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Abstract

Enzymes underpin physiological function and exhibit dysregulation in many disease-associated 

microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression 

for diagnostics, drug targeting, and drug release is tremendously promising. When combined with 

booming research in nanobiotechnology, enzyme-responsive nanomaterials for controlled drug 

release have achieved significant development and been studied as an important class of drug 

delivery devices in nanomedicine. In this review, we describe enzymes such as proteases, 

phospholipase and oxidoreductases that serve as delivery triggers. Subsequently, we explore 

recently developed enzyme-responsive nanomaterials with versatile applications for extracellular 

and intracellular drug delivery. We conclude by discussing future opportunities and challenges in 

this area.

1. Introduction

The advent of nanomaterials-based drug delivery systems has made a seminal impact to the 

field of drug delivery.1, 2 Therapeutics and diagnostic agents incorporated in versatile 

nanoscale particles composed of dynamic nanomaterials have been developed for the 

diagnosis and treatment of cancer,3 diabetes,4, 5 bacterial infections,6 etc. Well recognized 

advantages of nanoscale particles include sustained drug delivery,7 hydrophilic and 

hydrophobic multi-drug co-incorporation and programmed-delivery,8, 9 prolonged 

circulation time in vivo, the ability to be engineered with functionalized ligands10, 11 and 

stimuli-responsive controlled drug release.12, 13 Among myriads of successful applications, 

stimuli-responsive “smart” nanomaterials have emerged as especially promising materials in 

comparison to conventional nanoscale materials due to their bio-responsive physicochemical 

nature. For example, pH-responsive nanomaterials have been used to design sensitive nano-

systems for drug delivery in cancer therapy as they can stabilize the drug at physiological 

pH and release the drug when the pH trigger point is reached.14 Due to the lower pH values 
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in the tumor microenviroment compared to normal tissue, pH-responsive nanomaterials are 

triggered and release their cargoes (e.g. drugs and diagnostic agents) specifically at the 

tumor site, therefore reducing the unwanted side effects.15, 16 Other stimuli-triggered drug 

delivery systems have been exploited extensively in biomedical research which exhibit 

reversible or irreversible changes in chemical structures and/or physical properties in 

response to a specific stimulus such as temperature,17 redox,18 ionic strength,19 electric,20 

magnetic fields21 and enzyme activity22.

A developing arena in stimuli-responsive “smart” nanomaterials is the design of 

nanomaterials whose chemical structures and/or physical properties are responsive to the 

biocatalytic action of an enzyme.23 Enzymes play critical roles in all biological and 

metabolic processes and dysregulation of enzyme expression and activity underpins the 

pathology of many diseases. Dysregulated enzymes are promising biological triggers in 

therapeutics.24 Exploiting enzymes as a trigger has a number of advantages because most 

enzymes catalyze chemical reactions under mild conditions (low temperature, neutral pH, 

and buffered aqueous solutions), where many conventional chemical reactions fail.25, 26 

Furthermore, enzymes can also exhibit exceptional selectivity for their substrates, allowing 

for specific, sophisticated, biologically inspired chemical reactions.27

In the past years, a number of nanoscale materials have been employed for the design of 

enzyme-responsive drug delivery systems including polymer materials,28–30 

phospholipids31, 32 and inorganic materials.33 The integration of nanomaterials with 

enzymatic responses can endow the formulations with bio-specificity and selectivity, 

allowing for the promising applications in diverse fields. For example, active tumor-

targeting nanoparticles integrated with site-specific enzyme-triggered moieties can 

significantly achieve enhanced accumulation at the tumor site, reduced uptake by non-

targeted tissue, as well as site-specific controlled drug release without a compromise in 

targeting efficiency and specificity.34 The nanomaterials can be rendered enzyme-responsive 

by containing moieties in their main chain or side groups which can be cleaved by enzyme. 

For instance, self-assembled nanoparticles are often incorporated with enzyme-responsive 

linkers which can be recognized by the biocatalyst or transformed by the product of the 

enzymatic reaction, in order to program the nanomaterials to release their cargo with spatial 

and temporal control.35 In other cases, especially for inorganic nanosystems, particles can be 

modified with active-targeting ligands that are sensitive to a certain enzyme.36, 37 This 

approach can further broaden the design flexibility and scope of applications by endowing 

the nanoparticle with enzyme responsive properties when the nanomaterial itself is not 

responsive to enzyme.

In this review, the most recent advances in the use of enzyme-responsive nanomaterials for a 

board range of controlled drug delivery applications are presented. First, the typical enzymes 

that can modulate drug delivery or offer a target for triggering drug release are summarized. 

Next, various nanomaterials, including polymers, lipid and inorganic materials that act as 

carriers or matrices for enzymatic-response drug delivery are surveyed. The opportunities 

and challenges of clinical applications are also discussed.
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2. Typical enzymes for controlled drug delivery

In this section, several typical classes of enzymes that serve as the triggers in enzyme-

responsive controlled drug delivery are discussed. As summarized in Fig. 1, drugs can be 

triggered to release through a variety of enzymatic implementations. Drugs can be directly 

released from different nanocarriers via site-specific enzymatic cleavage. Loading of drugs 

into nanomaterials can be achieved through covalent attachment or physical encapsulation, 

involving cross-linked matrix, self-assembled system or caged porous structure. Drug 

carriers can also be activated by enzymes to expose the targeting ligand for the subsequent 

internalization into specific cells. Additionally, enzymes can facilitate the generation of 

specific products, such as acidic environment, promoting drug release from carriers.

