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Abstract

Background: Manual annotation of enzymatic functions cannot keep up with automatic genome sequencing. In

this work we explore the capacity of InterPro sequence signatures to automatically predict enzymatic function.

Results: We present EnzML, a multi-label classification method that can efficiently account also for proteins with

multiple enzymatic functions: 50,000 in UniProt. EnzML was evaluated using a standard set of 300,747 proteins for

which the manually curated Swiss-Prot and KEGG databases have agreeing Enzyme Commission (EC) annotations.

EnzML achieved more than 98% subset accuracy (exact match of all correct Enzyme Commission classes of a protein)

for the entire dataset and between 87 and 97% subset accuracy in reannotating eight entire proteomes: human,

mouse, rat, mouse-ear cress, fruit fly, the S. pombe yeast, the E. coli bacterium and theM. jannaschii archaebacterium.

To understand the role played by the dataset size, we compared the cross-evaluation results of smaller datasets, either

constructed at random or from specific taxonomic domains such as archaea, bacteria, fungi, invertebrates, plants and

vertebrates. The results were confirmed even when the redundancy in the dataset was reduced using UniRef100,

UniRef90 or UniRef50 clusters.

Conclusions: InterPro signatures are a compact and powerful attribute space for the prediction of enzymatic

function. This representation makes multi-label machine learning feasible in reasonable time (30 minutes to train on

300,747 instances with 10,852 attributes and 2,201 class values) using the Mulan Binary Relevance Nearest Neighbours

algorithm implementation (BR-kNN).

Background
Assigning enzymatic function to the proteins in a genome

is one of the first essential steps of metabolic recon-

struction, important for biology, medicine, industrial

production and environmental studies. Without precise

annotation of the reactions a protein can perform, the

subsequent pathway assembly and verification becomes

problematic [1]. Metabolic flux studies that aim to under-

stand diseased states or biomass production become

almost impossible.

Unfortunately, at the current rate of genome sequenc-

ing and manual annotation, manual curation will never

complete the functional annotation of all available pro-

teomes [2]. Hence in this work we propose and evaluate a

method to automatically predict the enzymatic functions
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of a protein. Previously, Tetko et al. [3] used compo-

nent analysis to show that the highest contributor to the

performance of various protein function prediction meth-

ods were InterPro signatures. InterPro is an extensive

database of conserved sequence signatures and domains

[4] that can be computed from sequence data alone and

for any sequence using the publicly available InterProScan

algorithm [4,5]. Through the use of InterPro signatures,

we demonstrate that it is possible to predict EnzymeCom-

mission (EC) numbers [6] with high accuracy, recall (sen-

sitivity) and precision (specificity), using the information

contained in the protein sequence exclusively.

Despite some known limitations, such as some incon-

sistencies between the rules set by the nomenclature

committee and the actual class definitions [7], we use the

NC-IUBMB Enzyme Commission (EC) nomenclature to

define enzymatic reactions, as it is the current standard

for enzyme function classification. The EC nomenclature

uses a four digit code, such as EC 1.2.3.4, to represent
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an enzymatic class. The first three digits represent an

increasingly detailed definition of reaction class, while the

last digit represents the accepted substrates.

Our approach is widely applicable as it uses exclu-

sively information contained in the protein sequence, in

contrast with methods that also require existing or com-

putationally inferred structural information [8]. Further,

our method supportsmulti-label classification, that is, the

direct association ofmultiple enzymatic functions to each

protein. A single enzyme can perform different reactions,

either due to the presence of multiple catalytic sites or

by regulation of a single site, and can hence be associ-

ated with multiple EC numbers. Multi-label learning can

take multiple EC numbers, and their hierarchical relation,

into account more coherently and effectively than creating

an individual classifier for each class. It can also lever-

age the information contained in proteins annotated with

incomplete EC numbers (about 2% of UniProt and 9% of

Swiss-Prot annotations), such as EC 1.-.-.-, EC 1.2.-.- or

EC 1.2.3.-.

Sequence based methods for the prediction of EC num-

bers include EFICAz [9], ModEnzA [10] and PRIAM

[11]. PRIAM uses a set of position-specific scoring matri-

ces (profiles) specific for each EC number to predict the

existence of a given EC function somewhere in a fully

sequenced genome. EnzML, ModEnzA and EFICAz try

to assign EC numbers to individual protein sequences or

fragments. ModEnzA builds Hidden Markov model pro-

files of positive and negative sequences specific for each

four digits EC numbers, partial or multiple EC numbers

cannot be assigned.

EFICAz can assign multiple EC numbers of exactly

three or four digits by weighting information from four

sequence based predictions methods using functionally

discriminating residues for enzyme families, pairwise

sequence comparison, Pfam enzyme families and Prosite

patterns (EFICAz2 [12] is enhanced using Support Vector

Machine learning). EFICAz, ModEnzA and PRIAM

are further discussed and quantitatively compared with

EnzML in the Discussion section and Additional file 1:

methods comparison.pdf.

Multi-label learning has been successfully applied to

predict FunCat protein functions in yeast [13], GO func-

tions in yeast [14], CYGD functions in yeast [15], FunCat

and GO functions in yeast and plants [16] and other

species [17], but has not yet been extensively applied to

the prediction of enzyme functionality. A multi-label sup-

port vector machines methodology was used in the past

to predict EC numbers but only up to the second EC

digit (e.g.. EC 1.2.-.-) and only on 8,291 enzymes [18].

