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Biofilms are surface-attached communities of bacterial cells embedded in a self-

produced matrix that are found ubiquitously in nature. The biofilm matrix is composed

of various extracellular polymeric substances, which confer advantages to the

encapsulated bacteria by protecting them from eradication. The matrix composition

varies between species and is dependent on the environmental niche that the

bacteria inhabit. Exopolysaccharides (EPS) play a variety of important roles in biofilm

formation in numerous bacterial species. The ability of bacteria to thrive in a broad

range of environmental settings is reflected in part by the structural diversity of

the EPS produced both within individual bacterial strains as well as by different

species. This variability is achieved through polymerization of distinct sugar moieties

into homo- or hetero-polymers, as well as post-polymerization modification of the

polysaccharide. Specific enzymes that are unique to the production of each polymer

can transfer or remove non-carbohydrate moieties, or in other cases, epimerize

the sugar units. These modifications alter the physicochemical properties of the

polymer, which in turn can affect bacterial pathogenicity, virulence, and environmental

adaptability. Herein, we review the diversity of modifications that the EPS alginate,

the Pel polysaccharide, Vibrio polysaccharide, cepacian, glycosaminoglycans, and

poly-N-acetyl-glucosamine undergo during biosynthesis. These are EPS produced

by human pathogenic bacteria for which studies have begun to unravel the effect

modifications have on their physicochemical and biological properties. The biological

advantages these polymer modifications confer to the bacteria that produce them will

be discussed. The expanding list of identified modifications will allow future efforts

to focus on linking these modifications to specific biosynthetic genes and biofilm

phenotypes.

Keywords: Biofilm, exopolysaccharide, PNAG, PIA, alginate, PEL, VPS, cepacian

Abbreviations: Bcc, Burkholderia cepacia complex; CF, cystic fibrosis; CPS, capsular polysaccharide; EPS, exopolysaccharide;
G-blocks, guluronate blocks; GAGs, glycosaminoglycans; GBS, Group B Streptococcus; GlcA, glucuronic acid; GulA,
guluronate; GulNAcA, N-acetyl guluronate; HS, heparan sulfate; IdoA, iduronic acid; LPS, lipopolysaccharide;
M-blocks, mannuronate blocks; ManA, mannuronate; MBOAT, membrane-bound O-acetyltransferase; MG-blocks, mixed
mannuronate and guluronate blocks; PEL, pel polysaccharide; PIA, polysaccharide intercellular adhesin; PNAG, poly-N-
acetylglucosamine; polyM, polymannuronate; ROS, reactive oxygen species; VPS, Vibrio polysaccharide.

Frontiers in Microbiology | www.frontiersin.org 1 May 2015 | Volume 6 | Article 471

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2015.00471
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fmicb.2015.00471
http://journal.frontiersin.org/article/10.3389/fmicb.2015.00471/abstract
http://community.frontiersin.org/people/u/235916
http://community.frontiersin.org/people/u/221922
http://community.frontiersin.org/people/u/33850
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Whitfield et al. Exopolysaccharide modifications

Introduction

Bacteria faced with fluctuating or stressful environmental

conditions can undergo a number of physiological changes. One
common tactic that bacteria use to adapt to their surroundings

is to grow as a multicellular community or biofilm. Biofilm
formation begins with attachment of the bacteria to a surface

or, in the case of some infectious biofilms, embedding of the
bacteria in host-derived tissue or mucous. This is followed by
bacterial aggregation, colony development, and the secretion

of self-produced polymeric substances, which form a matrix
that encapsulates and protects the bacteria (Ohman, 1986;

Allesen-Holm et al., 2006). This matrix is composed of nucleic
acids, proteins, lipids, and extracellular polysaccharides (EPS;
Flemming andWingender, 2010), with the types and ratio of each
component varying between bacterial species and environmental

conditions. Once the biofilm has matured into a robust structure
it becomes exceedingly difficult to eradicate, and is typically

capable of enduring mechanical, biological, and chemical means
of elimination. Bacteria form biofilms in nearly all environments

studied to date (Bjarnsholt et al., 2013b), and are implicated
in the contamination of surfaces as diverse as the International

Space Station (Kim et al., 2013), ship hulls (Schultz et al., 2011),
and oil storage and transfer infrastructure (Lenhart et al., 2014).

Biofilms are also of major concern in medical settings, where

they are responsible for the chronic infection of burn wounds,

eye and skin lacerations, and pneumonia in CF patients (Lyczak
et al., 2000). The contamination of medical devices such as

catheters, prosthetic joints, and ventilators (Veerachamy et al.,
2014) has also been well documented. In these environments EPS

often contribute to the formation, growth, and preservation of
biofilm architecture and also serve to protect the bacteria against

antibiotics, desiccation, and the host’s immune defenses.
Biosynthesis of EPS begins in the cytoplasm with the

generation of activated precursor sugars. These precursors
are often taken from common cellular sugar pools and are

modified for specific use in EPS biosynthesis pathways, prior
to polymerization (Figure 1). In Gram-negative bacteria, the

polymer is transported across the inner membrane to the
periplasm during synthesis; whereas in Gram-positive bacteria

the polymer is transported directly to the extracellular space.
Modifications to the polymer can occur in the cytoplasm (Atkin
et al., 2014) or the periplasm (Colvin et al., 2013; Baker et al.,

2014; Little et al., 2014b; Wolfram et al., 2014) prior to export
across the outer membrane, and in the extracellular space in both

Gram-positive and Gram-negative bacteria (Rozeboom et al.,
2008; Little et al., 2014a).

The chemical structure of EPS from different bacterial species,
or even within the same organism, can vary greatly. Bacterial

EPS are usually composed of hexose sugars, but pentose sugars

FIGURE 1 | Generalized EPS biosynthetic platforms. Not to scale. In

Gram-negative bacteria (A) modifications to the polymer can occur in the

cytoplasm, periplasm and in the extracellular space. In Gram-positive bacteria

(B) modifications can occur in the cytoplasm and extracellular space. Polymer

biosynthetic systems are represented here as follows: activated sugars (blue

hexagons with green inverted triangles) are assembled by a polymerase (blue),

transported across the inner membrane (teal; polymerization and transport may

be coupled and performed by a single protein), and exported (purple) across the

outer membrane in Gram-negative bacteria, or exported across the cytoplasmic

membrane in Gram-positive bacteria. Modifications can be performed in any of

these cellular compartments (red). Also shown, LPS (tan circles), teichoic acids

(light purple circles), and EPS (blue hexagons).

Frontiers in Microbiology | www.frontiersin.org 2 May 2015 | Volume 6 | Article 471

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Whitfield et al. Exopolysaccharide modifications

have also been identified. Rhizobium huakuii EPS contains ribose

(Hisamatsu et al., 1997), while some marine bacteria produce
EPS with xylose and ribose moieties (Kwon et al., 2002). EPS

can be homo- or hetero-polymers, and have branching side
chains (Byrd et al., 2009; Cescutti et al., 2010) or be simple

linear sugar polymers (Linker and Jones, 1966; Maira-Litràn
et al., 2002). They can be as short as dimers and trimers, or

thousands of saccharide repeat units long (González et al., 1998),
depending on the mechanisms of chain length regulation, and

can even be woven together to form fibers (Benziman et al.,
1980).

Exopolysaccharides can be modified by the action of
transferases and hydrolases which add or remove functional

groups such as acetyls, pyruvyls (Marzocca et al., 1991),
glyceryls (Kuo et al., 1986), succinyls (Reuber and Walker,

1993), lactyls (Maalej et al., 2014), or a combination of these,
leading to variations in polymer surface electrostatics and
solubility. Additionally, epimerization can drastically alter the

structural conformation of polysaccharides, affecting polymer
interactions within the biofilm (Steigedal et al., 2008). Some

of these modifications have been studied with respect to
their importance in bacterial virulence, pathogenesis, biofilm

formation, or symbiosis (Figure 2; Ridout et al., 1997), as well
as their commercial utility in the food and cosmetic industries.

