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Enzymatic biosynthesis and immobilization
of polyprotein verified at the single-molecule level
Yibing Deng1, Tao Wu1, Mengdi Wang1, Shengchao Shi1, Guodong Yuan1, Xi Li1, Hanchung Chong2,3, Bin Wu2,3 &

Peng Zheng 1

The recent development of chemical and bio-conjugation techniques allows for the engi-

neering of various protein polymers. However, most of the polymerization process is difficult

to control. To meet this challenge, we develop an enzymatic procedure to build polyprotein

using the combination of a strict protein ligase OaAEP1 (Oldenlandia affinis asparaginyl

endopeptidases 1) and a protease TEV (tobacco etch virus). We firstly demonstrate the use

of OaAEP1-alone to build a sequence-uncontrolled ubiquitin polyprotein and covalently

immobilize the coupled protein on the surface. Then, we construct a poly-metalloprotein,

rubredoxin, from the purified monomer. Lastly, we show the feasibility of synthesizing protein

polymers with rationally-controlled sequences by the synergy of the ligase and protease,

which are verified by protein unfolding using atomic force microscopy-based single-molecule

force spectroscopy (AFM-SMFS). Thus, this study provides a strategy for polyprotein engi-

neering and immobilization.
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P
rotein conjugation and polymerization is a natural bio-
chemical process and has important applications in bio-
material and biomedicine engineering1,2. Compared with

synthetic polymers, one of the unique features of most biopoly-
mers, such as protein, is a uniform structure with a well-
controlled sequence of amino acids, while multi-domain protein
consists of similar or different protein subdomains. This clus-
tering of the same or different protein domains often results in
enhanced biological function and stability3. Several biochemical
reaction-based methods, especially the cysteine-based coupling,
have been developed for building protein polymer, in which
protein monomer is designed with additional cysteines or specific
residues as the basic unit for ligation4,5. However, unlike natural
multi-domain proteins, it is rarely reported that these polymers
and biomaterials are of well-controlled subunit sequence like
their natural origin, and a bio-synthetic route for this purpose
remains a key challenge. Another approach is to build the com-
plete gene into one open reading frame for the artificial protein
oligomer, just like the natural way. For example, a so-called
polyprotein strategy has been developed to build protein oligomer
to mimic natural modular protein6–8. The fused polyprotein

comprises identical or different multiple protein domains whose
genes are built using recombinant DNA technology. However,
the engineering of toxic or large-sized protein polymer is often
challenging. Also, many proteins such as metalloprotein and
delicate enzyme may need purification as a monomer. Thus, the
application of recombinant DNA technology for building poly-
protein is also limited.

To address this challenge, we develop an enzymatic, stepwise
construction of protein polymer/polyprotein with a relatively-
precise controlled sequence using a protein ligase and a protein
protease. OaAEP1 is a recently developed, efficient and strict
endopeptidase, which links two peptides/proteins covalently as
a peptide bond through two termini in less than 30 min9. It
requires a ligation unit with only two N-terminal GL residues
(NH2-Gly-Leu) and three C-terminal NGL residues (Asn-Gly-
Leu-COOH) (Fig. 1a)10,11. Thus, based on the ligation unit GL-
POI-NGL (POI: protein of interest), OaAEP1 can be used to build
polyprotein with an uncontrolled sequence in the solution,
similar to the bi-cysteine or other ligase-based coupling
methods4,12. The synthesized polyprotein is characterized by
the SDS-PAGE gel method, at the ensemble level. Moreover, the
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Fig. 1 Protein polymerization by OaAEP1. a Principle of OaAEP1-alone for protein polymerization is based on a GL-POI-NGL protein unit in which an

N-terminal NGL (colored in red) reacts with a C-terminal GL (colored in blue) and leads an NGL linkage. b–d The PAGE gel results of ubiquitin

polymerization indicate the formation of a protein polymer mixture with a varied length under different conditions. The reaction is fast (completed in

20min) with the formation of protein polymer at least up to a pentamer (b). The polymerization is robust under acidic pH from 4 to 7 (c), as well as

in the presence of most biologically-relevant metal ions (d), except Hg
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designed polymers are unambiguously verified by protein domain
unfolding using AFM-based SMFS, at the single-molecule level.
AFM-based SMFS can mechanically unfold each protein domain
and characterize protein mechanics13–23. The unfolding of poly-
protein leads to a characteristic sawtooth-like force-extension
curve, in which each force peak corresponds to the unfolding of
each protein domain24–28. Thus, the polymerization number of
the protein polymer can be directly counted to verify our
design29–31. A poly-ubiquitin molecule is built and characterized.
Compared with the PAGE gel method, the protein is measured
under a native condition at room temperature, and only well-
folded protein shows expected stability. Also, any linker effect
between ligated proteins can be examined. Consequently, SMFS
measurement of the protein polymer not only confirms the
polymer design but also provides complementary information
about protein stability and folding32–34.