2.1 Proteases

Proteases are known to be involved in many physiological processes such as tissue 

remodeling, wound healing and tumor invasion.38, 39 As many diseases are characterized by 

imbalances in the expression and activity of specific protease in the diseased tissue, protease 

overexpression could potentially be exploited to allow for selective activation of advanced 

drug delivery platforms. For example, Kang et al. synthesized peptide-grafted polymers 

(conjugates) that could activate gene expression in response to protein kinase or protease 

activity. Conjugates were able to preform cellular transfection in cultivated cells and also in 

an in vivo system.40 In the protease-responsive system, the peptide side chains were 

designed as a specific substrate of a target protease and could be phosphorylated with 

hyperactivated protease upon polyplex uptake by the target cancer cell (Fig. 2A). Results 

showed that mice (6/9) bearing xenograft tumors treated with peptide-grafted polymers 

exhibited luciferase expression while none of the six mice examined showed luciferase 

activity in normal subcutaneous tissue (Fig. 2B). Protein kinase Cα, including Caspase-3 

protease, cleaved a specific sequence allowing the cationic portion of the polyplex to release 

and allowed for the activation of transgene transcription. In another case, Law et al. 

developed self-assembled peptide sequences which could release therapeutic payloads upon 

specific interaction with disease-associated proteases.41 The biologically inspired peptide 

sequence is composed of a protease cleavable region which self-assembled into a gel matrix 

in aqueous solutions. Upon addition of the targeted protease (uPA), the gel matrix could be 

digested at the substrate cleavage site, resulting in release of drugs and matrix fragments. 

Their results showed that the release of therapeutic peptide (B-r7-kla) fragment from the 

matrix was a result of the addition of enzyme and only can be observed in the presence of 

the enzyme. Furthermore, in HT-1080 cell lines, the encapsulated B-r7-kla was released 

slowly with no cytotoxic effects on cells lacking enzyme. However, enhanced drug release 

and increased cytotoxicity were observed under high uPA concentrations (500 nM) after 24 

hours.

Another class of proteases which are often employed to serve as triggers of controlled drug 

delivery include matrix metalloproteinases (MMPs). MMPs have long been associated with 

cancer-cell invasion and metastasis.42, 43 MMPs are over expressed in tumor 

microenvironments in comparison to normal tissue in most cancers.44 MMPs are proteolytic 

enzymes and their basic mechanism of action — degradation of proteins — regulates 

Hu et al. Page 3

Nanoscale. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



various cell behaviors with relevance for cancer biology. Thus, MMPs have been widely 

employed to achieve enzyme-triggered site-specific drug release. Of note, Jiang et al. 

developed a proteolytically-activated cell-penetrating peptide-modified nanoparticle drug 

delivery system triggered by MMP-2 and MMP-9, labeled with Cy5, gadolinium, or 

both.45, 46 The reported ACPP was composed of a polycationic CPP sequence, a MMP-

sensitive peptide linker (XPLGLAG) and a polyanionic inhibitory domain (poly Glu, E9), 

forming a hairpin structure (Fig. 3). ACPP surface decorated nanoparticles had increased 

tumor specificity. Upon addition of MMP, the inhibitory domain could be dissociated at 

cleavable site, resulting in releasing the polycationic peptides and their cargo to enter the 

cells. Residual tumor and metastases as small as 200 μm could be detected by fluorescence 

imaging. The as-prepared ACPP decorated nanoparticles exhibited more than 10-fold 

cellular association and showed high in vivo contrast ratio of images corresponding well to 

the MMP distribution.

In addition to molecular imaging, the up-regulated expression of disease-associated MMP-2 

in diseased tissues and the catalytic characteristic of proteolysis have made protease-

activated drug delivery an attractive approach for tumor treatment. Recently, Gu et al. 

constructed an activatable LMWP (ALMWP, E10-PLGLAG-VSRRRRRRGGRRRR) 

modified PEG-PCL nanoparticulate drug delivery system which provided a new strategy for 

glioma treatment.47 A notable advantage of this approach is that the transport abillity of 

LMWP can be activated only in the presence of MMP-2 protease.