Despite this wealth of knowledge, there remain a number of
unresolved questions regarding the biological implications of EPS

modifications. In this review, we explore the modifications that
biofilm-forming EPS produced by human pathogenic bacteria

undergo and discuss the proteins involved in modification, as
well as the role modifications play in bacterial persistence in the

environment and host.

FIGURE 2 | Exopolysaccharide modifications offer protection to

bacteria. Modifications to EPS contribute to evasion of host immune

mechanisms such as complement deposition (C3b), and specific antibody

production (lavender). Modifications have also been shown to protect against

ROS produced by immune cells, antimicrobial peptides, and EPS degradation

enzymes produced by competing microorganisms.

Alginate

Alginate synthesis has been characterized in several species

of brown algae, as well as in the genera Azotobacter and
Pseudomonas (Gorin and Spencer, 1966; Evans and Linker,

1973; Govan et al., 1981; Gacesa, 1988). Bacterial alginate is
a high molecular weight, linear polysaccharide composed of

β-1,4-linked D-ManA and variable amounts of its C5 epimer L-
GulA (Smidsrød and Draget, 1996). In Pseudomonas aeruginosa
and Azotobacter vinelandii, alginate is initially synthesized as

polyM in the cytoplasm and is shuttled across the inner
membrane to the periplasm, where it is randomly acetylated

at the O2 and/or O3 hydroxyl positions (Table 1; Figure 3;
Franklin and Ohman, 1993, 1996, 2002). ManA residues that

are not acetylated serve as substrates for epimerization at the
C5 position by the enzyme AlgG in the periplasm, leading to

the formation of mixed ManA and GulA segments (MG-blocks)
as well as non-epimerized sections (M-blocks; Gacesa, 1988;

Jain et al., 2003).
Pseudomonas aeruginosa chronic lung infections in CF

patients are the leading cause of morbidity andmortality. In these
infections the production of alginate is often linked to poorer

patient prognosis (Lyczak et al., 2000). In the lung, the clinical
isolate P. aeruginosa FRD1 displays an alginate-overproducing,

or mucoid phenotype due to mutations in negative regulatory
elements, providing P. aeruginosa with the capability of adhering

to respiratory tract epithelial cells and mucin (Marcus and Baker,
1985; Doig et al., 1987; Ramphal et al., 1987). In addition,
alginate production has been linked to the hindrance of host cell-

mediated phagocytosis and neutralization of ROS (Learn et al.,
1987; Mai et al., 1993; Pier et al., 2001). Mucoid conversion

is still not well understood, but in vitro experimentation has
shown that nutrient and aeration levels (Buckmire, 1984; Krieg

et al., 1986; Speert et al., 1990) and external stressors (Terry
et al., 1991; Damron et al., 2011; Limoli et al., 2014) can induce

mucoidy.
Azotobacter vinelandii is a soil-borne bacterium that is

often used as a model organism for nitrogen fixation studies
(Bulen et al., 1964). Although A. vinelandii is not a human

pathogen, understanding the process of alginate biosynthesis
in this organism has provided valuable insight into the

biological significance of alginate production by P. aeruginosa.
In A. vinelandii, alginate plays a unique and essential role where,

under conditions of nutrient and environmental stress such as
nitrogen starvation, A. vinelandii converts from a vegetative cell

to a dormant cyst (Socolofsky andWyss, 1961). Cyst development
proceeds through deposition of a protective extracellular material

composed primarily of alginate. The cyst layers are rich
in proteins, lipids and carbohydrates, with the exine (outer
layer) and intine (inner layer) containing carbohydrate material

consisting of approximately 40 and 72% polyuronic acids,
respectively (Lin and Sadoff, 1969). Cyst formation, much like

the biofilm matrix, protects A. vinelandii from desiccation, and
only when environmental conditions become more favorable will

A. vinelandii convert back to the vegetative state by degrading
the alginate barrier. In contrast to P. aeruginosa, A. vinelandii

contains seven additional extracellular epimerases (AlgE1-7),
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FIGURE 3 | Pseudomonal alginate modifications and biosynthetic

apparatus. Not to scale. (A) Alginate is first polymerized as β-scD-(1→4)-polyM

(top) before being acetylated at the O2 and/or O3 positions by the concerted

actions of AlgIJFX. Acetylated ManA residues (middle) cannot be epimerized to

L-GulA by AlgG (bottom). (B) The proteins involved in alginate biosynthesis in

Pseudomonas aeruginosa. PolyM (green hexagon chain) is synthesized in the

cytoplasm from the nucleotide-sugar precursor GDP-ManA (green hexagons

with inverted triangles). It is polymerized, and transported across the inner

membrane via Alg8/44, acetylated (red triangles) by the concerted action of

AlgFIJX, and epimerized to GulA (magenta) by AlgG. AlgL possesses lyase

activity; AlgK is a lipoprotein required for efficient localization of AlgE, the porin

required for alginate export.

capable of generating polyguluronate segments (G-blocks) in
addition to MG-blocks (Table 1; Fischer and Dorfel, 1955;

Haug et al., 1966, 1967). Despite the importance of alginate in
cyst formation (Campos et al., 1996), alginate production by

A. vinelandii has been studied primarily for its potential use as an
alternative source of commercial alginate in place of traditional

seaweed harvesting approaches.
Given the importance of alginate for the virulence of

P. aeruginosa in the CF lung, the protective characteristics
of A. vinelandii cysts, and the use of bacterial alginate as a

convenient substitute for commercial eukaryotic alginate sources,
there has been a drive to understand the consequences of alginate

acetylation and epimerization on these processes.

Alginate Acetylation

Alginate acetylation in P. aeruginosa requires the collective

actions of the proteins AlgF, AlgI, AlgJ, and AlgX for the
addition of acetyl groups to the O2 and/or O3 hydroxyl positions

of polyM in the periplasm prior to epimerization and export
(Table 1; Figure 3). Specifically, it is thought that AlgI transfers

an acetyl group from an as yet unidentified cytoplasmic donor
to AlgJ or AlgX, where it may be passed between them before

transfer to the polymer by AlgX (Riley et al., 2013; Baker et al.,
2014). AlgF is an important part of the acetylation process but

has not yet been assigned a role. Based on the peptidoglycan
O-acetylation machinery (Moynihan and Clarke, 2011), it seems

that the presence of a MBOAT for acetyl-donor transport
(AlgI), and an acetyltransferase (AlgX) should be sufficient

for polysaccharide O-acetylation. As acetylation occurs at both
the O2 and O3 positions, one hypothesis is that the proteins

AlgJ and AlgF govern specificity. Although they have not yet
been shown to directly bind alginate, they may still be able to

regulate the position and frequency of acetyl addition under
different environmental conditions. Genetic and biochemical

experiments targeting the degree of alginate acetylation in
combination with structural data may provide insight into these

questions.
One of the purposes of EPS production is to serve as a

structural component of the biofilm matrix. Alginate lacking
O-acetyl groups has been analyzed for its ability to form
structured biofilms using an acetylation defective P. aeruginosa

FRD1 mutant. These studies revealed that the mutant was only
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TABLE 2 | Biological implications of EPS modifications.

