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The Diels-Alder reaction is a [4+2] cycloaddition reaction in which a cyclohexene ring is 

formed between a 1,3-diene and an electron-deficient alkene via a single pericyclic 

transition state.1 This reaction has been proposed as a key transformation in the biosynthesis 

of many cyclohexene-containing secondary metabolites.2–5 However, only four purified 

enzymes have thus far been implicated in biotransformations that are consistent with a 

Diels-Alder reaction, namely solanapyrone synthase,6 LovB,7,8 macrophomate synthase,

9,10 and riboflavin synthease11,12. Although the stereochemical outcomes of these 

reactions indicate that the product formation could be enzyme-guided in each case, these 

enzymes typically demonstrate more than one catalytic activity leaving their specific 

influence on the cycloaddition step uncertain. In our studies of the biosynthesis of spinosyn 

A, a tetracyclic polyketide-derived insecticide from Saccharopolyspora spinosa,13,14 we 

identified a cyclase, SpnF, that catalyzes a transannular [4+2] cycloaddition to form the 

cyclohexene ring in spinosyn A. Kinetic analysis demonstrates that SpnF specifically 

accelerates the ring formation reaction with an estimated 500-fold rate enhancement 

(kcat,spnF versus knon). A second enzyme, SpnL, was also identified as responsible for the 

final cross-bridging step that completes the tetracyclic core of spinosyn A in a manner 

consistent with a Rauhut-Currier reaction15. This work is significant because SpnF 

represents the first example characterized in vitro of a stand-alone enzyme solely committed 

to the catalysis of a [4+2] cycloaddition reaction. In addition, the mode of formation of the 

complex perhydro-as-indacene moiety in spinosyn A is now fully established.
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Spinosyn A (1), an active ingredient of several highly effective and environmentally benign 

commercial insecticides, has a complex aglycone structure comprised of a perhydro-as-

indacene moiety fused to a 12-membered macrolactone.13,14 How this tetracyclic ring 

system is biosynthesized has been a subject of much speculation.16–18 Attention has largely 

focused on the construction of the cyclohexene ring due to the potential involvement of an 

enzyme that catalyzes the [4+2] cycloaddition, which if concerted would represent a so-

called "Diels-Alderase." Four genes in the spinosyn A biosynthetic gene cluster of S. 

spinosa – spnF, spnJ, spnL, and spnM – were proposed to convert product (2) of the 

polyketide synthase (PKS) to the tetracyclic aglycone (4) (see Figure 1).16 The gene product 

of spnJ, which is a flavin-dependent dehydrogenase, was recently demonstrated to catalyze 

oxidation of the 15-OH of 2 to form the keto-intermediate 3.19 However, the functions of 

the enzymes encoded by the remaining three genes, spnF, spnL, and spnM, which show 

significant sequence similarity to lipases (SpnM) and S-adenosyl-L-methionine (SAM)-

dependent methyltransferases (SpnF and SpnL),16 remain elusive.

To investigate the functions of SpnF, SpnL, and SpnM, the corresponding genes were 

heterologously overexpressed in Escherichia coli BL21(DE3)* and their products purified 

as N-terminal His6-tagged proteins (>95% purity). Each of the purified enzymes was tested 

for activity with 3. As shown in Figure 2A, neither SpnF nor SpnL processes 3. In contrast, 

complete conversion of 3 to a new product was observed after a 2-hr incubation with SpnM. 

NMR and MS analysis of this new product (8) revealed a 15,6,5-tricyclic skeleton. Further 

investigation of the reaction time course led to the discovery of a transient intermediate (Fig. 

2D, orange peak), which was identified by spectral analysis as the monocyclic macrolactone 

5.

These findings suggested that the SpnM-catalyzed conversion of 3 to 8 might be a two-step 

process involving 1,4-dehydration of 3 followed by a transannular [4+2] cycloaddition 

between the Δ11,12-alkene and the conjugated Δ4,5,Δ6,7-diene of intermediate 5 to form the 

cyclohexene moiety in 8 (Fig. 4). To investigate whether SpnM is indeed a cyclase of dual 

function catalyzing both the dehydration and cyclization steps, the dependence of the rate of 

each step on the concentration of SpnM was determined. In this experiment the formation 

and consumption of 5, which respectively reflect the dehydration and cyclization steps, was 

monitored by HPLC as a function of time.

