions happen to push us to
move it to the next stage. At other times we don’t seem to
be moving to the next stage, but later we realize that we
were in an incubation stage that absorbs and responds to
the changes and integrates them. So what are the “driving
forces” that we engage in our creative laboratory practice?

The Creative Team versus the Leonardo Model

One successful model for creative communities is to foster
team-building among people who have different abilities,
and some have studied how such team-building can happen
[29]. For example, an artist and a programmer might work
together on the design of a game. The artist is not expected
to be a programmer, and the programmer is not expected to
function as an artist. Rather, each member of the “creative
team” functions as an expert in his or her domain; and the
team learns to function together effectively by dividing
responsibilities according to expertise.

Rather we favor what one might call the Leonardo model.
We encourage individuals to transgress traditional
disciplinary boundaries and learn to function in whatever
fields of knowledge they need to accomplish their goals. In
this model an artist who has an idea for a game would
simply build the game, learning (or having already learned)
to program along the way.

True, most people find mastering even one discipline to be
a serious challenge, and only an occasional outlier will
master    two or more disciplines. Not to understate the work

involved, but with motivation and access to knowledge,
designers can acquire skills to function effectively in two or
more quite different fields. Indeed, for some, knowledge of
designing within one discipline can support rapid and
sophisticated acquisition of knowledge in another.

If working across disciplinary boundaries holds creative
riches, it is also certainly not without its challenges. In an
article on the emerging field of computational biology,
Junhyong Kim [23] makes trenchant observations on the
nature and challenges of interdisciplinary research
collaboration:

“While combining the knowledge of two different
fields can be difficult, we can overcome such
problems if we work hard and do our homework.
There is absolutely no reason why an expert in
biological sciences should not also be deeply
knowledgeable in computer science, mathematics,
and statistics…..

Specifically, when two experts get together, they
expect each other to stay within their own
domains and communicate solely through some
narrowly prescribed interface.

 … To make interdisciplinary research successful,
we must jettison this idea of the expert. All
knowledge is equal. Indeed, if we really knew



which knowledge is important and which is not,
we could all use it with shared certainty. Growth
of knowledge, whether personal or fieldwide, is
haphazard and full of windings and intricate
turnings.”

Everyone cannot know everything; tradeoffs must be
made. Yet there is value in learning how “other”
disciplines work, not just from the perspective of how
to collaborate with others, but to understand and see
designing from within more than one domain.

Hill-finding and Hill-climbing

We aim to build prototypes that extend the dimensions of a
design space, rather than optimize within existing design
space dimensions. This makes it difficult to make useful
comparisons with other designs that serve the same
function or perform a similar task. On the other hand,
without evaluation it is difficult to judge the quality of the
work that has been done.

One of our students, Gabe Johnson, put it like this;

One perspective is that when we build a novel
tool, we will have some idea about how it might
be used and how it could help, but not well
enough to form a detailed evaluation plan before
building it. We have to build it before we know
which questions are appropriate to ask and
evaluate. This isn't hill climbing, this is hill
finding.

An opposing perspective holds that we shouldn't
build tools without having a prescient knowledge
of how that tool fits into the landscape of existing
tools, and exactly what specific benefit we believe
we can derive from that tool. This is the standard
scientific approach of hypothesis - experiment -
analysis (repeat). In other words, this is hill
climbing.

PROJECTS

We organize the projects below into three categories to
discuss the process and dimensions of the projects in our
creative communities. All are about “making things”,
building computationally enhanced artifacts that are objects
to think with, to play with, to contemplate ideas about
design. Three patterns of promoting creative engagements
emerge: (1) owning the problem, (2) design and the play
instinct, and (3) building tools to make things.