Modification Proteins involved Organism studied Implication of modification Reference

Alginate

Acetylation AlgF, AlgI, AlgJ, AlgX Pseudomonas

aeruginosa

Required for surface attachment and formation of

structured microcolonies

Nivens et al. (2001), Tielen

et al. (2005)

Increased polymer viscosity Tielen et al. (2005)

Decreased neutrophil locomotion and lymphocyte

transformation

Mai et al. (1993)

Reduced activation of complement and opsonic killing

by phagocytes

Pier et al. (2001)

Scavenging of ROS Learn et al. (1987)

Reduced susceptibility to enzymatic degradation Farrell and Tipton (2012)

Increased gel thickness Skjåk-Braek et al. (1989)

Epimerization AlgG, AlgE1-7 (Azotobacter

vinelandii)

P. aeruginosa Improved gel forming ability (cohesion) Grant et al. (1973), Donati

et al. (2005)

Upregulation of virulence factors through Ca2+

sequestration

Horsman et al. (2012)

A. vinelandii Maintain biofilm structure during changing

environmental conditions

Ertesvåg et al. (1998)

Preserve N2-fixing capability Sabra et al. (2000)

Required for formation of functional cyst coat Steigedal et al. (2008)

PEL

Deacetylation PelA P. aeruginosa Required for biofilm formation (in PSL deficient strains) Colvin et al. (2013)

Cepacian

Acetylation BceOSU Bcc Reduced susceptibility to enzymatic degradation Cescutti et al. (2006)

Scavenging of ROS Cuzzi et al. (2012)

Vibrio polysaccharide (VPS)

Acetylation VpsG Vibrio cholerae Required for robust biofilm formation and wild-type

phenotypes

Fong et al. (2010)

Poly-N-acetyl-glucosamine (PNAG)

Deacetylation PgaB (Escherichia coli),

HmsF (Yersinia pestis) IcaB

(Staphylococcus epidermidis

and S. aureus)

S. epidermidis Required for biofilm formation and surface attachment Vuong et al. (2004a)

Resistance to human cationic antimicrobial peptides

Resistance to neutrophil phagocytosis

Persistence in mouse model of infection

S. aureus Required for biofilm formation and surface attachment Cerca et al. (2007)

Resistance to phagocytosis

Persistence in mouse model of infection

E. coli Required for export of polymer and biofilm formation Itoh et al. (2008)

Y. pestis Required for biofilm formation Forman et al. (2006)

Succinylation IcaC S. aureus Modulation improves in vitro fitness Brooks and Jefferson (2014)

able to produce small, unstructured microcolonies that sparsely
populated the examined surface, suggesting an attachment defect
(Table 2; Nivens et al., 2001). In contrast, FRD1 formed

extensive biofilm structures that exhibited significant structural
heterogeneity. In a separate study, an aggregation defect was

revealed when the capacity for an acetylation-deficient FRD1
mutant to adhere to a steel surface was tested (Tielen et al.,

2005). Additionally, the viscosity of extracellular material from
the acetylation-defective mutant was significantly reduced in

comparison to FRD1, suggesting that the loss of O-acetyl groups
led to weakening of inter- and intra-polymer interactions within

the biofilm matrix. This is supported by rheological studies
of FRD1 biofilms, which suggested that inter-chain alginate

interactions occur primarily through physical entanglements

(Wloka et al., 2005). These entanglements supported an elastic
biofilm architecture, which differed from O-acetylation-defective
FRD1 mutants which produced weaker biofilms with reduced

resistance to tensile forces. Based on these results, it was suggested
that O-acetyl groups in alginate act as molecular hooks that

improve the resistance of the entangled alginate structural
network against applied forces (Wloka et al., 2005). While the

importance of alginate acetyl groups for cell aggregation and
microcolony formation in vitro is well established, the influence

of O-acetyl groups on biofilm formation phenotypes in clinically
relevant P. aeruginosa infections or related in vivomodel systems

of infection remain uncharacterized.
P. aeruginosa biofilm formation in the CF lung has been shown

to provide significant protection from a variety of host immune
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factors. For example, decreased locomotion of neutrophils, as

well as reduced lymphocyte transformation, have been observed
when these cell types are incubated with alginate (Simpson et al.,

1988). However, chemical removal of acetyl groups from alginate
led to a complete loss of these inhibitory effects on neutrophil

and lymphocyte function, suggesting that alginate O-acetylation
is essential for their suppression (Mai et al., 1993). The activation

of complement is also affected by the presence of acetyl groups
(Pier et al., 2001). This is not surprising given that interactions

between alginate and the complement component C3b likely
occurs through unsubstituted hydroxyl groups (Hostetter et al.,

1982), suggesting that the addition of acetyl groups to alginate in
P. aeruginosamay have evolved as a mechanism for complement

evasion. Activation of the alternative pathway of complement can
lead to phagocytic killing, which is also impaired by the presence

of O-acetyl groups. Opsonic killing of the FRD1 O-acetylation
deficient mutant by phagocytes was readily observed, while
wild-type FRD1 was resistant to these attacks (Pier et al.,

2001). Alginate is also known to scavenge ROS produced by
phagocytic cells during infection. Hypochlorite is a common ROS

produced by phagocytes, and the presence of alginate in mucoid
P. aeruginosa provides a significant protective advantage against

hypochlorite over non-mucoid cells in vitro (Learn et al., 1987).
This protective effect was, in part, attributed to the O-acetyl

groups, as chemically deacetylated alginate exhibited impaired
hypochlorite scavenging. Furthermore, addition of hypochlorite

to native alginate led to a decrease in viscosity, similar to that
seen for the chemically deacetylated alginate, suggesting that

hypochlorite may be specifically reacting with O-acetyl groups
from native alginate (Learn et al., 1987).

When bacteria are contending for control of the same
environment, they can release extracellular enzymes to degrade

critical structural components of cohabiting organisms to
give them a competitive advantage (Korotkov et al., 2012).

This is observed in the CF lung, where instances of multi-
species biofilms are common (Elias and Banin, 2012). During
colonization of the CF lung, alginate acetyl groups may serve

as a protective mechanism to prevent unwanted degradation
of alginate within the biofilm by bacteria that could secrete

an AlgL-like lyase as an offensive tactic. The P. aeruginosa
alginate lyase AlgL preferentially degrades deacetylated alginate

or polyM over mature, acetylated alginate (Farrell and Tipton,
2012). Furthermore, O-acetyl groups prevent the epimerization

of ManA to GulA by the epimerases AlgE1-7 in A. vinelandii,
whichmay allow for control over the degree of epimerization and,

in turn, regulation of the cyst coat composition.
Alginate acetylation content ranges from 4 to 57%, depending

on the percentage of ManA present (Skjåk-Braek et al., 1986).
The degree of O-acetylation is often observed to vary not

only between different alginate-producing organisms, but also
between different strains of the same organism and even within

the same strain under differing growth conditions (Marty et al.,
1992; Peña et al., 2006). For example, modulation of carbon

source during growth for a single alginate-producing P. syringae
strain led to significant differences in acetyl content, ranging

from 9 to 34% of total uronic acids bearing an acetyl group
(Day, 1988). In another study, the alginate produced by several

different strains of P. aeruginosa grown on nutritionally distinct

media was examined. This study revealed that between different
strains O-acetyl content of alginate varied between 2 to 56%

(Marty et al., 1992). Furthermore, in both studies alginate acetyl
content changed over the course of a single growth experiment

by as much as 40%, possibly owing to the availability of
acetyl-CoA, the proposed acetyl donor (Lee and Day, 1998). In

addition to acetyl-CoA availability, differences in acetyl content
could conceivably be a means to optimize attachment, nutrient

uptake, or nutrient diffusion within the biofilm in the face of
different media compositions and nutrient sources. This notion is

supported by findings which suggest that alginate O-acetylation
can enhance the swelling ability of calcium alginate gels (Skjåk-

Braek et al., 1989). Deacetylated alginate exhibited poor swelling
ability in comparison to chemically acetylated variants, with

increasing degrees of acetylation leading to greater swelling
volume. Conversely, increased O-acetylation led to a decrease in
the affinity of alginate gels for calcium ions (Skjåk-Braek et al.,

1989). Thus, alginate acetyl content has specific consequences
with respect to calcium ion binding and the thickness of alginate

gels, which may influence nutrient diffusion in the biofilm. These
findings could potentially be extrapolated to other components

of the growth media, and suggests a mechanism by which
alginate-producing bacteria could regulate the uptake of essential

nutrients.