In addition to the polyprotein engineering, OaAEP1 is imple-
mented for protein immobilization for SMFS, together with the
specific cohesin-dockerin (Coh-XDoc) receptor-ligand pairs35–37.
This configuration ensures the complete unfolding of all protein
subdomains. And the polymerization number is counted cor-
rectly, Traditionally, the polyprotein sample is deposited on a
glass coverslip and is picked up by AFM tip randomly through
a non-specific interaction6,7. Although this set up is simple, the
pick-up ratio of the high-quality single-molecule event is very low
(<0.01%). Based on the development of surface (bio)chemistry
methods for covalent anchoring of protein such as thiol chem-
istry, chloroalkane chemistry, isopeptide bond, click chemistry
and specific and reversible receptor-ligand pairs for reversible
linkage of sample such as streptavidin-biotin, cohesin-dockerin,
and other antigen-antibody interactions, site-specific anchoring
and probing configuration for AFM experiment has become
possible and is becoming a standard method now36,38–43. Our
method provides another alternative for such a purpose which
can be adopted in all these similar AFM systems. Only two short
peptide tags are needed for the ligation, which leads to simple
protein preparation without further chemical modification.

Moreover, this OaAEP1 ligase-mediate method is cysteine-free
and achieved at the monomeric protein module level. It enables
the study of the challenging protein system such as metallopro-
tein, which needs initial purification as a monomer. Because the
overexpression of metalloprotein often results in different metal
forms as a mixture, it requires additional purification to obtain a
pure-metal form monomer for ligation44,45.

Lastly, we take advantage of a removable TEV protease site,
which is compatible with OaAEP1 ligation, to achieve the step-
wise protein polymerization on the surface. When a TEV site
(ENLYFQ/G) plus a leucine (L) is engineered at the N-terminus
of the protein unit as ENLYFQ/G-L-POI, the TEV cleavage
results in an N-terminal GL residue as GL-POI, and is compatible
with further OaAEP1 ligation. Consequently, an enzymatic,
stepwise biosynthesis of polyprotein with a relatively well-
controlled sequence is achieved. Thus, our enzymatic method
provides a method for polyprotein sample preparation, both
sequence-uncontrolled and controlled, as well as protein immo-
bilization for single-molecule studies, especially for the complex
metalloprotein system46–50.

Results
A sequence-uncontrolled polyprotein built by OaAEP1-only.
Protein ubiquitin (Ub), which has been well characterized by
single-molecule AFM before, was chosen for demonstration. The
poly-ubiquitin is also a natural signal for protein degradation
with biological function. A construct GL-Ub-NGL was built for
the OaAEP1 polymerization and reacted in the buffer solution.

The Coomassie-stained SDS-PAGE gel results of the product
clearly showed the rapid construction of Ub polymer at least up
to a pentamer within 20 min (Fig. 1b). Quantitatively, ~25% of
the protein unit was ligated to a dimer, 10% to a trimer, while
~60% of the protein remained a monomer (Fig. 1b). As expected,
the polyprotein length was uncontrolled, and the yields dimin-
ished rapidly as the chain grew. Nevertheless, its yields and dis-
persity were comparable to most other protein monomer-based
polymerization method, such as the bi-cysteine and sortase-based
method.

In addition, we found that OaAEP1 is also a robust ligase
under harsh conditions, such as under the acidic solutions and in
the presence of metal ions. First, the same ubiquitin polymeriza-
tion reaction was tested under different pH levels. The SDS-
PAGE gel results showed the polymerization was well-performed
under acidic condition (pH 4 to 7) (Fig. 1c). Moreover, the
reaction was performed in the presence of the most biologically-
relevant metal ions. Twelve different metal ions including Fe(III),
Co(II), Ni(II), Cu(II), Zn(II), Mn(II), Ca(II), Mg(II), Al(III), Cd
(II), Hg(II), and Pb(II) were tested, respectively. The SDS-PAGE
gel results showed that the reaction was not affected by most
metal ions at the concentrations of 0.2 mM, except 0.002 mM for
Hg (Fig. 1d, Supplementary Fig. 1). These concentrations are
much higher than the free metal level in most metalloprotein
solutions. These experiments indicate that OaAEP1 ligase is a
versatile enzyme that is suitable for constructing challenging
protein under harsh conditions.