Related Work (Projects)

We are well aware of much related work for the various
student projects. For example, systems similar to Gesture
Modeling include Surface Drawing [37] and Pinch Glove
[26]. Related to the Immersive Redliner, early work on
annotation in virtual reality is reported in [3]. Telepresence
has been extensively explored by Tang and Minneman [44]
and others [45]. Tangible music toys are numerous, for
example Sony’s Block Jam; see also [16] and the work of
Eisenberg, Resnick and colleagues [8, 34]. Like Easigami,
Ju’s Origami Desk [19] supported origami learning with a
physical interface. Related tangible storytelling work
include work by Druin et al. [31]; there are indeed

conferences devoted to interactive storytelling technology
[11]. Pen based sketching systems to create 3D models,
similar in intent to the Furniture Factory include work of
Lipson and colleagues [30]; see also [6, 13, 18, 21, 25].
Tangible building blocks projects related to roBlocks
include the early work of Aish [1] and more recently that of
Anderson and Marks et al. at MERL and Watanabe’s work
on ActiveCubes [2, 46].

Owning the Problem or Deciding What to Design

In a traditional architectural design studio, work begins
with a clearly defined problem statement, or “program”
(e.g., a community library, a house for a working couple,
or a train station). This way of working is appropriate
where the goal is to teach and learn specific skills that
every architect must know, such as arranging functions in a
floor plan or deciding on a structural system to support the
building. Nor do we mean to belittle the importance of
learning to design things for others. The drawback—from
the more general perspective of learning to make things—
is that being given a ready-made problem avoids the
framing question of “deciding what to design” [41].
Importantly, also many find it more difficult to take
ownership of a problem that someone else has prepared.

Therefore we encourage our students to define their own
problem statements—figuring out the “wants”. For
example, one might be frustrated with existing technology
or practice and have a want for something better. Or, these
wants can come from personal experience, the desire to live
a smarter, more efficient, or happier life. Having wants
ensures that there is a desire or passion for something to
happen. This motivates people to engage in just-in-time
learning to achieve their project goals. The process begins
with the egocentric (“I want … ”) and moves toward to a
more shared vision of the benefits of a project (“we get
…”). As Buchanan [5] points out, the old design education
focuses on “teaching the materials, tools, and techniques of
design as the primary subject matter,” the new course
“focuses on projects and problems that are situated within
the experience and motivation of students.” He argues that-
“having a reason to design gives focus and purpose to
student development. When a purpose exists, we find it
easier then to introduce materials, tools, and techniques.”

Our “own the problem” approach might seem
unorthodox—at least among colleagues in Human-
Computer Interaction and Design—in that we do not begin
with a user-centered approach, conducting ethnographic
studies, cultural probes, or other means to identify and
understand the dimensions of a problem to be solved.
Rather, we draw on personal experience and personal needs
as a primary source for creative exploration into the design
space.

Many innovations come about because the inventor solves
a problem for him or herself. Stallman, for example, built
emacs because he wanted a better text editor [43]. He knew
the problem well — it was his problem —so he did not
need to conduct surveys or observations to understand the
client or the context.

Paul Graham puts it like this:



You're most likely to get good design if the intended
users include the designer himself. When you design
something for a group that doesn't include you, it
tends to be for people you consider to be less
sophisticated than you, not more sophisticated.

That's a problem, because looking down on the
user, however benevolently, seems inevitably to
corrupt the designer. I suspect that very few
housing projects in the US were designed by
architects who expected to live in them. [12]

Graham is certainly right about the architects.

Gesture Modeling

Our Gesture Modeling project [22] began with a frustration
with using WIMP interfaces to create architectural form. (“I
want to gesture and shape spaces"). Ariel Kemp, an
architecture graduate student with a bachelor degree in
computer science, wanted instead to use his hands to
generate three-dimensional form, to design with computers
as freely as one could in making sculpture out of clay.
Ariel had previously written some image processing code
that he used in the Gesture Modeling project to recognize
different hand gestures, and connected this code to a 3-D
geometry engine and linked the gestures to different form-
making and editing operations.  

Figure 1. Deforming a mesh model with a hand gesture.

Immersive Redliner

The Immersive Redliner project [20] came from the need to
collaborate with other stakeholders on design artifacts. (I
need a way for my clients to give feedback). Thomas Jung,
an architecture graduate student, understood that need. He
felt that designing in the medium of CAD tended to
isolate, rather than bring together, the various stakeholders,
and he wanted to support a conversation among
stakeholders about the artifact being designed. In order to
realize this goal he learned to program in Java and mastered
the intricacies of the Java3D graphics environment. The
Redliner software offered stakeholders a desktop virtual
reality model in which they could browse a 3D model on
the Web and post annotations about particular features on
objects in the design.