Alginate Epimerization

Pseudomonas aeruginosa has a single alginate C5-epimerase

in the periplasm, AlgG. In A. vinelandii, there is an AlgG
ortholog that performs the same function, and seven additional

extracellular epimerases, AlgE1 through AlgE7 (Table 1).
Alginate can form strong gels through interactions with

GulA residues, mediated by Ca2+ ions. This feature was
thought to be limited to alginates containing G-blocks, and
would therefore exclude the MG-block alginates produced by

P. aeruginosa (Grant et al., 1973). However, it is now thought
that alginates containing exclusively MG-blocks can also form

gels in the presence of Ca2+ (Donati et al., 2005), suggesting
that epimerization by AlgG in P. aeruginosa may serve as a

mechanism to improve the cohesion of alginate during biofilm
formation. It was found that addition of CaCl2 to growth media

led to the production of biofilms that were 10- to 20-fold thicker
than that produced in the absence of Ca2+ (Sarkisova et al.,

2005). Ca2+-alginate interactions also regulate virulence factor
expression, as chelation of Ca2+ by alginate induces expression

of the Type 3 secretion system (Horsman et al., 2012). Therefore,
it appears that there are mechanisms in place in P. aeruginosa for

virulence factors to be upregulated by the expression of another,
thus allowing for concerted actions that improve fitness (Table 2).

Despite advances in understanding the interplay between Ca2+

and alginate in P. aeruginosa, and the extensive studies performed

on acetyl-deficient alginate, there are no reports on the effects of
epimerization on biofilm formation, pathogenicity, or virulence.

In contrast, the role of epimerization in A. vinelandii cyst
formation has been well characterized. One hypothesis regarding
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the ability of A. vinelandii to express multiple epimerases

with unique activities is that these enzymes allow the alginate
structures to be tailored to different layers of the cyst under

diverse environmental conditions. For example, the epimerase
AlgE1 has two catalytic domains that introduce primarily

MG-blocks and G-blocks, respectively (Ertesvåg et al., 1998).
Decreasing the availability of Ca2+ in the presence of AlgE1

in vitro led to greater incorporation of G-blocks into polyM
alginate. This may provide a means in vivo to maintain the

strength of Ca2+-mediated inter-alginate bonds in the face of
decreased environmental Ca2+ availability (Ertesvåg et al., 1998).

Regulation of alginate structure is also observed during vegetative
growth of A. vinelandii, where nitrogen fixation is mediated by

the expression of highly oxygen-sensitive nitrogenases. In this
state, alginate is utilized as a barrier to prevent the diffusion of

oxygen into the cell. In the presence of increasing environmental
O2 concentrations, A. vinelandii was able to produce alginate
with greater G-content, which led to the formation of a thicker,

denser alginate layer around the cell and thus limited oxygen
penetration (Sabra et al., 2000). The expression of different

mannuronan C5-epimerases is also regulated over the course
of the A. vinelandii life cycle, including during vegetative

growth, cyst development, and cyst germination (Høidal et al.,
2000). Although the exact biological function for the expression

of specific epimerases at unique points in the life cycle of
A. vinelandii has not been determined, preferential expression of

AlgE7 during cyst germination could be linked to the apparent
lyase activity of this enzyme, which may be utilized to degrade

the cyst coat (Høidal et al., 2000).
Unlike AlgG in P. aeruginosa, the importance of the AlgE1-

7 epimerases in the formation of the cyst coat and tolerance
to desiccation has been explored. Inactivation of the AlgE1-7

epimerases, either through chromosomal deletion inA. vinelandii
(Steigedal et al., 2008) or by inactivating the Type 1 secretion

system responsible for their export (Gimmestad et al., 2006)
led to the production of low G-content alginate, suggesting
that the periplasmic A. vinelandii AlgG is active but not very

efficient. In both cases, these mutants were unable to form
a cyst coat and could not survive desiccation. In contrast,

deletion of individual algE genes, with the exception of algE3,
did not have an appreciable effect on the G-content of alginate.

Deletion of algE3 showed a significant reduction in G-content
(Steigedal et al., 2008). However, since each of the individual algE

deletion mutants was able to form a functional cyst and survive
desiccation, it appears that no single epimerase is absolutely

essential for cyst formation or germination. This suggests that
the presence of multiple extracellular epimerases may increase

redundancy of epimerase activity to ensure formation of a
functional cyst coat (Steigedal et al., 2008). It remains to

be determined whether cyst formation under unique stressful
conditions may require specific epimerases, and little work has

been done to date to examine the role of mannuronan C5-
epimerases during the vegetative stage of A. vinelandii growth.

While a great deal is understood about the regulation of
alginate biosynthesis and its modification at the genetic and

protein level (Hay et al., 2014), the implications of alginate
acetylation and epimerization in terms of biofilm formation,

pathogenicity and virulence, environmental adaptability and

survivability remain largely uncharacterized.

The Pel Polysaccharide

In addition to alginate, P. aeruginosa is capable of synthesizing

two other polymers that have been implicated in biofilm
formation, the Pel and Psl polysaccharides (PEL and PSL;

Franklin et al., 2011). Unlike alginate, PEL and PSL are primarily
associated with the establishment of non-mucoid biofilms. PSL is

a neutral, branched polysaccharide with a five-sugar repeat unit
composed of D-mannose, D-glucose, and L-rhamnose and is not

thought to undergo any modifications after polymerization (Byrd
et al., 2009). The exact structure of PEL is currently unknown, but

it is predicted to be glucose rich (Friedman and Kolter, 2004; Ma
et al., 2012). Colvin and colleagues have demonstrated that the
PEL biosynthesis protein PelA has deacetylase activity in vitro

and when residues predicted to be required for deacetylation
were mutated, this activity was lost. Introduction of these PelA

deacetylation mutations in P. aeruginosa PA14, which uses PEL
as the primary EPS, led to a biofilm deficient phenotype and a

lack of material recognizable by PEL-reactive antisera (Table 1;
Colvin et al., 2013). Given the localization of PelA to the

periplasm (Colvin et al., 2013), deacetylation of PEL following
polymerization may be necessary for biofilm formation, and

suggests that an acetylated sugar is likely a feature of the PEL.
Our current understanding of PEL biosynthesis is limited, and

it remains to be determined whether PelA acts directly on PEL,
the degree of PEL deacetylation by PelA, and what effect this

modification has on virulence.

Cepacian

The Bcc is a group of at least 17 different bacterial species,
including beneficial environmental isolates, as well as

rhizosphere parasites, and plant and animal pathogens
(Mahenthiralingam et al., 2002; Vanlaere et al., 2009). The

Bcc have become increasingly important as opportunistic
pathogens of immunocompromised individuals and those

with CF (Mahenthiralingam et al., 2005). In CF patients, Bcc
infections occasionally develop into a form of necrotising

pneumonia, known as cepacia syndrome, which often leads to
patient death (Govan and Deretic, 1996). The majority of both

clinical and environmental Bcc isolates produce the EPS cepacian
(Ferreira et al., 2010); a known virulence factor that contributes

significantly to bacterial pathogenicity. Cepacian is composed of
glucose, GlcA, mannose, rhamnose, and galactose in a 1:1:1:1:3

ratio and is decorated with acetyl groups (Figure 4; Cérantola
et al., 1999; Cescutti et al., 2000; Linker et al., 2001). The acetyl

groups can be found at 12 different locations on the polymer
repeating unit with an average of three acetyl groups present

per repeat unit (Cescutti et al., 2011). The genes responsible for
cepacian acetylation were discovered by Ferreira and colleagues,

and include the putative acetyltransferases bceO, bceS, and bceU
(Ferreira et al., 2010). Mutations in bceS produced cepacian with
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FIGURE 4 | Cepacian modifications and biosynthetic apparatus. Not to

scale. (A) Cepacian may be O-acetylated at various locations by BceOSU,

leading to a number of unique combinations with an average of three acetyls per

repeat unit. (B) Cepacian repeat units are synthesized in the cytoplasm on an

isoprenoid lipid carrier (black circle/gray circle), initiated by BceB and continued

by glycosyltransferases BceGHJKR. BceGHR are cytoplasmic, while BceJK are

integral membrane proteins. BceOSU are predicted to be membrane embedded

acetyltransferases that decorate the repeat unit with acetyl groups. BceQ

translocates the repeat units across the inner membrane, followed by addition

of repeat units to the growing polymer at the periplasmic side, which is

dependent on BceI. Polymerization and export requires BceF, a tyrosine kinase.