Next, the polyprotein sample obtained by OaAEP1-only
ligation was used directly for single-molecule AFM characteriza-
tion and study. The sample purified by gel-filtration chromato-
graphy with higher polymerization degrees was used for better
performance, in which Ub tetramer presented most (Supplemen-
tary Fig. 2). The protein solution was deposited on a clean glass
coverslip and was then pressed and captured by AFM tip
(Fig. 2a). Stretching the polyproteins resulted in a typical saw-
tooth like force-extension curve with multiple peaks, which
corresponded to the unfolding of each ubiquitin monomer
(Fig. 2b). For example, seven unfolding peaks were observed in
curve 2 of Fig. 2b, indicating that seven ubiquitin units were
unfolded. Two key experimental results, the contour length
increment (ΔLc) and the force (F) upon unfolding were analyzed,
and the results are shown in Fig. 2c. The contour length
increment is related to how many proteins residues are unfolded
and extended upon protein unfolding. Previous single-molecule
AFM unfolding experiments of ubiquitin polyprotein built by
the recombinant DNA method showed a ΔLc of ~24 nm, which
was from the full extension of 76 amino acids of Ub
(76aa*0.36nm-4 nm= 23 nm, 4 nm is the distance between the
N and C termini of the folded Ub), and an average unfolding
force of 203 pN51,52. Here, our ligase-built ubiquitin polymer
showed comparable results, with an average ΔLc and standard
deviation of 23.1 ± 2 nm, and an average unfolding force and
standard deviation of 202 ± 44 pN, number (n)= 198. These
results validate our method for building polyprotein for single-
molecule measurement. Moreover, it indicates no linker effect
from the three new connection NGL residues between protein
monomers as the same unfolding forces for Ub measured in our
construct. Finally, there was a large dispersity, as many different
numbers of ubiquitin unfolding peaks from one to seven were
recorded for each molecule. Thus, more experiments were
performed to obtain statistics. As shown in the Fig. 2d, most
curves showed three Ub unfolding peaks (n= 51, 52%) and
four Ub unfolding peaks (n= 26, 27%). The curves with only
two or one ubiquitin molecules were not analyzed, as their signals
were strongly affected by the non-specific interaction for a
short molecule.
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It is noted that Ub trimer (52%) was detected most instead of
tetramer (27%), which was different from the previous poly-
protein mixture identification (Supplementary Fig. 2). Here, the
polyprotein sample absorbed on the coverslip was picked up at
a random location along the long protein polymer, and by a
weak non-specific interaction between the protein and AFM tip
or coverslip. It is possible that the full-length protein polymer
may not have been completely captured and unfolded. For
example, the seven unfolding peaks of Ub observed above
(Fig. 2b) cannot guarantee that a ubiquitin heptamer was
captured. It was perhaps an octamer, but the tip only pressed
on the seventh Ub domain, and one domain was not unfolded
and counted. Another possibility is that an octamer was fully
captured, while the stability of one domain was higher than the
non-specific protein detachment force from either the AFM tip or
the glass coverslip. Thus, the domain remained folded when the
octamer was detached. Both scenarios have led to force-extension
curves detected with fewer unfolding peaks and a large dispersity.

The covalent immobilization of (poly)protein in the AFM
system. To solve this problem, a covalent attachment of the
protein sample in the AFM system with defined immobilization
geometry and strong attachment force was developed using
OaAEP1 as well. We demonstrated this application based on a
strong and reversible type III cohesin-dockerin-Xmodule (Coh-
XDoc, or Coh-Doc) receptor-ligand pair developed by Dr. Nash
and Dr. Gaub for single-molecule studies35,53. Protein polymer,
GL-(POI)n-NGL, as obtained above, was directly used here.
First, it was covalently linked to the NH2-Gly-Leu functionalized
glass coverslip using OaAEP1 through its C-terminal Asn-Gly-
Leu residues. Then, it was ligated with the Coh-NGL through
its N-terminus as Coh-(POI)n-NGL-Glass. Finally, it was
directly probed by a Protein Marker-XDoc functionalized AFM
tip forming a complete force loop: AFM Tip-Protein Marker-
(XDoc-Coh)-(POI)n-Glass (Fig. 3a). The experimental details

are described in Supplementary Methods. (Ub)n obtained pre-
viously was used directly and measured in this configuration.
It showed similar unfolding force and ΔLc results to before
(Fig. 3b). In contrast, from the statistical analysis, it is clear that
protein with a larger polymerization number was detected with
higher frequency, and the tetramer presents most now (32%,
Fig. 3c, d). This indicates the polyprotein was stretched between
the two ends in this configuration. Fifty-two curves were ran-
domly selected for force analysis (Fig. 3e). The force peak with a
ΔLc of ~55 nm was from the unfolding of the protein marker
CBM (cellulose-binding module), and sometimes Xmodule in
the XDoc unfolded before the Coh-XDoc complex dissociated,
with a ΔLc of ~34 nm 35.

To verify all subdomains were unfolded in this covalent
attachment setup, a (Ub)6 polyprotein with a known number of
subdomains was built by the recombinant DNA method and
tested. Coh-(Ub)6 was used for coverslip attachment, and a
CBM-XDoc was used for the tip functionalization. As a result,
a polyprotein CBM-(XDoc-Coh)-(Ub)6 including one marker
protein CBM and six ubiquitin was used. Most AFM measure-
ment showed an expected full-length polyprotein unfolding
scenario with six Ub (292 out of 322, 91%), as demonstrated by
the overlap of the force-extension curves with CBM unfolding
first. (Fig. 3f, n= 52). Consequently, this OaAEP1-facilitated
covalent protein immobilization method enables the complete
unfolding and correct counting of folded subdomains in the
polyprotein molecule.