Figure 2. Redliner Annotations by stakeholders in an
interior design

Telepresence Tables

Telepresence Tables are an instance of calm technology that
provides one person an ambient awareness of others while
protecting privacy. (“I want to stay connected with my
friends and family while maintaining my privacy.”)
Originally a project in a “Home of the Future” class we
taught, the Telepresence Tables are two small tables
outfitted with electronics so that shadow patterns made on
one table appear in colored light on the other. Each table
has an 8x8 array of light sensors and two colors of LEDs
that project upward to make patterns on a frosted plastic
surface. A microcontroller in each table collects the light
sensor values, echoes them locally by lighting yellow
LEDs, and sends the data to the other table, which displays
the remote shadow pattern by lighting the red LEDs.
People find the light patterns beautiful and the experience
engaging.

Figure 3. Each Telepresence Table translates shadow
patterns into light and transmits them to the other table.

The Telepresence Tables were built over two months by a
team of four: Ken Camarata and Mike Weller, two PhD
students in computational design, Kursat Ozenc, a PhD
student in interaction design, and Bridget Lewis, an
undergraduate physics major. The team started by
brainstorming around the idea of ambient awareness with
privacy, and moved rapidly to tangible interaction
embedded in furniture. The team developed several
alternatives quickly, and selected the grid of photosensors
and LEDs. Over the course of the first few weeks the team
together worked out the electronics and software design,



learning basic circuit design and fabrication as they went. A
shared workspace and a (persistent) whiteboard supported
their design discussions and served as informal
communication between team members. The design
underwent continual refinement as the team built small
prototypes to test various aspects. The team made up for
their collective lack of experience in analog electronics by
opportunistically taking advantage of resources. For
example, rather than send boards out to be fabricated
(which no one on the team knew how to do) they opted for
using a computer-numerically controlled mill to mill
circuit paths in copper plated boards.

Tinkering, design, and the play instinct

The second pattern in our projects is the importance of
play. The late American graphic designer Paul Rand
described designing as a kind of play within given or self-
imposed constraints [33]. Play – an exploration of
materials and processes — is what distinguishes routine
acts of making, that is to say production, from more
creative acts of making that may result in innovative ideas.

Papert [32] used the French word bricolage, or what
computer scientists and artificial intelligence researchers
called “hacking” goes to the heart of what creative people
do, and people who aspire to being creative must practice.   

This sort of creative play is encouraged in schools of
design (which include architecture, industrial,
communication and interaction design) and the arts
(including music, painting, sculpture, and drama). Students
learn to make things by making things.

Despite some advantages, hacking, tinkering, and playful
exploration are often disparaged. These activities are seen as
not sufficiently goal-oriented: A good engineer, it is said,
begins with a clearly articulated problem statement, and
then applies reliable methods to reach a solution. A student
who spends time playing around with things is wasting
time that could be more profitably spent applying known
methods to the problem at hand. And inevitably there will
be failures — as actually building a prototype reveals
unanticipated behaviors that undermine a previously
plausible design idea. Getting the plan right in the first
place would avoid wasted time and costly mistakes.

The difficulty with this position is, of course, that creative
work, particularly design work, seldom begins with a
clearly stated problem. Rather, as many have pointed out
[35, 39, 42], design is as much concerned with identifying
and expressing a problem as it is finding solutions. Adages
such as “Defining the problem    is    the problem” and “The

problem and solution co-evolve” exemplify this well-
known characteristic of designing.

Bach Blocks – playing with music

Shaun Moon’s Bach Blocks are a set of colored blocks, a
camera, and some software that reads the arrangement of
blocks and plays a tune. Shaun, a graduate student with a
background in architectural design, wanted to play with

music, and wanted in particular to build a toy that could
engage his young children with music.

Colors represent pitches and the positions of the blocks
determine the sequence of play. Thus, Bach Blocks is at
once an instrument for making music and a notation to
compose it. Ordinarily the software plays from left to right
(and blocks arranged vertically play harmonies), but Bach
Blocks software can also be set to play the tune in any
direction.