BceD is a protein tyrosine phosphatase which dephosphorylates BceF. BceE is

the channel for polymer export across the OM. BceP is putatively involved in

polysaccharide degradation, though its role and localization is unkonwn. ATP,

adenosine-5′ -triphosphate; ADP, adenosine-5′-diphosphate; YP,

phosphorylated tyrosine residue; Pi, inorganic phosphate. Green hexagon,

galactose; orange hexagon, GlcA; light blue hexagon, mannose; maroon

hexagon, rhamnose; blue hexagon, glucose.

approximately 20% fewer acetyl groups, implicating this protein
in partial cepacian acetylation (Ferreira et al., 2010). The roles of

bceO and bceU in cepacian acetylation have not been evaluated,
nor has a triple mutant been generated to discern the fitness of
an acetyl-deficient cepacian producer.

An enzyme with lyase activity that specifically degrades
cepacian has been isolated from culture supernatants of

Bacillus sp. This enzyme has significantly higher activity against
the chemically deacetylated polymer than native cepacian,

implicating acetylation in protective mechanisms (Table 2;
Cescutti et al., 2006). As with alginate acetylation, cepacian

acetylation may have evolved as a defensive mechanism to
prevent polymer cleavage in the presence of competitive

organisms. Furthermore, like alginate, cepacian acetyl groups
have been shown to provide protection against ROS, specifically

hypochlorite (Cuzzi et al., 2012). Acetyl groups were the first
structural features to undergo damage following hypochlorite

treatment, which led to a loss of polymer-polymer interactions
and cepacian unfolding, increasing the susceptibility of the

cepacian backbone to hypochlorite degradation (Cuzzi et al.,
2012). Consequently, cepacian acetylation improves polymer
robustness to hypochlorite-mediated damage and increases

the amount of polymer reactive groups that could neutralize
hypochlorite prior to reaching the cellular surface. Further

study of cepacian producing Bcc pathogens is necessary to
determine, whether like alginate, there is a role for cepacian acetyl

modification in immune evasion.

Vibrio Polysaccharide (VPS)

Vibrio cholerae is a human pathogen that causes the diarrhoeal

disease cholera (Kaper et al., 1995; Faruque et al., 1998). This
bacterium is a natural inhabitant of aquatic ecosystems, where
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it forms biofilms on a variety of surfaces, including plankton,

plants, crustaceans, insects, and sediment (Huq et al., 1983, 1995;
Halpern et al., 2004; Broza et al., 2005). In areas where cholera

is endemic, V. cholerae has been shown to form suspended
biofilm-like aggregates in surface waters, however, when particles

>20 µm in diameter are removed from water sources, the
incidence of cholera can be reduced (Huq et al., 1996; Colwell

et al., 2003). Furthermore, it has been shown that the average
infectivity of the aggregate form of V. cholerae is significantly

higher than that of planktonic cells (Faruque et al., 2006),
and biofilm formation within aquatic ecosystems significantly

improves V. cholerae fitness and persistence (Matz et al., 2005).
A major component of the biofilm produced by V. cholerae is

an EPS called VPS. This polymer is thought to be produced
during infection and contributes to bacterial colonization and

survival (Yildiz and Schoolnik, 1999; Fong et al., 2010). The
chemical structure of VPS revealed a backbone containing
the unusual constituent GulNAcAGly: the amide formed from

2-acetamido-2-deoxy-L-guluronic acid and glycine (Figure 6;
Yildiz et al., 2014). Of the genes involved in VPS biosynthesis,

originally identified using a transposon mutagenesis screen
(Yildiz and Schoolnik, 1999), two putative acetyltransferases,

vpsG and vpsC, were identified (Fong et al., 2010). Deletion of
vpsG results in reduced biofilm formation and altered biofilm-

related phenotypes, as well as weak reactivity with VPS antisera,
suggesting that it may modify the polymer, perhaps through

acetylation (Table 1). In contrast, deletions of vpsC do not
affect biofilm formation or VPS production, suggesting that

vpsC is inactive, not expressed, or is performing some other
function in VPS biosynthesis besides polymermodification (Fong

et al., 2010). The chemical composition of VPS produced by
vpsG and vpsC mutants was not studied for alterations in

acetyl content. The presence of GulNAcA in VPS may be
the result of epimerization by the predicted GDP-mannose

dehydrogenase VpsB, a conversion similar to the ManA to
GulA epimerization catalyzed by AlgG in the biosynthesis of
alginate by P. aeruginosa (Wolfram et al., 2014; Yildiz et al.,

2014). The unusual glycine modification in VPS requires further
exploration, as the enzyme responsible for its addition is presently

unknown. Given the important role of VPS in V. cholerae
pathogenesis and environmental persistence, and the recent

determination of its precise chemical structure, we anticipate that
the proteins involved in VPS modification will soon be identified

and characterized.

Glycosaminoglycans (GAGs)

GAGs are a group of polymers that are typically composed of

a disaccharide repeat unit containing an amino sugar and a
hexuronic acid (Laurent and Fraser, 1992; Esko and Lindahl,

2001; DeAngelis, 2002; Silbert and Sugumaran, 2002). GAGs
were initially thought to exist only in the animal kingdom, where

they serve essential biological functions, however, there has
been an emergence of GAG-like polymers amongst prokaryotes

(Vann et al., 1981; Rodriguez et al., 1988; DeAngelis et al.,
2002). Prokaryotic GAGs are typically less complex than their

eukaryotic counterparts due to an absence of modifications such

as sulfation (Raedts et al., 2011). HS, for example, is an essential
GAG in animals and is composed of repeating disaccharides

of GlcA and GlcNAc (Kjellén and Lindahl, 1991). HS can be
modified post-polymerization by a glucuronyl C5-epimerase,

which converts GlcA to IdoA, as well as by the addition of sulfate
groups to GlcNAc or IdoA moieties. Mouse embryos lacking

the GlcA C5-epimerase display a lethal phenotype characterized
by skeletal malformations and lung defects (Li et al., 2003),

highlighting the importance of HS epimerization in murine
development. Interestingly, the K5 antigen of E. coli O10:K5:H4

has an identical structure to heparosan, the unsulfated, non-
epimerized backbone structure of HS (Vann et al., 1981). K5

heparosan is a form of molecular camouflage, as it imparts
low immunogenicity to the bacterium in humans and hence

increased pathogenicity (Vann et al., 1981).
Although sulfation has not yet been observed amongst

prokaryotic GAGs, IdoA residues have been found to be

constituents of bacterial GAGs (Figure 6). The identification
of the bacteria glucuronyl C5-epimerase has proven elusive

(Raedts et al., 2011), however, an enzyme (RED65_08024) from
the marine bacterium Bermanella marisrubi that shares 37%

sequence similarity with the human glucuronyl C5-epimerase
has been characterized and shown in vitro to convert GlcA

to IdoA in de-sulfated mouse HS (Raedts et al., 2013). This
glucuronyl C5-epimerase represents the first prokaryotic protein

capable of generating IdoA residues, and is the only identified
epimerase that can function on bacterial polysaccharides post-

polymerization, besides AlgG and AlgE1-7. Unfortunately, the
EPS produced by B. marisrubi has not been characterized, so

its target remains unknown. Nevertheless, the ability of bacteria
to more closely replicate the structures of essential human

polysaccharides by expression of homologous modification
enzymes likely serves as a mechanism to mask their presence

from the host immune system (Cress et al., 2014).