2.2 Phospholipases

In principle, phospholipase up-regulation has been a pathological indicator for multiple 

kinds of cancers and many other disease processes, including thrombosis, congestive heart 

failure, inflammation, neurodegeneration, and infectious pathogens.48–51 Phospholipase A2 

(PLA2) is gaining much interest as therapeutic targets as they are known to be up-regulated 

in tumors. For example, in prostate cancers, Group IIa sPLA2 is reported to be expressed at 

levels 22-fold greater than disease-free paired controls.52 The upregulation of secreted 

phospholipase A2 in tumor microenvironment mediates carcinogenesis by two pathways: 

release of arachidonic acid, which produces carcinogenic metabolites; and release of 

lysophospholipids, including lysophosphatidic acids (LPA) that induce cell growth.53, 54 

Microenvironment-upregulated PLA2s are being actively explored for the ability to produce 

environmentally responsive drug release in the tumor. Andresen et al. constructed an 

enzymatically activated liposome drug delivery system involving masked antitumor ether 

lipids (AELs) as prodrugs. AELs are activated by secretory phospholipase A2.55 AEL-

forming liposomes offered the advantages of increased cytotoxity by utilizing the membrane 

permeability of AEL drugs. They synthesized (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-

phosphocholine (1-O-DPPC) which was not only capable of forming liposomes but aslo 

carrying water-soluble prodrugs which could be activated by using PLA2 (proAELs) as the 

activating enzyme. Results showed that proAELs were successfully activated by PLA2 

enzymes and converted to chemotherapeutic agents. The generated AELs and fatty acid 

hydrolysis products could perturb membranes and enhance the cellular uptake of drugs 

encapsulated in the liposomes. Additionally, severe side effects (hemolysis) were limited 

because PLA2 expression specifically in tumor tissue localized activation of proAELs.
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Linderoth et al. employed the overexpressed secretory phospholipase A2 as a trigger for 

activating liposomal drug-delivery systems (Fig. 4).56 PLA2 hydrolyzed the ester group in 

the sn-2 position of glycerophospholipids and facilitated the release the drugs at specific 

tumor sites. They used a capsaicin prodrug 8 as a model drug which could aggregate into 

small unilamellar vesicles (SUVs). Their results showed that capsaicin was released from 

the phospholipids after hydrolysis with amount was found to be (90 ± 11) % (n=3) after 24 h 

when the SUVs are exposed to human sPLA2-IIA, which indicated the prodrugs are good 

substrates for sPLA2. Additonally, the prodrug could stay in the buffer solution up to two 

weeks before the addition of snake-venom sPLA2. Attributed to the covalent attachment 

between the drug and glycerophospholipid derivative, lipid prodrug could react with an ester 

group at the sn-1 position, resulting in forming a five-membered lactone and releasing the 

carried drug.

2.3 Oxidoreductase

Oxidoreductases have been widely exploited to serve as a promising target for drug delivery 

systems or biosensing due to their fundamental role in oxidative environments which are 

generated by many diseases including diabetes and cancer.57, 58 For example, glucose 

oxidase (GOx) is extensively utilized as a gate in responsive, controlled release systems or a 

diagnostic tool in the detection of glucose values.4 For example, Gu et al. applied GOx as 

the trigger to develop a nano-network which can be responsive to blood-sugar levels for 

closed-loop insulin delivery (Fig. 5).5 In that case, the injectable nano-network, prepared via 

electrostatic interaction between positively charged nanoparticle (chitosan) and negatively 

charged nanoparticle (alginate), was composed of a mixture containing nanoparticles with a 

solid core of insulin, ketal modified dextran and enzymes (GOx and Catalase). Upon 

addition of hyperglycemic state, GOx encapsulated in nanoparticles began converting 

glucose into gluconic acid, resulting in dissociation of porous nano-network and 

subsequently release of insulin. A pulsatile release profile of insulin can be achieved in 

response to gluconse concentrations in vitro. To further examine the efficacy of the insulin-

loaded nanonetwork for diabetes treatment, they utilized streptozotocin (STZ)-induced 

diabetic mice as the model to test the release of insulin in a glucose-responsive manner. In 

vivo results showed that the injectable nano-network was capable of stablizing blood glucose 

levels within the normoglycemic state for up to 10 days with a single injection. This 

glucose-responsive degradable nano-network allowed for self-regulated and long-term 

diabetes management. In another case, Gu et al. used glucose-responsive microgels for 

glucose-responsive release of insulin.59 One-step electrospray technology was utilized to 

encapsulate pH-responsive chitosan, enzyme nanocapsules and insulin into a monodisperse 

microgel. When exposed to a hyperglycemic condition, the microgel swelled as a result of 

the response of catalytic conversion of glucose into gluconic acid and subsequent 

protonation of the chitosan network. According to the in vivo studies, the microgel could 

reduce blood glucose levels in STZ-induced diabetic mice.

2.4 Other enzymes

As many diseases are characterized by imbalances in the expression and activity of specific 

enzymes in the diseased tissue, dysregulatated enzymes can be exploited to permit the 

selective activation of advanced drug delivery platforms. Recently, the enzyme penicilin G 

Hu et al. Page 5

Nanoscale. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



amidase (PGA) was employed by Harnoy et al. to cleave the end groups of phenyl 

acetamide, which could disassemble the constructed micelles (Fig. 6A).60 The monomeric 

hybrid could be detected when enzymatic cleavage of the hydrophobic phenyl acetamide 

end groups happened. This result was supported by the change in the fluorescence of 

encapsulated Nile red dyes and fast disappearance of the amphiphilic hybrids in HPLC 

analysis in the presence of enzyme PGA. More interestingly, the formation of the fully 

degraded tetra-amine hybrids could not be observed at the relatively low enzyme PGA 

concentration (0.14 μM) after 24 h, while this formation was observed at the high enzyme 

PGA concentration of 1.4μM.