Hierarchical classification was also applied to about 6,000

enzymes from KEGG, obtaining over 85% accuracy in

predicting four digits EC numbers [19]. However, here

we demonstrate that bigger datasets can cause dramatic

improvement in performance. We make use of Mulan

[20,21], an open-source software infrastructure for evalu-

ation and prediction based on the Weka framework [22],

to improve the potential for extension and reuse of this

work. In addition to the effect of dataset size, we report on

how predictions depend on species content and sequence

redundancy.We also obtain very good computational per-

formance over a real-life size set of 1,099,321 protein

entries.

Methods

Data sources

The protein sequence and EC annotation data was

taken from UniProt Knowledge Base [23] release 2010 12

(Nov-2010) consisting of Swiss-Prot release 2010 12 and

TrEMBL release 2010 12, InterPro release 30.0 (Dec

2010), KEGG [24] release 57.0 (Jan 2011). The InterPro

release used contains 21,591 signatures, 21,178 of which

present in UniProt. The complete set of 5,222 EC num-

bers and their status (active, deleted or transferred) was

downloaded from ExPASy ENZYME database (11-Jan-

2011 release) [25]. All annotations using “deleted” EC

numbers were removed from the data; “transferred” EC

numbers were substituted with their newly assigned EC

number(s). The data was further processed using Ondex

[26,27] and MySQL. The data sources content of EC and

InterPro annotation is summarised in Additional file 2:

ec interpro stats.pdf.

The overlap between UniProt and KEGG is schemati-

cally represented in Figure 1, which shows that the man-

ually curated section of the UniProt Knowledge Base

(Swiss-Prot) only contains about half a million entries,

versus the over twelve million entries awaiting man-

ual annotation in TrEMBL. The taxonomic breakdown

shows an overall dominance of bacterial annotation, in

addition to a certain over representation of vertebrates

and under representation of invertebrates, considering

their estimated number of species in the tree of life.

This distribution is not an artefact of the intersection, it

is due to the underlying distribution of Swiss-Prot and

KEGG data.

Datasets

The EnzML data schema is shown in Figure 2, where

each instance represents a protein identified by a UniProt

Accession Number. Each protein can have zero or more

class labels in the form of Enzyme Commission (EC) num-

bers. Each instance can also have zero or more attributes

(features), each representing the presence or absence of

one or more InterPro signatures (protein domains, cat-

alytic sites, sequence repeats etc.).

In order to execute the different evaluations presented

in the Results section, a number of datasets have been

created. The main dataset is indicated from now on as
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Figure 1 The shared protein content of UniProt and KEGG. The circle represents KEGG, the right rectangle represents Swiss-Prot (manually

curated), while the left rectangle represents TrEMBL (mostly automatically curated). The two rectangles together compose the UniProt Knowledge

Base. The intersection between Swiss-Prot and KEGG has been further expanded to show the distribution of taxonomic groups. For legibility, the

areas in the pseudo Venn diagram are not exactly proportional to the number of proteins.

Figure 2 Data schema: protein instances, InterPro attributes, EC classes. In the data schema used each row represents one UniProt protein. An

attribute value is the presence or absence of an InterPro signature, here shown as a geometrical shape. The class labels are one or more EC

numbers, either accessible to the learning algorithm (for training) or invisible (for testing and predicting). The example shows the InterPro signatures

associated with EC number 2.6.99.2 in UniProt (Pyridoxine 5’-phosphate synthase, vitamin B6 pathway). These three combinations of five signatures

compactly represent the 1,108 UniProt proteins having function 2.6.99.2.
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SwissProt ⊲⊳ KEGG. The join symbol (⊲⊳) represents the
fact that this set contains only annotation that is equal in

the two databases. SwissProt ⊲⊳ KEGG consists of all EC

annotations agreeing in both Swiss-Prot and KEGG, an

annotation being a couple in the form [UniProt Accession

Number, EC number]. The set includes 300,747 proteins,

55% enzymes and 45% non enzymes (see below for a

definition of “non enzyme”). The SwissProt ⊲⊳ KEGG

dataset has thus been submitted to two manual curations,

in which none of the authors were involved. In the same

way, the TrEMBL ⊲⊳ KEGG dataset includes all anno-

tations agreeing between UniProt TrEMBL and KEGG.

The TrEMBL ⊲⊳ KEGG dataset is very extensive and var-

ied, but it has not been manually curated in TrEMBL.

This dataset has been included in the analysis not for

the purpose of method evaluation, but to review EnzML

performance on a large dataset and to judge the inter-

nal consistency of TrEMBL ⊲⊳ KEGG itself. The protein

instances have surprisingly few features, having an average

of 3.55 InterPro signatures (attribute values) and 3.97 EC

numbers (class labels, including incomplete EC numbers)

per protein.

The proportion of proteins with no EC annotations

ranges from 45% of the SwissProt ⊲⊳ KEGG dataset to

69% of the TrEMBL ⊲⊳ KEGG dataset. These sets include

proteins that have been extensively studied and do not

carry enzymatic activity (especially in the SwissProt ⊲⊳
KEGG dataset) as well as proteins not yet characterised as

enzymes or belonging to still unknown enzymatic classes

(more probable in the TrEMBL ⊲⊳ KEGG dataset). Due

to the difficulty of distinguishing between these cases, the

“non” and “not yet” EC proteins are treated as one class.

This allows EnzML to emit a cumulative “no EC” predic-

tion as an alternative to the prediction of one or more EC

numbers. A protein predicted as “no EC” could thus be

either a non-enzyme or a not yet characterised enzyme

or belonging to a not yet characterised enzyme class. For

simplicity we refer to this class as “non enzyme” from

now on. The EnzML method can accept instances with

an empty set of attributes, which account for 0.3% of the

SwissProt ⊲⊳ KEGG dataset and 1.7% of the TrEMBL ⊲⊳
KEGG dataset. These proteins are processed normally, but

they are generally predicted as “non enzymes” due to the

fact that most proteins without InterPro signatures also do

not have EC annotations. The datasets used also include

(and hence the method predicts) incomplete EC classes,

such as EC 1.-.-.- , EC 1.2.-.- or EC 1.2.3.-.