Figure 4 Bach Blocks: making and playing music with
colored blocks

Easigami – playing with origami

Playing with origami, children learn geometry and spatial
reasoning skills. However, children often find it difficult to
interpret diagrams in a book into origami action. The
traditional way of teaching origami discourages children
from creating original paper models. It cannot reveal the
rich content in the transformation between a 3D model and
its 2D crease pattern. Easigami is a tangible user interface
that addresses these issues. It uses computer interaction to
clarify origami actions and to encourage origami
exploration through 2D-3D transformation.

Easigami’s physical interface is a paper-like triangle tile toy
composed of flat triangle pieces and electrically enhanced
hinges. The hinges join plastic triangles to form a flat sheet
with a crease pattern. Each hinge can provide folding
instructions by illuminating LEDs to indicate which
crease(s) are active as well as the direction to fold. Each
hinge senses the relationship between the two adjacent
triangles it connects, and sends the angular information to a
desktop computer. Users can follow instructional signals
and fold the Easigami interface along pre-folded creases. A
real-time computer graphic model of the physical triangles
is displayed on screen along with the corresponding 2D
crease pattern.

Figure 5. Easigami senses a user’s folding pattern.



Easigami was built by Yingdan Huang, a PhD student who
had an undergraduate degree in architecture and had taken
advanced courses in programming and computer graphics.
Easigami was her first tangible media project, and she had
no experience with wiring up analog electronics or
microcontroller programming. However, she was able to
quickly produce alternative physical designs for embedding
electronic components in a physical model, and develop a
hierarchy browser that enables Easigami users to see where
the current state of the folded sheet is in the space of
possible origami designs. She was also able to quickly
build an Open-GL 3-D viewer that dynamically displays
the model as the user folds it, although she was stymied
for some time by the realization that accurately modeling
paper folding, notably the transient states in which paper is
flexed into complex curved surfaces, is a non-trivial
problem. With some effort we were able to convince
Yingdan that an approximate simulation would be an
adequate representation.

Storytelling Cubes – building animations tangibly
Storytelling Cubes are a tangible device for young children
to create animated stories on a computer screen. Each cube
contains an orientation sensor (three mercury switches) and
a wireless transmitter that tells the host computer which
side of each cube is facing up. The faces of cubes depict
various characters, scenes, and actions in an animated
cartoon. Children use the Storytelling Cubes to illustrate
their spoken stories in a create-your-own-adventure fashion.
Tony Sheng-Kai Tang, an architecture PhD student,
interfaced the Storytelling Cubes with the Alice graphical
programming environment developed by Randy Pausch’s
group at CMU to enable children to use the Storytelling
Cubes to generate animated cartoon stories.

 

Figure 6. Making animations with Storytelling Cubes

Building Tools to Make Things

The third pattern in our projects is a tool-building
approach. We are less interested in making particular
designs for a particular client or user, than in developing
ways of working — methods and tools— that can open up
new design spaces. We mention briefly two projects that
illustrate that approach: Furniture Factory and roBlocks.

Furniture Factory -- Sketch to fabrication
The Furniture Factory program helps designers make
physical prototypes using rapid prototyping and
manufacturing machines. It provides a sketch-based design
interface that a designer can use to draw furniture in 3-D.
The program then displays the model in an isometric
viewing window where the designer can view it and edit it.
It then decomposes the 3-D model into flat panels and
displays them in the parts window. Furniture Factory adds
joints where one panel connects to another according to
connection conditions. These added joints enable designers
to construct the physical model easily and quickly. The
program generates HPGL code to cut the furniture parts on
a laser cutter.

 

Figure 7. Sketch to Fabrication with the Furniture Factory

Furniture Factory is designed specifically to produce a
simple subset of the universe of things that can be made
from flat material. We are working on a generalization of
the program that will allow a designer to sketch and
manufacture a wider variety of things, based on a larger
language of form that includes folding, laminating,
assembling, and cutting flat materials.

roBlocks – a Robot Construction Kit
The roBlocks construction kit [40], built by Eric
Schweikardt, a PhD student with an undergraduate major in
architecture and a minor in computer science, is a set of 40
mm plastic cubes that snap together using small
neodymium magnets in their faces. Each block contains a
microprocessor and custom circuit boards that are glued
with conductive epoxy to the face magnets. Power, as well
as data, is transmitted from one block to the next through
the magnets and a small spring pins also mounted on each
face. Some blocks are input blocks: they have light, sound,
touch, or other sensors. Others output: they have motors,
lights, or speakers. Still others are logic or arithmetic
blocks that combine signals from the sensor blocks.