The azoreductase has received extensive attention in the field of the treatment of colon 

diseases due to the fact that azoreductase is produced by the microbialflora present in human 

colon. In a study by Rao et al, an azoreductase responsive assembly was prepared through 

the covalent coupling to azobenzene linkage and an amphiphilic diblock copolymer (Fig. 

6B).61 The copolymer assembled into a micellar structure in water but dissociated in the 

presence of the azoreductase and coenzyme NADPH due to the azobenzene-based 

copolymer junction. The azobenzene-linked poly(ethylene glycol)-b-poly(styrene) (PEG-

N=N-PS) amphiphilic copolymer was prepared through an ATRP-based macroinitiator 

approach. The assembled micellar disassembled into two segments (PEG segment and PS 

segment) when exposed to azoreductase. Due to the systems' azoreductase sensitivity and 

selectivity, the azoreductase responsive drug delivery system might have potential 

applicability in the treatment of colon diseases.

3. Enzyme responsive nanomaterials

In this section several nanomaterials that can be used as carriers for enzyme-responsive drug 

delivery systems are discussed. Popular strategies involve polymeric assemblies and 

liposomes that disintegrate, undergo structural reorganization, or cleavage to release 

functionalized ligands. Enzymes directly govern these changes or enzymatic products trigger 

advantageous changes in the physiochemical properties of the nanomaterial.

3.1 Polymeric nanoparticle

Nanotechnology, especially biodegradable polymeric nanoparticles, has emerged as a 

promising approach to augment delivery of chemical drugs and bioimaging agents.62, 63 

Polymeric nanoparticles have drawn increasing interest for their ability to deliver drugs 

within an optimal dosage range, often resulting in increased therapeutic efficacy of the drug, 

mitigated side effects, and improved patient compliance.64–66 Polyethylene glycol (PEG)-

surface modified nanoparticles, PEG is a relatively inert hydrophilic polymer, provide good 

steric hindrance preventing protein binding, reduce the rate of the reticuloendothelial system 

(RES) uptake, and increase circulation half-life of drugs.67, 68 Enzyme-responsive polymeric 

nanoparticles have been widely explored by taking advantage of 1) dysregulated enzymes in 

the disease tissue (e.g., overexpressed MMPs in most tumor tissue); 2) reversible or 

irreversible changes in chemical structures and/or properties of polymeric materials in 

response to specific enzymes. A lot of polymers have been synthetized to achieve enzyme-

responsive function for disease treatment such as cancer and diabetes. For example, Lee et 

al. constructed enzyme-responsive linkers by using 4-hydroxymandelic acid as the 
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framework.24 Then they attached the enzyme substrates to the 4-hydroxy group of the 

mandelate core, leading to spontaneous release of conjugated drugs when the substrate 

portion interacted with intracellular enzymes.

In another study, Wong et al. employed an enzyme trigger to shrink 100-nm nanoparticles to 

10-nm nanoparticles after they were exposed to the tumor microenvironment with 

overexpressed enzymes such as MMP-2 (Fig. 7A).69 In the context, type A gelatin 

crosslinked with glutaraldehyde was used as the framework to form enzyme-degradable 

nanoparticles (~100 nm). PEG-stabilized quantum dots (QDs, ~10 nm) were conjugated to 

the nanoparticle surface. When these engineered nanoparticles preferentially extravasated 

from the leaky regions of the tumor vasculature by the enhanced permeation and retention 

(EPR) effect and were exposed to the upregulated MMP-2 in the tumor environment, the 

nanoparticles were degraded by the MMP enzyme and released 10 nm quantum dots, 

resulting in enhancement of diffusive transport and deep penetration in tumor tissue. (Fig. 

7B). These enzyme-responsive, multistage nanoparticle systems allowed for additional 

tenability in the spatial control of drug delivery by changing in size, overcoming multiple 

physiological barriers thereby enhancing their penetration.

Besides shrinking the size of polymeric nanoparticles, enzymes can also be used as the 

trigger to cleave substrates and increase the size of nanoparticle. Chien et al. reported a 

polymer–peptide hybrid block copolymers self-assembled micellar nanoparticle which 

exhibited enzyme-responsive characteristics.70 In their work, a hydrophobic block and a 

hydrophilic peptide were integrated into copolymers to prepare the micelles. Micelles 

passively diffused into the tumors and accessed to overexpressed enzymes. There 

micrometer-scale aggregates were formed via cleavage of peptides in the shell of the 

micelles. Essentially the aggregates were kinetically trapped within the tumor (Fig. 7C). By 

taking advantage of the formation of a new assembly in response to the enzymatic cleavage 

of the substrate, the aggregates were retained at the tumor site as long as one week, while 

non-responsive nanoparticles would be degraded within two days. This novel type of 

disintegrable nanoparticle which can be activated in vivo by MMP-2 exhibits potential 

applications for the effective delivery of chemotherapeutic drugs and imaging agents.