The independence of the UniProt and KEGG curation

cannot be determined by the annotations alone due to

a lack of provenance meta-data. Curators in both insti-

tutions use a variety of primary (experimental data and

literature) and secondary (other databases) sources to

assign an EC annotation. However, out of the 1.8 mil-

lion proteins annotated in both Uniprot and KEGG, 31%

have a disagreeing annotation (20% for Swiss-Prot vs.

KEGG and 33% for TrEMBL vs. KEGG), showing that

the two knowledge bases curators have different scientific

opinions in many cases.

In order to evaluate the impact of the dataset size

and taxonomic content on EnzML performance, the

SwissProt ⊲⊳ KEGG dataset has been partitioned into tax-

onomic domains: archaea, bacteria and eukaria, further

divided into fungi, invertebrates, plants and vertebrates.

For each taxonomic domain we have investigated the indi-

vidual proteome having most proteins in the SwissProt ⊲⊳
KEGG set: Methanocaldococcus jannaschii for archaea,

Escherichia coli (all strains) for bacteria, Schizosaccha-

romyces pombe for fungi, Drosophila melanogaster for

invertebrates,Arabidopsys thaliana for plants,Homo sapi-

ens for vertebrates. We also consideredMus musculus and

Rattus norvegicus as second and third most represented

species overall (the first is Homo sapiens).

To examine the performance on each EC main class,

the Escherichia coli dataset was further divided into

seven datasets each containing exclusively either the

“no enzyme” annotation (Ecoli NoEC) or EC annota-

tions starting with a different main EC class (Ecoli EC1,

Ecoli EC2, . . . , Ecoli EC6).

As an alternative to machine learning, EC labels could

be directly assigned from InterPro domains: the Inter-

Pro2GO file associates individual InterPro signatures with

GO terms, which in turn are mapped to EC numbers in

the EC2GO file. To understand if EnzML is more accurate

than this simple transitive assignment, a dataset was cre-

ated containing all the SwissProt ⊲⊳ KEGG entries anno-

tated using the InterPro2GO and EC2GO lists provided

by the UniProt FTP website (InterPro2GO2EC).

We have also created a separate set (named Swiss-

Prot 2011 2012) for proteins that were added to Swiss-

Prot between Jan 2011 and March 2012 (16,938 proteins:

7,507 enzymes and 9,431 non-enzymes). The data

was taken from BioMart Central UniProt. Of these

proteins, an interesting subset consists of those 503

proteins (491 enzymes and 12 non-enzymes) which

already existed in TrEMBL ⊲⊳ KEGG as of Jan 2011

but acquired a new or different label (or lost their

EC label) upon incorporation into Swiss-Prot (named

TrEMBL 2011 now in SwissProt 2012).

The data format consists of a sparse Weka ARFF

(Attribute-Relation File Format) file supplemented by a

Mulan XML file containing the class labels hierarchy.

Examples of ARFF and XML file formats are available

in Additional file 3: arff and xml file examples.tar.gz. The

SwissProt ⊲⊳ KEGG and TrEMBL ⊲⊳ KEGG data files used

for evaluation are also available (Additional file 4: swiss-

join-kegg trembl-join-kegg files.tar.gz) and so is the Java

code used to format the data files and run the experiments

(Additional file 5: enzml java code.tar.gz).
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Sequence redundancy

To analyse the performance of EnzML at different lev-

els of sequence similarity we generated other datasets

using UniRef clusters. UniRef100 is a database of clusters

of UniProt proteins that are 100% identical in sequence

(UniRef90 90% similar, UniRef50 50% similar in sequence).

Each cluster has a representative (reference) protein

sequence and a group of other sequences similar to it.

To measure the effect of sequence redundancy on the

method, the SwissProt ⊲⊳ KEGG dataset was reduced to

only its UniRef representative sequences (UniRef100 from

SwissProt ⊲⊳ KEGG, UniRef90 from SwissProt ⊲⊳ KEGG

and UniRef50 from SwissProt ⊲⊳ KEGG datasets) and

cross-evaluated.

EC numbers distribution

It is important to note that enzymatic classes are long-

tail distributed in the main data sources, that is, some

EC numbers are very frequent among proteins while most

EC numbers only rarely occur. The distribution is very

skewed (Figure 3), with roughly a 80-10 ratio: 80% of

EC classes annotate only about 10% of UniProt enzymes,

while the remaining 20% most common EC classes anno-

tate 90% of UniProt enzymes (excluding the 45% of pro-

teins with no EC annotation). The 2,825 most rare EC

classes (80% of the total) only annotate 185,634 enzymes

(about 10% of UniProt), and 731 EC classes have less than

Figure 3 Distribution of Enzyme Commission numbers among

proteins. To compare datasets of different sizes, the distribution is

represented as cumulative percentage, starting with the most

frequent EC number. The x and y axis are logarithmic. The datasets in

the legend are in descending order of size. If each EC number were to

annotate exactly the same proportion of proteins, the distribution

would follow a diagonal from the bottom left to the top right corner

of the plot.

5 protein examples in UniProt (277 EC classes only have

one protein example in UniProt).