Pure-metal form polyprotein built from the purified monomer.
Our monomer-based ligation method enables the study of more
challenging protein system such as metalloprotein, which some-
times shows several different metal-forms and needs purification
as a monomer first. A well-characterized iron-sulfur protein
rubredoxin (Rd) with a native Fe(Cys)4 metal center was chosen
for demonstration. The overexpression of rubredoxin in E. coli
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results in a mixture of native iron-form and zinc-substituted
form, whose polyprotein built by the classic recombinant DNA
method lead to a mixed and uncontrolled metal form (Fig. 4a)44.
Instead as a monomer, the protein mixture solution can be
separated into pure Fe-Rd and pure Zn-Rd firstly using ion-
exchange chromatography (Fig. 4b). The purity was confirmed
by their characteristic UV-Vis spectra, respectively (Fig. 4c). As
a result, the pure-metal form Rd can be polymerized to poly-
metalloprotein sample (Fe-Rd)n and (Zn-Rd)n for AFM mea-
surement. Here, we fused the marker protein GB1 to Rd as GL-
(GB1-Rd)-NGL for the experiment (Fig. 4d). The protein GB1
was used here as a single-molecule fingerprint with known ΔLc
of 18 nm as well as an internal force caliper (178 pN). Previous
cysteine-based protein coupling method using C-(GB1-Rd)-C
showed that the unfolding force of Fe(III)-Rd was 211pN with
ΔLc of 12.6 nm54. Here, the AFM measurement of the two
polyproteins built by our method (Fig. 4e) showed comparable
results: 194 ± 63 pN (n= 184) and 12.6 ± 1.5 nm for Fe(III)-Rd
(Fig. 4e), and 124 ± 52 pN (n= 246) and 12.4 ± 1.7 nm for Zn-
Rd (Fig. 4f).

Sequence-controlled polyproteins built on the glass surface. To
rationally control the sequence of the polyprotein built by
OaAEP1, we first validated in principle that the TEV cleavage site
is compatible with our OaAEP1 ligation system for a stepwise

protein polymerization. As shown in the schematic of Fig. 5a,
when a TEV site (ENLYFQ/G) plus a leucine (L) was added at the
N-terminal part of a protein, the TEV protease cleavage results
in an N-terminal Gly-Leu. As a result, the cleaved protein was
then compatible with further OaAEP1 ligation and ultimately
led to a protein polymer. Ubiquitin was used here for demon-
stration again. The SDS-PAGE gel result proved the validity of
such a procedure for the construction of ubiquitin dimer based
on Coh-tev-L-Ub (for cleavage) and Coh-tev-L-Ub-NGL (for
ligation) (Fig. 5b).

However, the ligation efficiency for OaAEP1 was not
sufficiently high enough for efficient polymerization. Previously,
the OaAEP1-only ligation resulted in Ub dimer formation with a
yield of 25%. Here, for a one-step ligation, the efficiency was of
20%. Although this is satisfactory for the one-step protein
labeling or a dimer construction, it is still challenging to build a
relatively long protein oligomer/polymer. The yield decreases
exponentially after several rounds of reaction. Consequently, it is
necessary to increase ligation efficiency.

For a chemical reaction, when one reactant is added in excess,
the chemical equilibrium will be pushed toward the product.
Thus, we modified the ratio between the two reactants to increase
the yield. The one-step ligation between Coh-tev-L-Ub-NGL
and GL-Ub was used here for the test. When the two reactants
were in an equal molar ratio, the ligation efficiency was 20%.
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By increasing their ratio from 1 to 3, the yield improved to
40%, and 50% at a ratio of 5. Finally, when a ratio of 10 to 1
was used, the efficiency increased to 75% (Fig. 5c). Here, the
ligation efficiency is calculated based on the formation of the
product, Coh-tev-L-(Ub)2 dimer, whose band color in the gel
intensifies clearly as the reactant ratio increases. To resolve
between the reactant monomer Coh-tev-L-Ub-NGL and the
product dimer, the sample migrates for a long time. As a result,
the band of the other smaller reactant monomer GL-Ub is
unclear upon the long migration. By increasing the concentration
ten times for all the samples, the decrease of this monomer
can also be detected and used for the efficiency calculation with
similar results (Supplementary Fig. 3). Consequently, the yield
(75%) for OaAEP1-ligation is obtained and is enough to build
a polyprotein.