In addition to chemotherapeutical drugs, enzyme-responsive nanoparticles have also been 

harnessed to delivery therapeutic proteins. Gu et al. constructed an enzymatically degradable 

cocoon-like polymeric nanocapsule by using one-pot procedure (Fig. 8).71 The nanocapsule 

(CP3-NC) was composed of an apotosis-inducing target protein—Caspase-3 (CP3), 

acrylamide (AAm), N-(3-aminopropyl) methacrylamide (APMAAm) and a CP3-degradable 

VDEVDTK peptide as cross-linker (CL-VDEVDTK)72, 73. Upon proteolytic cleavage of the 

cross-linker at 37°C, the polymeric shell dissociated and the encapsulated protein CP3 

released in functional form. In vitro results showed HeLa cells exhibited apoptotic hallmarks 

such as membrane blebbing and cell shrinkage when treated with 200 nM CP3-NC for 24 h, 

while cells treated with native CP3 or CP3-NCN (enzymatically nondegradable) showed no 

morphological changes. In another study, Biswas et al. exploited a protease-responsive 

nanocapsule for intracellular protein delivery.74 Nanocapsules were composed of monomers 

and an enzyme-degradable peptide cross-linker. Upon addition of furin (a ubiquitous 

intracellular protease), the peptide could be cleaved, leading to release of encapsulated 
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protein. Their furin degradable protein delivery vehicle successfully delivered both cytosolic 

and nuclear proteins in active forms to a variety of cell lines.

3.2 Liposome

Liposome development is rapidly evolving and dramatically changing the paradigms of drug 

delivery. The suitable sizes, unique chemical properties, large surface areas, structural 

diversity and multifunctionality of liposomes prove to be greatly advantageous for 

combating notoriously therapeutically evasive diseases such as cancer.75, 76 Because of their 

biocompatibility and ease of fabrication, liposomes are an excellent drug delivery platform 

and a number of smart liposomes have been designed to improve drug delivery efficiency 

and therapeutical efficacy.77 One of the emerging trends in smart liposome development is 

the integration of enzyme-responsive elements. As one of the earliest examples, Pak et al. 

demonstrated an enzymatically cleavable peptide–lipid N-Ac-AA-DOPE, resulted from 

covalent linkage of dioleoyl phosphatidylethanolamine DOPE and an elastase substrate. The 

liposome fusion could be achieved in the presence of human leukocyte elastase or proteinase 

K.78

Liposomes can target the tissue of interest either passively (e.g. EPR effort in tumor tissue) 

or actively via the modification of targeting molecules that recognize receptors on the cell 

surface.79, 80 Several groups have taken an approach that involves the decoration of 

liposomes with enzyme-responsive ligands which allow for controlled drug release. Wan et 

al. reported an enzymatically cleavable PEG-lipid material which was composed of a PEG 

chain, matrix metalloproteinase (MMP)-substrate peptide, and cholesterol (PPC) (Fig. 9).81 

As demonstrated, the linker peptide, Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln, between PEG and 

lipid was cleaved by MMPs including MMP-2, MMP-3, MMP-7 and MMP-9, resulting in 

the abandon of PEG chain and enhanced cellular uptake and transduction efficiency in a 

tumor specific manner. Their results indicated that PPC-modified enzyme-responsive 

anionic liposomal Ad vectors (PPC-AL-Ad) exhibited higher in vitro gene expression than 

non-cleavable PEG-lipid modified AL-Ad (PPC-AL-Ad). In another study, Terada et al. 

also used the PEGylated MMP-2 substrate peptide (Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln) to 

conjugate DOPE and prepared enzyme-responsive galactosylated liposome.82 Liposome 

could not enter into normal hepatocytes as a result of steric hindrance effect. Upon addition 

of upregulated MMPs, Liposome dissociated and subsequently was taken up. With this 

approach, it was possible to deliver a payload or increase the retention of liposomes within 

targeted cell populations via enzymatic catalyzed interactions.

3.3 Hybrid nanoparticle

The preparation of organic/inorganic hybrid nanoparticles composed of organic polymers 

and/or inorganic colloids has been recently pursued as a route to combine the advantageous 

properties of both classes of macromolecules into one nanoparticle.83, 84 A hybrid design 

(core and shell structure) could take advantages of both organic/inorganic materials in the 

core and shell. For example, in lipid-polymer hybrid nanoparticles, solid cores act as 

supports that provide mechanical stability, controlled morphology, biodegradability, 

increased surface area-to-volume ratio and narrow size distribution. In addition, the core of 

these particles, often composed of PLA or PLGA polymer, can facilitate drug delivery and 
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controlled drug release. At the same time, the lipid shell enveloping the core mimics 

biological membranes in interacting with the environment.85 Among the various emerging 

hybrid nanoparticles (e.g. lipid-polymer, gel-lipid, silica (SiO2)-polymer, iron oxides-

polymer hybrid nanoparticle), enzyme-responsive hybrid nanoparticle are gaining increasing 

attraction as a new platform for drug delivery because their enzymatic properties can be 

engineered according to interest. Most recently, Jiang et al. developed a new programmed 

hybrid-nanoparticle drug-delivery system that could co-deliver different anticancer 

therapeutics (Fig. 10). The core–shell-based Gel–Liposome was composed of a R8H3 

peptide decorated liposome core loaded with Dox and hyaluronic acid (HA) based shell 

encapsulated with trail.86 Besides, the crosslinked gel based outer shell degraded in 

concentrated hyaluronidase (HAase) that was overexpressed in tumor tissue. Degradation 

permitted the release of TRAIL and the exposure of targeted ligand R8H3-L. Subsequently, 

encapsulated Dox in the aqueous core of the modified liposome was taken up by tumor cells. 