The idea of roBlocks is that designers who have no
previous experience with electronics, mechanical design, or
programming can assemble the components of a robot by
making a block construction.  The configuration itself also
programs the robot’s behavior, so (conceptually), a light
sensor block snapped to a motor block will be a robot that
moves toward light; adding a NOT block between them
produces a robot that avoids light.



Figure 8. roBlocks construction kit for modular robotics

DISCUSSION

For various reasons the kind of environment we foster—an
interdisciplinary, no-boundaries, technically sophisticated
studio-laboratory—is still unusual in the university.
Certainly we are not alone: Pelle Ehn articulates a similar
vision for a Digital Bauhaus at Malmö University [7];
Stanford’s “d-school”, the  ID-StudioLab at Delft, the MIT
Media Lab, and others are ventures in the same vein.
Within the design disciplines, and especially industrial and
interaction design there is a growing interest in hybrid
models of education [24, 28, 36]. Still we find that the
model runs against the grain of the university, which tends
to reward focus within, rather than across, disciplines.  

We recognize the irony in our emphasis on making as a
means to creativity just as Western economies are less and
less about making things. Can we learn creativity through
making, yet apply it to other (non-making) domains?

Education of Designers vs. that of Engineers

Architects and designers are educated in a quite different
fashion than scientists and engineers. Architects in
particular are integrators and therefore negotiators among a
set of diverse other experts. Like designers in other
disciplines, architects are taught to keep options open,
explore parallel alternatives, celebrate ambiguity. Engineers
tend to be more goal-oriented and stay within their field of
expertise and treat ambiguity as something to be
eliminated.

Thus we find that it is easier for design students to learn
technical skills (programming, electronics) they need to
carry out projects in design computing than it is to teach
engineering and computer science students to work in ill-
defined situations.

Engineering and computer science students tend to be less
well prepared for open-ended investigation than those who
have studied design. Engineering and computer science
students with whom we have worked are happiest when we
present them with a specification of work to be
accomplished. An open-ended brief tends to make them
uncomfortable—they do not know where to begin or how
to proceed. Once we give them a clear objective they can
apply the skills that they have acquired to attain it. Design
students, in contrast, even when given a clear specification,
will ignore it and do something else!

Although it is possible that becoming expert in technical
domains is simply easier than learning to design, we
suppose that other factors are responsible for this

phenomenon. One is cultural arrogance: due to a perceived
‘pecking order’ in the university, computer science and
engineering students do not recognize that there is an
important skill that they do not know. Indeed, their
education is intended to prepare them to walk up to any
new problem and apply their bag of tricks to it.

In our experience a computer science student or an
engineering student is more likely to jump from an initial
statement of a problem to propose a method of solving it,
and then immediately pursue that approach without
considering alternatives. Generating and comparing
alternatives is an activity that is drummed into designers
throughout their education.

There is also the matter of being able to accomplish
something. It is usually possible for a student of computer
science or engineering who knows how to write code to
make something—however poorly designed or
inelegant—without having first learned the skills of
designing. On the other hand, a design student who sets
out to make an artifact that has software or hardware must
— perforce — learn some technical skills.

Of course, there are problems going the other way as well.
Not every designer finds computation a natural medium.
Students from a design background are sometimes
overwhelmed by the amount of technical detail that they
must master in order to do anything interesting. Those who
start to learn to program by taking courses in the computer
science department are often bored by the examples used in
problem sets (which have no relationship to anything they
might be interested in) and on the other hand surprised by
the precision that is demanded to make a working piece of
software. Other students view programming as a way to get
something done — “by any means necessary,” and failing
to recognize the power of good design in software, produce
horrible kludges that work (perhaps) for a key example or
two but in the end limit any further exploration that can be
done with the prototype.