We then built the protein polymer on a functionalized glass
surface based on the stepwise OaAEP1 ligation and TEV cleavage
reaction (Fig. 6a). First, the C-terminus of the protein unit was
linked to the glass surface which naturally protects the protein
unit from the sequence-uncontrolled polymerization. In
addition, it allows the removal of excessive protein monomer
and enzymes by simple buffer washing. Moreover, the resultant
polymer was ready for single-molecule AFM characterization.
We first ligated the monomer Coh-tev-L-Ub-NGL on the NH2-
Gly-Leu (GL) functionalized glass coverslip as the Coh-tev-L-
(Ub)1-NGL-Glass, denoted as (Ub)1 here for simplicity. The

cohesin incorporated here was for single-molecule AFM mea-
surement using an XDoc-functionalized tip. The AFM results of
(Ub)1 showed the corresponding unfolding event with only one
Ub peak (Number, N= 54). Then, (Ub)1 was cleaved by protease
TEV as GL-(Ub)1-NGL-Glass to expose the GL residues for the
second-round ligation. By adding the protein unit Coh-tev-L-Ub-
NGL in excess with OaAEP1, Coh-tev-L-(Ub)2-NGL-Glass as a
ubiquitin dimer was obtained. (Ub)2 was also characterized by
single-molecule AFM, showing the corresponding dimer forma-
tion (N= 155, 88%). By repeating this stepwise cleavage and
ligation procedure, we obtained ubiquitin polymer up to (Ub)5.
The AFM experiments showed that 31% (N= 83) of curves had
five Ub unfolding peaks (Fig. 6c). Through the whole process,
the same polyprotein sample was characterized at each poly-
merization stage using the same AFM tip, and the maximum
unfolding peaks of polymer picked up corresponded to the
desired length (Fig. 6b). Nevertheless, there was still a fraction of
molecules that were not reacted, as the ligation efficiency was
not 100%. Indeed, when the polymer grew to hexamer, the yield
became even lower (Supplementary Fig. 4).

Similarly, metalloprotein Rd was constructed as a sequence-
controlled polyprotein on the glass surface and characterized.
It demonstrated the feasibility of this stepwise method for
constructing metalloprotein polymer (Fig. 6b). Finally, the
protein copolymer (Ub-Rd)3 was also built by adding the protein
units Ub and Rd one by one. Qualitatively, protein polymer
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built up to decamer can still be captured (Supplementary Fig. 5).
Nevertheless, the yield becomes too low after five ligation cycles,
and only a few curves can be found. Generally speaking, a protein
pentamer can be obtained with a reasonable yield.

Discussion
In this study, we have developed a simple, enzymatic methodol-
ogy for building both sequence-uncontrolled and sequence-
controlled polyproteins using protein ligase OaAEP1 and pro-
tease TEV. The protein ligation and polymerization were
achieved under a mild condition, which should be applicable
for most delicate proteins. In addition, the OaAEP1 is robust
under harsh conditions, such as acidic solution and additional
metal ions, which further expands the application of this
method to build complex proteins. Most importantly, only
two and three short residues as peptide tags are needed for
the OaAEP1 ligation, which leads to minimal perturbance to
the protein. The resultant peptide linkage between proteins

is both thermally and mechanically stable, proved by the joint
SDS-PAGE gel and single-molecule force spectroscopy
experiments.

By adding one reactant in excess, the ligation efficiency
increases from 20 to 75%. This allows for the construction of a
relatively long protein oligomer. Statistically, pentameric protein,
such as (Ub)5, can be obtained on the glass surface with a small
polydispersity and percentage of ~30%. And a long protein dec-
amer (Ub-Rd)5 can be obtained but only with several molecules
under current ligation efficiency. Further improvement of the
ligation efficiency or a new method to purify the resultant protein
is necessary to achieve such a long protein polymer. Nevertheless,
these results are already an advance compared with other ligase-
based protein ligation method. Previous protein ligase-dependent
polymerization seldom reported the construction of a protein
pentamer, and the yield for a protein tetramer was <1% at the
single-molecule level12,55. Thus, our method provides a tool for
biotechnology and protein engineering, which is suitable for both
protein coupling and immobilization.

There are other enzymatic methods which are well-suited for
linking protein as a dimer or for protein labeling, such as sortase,
split intein, bultease, and SpyCather-SpyTag12,55–57. Sortase is
another similar peptidase which is promising for building long
protein polymer. Several groups have used it for single-molecule
AFM studies, both for protein covalent attachment and poly-
protein construction, with important discoveries12,53. Unfortu-
nately, the wild-type sortase is not a strict ligase and can
hydrolyze the ligated linker itself. The engineering for a better
sortase is under intense study with substantial improvements
being developed58. The SpoonTag/SpoonCatcher system based on
the SpyCather-SpyTag system is another powerful ligation
method with a high ligation efficiency of >95% by forming an
intermolecular isopeptide formation59,60. Thus, a long protein
polymer like a decamer can be obtained in a similar, stepwise
fashion with a high yield. By comparison, our OaAEP1 requires
two and three additional amino acids at the two ends, and a
short three amino-acid length linkage is present after ligation.
Thus, either of these two methods may be applied based on dif-
ferent requirements.

From the perspective of single-molecule study, our method
also provides a way to construct the polyprotein sample with a
better-controlled length using monomeric protein unit. Recom-
binant DNA technology was employed to build polyprotein for
single-molecule AFM study, which composes of identical or dif-
ferent multiple protein domains. Thus, it results in characteristic
sawtooth like force-extension curves from the stepwise unfolding
of each domain under force. This strategy significantly increases
the data reliability and collection efficiency and has become
the gold standard for AFM-based SMFS7. However, it relies on
repetitive cloning cycles and is time-consuming. Recently, a much
more efficient Gibson assembly-based method was developed for
building long polyprotein genes61,62. Nevertheless, the engineer-
ing of toxic or large-sized protein polymer is often challenging,
as the misfolding or the inability to express a large-size protein
often occurs, and limits its application.