In vivo biodistribution showed that the Dox amount in the tumor tissues using Gel-Liposome 

as delivery carrier was 5.72- and 2.70-fold higher than that of those delivered by the Dox 

solution and Dox-R8H3-Liposome after 48 h. The enzyme-responsive gel-liposome drug 

delivery system provided a potential delivery strategy to simultaneously deliver different 

antitumor drugs and achieve synergistic anticancer efficacy.

In another study, Bernardos et al. synthetized a hybrid silica mesoporous nanoparticle for 

on-command drug delivery.87 In the context, authors prepared the silica mesoporous 

nanoparticles by using an MCM-41 inorganic scaffold, containing mesopores (2–3 nm) to 

allow for the encapsulation of certain guests. The nanoscopic MCM-41-based nanoparticle 

were capped with different “saccharide” derivatives to form an enzyme-responsive hybrid 

silica mesoporous nanoparticle. This hybrid nanoparticle could open the gate and release 

cargoes when taken up by tumor cells and exposed to the specific enzymes (e.g. β-D-

galactosidase). Mondragn et al. extended this enzyme-responsive hybrid nanoparticle 

platform by synthetizing capped hybrid systems. They used two different anchoring 

strategies to functionalize MCM-41 nanoparticles functionalized with polymer ε-poly-L-

lysine (biodegradable by amidases).88 One anchoring strategy was the formation of a urea 

bonds via using lysine amino groups to decorate MCM41 nanoparticles with the ε-poly-L-

lysine backbone (solid Ru-rLys-S1). The other strategy was specific attachment of 

polypeptide to MCM-41 nanoparticles via the carboxyl terminus. Upon addition of 

proteases, both hybrid silica mesoporous nanoparticles exhibited remarkable payload release 

as a result of the hydrolysis of the polymer's amide bonds.

3.4 Inorganic nanoparticles

Inorganic nanoparticles, especially enzyme-responsive silica nanoparticles (Si-MPs), have 

great potential for useful applications in nanomedicine due to their unique responsiveness. In 

particular, enzyme-responsive Si-MPs equipped with gatekeepers are enormously appealing 

and are being implemented in controlled release systems. For instance, Park et al. reported 

an enzyme-responsive drug delivery system which could release cargoes in response to α-

amylase and lipase (Fig. 11).89 Their enzyme-responsive Si-MPs were composed of the 

surface cyclodextrin (CD) gatekeepers, functional stalks, and fluorescence probes within 

porous channels. In the presence of α-amylase, the CD which initially block the the porous 
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channel could be hydrolyzed. Subsequently stalk was degraded by lipase, resluting in release 

of crgoes.This strategy permitted the Si-MPs to exhibit enzyme-responsive characteristics.

Another enzyme-responsive inorganic nanoparticle which has drawn great attention is gold 

(Au) nanoparticle due to its unique chemical and physical properties including ease of 

synthesis, versatile functionalization through thiol linkages and optical properties derived 

from the localized surface plasmon resonance (LSPR) phenomenon.90, 91 Sun et al. 

developed a caspase sensitive Au nanoparticle for apoptosis imaging in live cells (Fig. 12).92 

Using caspase-3 degradable peptide substrate (DEVD) as a cross-linked bridge, a near-

infrared fluorescence dye was decorated on the surface of AuNP. Without the presence of 

enzyme, the fluorescence was quenched. When the functionalized AuNP was taken up by 

live cell, the peptide substrate could be cleaved by caspase-3 and the quenched fluorescence 

was recovered. This new enzyme-responsive system provided a potential application for 

detecting the apoptosis process due to the involvement of caspase-3 in cellular apoptosis. 

Xia et al. developed an enzyme-sensitive multimodal gold nanocage probe that allowed for 

tumor localization with photoacoustic imaging and evaluation of metastasis with NIR 

fluorescence.93 They modified the surface of gold nanocages with dye-labeled peptides 

cleavable by metalloproteases (MMPs). Upon cleavage of the peptide in the presence of 

MMP-2, the dye was released from the gold nanocage and fluorescence emission was 

recovered. Furthermore, enzyme-responsive gold nanoparticles could be harnessed to detect 

and evaluate enzymatic activity. Using endonucleases as the trigger, Xu et al. reported a 

DNA-AuNP platform as colorimetric indicators to evaluate enzymatic activity and to screen 

enzyme inhibitors.94 Two functionalized, complmentary 13-nm AuNPs were hybridized to 

form a cross-linked network of nanoparticles, purple in color. When these aggregates were 

exposed to endonuclease, the DNA-duplex interconnecting the AuNPs was degraded and a 

red color was generated due to the separation of AuNPs.