As shown in Figure 3A, rate enhancement of the dehydration step was observed with the 

increase in SpnM concentration, while the rate of cyclization was unaffected. The full time 

courses of the formation and decay of 5 were analyzed using numerically integrated coupled 

rate equations based on different kinetic models (see SI Section S5).20 The observed data 

was fit best to the integrated rate equations 1a and 1b, which model Michaelis-Menten 

kinetics for the dehydration step (VSpnM and KSpnM) and first order kinetics (knon) for the 

cyclization step. Correlation of the fitted parameters versus the concentration of SpnM (Fig. 

3B) reveals a significant dependence of VSpnM, but not KSpnM or knon, on SpnM 

concentration. This analysis indicates that SpnM functions only as a dehydratase, and its 

product (5) can cyclize nonenzymatically to 8 with a first order rate constant of ~ 0.03 

min−1.
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Having established that SpnM functions as a dehydratase, whereas the [4+2] cycloaddition 

can proceed nonenzymatically, we next considered the possible involvement of the two 

remaining gene products, SpnF and SpnL, in the final C–C bond formation between C-3 and 

C-14. Surprisingly, incubation of SpnF or SpnL with 8, which was generated in situ from 3 
in the presence of SpnM, did not produce the aglycone 4 (Fig. 2B). However, when SpnF 

was added to the assay mixture, a change in the product distribution was noted including 

rapid disappearance of 5 (Fig. 2B, trace (c)). As shown in Figure 2E, the consumption of 5 
with concomitant formation of a product having a retention time consistent with 8 was 

completed in 20 min in the presence of 10 µM SpnF, instead of requiring more than 2 hr in 

its absence (Fig. 2D). The structure of this product was established to be 8 by NMR analysis. 

Additional controls including examining the effects of denatured SpnF as well as mutated 

SpnF on the rate of cyclization were also performed. In all cases only native (His6-tagged) 

SpnF lead to appreciably increased rates of cyclization (see SI Section S4.4). These results 

clearly indicate that SpnF is responsible for the observed rate enhancement of the cyclization 

of 5 to 8.

To quantify the effect of SpnF on the rate of the cyclization step, the production and 

consumption of 5 was again monitored by HPLC, this time as a function of SpnF 

concentration while keeping that of SpnM fixed. As shown in Figure 3C, the rate of 

conversion of 5 to 8 is clearly enhanced as the concentration of SpnF increases. The data 

was fit best using the coupled rate equations 2a and 2b, where the cyclization event is 

modeled as the sum of a first order and a Michaelis-Menten process. In these fits all 

parameters including the initial concentration of 3 were allowed to float except for knon, 

which was fixed at the fitted value obtained in the absence of SpnF. Correlation of the fitted 

parameters with SpnF concentration indicates a significant dependence of VSpnF on SpnF 

concentration (Fig. 3D), which is not true for the VSpnM parameter. These results firmly 

establish that SpnF is a cyclase catalyzing the conversion of 5 to 8 with an apparent kcat of 

14 ± 1.6 min−1 (± s.e.) for an estimated rate enhancement (kcat,spnF versus knon) of ~ 500-

fold.

This result left spnL as the only gene without an assigned function, and it was hypothesized 

that SpnL plays a role in the transannular cyclization reaction between C-3 and C-14. 