Algorithm

The algorithm used throughout this work is BR-kNN

[28]. BR-kNN is a multi-label adaptation of the traditional

K-Nearest Neighbour using Binary Relevance. Binary Rel-

evance transforms the original dataset into as many

datasets as the existing labels, each example being labelled

as label = true if the label existed in the original exam-

ple and label = false otherwise (also called one-against-all

or one-versus-rest approach). The Mulan version 1.2.0

implementation of BR-kNN [28] used in EnzML makes

sure the (Euclidean) distance between neighbours is cal-

culated only once, with considerable time savings on large

datasets.

The best choice for the number of neighbours was k =
1 (see Additional file 6: number of neighbours.pdf). BR-

kNN is fast on the data used: less than 30 minutes per

fold of a 10-fold cross-evaluation of 300,747 instances, on

a dedicated machine with 2 GHz CPU and 4 GB RAM (14

hours to predict over a million instances). As baseline we

used the Zero Rule algorithm, which assigns the majority

class (non-enzyme) to every instance.

Evaluation metrics

The evaluation metrics are either based on a single round

of evaluation (train-test) or, for cross-evaluation, they are

the average of a number of cross-evaluation rounds. After

examining the standard deviations, we submitted datasets

smaller than 40,000 proteins to two rounds of 10-fold

cross evaluation, training on 9/10 of the data and testing

on the remaining unseen 1/10 (one round of cross evalu-

ation for bigger samples). We present the average value of

subset accuracy, a strict measure of prediction success, as

it requires the predicted set of class labels to be an exact

match of the true set of labels [29]. For example, if a pro-

tein has these four EC class labels: [EC 1.-.-.-, EC 1.2.-.-,

EC 1.2.3.- and EC 1.2.3.4], and it is assigned as predic-

tion only the three first labels: [EC 1.-.-.-, EC 1.2.-.-, EC

1.2.3.-], this prediction would be considered as completely

incorrect, because it misses the last label.

Where computable, we also report micro and macro

metrics. In this context micro averaging (averaging over

the entire confusion matrix) favours more frequent EC

classes, while macro averaging gives equal relevance to

both rare and frequent EC classes. Hence a protein will

affect the macro-averaged metrics more if it belongs to

a rare EC class. Example-based metrics consider how

many correct EC predictions have been given to each

individual protein example. The full mathematical form

of all metrics is defined in [20] and [29]. The best

achievable value of all these measures is 100% when all

instances are correctly classified. Where averaged, the
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metrics are presented with plus and minus standard

deviation marks.

Statistical significance

To judge the difference between sets of results, the p-value

at 5% confidence was used and calculated as follows. If the

t-statistic is:

t =
X−M
sd√
n

where X is the average (and sd the standard deviation) of

the reference set of samples,M is the average of the other

set of samples to be compared and n is the number of

samples in both sets, the p-value becomes:

p − value = tdist(abs(t), r, tails)

where r are the degrees of freedom (equal to n − 1).

Here we consider a two tailed hypothesis, so tails equals

2. tdist returns the probability density function for the

t-distribution, calculating:

Ŵ((r + 1)/2)
√

πrŴ(r/2)

(

1 +
t2

r

)

−r+1
2

where Ŵ is the Gamma function and r are the degrees of

freedom. If the p − value is lower than 5%, the confidence

that the samples come from different underlying distribu-

tion is higher than 95% and hence the two samples are

declared significantly different.

Results

Whole, taxonomic and random datasets

The first set of experiments assesses by cross evalua-

tion the ability of EnzML to predict EC numbers using

InterPro signatures. The cross evaluation results are sum-

marised in Figure 4 (Additional metrics in Figure 5). The

total dataset SwissProt ⊲⊳ KEGG achieves 98% (±0.1%

standard deviation) subset accuracy (perfect match of all

enzymatic classes of a protein). For comparison, the Zero

Rule algorithm achieves 45% ± 0.2% subset accuracy.

To understand whether taxonomically related proteins

were better at predicting proteins in their own taxa, the

SwissProt ⊲⊳ KEGG dataset has been subdivided into

archaea, bacteria and eukarya (further divided into fungi,

invertebrates, plants or vertebrates). The average classifi-

cation accuracy after cross-evaluation of each taxonomic

dataset was then compared with sets of the same size as

each taxonomic set, but comprising proteins picked at

random from SwissProt ⊲⊳ KEGG.

Figure 4 Cross-evaluation results. The plot compares the subset accuracy between taxonomic datasets and random sets of the same size. The

rightmost point of the diagram is the whole SwissProt ⊲⊳ KEGG dataset. The y axis (accuracy and recall) starts at 70%. An asterisk indicates significant

difference in accuracy (with p-value at 5%) between the taxonomic and random datasets below. The full data is available in Additional file 7:

all cross evaluation results.csv.
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Figure 5 Comparison with InterPro2GO2EC and testing on TrEMBL. Left panel: The results of the internal cross-evaluation of the entire

SwissProt ⊲⊳ KEGG and Swiss-Prot datasets are compared with the direct transitive annotation using InterPro2GO and EC2GO lists. The results of

training on the SwissProt ⊲⊳ KEGG dataset and testing on the TrEMBL ⊲⊳ KEGG dataset are also included. The x axis (accuracy, precision, recall) starts

at 50%. Right panel: Comparison of the EC digits in the predicted and actual EC numbers for the TrEMBL ⊲⊳ KEGG dataset. All predictions = all the EC

annotations emitted by training on SwissProt ⊲⊳ KEGG and predicting the unlabelled TrEMBL ⊲⊳ KEGG (true positives, true negatives, false positives,

false negatives). Correct predictions = only the predictions corresponding to true, correct annotations existing in TrEMBL ⊲⊳ KEGG (true positives

and true negatives). Wrong predictions = false positives and false negatives. The data files used (SwissProt ⊲⊳ KEGG and TrEMBL ⊲⊳ KEGG) are

available as Additional file 3. The full cross evaluation results are available in Additional file 7: all cross evaluation results.csv.