4. Enzyme-based dual/multiple responsive systems

Over the past few decades enzyme-responsive nanomaterials have emerged as one 

promising and viable technology platform for controlled drug delivery. They have been 

actively designed to accomplish enhanced drug release at target sites (spatial control) and/or 

at the right time (temporal control). In an effort to further improve controlled drug release 

performances, enzyme-based dual/multiple responsive drug delivery systems that respond to 

a combination of two or more signals, i.e pH/enzyme and temperature/enzyme, have 

recently been developed. For example, Dong et al. described a pH/Enzyme-responsive 

tumor-specific delivery system for doxorubicin (Fig. 13A).95 Cationic gelatin sensitive to 

gelatinase (GA) and Dnase I was employed to form compact nanoscale complexes (CPX1) 

with polyGC-DOX intercalation. A pH-responsive pegylated alginate was utilized to form 

CPX2 when combined with CPX1. In the presence of GA and Dnase, CPX2 could be 

digested and released DOX when pH < 6.9. According to in vivo studies, pH/enzyme dual 

responsive CPX2 enhanced the drug accumulation in tumor tissue, resulting in enhanced 

anti-cancer activity (more than 2 times anti-cancer efficiency of DOX delivered by CPX2 

when compared with free doxorubicin) and reduced the cardiotoxicity of the encapsulated 

DOX. In addition to pH/enzyme-responsive delivery systems, Chen et al. took another 

approach to design a temperature/enzyme-responsive polyvalent nucleic acid decorated 
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mesoporous silica nanoparticle (MSP) intracellular drug delivery platform (Fig. 13B).96 

They anchored a self-complementary duplex DNA to the channel of MSPs. This served as a 

cap which trapped the guest molecules within the MSP. The entrapped guest moleculars 

release was triggered either by thermal denaturation of the DNA duplex or by the presence 

of DNase I. Furthermore, their strategy extended the application of other functional nucleic 

acids to generate a multifunctional stimuli-responsive durg delivery system.

5. Conclusion

The past several years have witnessed a rapid progress in the development of enzyme-

responsive drug delivery system. These strategies exhibit tremendous therapeutic and 

detection potency for cancer or other diseases at both research and clinical levels. 

Nanomaterials, including polymers, lipids and inorganic materials, which are incorporated 

into an enzyme-responsive drug delivery system, hold incredible promise in overcoming the 

limitations and drawbacks of conventional drug delivery. Additionally, they offer 

unprecedented control over spatiotemporal drug release and delivery profiles leading to 

superior in vitro and/or in vivo theranostic efficiency62.

Despite emerging progress made in enzyme-responsive drug delivery research, there are still 

many challenges that need to be addressed. There is a tremendous variety of enzyme 

dysregulation activities in different diseases and even at different stages of one disease. 

Further fundamentally understanding of the spatial and temporal pattern of offers essential 

criteria for designing more effective and precise delivery vehicles. Second, there are many 

overlapping substrates between closely related enzyme families; more specific designs 

should be taken into account for enhancing delivery efficacy. Further, eventual translation of 

enzyme-responsive drug delivery requires comprehensive evaluation of biocompatibility of 

relevant formulations. Tailoring materials that present negligible cytotoxicity and systemic 

toxicity is highly desirable for clinical applications97–99.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by the American Diabetes Association's Junior Faculty Award, the grant 550KR51307 
from NC TraCS, the T32 GM008719 Medical Scientist Training Program grant from the National Institute for 
General Medical Sciences (NIGMS, NIH), NIH's Clinical and Translational Science Awards (CTSA) at UNC-CH, 
and the NC State Faculty Research and Professional Development Award to Z.G.

Reference

1. Farokhzad OC, Langer R. Adv Drug Deliv Rev. 2006; 58:1456–1459. [PubMed: 17070960] 

2. Farokhzad OC, Langer R. ACS Nano. 2009; 3:16–20. [PubMed: 19206243] 

3. Brannon-Peppas L, Blanchette JO. Adv Drug Deliv Rev. 2004; 56:1649–1659. [PubMed: 
15350294] 

4. Mo R, Jiang T, Di J, Tai W, Gu Z. Chem. Soc. Rev. 2014; 43:3595–3629. [PubMed: 24626293] 

5. Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, Veiseh O, Cheng H, Langer RS, Anderson DG. 
ACS Nano. 2013; 7:4194–4201. [PubMed: 23638642] 

Hu et al. Page 11

Nanoscale. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Kaittanis C, Santra S, Perez JM. Adv Drug Deliv Rev. 2010; 62:408–423. [PubMed: 19914316] 

7. Moghimi SM, Hunter AC, Murray JC. Pharmacol. Rev. 2001; 53:283–318. [PubMed: 11356986] 

8. Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, Chen H. Biomaterials. 2011; 32:8281–8290. 
[PubMed: 21807411] 

9. Liu D, Bimbo LM, Makila E, Villanova F, Kaasalainen M, Herranz-Blanco B, Caramella CM, 
Lehto VP, Salonen J, Herzig KH, Hirvonen J, Santos HA. J. Control. Release. 2013; 170:268–278. 
[PubMed: 23756152] 