Another simple approach is to build the polymer at the
monomeric protein level, by expressing individual protein
monomers first and then conjugating them as a polyprotein. A bi-
cysteine based protein coupling method was first developed and
is widely used. By engineering two cysteines on a single protein,
the formation of the intermolecular disulfide bond enables the
construction of polyprotein and has led to many important
discoveries4,63. This approach is efficient and enables the con-
struction of larger protein like poly-GFP. A modified method was
later developed consisting of a reducing-resist thiol-ether bond
formation using maleimide-thiol chemistry64. Recently, similar
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ligase-based polymerization methods using sortase were also
developed12,55. All these methods enable the pre-purification
of protein monomer before polymerization. Thus, they are
suitable for building complex protein such as metalloprotein.
However, these polymerization methods all suffer from a
sequence-uncontrolled protein polymer with a large dispersity.
The protein unit is also linked in a mixed geometry of head-to-
tail and head-to-head. For the sortase-based method, a long
protein polymer was difficult to obtain due to the low ligation
efficiency12,55. Here, our method utilizes a cysteine-free ligase
OaAEP1 for protein ligation, polymerization, and immobilization
with relatively high yield.

In conclusion, we develop an enzymatic method to synthesize
both sequence-controlled and non-controlled polymerized pro-
tein. The robustness and high efficiency of the ligase enable
the engineering and study of a wide range of protein, both
delicate and complex, as well as providing an efficient way for
both protein sample coupling and immobilization for single-
molecule studies.

Methods
Protein engineering. The gene coding for protein of interest: ubiquitin from
human (Ub), rubredoxins (Rd, Rd represents Zn-formed rubredoxin from
Clostridium pasteurianum, if not specified, Fe-form rubredoxin from Pyrococcus
furiosus), the B1 domain of immunoglobulin G (GB1), the cellulose-binding
module (CBM), type III cohesin-dockerin-X module domain complex from
Ruminococcus flavefaciens (Coh-Xmodule-Doc, or Coh-XDoc), tobacco etch virus
(TEV) protease (fused with superfold GFP as GFP-TEV for use), elastin-like
polypeptides (ELP) were ordered from Genscript Inc, respectively. Regular PCR
procedure was used for the further addition of N-terminal GL and C-terminal NGL
to the protein if needed. Typically, a three-restriction digestion enzyme system
BamHI-BglII-KpnI was used for connecting the gene of different protein frag-
ments7. The same overhang after BamHI and BglII digestion allows the stepwise
ligation between their fragments. All genes were finally confirmed by DNA
sequencing from GenScript Inc. Typical protein overexpression and purification
procedure, the general method for OaAEP1-only polymerization, and corre-
sponding amino acid sequences are all provided in Supplementary Methods
and Notes.

First, the pQE80L-POI or pET28a-POI expression plasmids were transformed
into E. coli BL21(DE3) cells. Single colonies were picked into LB medium
containing 100 µg mL−1 ampicillin sodium salt or 50 µg mL−1 kanamycin
(continuous shaking, 37 °C, and 16–20 h). After grown to saturation, overnight
cultures were diluted 1:50 into fresh LB media containing ampicillin sodium salt or

Ligation Cleavage

TEV

Protease

OaAEP1

Unit 

a

tev-L

P

Cleavage

TEV

Protease

P

GL

Ligation 

P

tev-L

NGL
P

P

tev-L

P

P

GL

P

P

P

tev-L

P

N + N

tev-L

Ligation

P

tev-L

NGLGL

OaAEP1
OaAEP1 

1 2 3 4 5/6

85 (17%)

34(7%)

Peaks

54 (100%)

15 (19%) 65 (81%)

61 (19%) 118 (37%) 141(44%)

12 (7%) 54 (30%) 66 (36%) 49 (27%)

35 (6%) 106 (19%) 183 (33%) 156 (28%) 75 (14%)

# of 6 19 (4%) 108 (22%) 134 (27%) 116 (23%)

# of 1 54 (100%)

# of 2 21 (12%) 155 (88%)

# of 3 21 (8%) 100 (36%) 156 (56%)

# of 4 15 (3%) 116 (21%) 197 (35%) 239 (42%)

# of 5

# of 1

# of 2

# of 3

# of 4 

# of 5

# of 1

# of 2

# of 3

# of 4 

# of 5

17 (6.4%) 71 (27%) 94 (36%) 109 (41%) 83 (31%)

30 (100%)

29 (32%) 62 (68%)

31 (24%) 40 (30%) 60 (46%)

17 (17%) 37 (38%) 27 (28%) 17 (17%)