However, the observed inability of SpnL to convert 8 to the anticipated product (4) (Fig. 2B, 

trace (b)) prompted us to reconsider the sequence of events of the proposed biosynthetic 

pathway in Figure 1. Previously, glycosylations had been thought to occur on the tetracyclic 

aglycone (4), because transfer of the rhamnose moiety from TDP-β-L-rhamnose (9) to 9-OH 

of 4 by the rhamnosyltransferase, SpnG, had been demonstrated.21,22 However, this 

observation did not necessarily rule out an alternative pathway in which rhamnosylation of 8 
precedes C-3/C-14 cross-bridging, because glycosyltransferases involved in the biosynthesis 

of secondary metabolites are known to be promiscuous with regard to their substrate 

specificity.23,24

To test this possibility, the ability of SpnG to accept 8 as a substrate was investigated. As 

shown in Figure 2C (trace b), incubation of 8 and 9 with SpnG resulted in the disappearance 

of 8 with the concomitant appearance of a new peak (retention time of 17 min). This new 

product was identified as 10 by NMR and MS analysis (Fig. 4). Upon addition of SpnL to 
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this reaction mixture, the peak at 17 min disappeared and a new peak appeared at 27 min 

(Fig. 2C, trace c). Both transformations were highly efficient. Identification of the new 

product as 13 was confirmed by high-resolution MS analysis and HPLC co-elution with an 

authentic sample of 13. These results strongly suggest that 10 rather than 8 is the biological 

substrate for SpnL, which catalyzes the final cyclization step to generate the perhydro-as-

indacene core.

The mechanisms by which SpnF and SpnL catalyze their respective cyclization reactions are 

a point of interest. The SpnF-catalyzed endo-mode syn-addition of an alkenyl to a dienyl 

functionality appears consistent with a Diels-Alder reaction; however, confirmation of this 

hypothesis will require demonstrating that the reaction progresses through a single pericyclic 

transition state such as 6. Therefore, a stepwise [4+2] cycloaddition mechanism, e.g., one 

involving a dipolar intermediate such as 7, cannot at present be ruled out. In contrast, the C–

C bond formation catalyzed by SpnL may involve a Rauhut-Currier mechanism15 consistent 

with the observation that 10 is susceptible toward nucleophilic addition by a thiol (see SI 

Section S3.10) forming a covalent adduct that may be structurally analogous to 11 or 12 (see 

Figure 4), though the specific site of attack remains unknown. While these mechanistic 

proposals are at present speculative, it is worth noting that Roush and coworkers were able 

to accomplish their non-enzymatic total synthesis of spinosyn A by exploiting both the 

transannular Diels-Alder and Rauhut-Currier reactions in an analogous fashion.25 This 

precedent in chemical synthesis certainly substantiates the feasibility of the mechanisms 

proposed for the SpnF- and SpnL-catalyzed reactions.

In summary, the biosynthetic pathway for spinosyn A is now fully established (Fig. 4), with 

the specific functions of SpnM as a dehydratase and SpnF as well as SpnL as the two 

cyclases in the cross-bridging steps biochemically determined. SpnF represents the first 

enzyme for which specific acceleration of a [4+2] cycloaddition reaction has been 

experimentally verified as its only known function. It stands in contrast to macrophomate 

synthase, for which evidence has been provided suggesting a tandem Michael-Aldol reaction 

mechanism,26,27 as well as the multifunctional solanapyrone synthase, LovB, and 

riboflavin synthase, which respectively participate in hydroxyl oxidation,5,6 polyketide 

synthesis,7,8 and hydride transfer,12 in addition to the [4+2] cycloaddition reactions, the 

concertedness of which have yet to be verified. For this reason, the SpnF reaction provides a 

unique system for detailed mechanistic investigation of enzyme-catalyzed [4+2] 

cycloadditions and the existence of a bona fide Diels-Alderase.

Method Summary

All proteins used in this work were overexpressed in E. coli BL21(DE3)* (Invitrogen, 

Carlsbad, CA) and purified by Ni-NTA (Qiagen, Valencia, CA) affinity chromatography. 

Specifically, SpnF was co-overexpressed with the chaperone protein pair, GroEL/ES, to 

improve the solubility. Because overexpression of the protein encoded by the originally 

assigned spnM gene16 failed to afford an active soluble protein, the gene sequence was re-

examined and revised to include 204 additional base pairs (Supplementary Fig. 2). 

Overexpression of the revised spnM gene produced an active enzyme with significantly 

improved protein yield. All enzyme reaction products (5, 8, 10, and 13) were extracted with 
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ethyl acetate or chloroform and purified using silica gel column chromatography or HPLC. 