The results in Figure 4 show that the predictions accu-

racy generally increases as the dataset size increases.

Excluding far-related species does not seem to dramati-

cally improve results: only the archaea and bacteria sets

significantly outperform a random set of the same size, but

they cover a reduced set of enzymatic functions compared

to the full set. The plants, invertebrates, fungi and verte-

brates sets are not significantly different from a random

set of the same size, while the eukarya dataset accuracy is

significantly different but lower.

Sequence redundancy reduction

To evaluate the impact of the sequence redundancy reduc-

tion on the method, a cross evaluation was executed

on the three sets of proteins derived from SwissProt ⊲⊳
KEGG by keeping only the UniRef reference entries

(SwissProt ⊲⊳ KEGG fromUniRef100, SwissProt ⊲⊳ KEGG

from UniRef90 and SwissProt ⊲⊳ KEGG from UniRef50).

Hence the SwissProt ⊲⊳ KEGG UniRef50 dataset contains

only one representative sequence per each 50% simi-

larity cluster. When the dataset is submitted to 10-fold

cross-evaluation, the nine tenth of sequences that make

up the training set are all less than 50% similar to the

sequences in the test set (the remaining 10th). The results,

shown in Figure 6, are robust and not particularly affected

by the reduction to UniRef sequences, not even when

clustering at 50% of sequence similarity, despite losing

80% of the sequences, as shown in the right panel of

Figure 6. This is because, in spite of the dramatic sequence

reduction and reduced overall sequence similarity, only

4% of the EC classes and 3% of the InterPro signatures

are lost.

Proteome reannotation

The performance obtained by cross evaluating the entire

SwissProt ⊲⊳ KEGG dataset is representative of the suc-

cess that can be expected on a metagenomic sample,

especially one with a high bacterial content, as sug-

gested by the high bacterial content in Figure 1. We

hence executed another set of experiments to evaluate

the performance of EnzML on annotating individual pro-

teomes. Each experiment: 1. excluded the chosen species
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Figure 6 Cross-evaluation on the UniRef reference sequences. Left panel: the reference sequences are derived from SwissProt ⊲⊳ KEGG using

UniRef100, UniRef90 or UniRef50 clusters. Right panel: number of protein instances, InterPro attributes and EC classes when the SwissProt ⊲⊳ KEGG

dataset is reduced to its UniRef representative sequences. The values in both panels are shown as difference to the corresponding value for the

entire SwissProt ⊲⊳ KEGG dataset. The full data is available in Additional file 7: all cross evaluation results.csv.

from the SwissProt ⊲⊳ KEGG dataset, 2. trained on the

remaining data, 3. re-annotated that species proteome

(as if it were from a newly sequenced genome), and 4.

compared the predictions with the existing annotations

(sometimes referred to as jackknife evaluation). Figure 7

shows that EnzML can re-annotate an entire proteome

with subset accuracy starting at 87% for A. thaliana and

reaching 97% for E. coli.

To gauge the predictive power or a single species, the

inverse was also attempted: to re-annotate the entire

SwissProt ⊲⊳ KEGG dataset based on a single proteome.

This inverse exercise (Figure 7) shows that up to 88% of

Figure 7 Reannotation of proteomes. Left panel: reannotation of individual species proteomes. The classifier is trained on the SwissProt ⊲⊳ KEGG

dataset (minus the species to be predicted) and then used to predict each species proteome. The x axis (accuracy and recall) starts at 65%. Right

panel: reannotation of the entire SwissProt ⊲⊳ KEGG dataset starting from a single species proteome. The classifier is trained on a single proteome

and then used to predict all the other species. The dashed line at 45% represents the baseline of subset accuracy than would be obtained if all

proteins were simply classified as non-enzyme. There are no standard deviation bars since no randomisation is involved: each value represents one

experiment (one species excluded or all other species excluded).
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proteins, and more than a third of the EC classes, can be

reannotated correctly in the SwissProt ⊲⊳ KEGG dataset

(minus E. coli) if the training occurs on possibly the most

studied species in Molecular Biology, E. coli. This sug-

gests a high level of evolutionary conservation of core

metabolism across species.

Comparison with InterPro2GO2EC and TrEMBL

EC labels could also be directly assigned from InterPro

domains using the InterPro2GO and EC2GO lists. As

shown in Figure 5, this method has much lower accuracy

(80%) than EnzML (97%) on the same SwissProt ⊲⊳ KEGG

dataset. To assess computational performance, EnzML

was also trained on SwissProt ⊲⊳ KEGG (the right semi-

circle in Figure 1) and tested on the diverse and extensive,

but not intensively manually curated, TrEMBL ⊲⊳ KEGG

dataset (the left semicircle in Figure 1). The loss of accu-

racy on the TrEMBL ⊲⊳ KEGG dataset is not due to

a limitation in EnzML, but more to the sheer variety

and low internal consistency of TrEMBL ⊲⊳ KEGG. The

SwissProt ⊲⊳ KEGG - the training set - only contains half

of the InterPro domains existing in the TrEMBL ⊲⊳ KEGG

test set (see Additional file 2).

Figure 5 also shows the number of EC digits for the

predictions and the correct EC number annotations. The

higher the number of digits, the more specific the predic-

tion, for example: EC 1.-.-.- only provides a generic enzy-

matic classification (oxidoreductases), while EC 1.2.3.4

defines the catalytic functionality down to the class of

substrates (oxalate oxidase, with oxygen as acceptor). The

proportion of predicted four digits EC numbers appears

to be in line with their proportion in the true dataset.