Poly-β-1,6-N-Acetyl-glucosamine
(PNAG)

Poly-β-1,6-N-acetyl-glucosamine is a poly-GlcNAc polymer

that is produced by a wide range of Gram-positive and
Gram-negative bacterial pathogens, including Staphylococcus

epidermidis, Staphylococcus aureus, Escherichia coli, Yersinia
pestis, Bordetella sp., Acinetobacter baumanii, Actinobacillus

pleuropneumoniae, Burkholderia cepacia complex (Bcc), and
Aggregatibacter actinomycetemcomitans (Cramton et al., 1999;

Vuong et al., 2004b; Wang et al., 2004; Izano et al., 2007,
2008; Parise et al., 2007; Bobrov et al., 2008; Choi et al., 2009).

These organisms are responsible for a wide spectrum of diseases,
including but not limited to, hospital acquired infections, toxic

shock syndrome, plague, and whooping cough. Depending on
the source or organism in question, PNAG may also be referred

to as PGA (polyglucosamine, in Gram-negative bacteria), PIA
(in Gram-positive bacteria), poly-NAG, hms+ (in Y. pestis),

or BPS (Bordetella polysaccharide, in Bordetella sp.). Given the
differences in PNAG modifications between Gram-positive and
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Gram-negative bacteria, as described below, we will use PGA and

PIA to refer to PNAG polymer produced by Gram-negative and
Gram-positive organisms, respectively.

Initially S. epidermidis was thought to produce several
different polymers, but the discovery of the icaADBC operon

(Heilmann et al., 1996a,b; Gerke et al., 1998) revealed that
only a single polymer, PIA, was produced (Tojo et al., 1988;

Christensen et al., 1990; Heilmann et al., 1996a; Mack et al.,
1996; McKenney et al., 1998). PIA is a partially deacetylated

β-1,6-GlcNAc polymer. In S. epidermidis and S. aureus 15–
20% of the N-acetyls are removed by the extracellular, cell-

surface associated polysaccharide deacetylase IcaB (Table 1;
Figure 5; Vuong et al., 2004a; Cerca et al., 2007). In addition

to deacetylation, approximately 6 and 10% of GlcNAc residues

in S epidermidis and S. aureus, respectively, are O-succinylated

(Joyce et al., 2003; Sadovskaya et al., 2005). This modification is
thought to be performed by themembrane localized protein, IcaC

(Atkin et al., 2014). Interestingly, a mechanism of phase variation,
where bacteria modulate virulence phenotypes at the genome

level in a rapid on/off fashion, was noted in S. aureus wherein
slipped-strand mispairing led to inactivation of icaC (Brooks and

Jefferson, 2014). This phenotype confers a fitness advantage that
was not seen when the ica operon was deleted, which may be a

response to modulate PIA O-succinylation and thus decrease the
overall anionic charge of the polymer.

The production of PGA has been extensively characterized
in E. coli, where the pgaABCD operon encodes the proteins

necessary for its biosynthesis (Wang et al., 2004). In E. coli,

FIGURE 5 | The PNAG and PIA modifications and biosynthetic

apparatus. Not to scale. (A) PNAG polymers are partially deacetylated by

PgaB in Escherichia coli, or IcaB in Staphylococcal species. It has been

proposed that IcaC O-succinylates the polymer in certain Staphylococcal

species, however, the location of the succinyl groups and the order of

deacetylation/succinylation has not yet been determined. The proteins involved

in PNAG biosynthesis in E. coli (B), and PIA synthesis in Staphylococcal species

(C). PNAG (blue hexagon chain) is synthesized in the cytoplasm from the

nucleotide-sugar precursor UDP-GlcNAc (blue hexagons with green inverted

triangles). The polymer is transported across the inner membrane via PgaCD,

deacetylated (light blue hexagons) by PgaB in the periplasm, and then exported

through the PgaA porin. PIA is transported across the cytoplasmic membrane

by IcaAD, then partially deacetylated by IcaB in the extracellular space. PIA has

been proposed to be O-succinylated by IcaC (magenta star).
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FIGURE 6 | Exopolysaccharide modifications of VPS and Heparosan.

(A) VPS is produced by Vibrio cholerae O1 El Tor and contains an O-acetyl

group, likely added by VpsG. In addition the polymer has a glycine modification

and an N-acetyl group; the enzymes responsible for these modifications have

not been determined. VPS contains a GulA residue which is epimerized by an

unknown C5-epimerase. (B) Heparosan, a GAG composed of a disaccharide

repeating unit of GlcA and GlcNAc, produced by select bacteria such as the

urinary tract pathogen E. coli O10:K5:H4. A C5-epimerase introduces IdoA

residues. The proteins involved in, and mechanism of, biosynthesis of the above

EPS have not been fully resolved.

approximately 3–5% of N-acetyls are removed by the lipoprotein
PgaB (Wang et al., 2004; Itoh et al., 2008; Little et al., 2012). The

N-terminal domain of PgaB is homologous to IcaB in Gram-
positive bacteria but the protein is located on the inner leaflet of

the outer membrane. There is no IcaC ortholog in the pgaABCD
operon, which is consistent with an observed lack of O-succinyl

groups in PGA.
Partial deacetylation of PNAG by both IcaB and PgaB is

important for a variety of biofilm-associated phenotypes in

S. epidermidis, S. aureus, and E. coli. Deletion of icaB in
S. epidermidis led to the production of fully acetylated PIA,

suggesting that IcaB is not necessary for polymer production
(Vuong et al., 2004a). However, the fully acetylated polymer

was not retained at the cellular surface and was shed into the
culture media, which led to deficiencies in biofilm formation

and surface attachment (Table 2). The lack of deacetylation
led to a loss of cationic charge in the polymer, which may

be essential for interactions with the anionic cell surface
of S. epidermidis (Vuong et al., 2004a). Furthermore, icaB-

deficient mutants of S. epidermidis were more susceptible to
human cationic antimicrobial peptides and phagocytosis by

neutrophils, and were unable to persist in a mouse model
of device-related infections (Vuong et al., 2004a). Deletion of

icaB in S. aureus produced similar phenotypes (Cerca et al.,
2007). Intriguingly, the production of wall teichoic acids,

the predominant anionic component of the Gram-positive
bacterial envelope, was dispensable for adherence of PIA to

the cell surface of S. aureus (Vergara-Irigaray et al., 2008),
suggesting that other less prevalent anionic species mediate this
interaction.

In contrast to IcaB, inactivation of PgaB in E. coli prevented
polymer export, suggesting that partial deacetylation is necessary

for export through the predicted outer membrane porin PgaA
(Itoh et al., 2008). This is in line with findings that suggest

conformational changes in the C-terminal domain of PgaB, upon
binding of deacetylated PNAG, assist in targeting PNAG for

export (Little et al., 2014b). Deacetylation has also been studied
in Y. pestis, where a PNAG-like polymer is thought to mediate

biofilm formation. Biofilm formation in Y. pestis is crucial for

its zoonotic transmission (Jarrett et al., 2004). In the flea, the
proventriculus, a feeding tube covered in spines that connects the

midgut to the esophagus, provides a platform for the adhesion
of Y. pestis aggregates. Subsequent colonization impedes blood

passage and leads to transposition of Y. pestis from flea to
mammal when a flea attempts excessive feeding due to a partial

or completely blocked proventriculus (Jarrett et al., 2004). The
hmsHFRS operon in Y. pestis is orthologous to the pgaABCD
operon, where HmsF is the outer membrane localized deacetylase

with structural similarity to PgaB (Forman et al., 2006). Mutation
or deletion of hmsF led to a deficiency in biofilm formation.