Their structures were characterized by 1D- and 2D-NMR spectroscopy and/or high-

resolution mass spectrometry. In particular, the stereochemistry of 8 was assigned based on 

its 1H-1H NOESY spectrum. All substrate specificity and time course assays were run in 50 

mM Tris·HCl buffer (pH 8) at 30 °C. Reaction aliquots were quenched with an excess 

volume of ethanol after a given incubation time and centrifuged to remove protein. The 

supernatant was then analyzed by reverse phase HPLC with detection by UV absorbance at 

254 nm (Figure 2) or 280 nm (Figure 3). Time course assays also included p-

methoxyacetophenone as an internal standard to normalize the peak areas corresponding to 

5. Numerical integration of equations (1) and (2) employed the fourth order Runge-Kutta 

algorithm (Supplementary Ref. 9) following non-dimensionalization of substrate 

concentration. The resulting simulated progress curves were fit using steepest descent 

(Supplementary Ref. 10) directly to full time courses of normalized substrate concentration 

obtained via the HPLC discontinuous assay to provide the kinetic parameters and a 

concentration normalization factor. Further detail regarding experimental procedures as well 

as data fitting and analysis is described in the Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Proposed spinosyn biosynthetic pathway
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Figure 2. HPLC analysis showing the reactions catalyzed by SpnF, SpnL, and SpnM
A. Incubation of 2 mM 3 for 2 hr alone (a), and with either 1.25 µM SpnF (b), 1.25 µM 

SpnL (c), or 1.25 µM SpnM (d). B. Incubation of 2 mM 8 (generated in situ from 3) for 2 hr 

either alone (a), with 15 µM SpnL (b), or with 15 µM SpnF (c). Trace (d) is the authentic 

standard of 4. C. Incubation of 1 mM 8 for 2 hr either alone (a); with both 20 µM SpnG and 

1.5 mM 9 (b); or with 15 µM SpnL, 20 µM SpnG, and 1.5 mM 9 (c). Trace (d) is the 

authentic standard of 13. D. Time course of 2 mM 3 in the presence of 1.25 µM SpnM. E. 
Time course of 2 mM 3 in the presence of both 1.25 µM SpnM and 10 µM SpnF.
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Figure 3. Kinetic analysis demonstrating that SpnM and SpnF respectively catalyze the 
dehydration and cyclization steps of macrolactone 3
Formation and consumption of 5 was monitored by HPLC and the concentration ([5]) 
plotted versus time (A & C). Each reaction mixture initially contained 2 mM 3, and the 

indicated amounts of SpnM and SpnF. A. Variable SpnM with no SpnF and fits based on the 

rate equations (1). B. Fitted parameters VSpnM and knon versus [SpnM]. The measured 

turnover number for SpnM, kcat,SpnM, is 1020 ± 57 min−1 while the first order rate constant 

for nonenzymatic cyclization of 5, knon, is 0.0288 ± 0.00041 min−1. The apparent Michaelis 

constant for SpnM, KSpnM, is 380 ± 51 µM. C. Variable SpnF at a fixed concentration of 

SpnM and fits based on rate equations (2). D. Correlation of VSpnM and VSpnF versus [SpnF]. 

The turnover number for SpnF, kcat,SpnF, is 14 ± 1.6 min−1. The apparent Michaelis constant 
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for SpnF, KSpnF, which is independent of SpnF concentration, is 120 ± 46 µM. All values 

and error bars are ± s.e.
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Figure 4. The spinosyn aglycone biosynthetic pathway
SpnM catalyzes a dehydration reaction to convert 3 to 5, and SpnF subsequently catalyzes 

cyclization of 5 to afford 8. The resulting tricyclic macrolactone 8 is then modified with a 

rhamnose moiety at the C-9 hydroxyl group by SpnG rather than being converted directly to 

the aglycone 4 (see Scheme 1) as previously thought. SpnL completes the cross-bridging 

process by interlinking the C-3 and C-14 carbon centers of 10 to produce the tetracyclic 

nucleus (13) of spinosyn A.
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