As the predictions emitted by EnzML trained on

SwissProt ⊲⊳ KEGG for the TrEMBL ⊲⊳ KEGG

set are of interest for scientists working on non-

model organisms, they are available as Additional file

8: TrEMBL join KEGG true and predicted EC numbers.

tar.gz.

A more detailed analysis of the prediction errors (using

the E. coli dataset as example) is contained in Additional

file 9: predictions.pdf. The additional file includes a table

with the most common errors and the accuracy for each

of the six main EC classes.

Predicting recent Swiss-Prot entries

EnzML trained on SwissProt ⊲⊳ KEGG (Jan 2011) can

correctly predict most of the entries incorporated into

Swiss-Prot in the following year (SwissProt 2011 2012 set)

and does so with 79% subset accuracy, 89% micro aver-

aged precision and 64% macro averaged recall. EnzML

performance is limited by the fact that 13% of the entries

are annotated with new EC numbers that did not exist

in the SwissProt ⊲⊳ KEGG set of Jan 2011 and so can-

not be predicted by the classifier. For comparison, a 10

fold cross-evaluation over the same SwissProt 2011 2012

set achieves much better results (subset accuracy 92% ±
0.6%, micro averaged precision 96% ± 0.6%, macro aver-

aged recall 79% ± 1.7%) because the probability of a class

existing in the test set but not in the training set is low.

Also, EnzML trained on SwissProt ⊲⊳ KEGG can

correctly predict 69% of the new labels given to

TrEMBL proteins upon their incorporation into Swiss-

Prot (TrEMBL 2011 now in SwissProt 2012 set). This

suggests that many of the “mistakes” in the TrEMBL ⊲⊳
KEGG predictions could actually become correct labels

after manual curation. Here as well the performance is

limited because 15% of the EC classes used in these new

annotations did not exist in the SwissProt ⊲⊳ KEGG set of

Jan 2011 the classifier is trained on.

Discussion

Effects of EC distribution

The long-tail shape of the EC distribution is conserved

even when the data is further categorised, often the case

with long-tail distributions, and can be seen in the simi-

larity of distributions for single species and full databases

(Figure 3). This could be caused by evolutionary conser-

vation of certain metabolic functions. Individual species,

even compact bacterial genomes such as E. coli, have

redundancy in certain enzymatic functions, and these

functions seem to be common across species, leading to

very frequent EC numbers such as Cytochrome-c oxidase

(EC 1.9.3.1, mitochondrial respiration pathway) repre-

senting alone 12% of all UniProt enzymes.

The rare EC numbers do not impact on most evaluation

measures as they affect a small number of proteins, but

in Figure 4 we can note that the macro-averaged recall,

a measure affected by the misprediction of rare classes is

generally the lowest and more unpredictable metric for

this method, as shown also by the wider standard devia-

tion in Figures 5 and 6. Also, the macro-averaged recall

of SwissProt ⊲⊳ KEGG cross evaluation is lower than

expected at 83%, despite only 20% of its EC numbers

being very rare (having less than 3 proteins) versus 63% in

invertebrates and 22% in bacteria. However, the measure

improves (from 83% to 88%) if 20 fold cross evaluation is

used instead of 10 fold, hence raising the probability of

having in the training set more examples of rare and very

rare EC classes (data not shown).

Method applicability

The proposed method is applicable to any partial or com-

plete protein sequence or metagenomic sample, since any

genetic sequence can be scanned in silico for the presence

of InterPro signatures using the InterProScan algorithm,

also available as web service [4,5].

The overall success of EnzML is due to the fact that

InterPro signatures provide a very compact representation
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of protein functionality. The 13.5 million proteins in

UniProt are described by only 154,583 (unordered) sets

of InterPro signatures (attributes). Many of these sets are

subsets of other longer signature sets. InterPro subsets in

UniProt have an average length of 2.77 signatures, while

InterPro super-sets have an average length of 4.78 signa-

tures. 58,697 super-sets completely describe the possible

combinations of InterPro signatures found in all UniProt

proteins. To give a comparison, 1,582 billion combina-

tions of three unordered elements could be obtained from

21,178 InterPro signatures (8.4 E+15 combinations of four

elements).

In relation to the method application and evaluation,

it must be noted that the distribution of annotation

in metabolic databases tends, by definition, to be more

enriched in enzymes than in non-enzymes. Even highly-

populated databases such as UniProt are biased, with

more accurate annotation (and Swiss-Prot status) going

to widely studied biological functions. Using only annota-

tions that agree in two manually curated databases (such

as Swiss-Prot and KEGG in this work) increases trust,

but decreases the number of EC classes that can be pre-

dicted. Swiss-Prot contains 2,850 distinct EC classes, and

KEGG contains 2,636 EC classes, but the set of anno-

tations agreeing in both databases only contains 2,051

EC classes. Rare EC classes can easily be lost in case of

disagreement among the data sources.

The accuracy of the predictions generally increases as

the dataset size increases which, combined with the effi-

ciency of the algorithm, is a good case for using a bigger

training set whenever possible. Training the classifier on

more data from non-manually curated databases, such as

UniProt-TrEMBL, might reduce the bias and increase the

number of predictable classes, but will also decrease trust.

Alternative biocuration scenarios might call for a different

balance between coverage and trust, to increase the prob-

ability of recognising rare Enzyme Commission classes in

newly sequenced genomes.