Designing and Programming

If creativity is about making things, and making things is
about design, what is the place of programming in all this?
Many who have worked both as a programmer and in some
other domain of design recognize powerful parallels.

Consider the words of master programmer Dick Gabriel in
“the Poetry of Programming.” In 2004 Gabriel received the
AAAI/ACM Allen Newell Award “for innovations not only
on fundamental issues in programming languages and
software design but also on the interaction between
computer science and other disciplines, notably architecture
and poetry.” In an interview titled “The Poetry of
Programming”, Gabriel said:

Writing code certainly feels very similar to
writing poetry. When I'm writing poetry, it
feels like the center of my thinking is in a
particular place, and when I'm writing code
the center of my thinking feels in the same kind
of place. It's the same kind of concentration.
So, I'm thinking up possibilities, I'm thinking
about, well, so how do I reinvent the code, gee,



you know, what's the simplest way to do this.
[10]

Or Paul Graham again: “Hacking and painting have a lot in
common. In fact, of all the different types of people I've
known, hackers and painters are among the most alike.
What hackers and painters have in common is that they're
both makers. Along with composers, architects, and
writers, what hackers and painters are trying to do is make
good things.”[12]

de.sign = pro.gram

Martin Brynskov at the Center for Interactive Spaces at the
University of Aarhus [4] pointed out that the words design
and program are remarkably close in their Greek and Latin
roots. According to the Oxford English Dictionary the
word “design” is made from the prefix “de-” (meaning out)
and the root “sign” (meaning mark) that is, to mark out.
Likewise, the word “program” is made from the prefix
“pro-“ (meaning forward or out), and ‘gram” (meaning
writing). That is, both design and program mean to mark
out or make an explicit representation.  

Emphasis on Prototypes

We emphasize the value of building working prototypes of
ideas—quickly and focusing on the parts of an idea that are
interesting or that seem worth exploring. In traditional
design education, prototypes are physical models that
illustrate the form, and perhaps the materials, of the design
to be made. As computation is added to the mix, it
becomes more difficult for traditionally trained designers to
make working prototypes that illustrate not only the
physical and material characteristics of designs but also
their functional behavior. Software environments like Flash
are frequently used to mock up interaction, but Flash is a
poor language to build or even model more sophisticated
computational behavior. As designers grapple with making
things that have both physical and computational
characteristics, the need becomes apparent for prototyping
tools that can capture and convey not only the superficial
aspects of a design, but also carry the more fundamental
ones. Work on toolkits and design environments for
physically embedded computation—as in [14, 17, 27] can
make this kind of work far more accessible.

The New Makers

If as Richard Florida and others argue, creativity is crucial
in the new economy, then perhaps we can foster creativity
by putting making back into education.  There is nothing
new about that idea, but for a variety of reasons, some
outlined in Dick Buchanan’s “Design and the New
Learning” [5] learning to make things has become
conspicuously absent in most courses of higher education.
One might expect schools of engineering to teach students
to make things, but engineering curricula are strong on
teaching analysis and principles and light on the actual
practice of making. Certainly, making things is still taught
in two places in the university: schools of design and the
arts, and departments of computer science. Surprisingly, as
the field of computer science matures, the skills of making
software are being systematically displaced by more
analytic skills. In short, as it matures as a discipline,

computer science seems to be moving away from teaching
design, just as other engineering disciplines such as
mechanical or civil engineering did in their earlier days.

Now is an interesting moment. Things have changed, and
the ways of making things have changed too. Almost
everything in our world is the product of design.
Increasingly designing is mediated by computational
processes. Increasingly the artifacts that we encounter —our
shoes, our houses, even our parks, are embedded with
microcontrollers, sensors, and electronics. Designers of the
future—the New Makers—will need to be fluent with the
materials and processes of computation, in addition to the
materials and processes of other domains.

We believe that powerful insights are available to those
designers—who come initially f rom whatever
discipline—who master the art and craft of making things
in more than one domain. These insights may eventually
further the development of what Simon termed a “Science
of Design” [42]. Meanwhile, we hold that creativity is
rooted in the experience of making things.
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