10 (7%) 35 (25%) 42 (30%) 30 (22%) 21 (15%)

cb

88%

56%

42%

31%

100%

68%

46%

17%

100%

15%

81%

44%

27%

100%

14%

7%

300250200150100500

300250200150100500

300250200150100500

1
0

0
 p

N
1

0
0

 p
N

1
0
0
 p

N

∆Lc = 23 nm

∆Lc = 13 nm

Extension (nm)

1

2

3

4

5

1

1

1

1

2

2

2

3

3

1

2

3

4

5

1

1

1

1

2

2

2

3

3

321

1

1

1

1

2

2

1

2

3

1

1

1

1

1

2

2

2

4

4

3

Fig. 6 Stepwise construction of polyproteins with a rationally-controlled sequence. a The schematic of the stepwise, ligation and cleavage procedure to

construct sequence-controlled polyprotein on the glass surface. b Representative curves with maximum unfolding peaks from the unfolding experiments of

homo-polyprotein (Ub)5, top graph, (Rd)5, middle graph, and (Ub-Rd)3, bottom graph, are shown, which were detected during each polymerization step

from one to five/six for the same sample. c The statistical analysis of the number of the curve with specific unfolding peaks, corresponding to the

left curves

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10696-x

8 NATURE COMMUNICATIONS |         (2019) 10:2775 | https://doi.org/10.1038/s41467-019-10696-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


kanamycin (continuous shaking, 37 °C, t ~3 h, except Fe(III)-Rd, and Zn-Rd which
were overexpressed in M9 medium (M9 media supplemented with 0.4% glucose,
0.1 mM CaCl2, 2 mM MgSO4) with continuous shaking 6 h), and induced with
1 mM isopropyl β-D-thiogalactoside (IPTG) based on each protein when OD600

is ~0.6 (For rubredoxin, 1 mM FeCl3 or ZnCl2 is added). The bacterial cultures
were allowed to incubate for an additional 4–6 h (37 °C). Finally, 400 mL bacterial
culture was pelleted by centrifugation (13,260 × g, 25 min, 4 °C) and stored at
−80 °C before purification.

The cells were then resuspended in 25 mL lysis buffer (50 mM Tris, pH 7.4) and
lysed on ice using a Biosafer sonicator (15% amplitude for 30 min). The lysate was
centrifuged (19,632 × g, 40 min, 4 °C) to pellet cell fragments and the supernatant
fluids were applied to a Co-NTA or Ni-NTA affinity column (TALON) and washed
with buffer containing 20 mM Tris, 400 mM NaCl, 2 mM imidazole, pH 7.4. The
bound protein was eluted with elution buffer (20 mM Tris, 400 mM NaCl, 250 mM
imidazole, pH 7.4). For rubredoxin we used an anion exchange chromatography
(Mono Q 5/50 GL GE Healthcare) using a continuous salt gradient of 0–30% of
buffer B (50 mM Tris, 1 M NaCl, pH 8.5) and then a size-exclusion
chromatography (Superdex 200 increase 10/300 GL GE Healthcare) that had been
pre-equilibrated in 50 mM Tris, 100 mM NaCl, pH 7.4 buffer in an AKTA FPLC
system (GE Healthcare) for further purification to ensure the purity >95%.

Stepwise polyprotein preparation with controlled sequences. Here we used the
sample preparation for ubiquitin homo-polymer, Coh-tev-L-(Ub)n-NGL, as an
example. Ligation unit Coh-tev-L-Ub-NGL was first linked to the GL-ELP50nm-C
functionalized coverslip by OaAEP1 and the C-terminus was blocked. Then, the
TEV protease solution was added on the coverslip to cleave the TEV site in the
protein unit (0.4 mg mL−1 TEV protease 100 μL, 75 mM NaCl, 0.5 mM EDTA,
25 mM Tris-HCl, pH 8.0, 10% [v/v] glycerol). Typically, it was reacted for ~1 hour
at 25 °C to produce GL-Ub-NGL-glass with exposed N-terminal GL residues.
TEV protease was then washed away. Then, ~5 times the amount of the ligation
unit, compared with the first time, was added to the solution for the stepwise
ligation by OaAEP1. Due to the incomplete ligation reaction, we estimated that the
real ratio between the two reactants was beyond 10. As a result, ubiquitin dimer
was obtained on the glass surface as Coh-tev-L-(Ub)2-NGL-Glass. To reach the
desired polymerization number N, this stepwise ligation and cleavage procedure
was then repeated for N-1 times, leading to the protein polymer GL-(Ub)n-NGL-
Glass. The final TEV cleavage was omitted to obtain Coh-tev-L-(Ub)n-NGL-Glass,
which was ready for single-molecule AFM experiment using a Coh-XDoc system.
A similar procedure was used to build other protein homo-polymer (Rd)n, and
the hetero-polymer (Ub-Rd)n.