Although the highest possible level of accuracy is clearly

desirable, the high accuracy of EnzML, combined with

the measure of confidence that the method emits for each

prediction, enables the curators to focus their work. The

majority of erroneous annotations have low confidence

(results not shown), so curators could tackle the more

error prone annotations first. However, active learning

research has shown that simply correcting low-confidence

annotations is rarely the best strategy, as the representa-

tiveness and informative content of each instance also has

an impact. A strength of fast re-training systems such as

EnzML is the potential to incrementally improve overall

accuracy when incorrect annotations are spotted by cura-

tors. The authors are currently researching active learning

strategies to improve enzyme annotation accuracy in a

mixed human-machine learning curation workflow.

Comparison with other EC prediction methods

PRIAM [11] was designed predict the overall metabolism

for an organism, indicating whether particular enzyme

functionalities were encoded in the genome, rather than

assign functions to individual genes. A gene-oriented ver-

sion of PRIAM was introduced in 2006 to address this

task. In contrast, EnzML is designed to associate EC

numbers to individual genes or gene fragments. EnzML

improves on ModEnzA [10] by supporting the prediction

of multiple EC numbers for a protein, and on EFICAz

[9] by being able to assign multiple EC numbers of any

number of digits. EFICAz2 [12] improves the precision of

EFICAz on test sequences having less than 30% similarity

to the training set, and has not been evaluated separately

from EFICAz.

However, it is possible to compare EFICAz2 results at

MTTSI ≤ 50% (maximal test to training sequence iden-

tity) in Figure 4-C and 4-D of [12] with those obtained by

EnzML (Figure 6 of this article). In more detail, EFICAz2

reports a maximum recall of 47% ± 49% of standard devi-

ation (forMTTSI< 30%), 78%± 33% (forMTTSI 30-40%)

and 86% ± 34% (for MTTSI 40-50%). EFICAz2 precision

reaches a maximum of 74% ± 44% of standard deviation

(for MTTSI < 30%), 82% ± 36% (for MTTSI 30-40%) and

91% ± 27% (for MTTSI 40-50%). In a similar range of

protein similarity (MTTSI ≤ 50%) EnzML obtains gen-

erally more accurate results and within 0.7% of standard

deviation, thanks also to its extensive dataset. In particu-

lar, EnzML results on SwissProt ⊲⊳ KEGG UniRef50 are

80-95% recall (micro, macro, example based) and 93-98%

precision (micro, macro, example based), all within less

than ± 1% of standard deviation.

A comparison between EnzML on the four genomes

used for evaluation in [10] (see Additional file 1: methods

comparison.pdf) shows that our method achieves

greater sensitivity and specificity on a greater number

of sequences, as our method uses more recent data.

The data used for the comparison is available in Mulan

ARFF format as Additional file 10: methods comparison

arff data.tar.gz and in comma-separated format as

Additional file 11: methods comparison csv data.tar.gz

(including all the SwissProt ⊲⊳ KEGG data).

Conclusions
The EnzML method can be applied to any sequenced

protein, without need for existing annotation or protein

structures and it can provide quick, accurate and com-

plete results on extensive datasets. EnzML leverages the

evolutionary similarity of metabolic function yet with-

out loosing performance when sequences redundancy is

reduced. Thanks to the Mulan Binary Relevance Nearest

Neighbours implementation (BR-kNN) this is possible in

reasonable time even for millions of sequences, showing

clear potential for meta-genomic analysis. Our approach
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demonstrates the potential of InterPro signatures in pre-

dicting enzymatic function and easing the backlog of

manual curation of enzymatic function.

We plan to couple EnzML with pool-based active learn-

ing to further reduce the number of annotated instances

needed, saving precious annotators time while further

speeding up the method. The goal is to create a virtu-

ous cycle between automatic and manual annotation, that

is able to keep up with high-throughput sequencing. In

the future, EnzML could also be extended to learning all

protein functionalities, for example in the form of Gene

Ontology terms.

Additional files

Additional file 1: Comparison between EnzML and EFICAz, ModEnzA and

PRIAM. File methods comparison.pdf contains a comparison of the

predictive performance of EFICAz, ModEnzA and EnzML over three

bacterial genomes (E. Coli, B. Aphidicola andM. Pneumoniae) and one

eukaryoti cgenome (P. Falciparum), and comparison of EnzML and PRIAM

over two additional bacterial genomes (Haemophilus influenzae and

Mycoplasma genitalium). The data used for the comparison is also available

as Additional files 10 and 11.

Additional file 2: Table summary of EC and InterPro annotations in

UniProt, KEGG and derived datasets. A summary of the EC and InterPro

content of UniProt, KEGG and other datasets used in this work is presented

in file ec interpro stats.pdf.

Additional file 3: Examples of sparse Weka ARFF and Mulan XML file

formats. An example of sparse Weka ARFF and its corresponding Mulan

XML file is available in the file arff and xml file examples.tar.gz.

Additional file 4: The SwissProt ⊲⊳ KEGG and TrEMBL ⊲⊳ KEGG ARFF and

XML files. The SwissProt ⊲⊳ KEGG and TrEMBL ⊲⊳ KEGG ARFF and XML files

used for train-test (jackknife) evaluation in Figure 5 are provided in:

swiss-join-kegg trembl-join-kegg files.tar.gz.

Additional file 5: The Java code to format the data files, evaluate and

predict. The file enzml java code.tar.gz contains the Java code used to

format database data to ARFF and XML formats, to execute cross and

train-test (jackknife) evaluations and to record evaluation results to

database. More information is included in the readme.txt file and the

Javadoc files. The code can be used with a MySQL database. To use a

different database software, other JDBC drivers might be required.

Additional file 6: Figure of the relation between accuracy and number of

neighbours for the nearest neighbours algorithm. The Figure in file

number of neighbours.pdf shows the degradation in accuracy when the

number of neighbours is increased above 1.