This suggests HmsF in Y. pestis may be analogous to PgaB in
E. coli in terms of de-N-acetylation activity and importance for

polysaccharide export and biofilm formation.
While PNAG production has been studied primarily in

S. aureus, S. epidermidis, and E. coli, there are a multitude of
additional pathogenic bacteria, fungi, and protozoans that may

produce this polymer (Cywes-Bentley et al., 2013). PNAG could
represent the first example of an EPS that is broadly utilized by

pathogenic organisms as a mechanism to improve fitness in the
environment or during infection.

Insights from Modification of Other
Microbial Polysaccharides

The implications of EPS modifications in pathogenic bacteria

have been studied to some extent, particularly in alginate and
PNAG producing bacteria (Figure 2; Table 2). However, the

breadth of our knowledge in this field remains limited. Despite
this, comparable modifications found on LPS and CPSs have

been studied extensively in an effort to identify vaccine targets,
and can be used for comparison purposes to generate new

hypotheses regarding EPS modifications (Cody et al., 2003; Pinto
and Berti, 2014). In particular, the study of polysaccharide acetyl

modifications has clarified their role in mediating a variety of
survival mechanisms.

Many of the protective benefits of EPS acetyl modifications
described above have been noted for other bacterial pathogens.
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For instance, in Haemophilus influenzae, an opportunistic

pathogen of the upper respiratory tract, acetylation of LPS
by the acetyltransferase OafA leads to increased resistance to

complement-mediated killing by human serum (Fox et al.,
2005). Similarly, in S. aureus, the acetyltransferase Cap5H, which

is responsible for the O-acetylation of type 5 CPS, confers
protection against opsonophagocytic killing and improves

propagation in a murine model of infection (Bhasin et al.,
1998). Type 5 CPS producers also exhibit increased survival

rates in murine models of bacteremia and renal abscess
formation and resistance to killing in whole mouse blood

and opsonophagocytic assays, in comparison to producers of
the structurally similar type 8 CPS which have reduced levels

of N-acetylation (Watts et al., 2005). Beyond the prokaryotic
domain, acetyl modifications are also incorporated into the

CPS of the pathogenic fungus Cryptococcus neoformans to
evade complement activation (Fujihara et al., 1997), decrease
the efficiency of capsule clearance by the host (Kozel et al.,

2003), and inhibit neutrophil migration (Ellerbroek et al., 2004)
during cryptococcosis. An excellent example of the benefits of

polysaccharide acetyl modifications comes from a survey of
clinical isolates of Streptococcus pneumoniae and E. coliK1, which

found that the bacteria expressing acetyl-decorated polymers
were more virulent and invasive than those that expressed

polymers lacking the modification (Frasa et al., 1993; Melin
et al., 2010). Therefore, the immunomodulatory characteristics

of acetyl modifications are utilized by a wide range of pathogenic
organisms and likely represent a general mechanism for survival

and proliferation within the host.
The above notion is firmly supported by studies of serotype

variation within the context of CPS biosynthesis. In Streptococcus
pneumoniae, a causative agent of meningitis, bacteremia, and

pneumonia, there are more than 90 different capsule serotypes
with unique carbohydrate structures and biosynthetic loci.

This has evolved, in part, as a mechanism to overcome
serotype-specific host mechanisms of adaptive immunity that can
efficiently clear infections. In some serotypes, such as 9V/9A,

11A/11E, and 15B/15C, the CPS structures differ only in the
degree of O-acetylation (Jansson et al., 1987; Rutherford et al.,

1991; Zartler et al., 2009). Mechanisms within S. pneumoniae
have been revealed that allow for serotype switching during

infection as a means to actively evade the host immune response.
In the case of serotypes 9V and 11A, inactivating mutations in the

acetyltransferase-encoding gene wceJ led to expression of non-
acetylated 9A and 11E capsule (Calix andNahm, 2010; Calix et al.,

2011). Moreover, certain wceJ mutations only partially inhibit
acetyltransferase activity, which have led to intermediate 9V/9A

and 11A/11E phenotypes (Calix et al., 2011, 2014). In the case
of 15B/15C serotype switching, the process is reversible due to

slipped-strand mispairing of the acetyltransferase-encoding gene
wciZ (van Selm et al., 2003). Regardless of the mechanism, this

mid-infection serotype variation provides significant protective
advantages to S. pneumoniae in terms of antibody evasion. For

example, antibodies generated against O-acetylated serotype 15B
were unreactive with non-acetylated 15C polymer (Rajam et al.,

2007), and serotype 9V specific antibodies exhibited reduced
specificity for 9A polymer (Calix et al., 2012). Furthermore,

10–20% of individuals receiving a S. pneumoniae vaccine targeted

against the 9V polysaccharide did not generate antibodies
targeting serotype 9A (McNeely et al., 1998). In addition, the

ability of acetyl groups to mask protective epitopes of bacterial
polysaccharides has been noted for the Vi antigen of Salmonella

typhi (Szu et al., 1991), Salmonella typhimurium O-antigen (Kim
and Slauch, 1999) and Neisseria meningitidis serogroup A, C,

and Y CPS (Michon et al., 2000; Berry et al., 2002; Fusco et al.,
2007). Therefore, through modulation of acetyl groups on the

polymer, a wide variety of pathogenic bacteria are able to evade
host-mediated mechanisms of adaptive immunity.

The above examples illustrate scenarios in which acetyl
modification is an all-or-nothing response to adaptive immunity,

however, in the case of GBS, acetyl levels on its sialic acid CPS
can be fine-tuned by the actions of the acetyltransferase NeuD

and the acetylesterase NeuA (Lewis et al., 2006, 2007). Different
degrees ofO-acetylation in GBS CPS have been linked to different
stages of invasion and infection. For instance, it is thought

that during the asymptomatic stages of initial colonization and
persistence in the human gastrointestinal and vaginal tracts, GBS

produces an extensively acetylated form of CPS to protect against
degradation by sialidases introduced by competing microbes

in these environments (Weiman et al., 2009). However, highly
acetylated CPS renders GBS more susceptible to killing by

neutrophils and reduces virulence during stages of opportunistic
infections (Weiman et al., 2010). Therefore, during infection

it is thought that GBS produces a sparsely acetylated form
of CPS that improves resistance to neutrophil-mediated killing

through reduced neutrophil activation and production of pro-
inflammatory cytokines, and enhances survival in the murine

bladder (Kline et al., 2011). Interestingly, this variant of CPS
is also able to promote the persistence of uropathogenic E. coli

in co-culture urinary tract infection models (Kline et al.,
2012). Therefore, in certain pathogens, specific degrees of

polysaccharide acetylation allow for adaptation during different
stages of colonization and infection.

The above examples of acetyl modulation in LPS and

CPS not only reinforce the importance of EPS acetylation
for pathogenicity and persistence, but also provide additional

perspectives in considering the variability of this modification
observed in alginate and cepacian. For instance, cepacian has

on average three acetyl groups per repeat unit, each located on
one of 12 potential positions (Cescutti et al., 2011). Therefore,

each cepacian repeat unit can have one or more acetyl groups
at any of 12 positions, generating an overwhelming number of

unique acetyl decoration patterns. Given the importance of acetyl
groups in forming or masking antibody epitopes, this level of

diversity would make the generation of protective antibodies or
the development of an effective vaccine extraordinarily difficult.