Functionalized coverslip surface preparation. A glass coverslip (Sail Brand,
China) surface was cleaned and activated by chromic acid treatment for 30 min
at 80 °C. For amino-silanization, the coverslips were completely submerged in 1%
(v/v) APTES toluene solution for 1 hour at room temperature, protected from light.
The coverslips were then washed with toluene and absolute ethyl alcohol and
dried under a stream of nitrogen. Then, the coverslips were incubated at 80 °C
for 15 min. After immobilization, the coverslips were cooled down to room
temperature. Two hundred microliters of sulfo-SMCC (1mgmL−1) dimethyl
sulfoxide (DMSO) solution was added between two immobilized coverslips and
incubated for 1 h protected from light. The coverslips were washed with DMSO
first and then with absolute ethyl alcohol to remove residual sulfo-SMCC. The
cleaned coverslips were dried under a stream of nitrogen. 200 μL of 200 μM GL-
ELP50nm-C protein solution was pipetted over a functional coverslip and was
incubated for ~3 h. Finally, the coverslip was washed with Milli-Q water to remove
the unreacted GL-ELP50nm-C and was used immediately or stored at 4 °C.

Cohesin-NGL was linked to the POIs, such as GL-(Ub)n-NGL if necessary.
OaAEP1-catalyzed coupling of the bound GL-ELP50nm-C and Coh-POIs-NGL
was done in the measurement buffer for 20–30 min. The sample cell was used for
AFM-SMFS measurement after washing with the measurement buffer.

Functionalized cantilevers surface preparation. Silicon nitride cantilever
(MLCT, Bruker Corp) was used as a force probe. The surface chemistry of the
cantilevers was similar to that of the coverslip. Cantilevers were cleaned by chromic
acid treatment for 10 min at 80 °C. Cleaned cantilevers were functionalized
by amino-silanization with APTES and were then conjugated to sulfo-SMCC.
C-ELP50nm-NGL was linked to the surface with maleimide group of sulfo-SMCC
for 1.5 h and the unreacted ELP was removed by Milli-Q water. The functionalized
cantilever with ELP was immersed in 200 μL of 50 μM GL-CBM-XDoc protein
solution containing 200 nM OaAEP1.

Covalent attachment method. First, the silanized glass coverslip was functiona-
lized with GL-ELP-C using thiol-maleimide chemistry in which the ELP was used
as a spacer. Next, the polyprotein was covalently linked to the coverslip by OaAEP1
(Fig. 3a. Step 1) followed by ligation with Coh-NGL as Coh-(POI)n-glass (Step 2).
Similarly, the C-ELP-NGL functionalized AFM tip was linked with GL-CBM-XDoc
(Step 3). Consequently, the cohesin-dockerin pair formed when the tip pressed
the coverslip as Tip-CBM-(XDoc-Coh)-(POI)n-glass (Step 4).

AFM measurements. AFM-based SMFS experiments were performed on Nano-
wizard 4 AFM (JPK Germany). MLCT cantilever with a spring constant (k) of ~40
pN nm−1 was used. The equipartition theorem was used to calibrate the k of each
cantilever in solution with an accurate value before the experiment. All proteins
were measured in AFM measurement buffer (100 mM Tris, 100 mM NaCl, pH 7.4).
For measurements using non-specific interaction, 10 μL of the polyprotein sample
at a concentration of ~1 mgmL−1 was diluted into 30 μL of measurement buffer
and added to a clean glass coverslip. The protein was allowed to absorb for 30 min.
The suspending protein was washed away with 2 mL of the measurement buffer,
and 1.5 mL measurement buffer was used to cover the coverslip. The tip of the
AFM cantilever pressed the protein-deposited surface under a contact force of ~0.5
nN for hundreds of milliseconds, and a single polyprotein molecule was picked up
with a ratio of ~0.01% and stretched at a constant pulling velocity of 400 nm s−1

in all experiments. The spring constant of the cantilevers used for (Ub)n were
of ~44 pN nm−1 (non-specific protein immobilization), and 45 pN nm−1 (specific
immobilization), for Coh-(Ub)6 was of 39 pN nm−1, for (GB1-Fe(III)-Rd)n were
of ~56 pN nm−1 and ~48 pN nm−1, for (GB1-Zn-Rd)n were of ~53 pN nm−1 and
~41 pN nm−1, for (Rd)6 was of ~34 pN nm−1, for (Ub)6 was of ~61 pN nm−1,
for (Ub-Rd)3 was of ~100 pN nm−1, for (Ub-Rd)5 was of ~35 pN nm−1.

The data analysis of the force-extension curve was carried out using program
Igor Pro 6.12 (Wavemetrics). The curves were fitted with the worm-like-chain
(WLC) model of polymer elasticity, and the persistence length is of ~0.4 nm.
For measurements with both covalent attachment and specific interaction pairs
configuration, the functionalized glass coverslips and cantilevers were used. For
the experiments using the functional coverslip and cantilever, only the curves
containing the whole information of the protein construct and a high rupture
force from the cohesin-dockerin dissociation were selected with a ratio of ~5%.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its

Supplementary Information files. A reporting summary for this Article is available as a

Supplementary Information file. The datasets generated and analyzed during the current

study are available from the corresponding author upon request. The source data

underlying Figs. 2c, 3e, 4c, e, f are provided as a Source Data file.
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