Additional file 7: All cross evaluation results. The file

all cross evaluation results.csv contains, in comma separated format, all

the cross evaluation results summarised in Figures 4, 5 and 6.

Additional file 8: EC predictions emitted by EnzML for the

TrEMBL ⊲⊳ KEGG set. The compressed file

TrEMBL join KEGG true and predicted EC numbers.tar.gz contains, in

comma separated format: (1) the file

TrEMBLJoinKEGG EC predicted by EnzML.csv with the full set of EC

predictions emitted by EnzML (trained on SwissProt ⊲⊳ KEGG) for the

TrEMBL ⊲⊳ KEGG set (proteins not listed were predicted as non enzymes);

(2) the file TrEMBL KEGG agreeing EC annotations.csv containing the

(agreeing) annotations attributed to the TrEMBL ⊲⊳ KEGG set by

Uniprot-TrEMBL and KEGG (an empty EC number signifies the protein is

not an enzyme).

Additional file 9: Prediction errors analysis. The PDF file predictions.pdf

contains a brief analysis of the most common prediction errors when

training on SwissProt ⊲⊳ KEGG and testing on E. coli (all strains). It also

contains separate accuracy results for each main EC class.

Additional file 10: Methods comparison: data files in Mulan ARFF format.

The compressed file methods comparison arff data.tar.gz contains the

Mulan ARFF and XML files used for jackknife evaluation on the full

proteomes of E. Coli, B. Aphidicola,M. Pneumoniae, P. Falciparum,

Haemophilus influenzae andMycoplasma genitalium.

Additional file 11: SwissProt ⊲⊳ KEGG data in comma separated format.

The compressed file swissprot join kegg csv data.tar.gz includes comma

separated files containing: the list of all Uniprot accession numbers in the

SwissProt ⊲⊳ KEGG set and their (1) EC numbers

(swissprot kegg proteins ec.csv), (2) species (swissprot kegg species.csv),

(3) InterPro signatures identifiers (swissprot kegg interpro.csv), (4) InterPro

sets (swissprot kegg interproset.csv, signatures identifiers separated by a

double dash). It also contains all the jackknife (train-test) evaluation results

used to compare EnzML with other methods in Additional file 1 (as

methods comparison all evaluation results.csv).
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Verrier P, Philippi S: Graph-based analysis and visualization of

experimental results with ONDEX. Bioinformatics 2006, 22(11):

1383–1390. [http://dx.doi.org/10.1093/bioinformatics/btl081].

27. Lysenko A, Hindle MM, Taubert J, Saqi M, Rawlings CJ: Data integration

for plant genomics–exemplars from the integration of Arabidopsis

thaliana databases. Brief Bioinform 2009, 10(6): 676–693. [http://dx.doi.

org/10.1093/bib/bbp047].

28. Spyromitros E, Tsoumakas G, Vlahavas I: An Empirical Study of Lazy

Multilabel Classification Algorithms. 2008. [http://dx.doi.org/10.1007/

978-3-540-87881-0 40].

29. Tsoumakas G, Vlahavas I: Random k -Labelsets: An Ensemble Method

for Multilabel Classification. 2007. [http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.97.5044&rep=rep1&type=pdf].

doi:10.1186/1471-2105-13-61
Cite this article as: Ferrari et al.: EnzML: multi-label prediction of enzyme
classes using InterPro signatures. BMC Bioinformatics 2012 13:61.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://dx.doi.org/10.1371/journal.pcbi.1000661
http://dx.doi.org/10.1371/journal.pcbi.1000661
http://dx.doi.org/10.1093/bioinformatics/bti1007
http://dx.doi.org/10.1093/nar/gkh956
http://dx.doi.org/10.1155/2011/743782
http://dx.doi.org/10.1155/2011/743782
http://nar.oxfordjournals.org/cgi/content/abstract/31/22/663 3
http://nar.oxfordjournals.org/cgi/content/abstract/31/22/663 3
http://dx.doi.org/10.1186/1471-2105-10-107
http://dx.doi.org/10.1186/1471-2105-10-107
http://dx.doi.org/10.1093/bioinformatics/btk048
http://helix-web.stanford.edu/psb04/lanckriet.pdf
http://helix-web.stanford.edu/psb04/lanckriet.pdf
http://dx.doi.org/10.1186/1471-2105-11-2
http://dx.doi.org/10.1186/1471-2105-11-2
http://dx.doi.org/10.1093/bioinformatics/btn015
http://dx.doi.org/10.1002/prot.20045
http://www.biomedcentral.com/content/pdf/1753-6561-2-S4-S2.p df
http://mlkd.csd.auth.gr/publication_details.asp?publicationI D=290
http://mlkd.csd.auth.gr/publication_details.asp?publicationI D=290
http://dx.doi.org/10.1093/bioinformatics/btl081
http://dx.doi.org/10.1093/bib/bbp047
http://dx.doi.org/10.1093/bib/bbp047
http://dx.doi.org/10.1007/978-3-540-87881-0_40
http://dx.doi.org/10.1007/978-3-540-87881-0_40
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97. 5044&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97. 5044&rep=rep1&type=pdf

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Data sources
	Datasets
	Sequence redundancy
	EC numbers distribution
	Algorithm
	Evaluation metrics
	Statistical significance

	Results
	Whole, taxonomic and random datasets
	Sequence redundancy reduction
	Proteome reannotation
	Comparison with InterPro2GO2EC and TrEMBL
	Predicting recent Swiss-Prot entries

	Discussion
	Effects of EC distribution
	Method applicability
	Comparison with other EC prediction methods

	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8
	Additional file 9
	Additional file 10
	Additional file 11

	Competing interests
	Acknowledgements
	Author details
	Authors contributions
	References