Furthermore, production of such a heterogeneous polymer likely
requires an arsenal of regulatory factors and/or acetyltransferases,

very few of which have been discovered in the context of cepacian
biosynthesis (Ferreira et al., 2011). Similar to S. pneumoniae

and N. meningitidis CPS production, members of the Bcc may
modulate the presentation of cepacian acetyl groups through an

as yet unknown mechanism as a means to evade host adaptive
immune mechanisms.
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The degree of acetylation and epimerization of alginate has

long been known to differ depending on the organism and
strain, as well as the composition of the growth medium (Day,

1988; Marty et al., 1992; Peña et al., 2006). This reflects, in
part, a need to adapt to the specific conditions imposed by

different nutritional media, and may mirror other features of the
environment from which the organism was isolated. In line with

this concept, additional promoters within the alginate operon
have been identified upstream of algG and algIJF in P. aeruginosa,

suggesting that there may be modes of regulating the levels
of these modifying enzymes independently of the rest of the

alginate biosynthesis machinery (Paletta and Ohman, 2012). The
upregulation ofO-acetylation machinery would not only increase

alginate acetyl content, but would also decrease the availability
of substrate for AlgG and thus decrease epimerization levels.

Conversely, upregulation of algG would increase the number
of G-residues that cannot act as substrates for O-acetylation.
Therefore, there is the potential for a complicated regulatory

interplay between these processes, much like the reciprocal
O-acetylation/de-O-acetylation of GBS CPS that allows for fine-

tuning of acetyl levels at different stages of infection.
The degree of PNAG de-N-acetylation is not known to vary

considerably, and the exact processes involved in VPS acetylation
and epimerization, PIA O-succinylation, PEL deacetylation

and GAG epimerization are poorly understood. However, the
ability to perform these types of modifications in a random

fashion may increase the difficulty in generating antibodies
that recognize specific epitopes on these EPS, either during

host adaptive immune responses or in vaccine development
(Gening et al., 2010). As such, EPS modifications are capable of

imparting beneficial characteristics upon polymers that improve
persistence, survival, or evasion of the immune response in their

cognate bacteria regardless of their frequency, mechanism of
addition to the polymer, or chemical properties.

Reflection and Future Perspectives

Identifying and characterizing biofilm EPS is difficult and

there are a number of hurdles that need to be overcome.
One of the initial challenges involves culturing biofilm-forming

bacteria. Identification of an appropriate medium and growth
conditions is required to study EPS production of certain

microorganisms in the laboratory (Stewart, 2012). Of those
that can be cultured, it is imperative to use similar growth

conditions when making experimental comparisons in the
literature, as variations can affect the presence or degree of

different polysaccharide modifications. With alginate, varying
levels of acetylation and epimerization are observed depending

on the culture conditions, as well as varying biofilm phenotypes
of identical P. aeruginosa strains (Pier et al., 2001; Tielen et al.,

2005). Additionally, conflicting studies on the levels of pyruvyl
and O-acetyl modifications to xanthan gum were attributed to

different media conditions (Bradshaw et al., 1983). Different
media or culturing equipment may also affect experiments such

as surface attachment assays. For example, different types of
plastics were found to affect PIA-mediated surface attachment

in microtitre plates (Maira-Litràn et al., 2004). This suggests

that during preliminary analyses, multiple types of media and
different materials including plastics and glass should be tested to

ensure the validity of observed biofilm phenotypes. Variations in
the abundance or type of modifications on a given polymer under

different experimental conditions can be difficult to quantify;
however, this variation likely reflects the ability of different

bacteria to adapt to unique situations. Many EPS-producing
bacteria naturally exist in diverse environments and are also

able to infect various hosts and survive in specific tissues.
Additionally, during the course of infection, the environment

within the host will change as immune mechanisms attempt to
eradicate the bacteria and the surrounding tissue suffers damage.

Variations in the degree of modifications under different growth
conditions or stressors may therefore provide valuable insight

into bacterial adaptation.
The majority of biofilm studies focusing on EPS modifications

have been performed using in vitro model systems with mono-

species cultures. However, the majority of biofilms from chronic
infections differ significantly from those studied in the laboratory

(Bjarnsholt et al., 2013a). One significant issue lies in the use of
abiotic surfaces, such as cover slides or the plastic surfaces of

96-well plates for the growth and study of biofilms. While some
systems can closely approximate the conditions encountered in

vivo, such as flow cell models for catheter associated infections,
biofilms from infections like CF pneumonia or those encountered

in epidermal wounds are thought to involve attachment to host
cells or host-derived molecules (Bjarnsholt et al., 2009). In these

instances it is challenging to extrapolate results obtained in
vitro to chronic biofilm infections, as modifications that appear

important for attachment to abiotic surfaces may be disposable
for attachment to host tissues, or vice versa (Leuck et al., 2014).

Furthermore, many biofilms encountered in the clinic are not
comprised of a single species of bacteria, but rather contain

mixtures that can include pathogenic or non-pathogenic bacteria
of host or environmental origin, as well as fungi (Wargo and
Hogan, 2006; Elias and Banin, 2012). These types of microbial

interactions have been studied extensively in the CF lung,
where P. aeruginosa has been shown to interact with the Bcc

opportunistic pathogens B. cepacia and B. cenocepacia (Chattoraj
et al., 2010; Schwab et al., 2014), as well as the pathogenic

fungus Aspergillus fumigatus (Chotirmall and McElvaney, 2014).
In the case of mixed P. aeruginosa and B. cenocepacia biofilms,

the production of alginate by P. aeruginosa has been shown
to promote B. cenocepacia persistence in a mouse model of

CF (Chattoraj et al., 2010). This highlights how the production
of EPS in mixed species biofilms can have implications that

extend beyond the source organism, and suggests that data
obtained regarding the presence or absence of EPS modifications

in monospecies biofilms in vitromay have additional significance
in multispecies biofilms.

Following bacterial culturing, difficulties in polysaccharide
isolation due to the compositional complexity of the biofilm

matrix or polymer insolubility may necessitate extensive
optimization of purification protocols. Typically, separation

of the polymer from the cell surface may require the use
of procedures that lyse the associated bacteria, introducing
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additional contaminants (Bales et al., 2013). Therefore, it is

preferable if possible to isolate EPS from culture supernatants;
however, such polymers may exhibit different properties from

their cell-associated counterparts leading to discrepant analysis
(Maira-Litràn et al., 2002). In either case, once the polymer has

been obtained from the cell surface or supernatant, contaminants
such as DNA, RNA and protein must be removed. This can be

achieved through enzymatic digestion or chemical precipitation
of contaminants, or precipitation of EPS. Contaminating

carbohydrates can be removed by chromatographic techniques
such as size exclusion or ion exchange (Bales et al., 2013).

In some cases, purification of EPS leads to insufficient yields
for subsequent compositional or structural analysis, often as a

result of polymer insolubility. As a result, harsher conditions
may need to be employed to solubilize the polymer, including

the use of strong acids or bases. During initial structural
studies of PIA, strong alkaline purification conditions led to the
incorrect identification of N-succinyl groups on the polymer

(McKenney et al., 1999; Maira-Litràn et al., 2002), which was
actually a degradation product of glucosamine monosaccharides

(Sadovskaya et al., 2005). Additionally, phosphates have been
reported in the monosaccharide composition of polymers, which

are occasionally remnants from purification buffers, or teichoic
acids in the case of Gram-positive bacteria (Sadovskaya et al.,

2005). Harsher conditions can also partially or completely
remove functional groups, such as acetyls, or even degrade

the polymer, leading to incorrect calculations of molecular
weight. The EPS described in this review are the select few

whose structures have been determined, or for which we have

biochemical and genetic data supporting the importance of

the polysaccharide modifications. With improved culturing,
purification and structural determination procedures, additional

EPS will be discovered and their modifications characterized.
We will then be able to formulate trends between different

types of modifications and their effect on biofilm formation,
pathogenicity, and virulence. Furthermore, the details regarding

the genes and proteins involved in the addition of polysaccharide
modifications remain largely unavailable. Characterization of

these genes and proteins will likely provide details on how the
levels and types of modifications are regulated under different

conditions. Such findings will have a significant impact on
our understanding of bacterial pathogenicity, and may reveal

novel drug targets aimed at inhibiting the biosynthesis of these
important virulence factors.
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