10. Zhang X-X, Eden HS, Chen X. J. Control. Release. 2012; 159:2–13. [PubMed: 22056916] 

11. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Adv Drug Deliv Rev. 2014; 66:2–25. 
[PubMed: 24270007] 

12. Mura S, Nicolas J, Couvreur P. Nat. Mater. 2013; 12:991–1003. [PubMed: 24150417] 

13. Lopes JR, Santos G, Barata P, Oliveira R, Lopes CM. Curr. Pharm. Des. 2013; 19:7169–7184. 
[PubMed: 23489197] 

14. Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang XJ. Biotechnol. Adv. 2014; 32:693–710. 
[PubMed: 24309541] 

15. Schmaljohann D. Adv Drug Deliv Rev. 2006; 58:1655–1670. [PubMed: 17125884] 

16. Gao W, Chan JM, Farokhzad OC. Mol. Pharm. 2010; 7:1913–1920. [PubMed: 20836539] 

17. Ron ES, Bromberg LE. Adv Drug Deliv Rev. 1998; 31:197–221. [PubMed: 10837626] 

18. Luo Z, Cai K, Hu Y, Zhao L, Liu P, Duan L, Yang W. Angew. Chem. Int. Ed. Engl. 2011; 50:640–
643. [PubMed: 21226142] 

19. Markland P, Zhang Y, Amidon GL, Yang VC. J. Biomed. Mater. Res. 1999; 47:595–602. 
[PubMed: 10497296] 

20. Murdan S. J. Control. Release. 2003; 92:1–17. [PubMed: 14499181] 

21. Kumar CS, Mohammad F. Adv Drug Deliv Rev. 2011; 63:789–808. [PubMed: 21447363] 

22. Ghadiali JE, Stevens MM. Adv. Mater. 2008; 20:4359–4363.

23. Andresen TL, Thompson DH, Kaasgaard T. Mol. Membr. Biol. 2010; 27:353–363. [PubMed: 
20939771] 

24. Lee MR, Baek KH, Jin HJ, Jung YG, Shin I. Angewandte Chemie International Edition. 2004; 
43:1675–1678.

25. Hu J, Zhang G, Liu S. Chem. Soc. Rev. 2012; 41:5933–5949. [PubMed: 22695880] 

26. Ulijn RV. J. Mater. Chem. 2006; 16:2217–2225.

27. de la Rica R, Aili D, Stevens MM. Adv. Drug Delivery Rev. 2012; 64:967–978.

28. Wang C, Chen Q, Wang Z, Zhang X. Angew. Chem. 2010; 122:8794–8797.

29. de las Heras Alarcón C, Pennadam S, Alexander C. Chem. Soc. Rev. 2005; 34:276–285. [PubMed: 
15726163] 

30. Bawa P, Pillay V, Choonara YE, Du Toit LC. Biomedical materials. 2009; 4:022001. [PubMed: 
19261988] 

31. Wang, S.-n.; Deng, Y.-h.; Xu, H.; Wu, H.-b.; Qiu, Y.-k.; Chen, D.-w. Eur. J. Pharm. Biopharm. 
2006; 62:32–38. [PubMed: 16226883] 

32. Kawakami S, Munakata C, Fumoto S, Yamashita F, Hashida M. J. Pharm. Sci. 2001; 90:105–113. 
[PubMed: 11169527] 

33. Popat A, Ross BP, Liu J, Jambhrunkar S, Kleitz F, Qiao SZ. Angewandte Chemie International 
Edition. 2012; 51:12486–12489.

34. Allen TM. Nat. Rev. Cancer. 2002; 2:750–763. [PubMed: 12360278] 

35. Hahn ME, Gianneschi NC. Chem. Commun. 2011; 47:11814–11821.

36. HeeáKook Y, TaxáOh E, JooáPark H. J. Mater. Chem. 2009; 19:2310–2315.

37. Liu J, Ong W, Román E, Lynn MJ, Kaifer AE. Langmuir. 2000; 16:3000–3002.

38. Weissleder R, Tung C-H, Mahmood U, Bogdanov A. Nat. Biotechnol. 1999; 17:375–378. 
[PubMed: 10207887] 

39. Goel A, Chauhan S. Indian J. Exp. Biol. 1997; 35:553–564. [PubMed: 9357157] 

Hu et al. Page 12

Nanoscale. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



40. Kang J-H, Asai D, Kim J-H, Mori T, Toita R, Tomiyama T, Asami Y, Oishi J, Sato YT, Niidome 
T. J. Am. Chem. Soc. 2008; 130:14906–14907. [PubMed: 18928283] 

41. Law B, Weissleder R, Tung C-H. Biomacromolecules. 2006; 7:1261–1265. [PubMed: 16602747] 

42. Crawford H, Matrisian L. Invasion Metastasis. 1993; 14:234–245. [PubMed: 7657516] 

43. Yoon S-O, Park S-J, Yun C-H, Chung A-S. J. Biochem. Mol. Biol. 2003; 36:128–137. [PubMed: 
12542983] 

44. Westermarck J, KÄHÄRI V-M. The FASEB Journal. 1999; 13:781–792.

45. Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY. Proc. Natl. Acad. Sci. U. S. A. 
2004; 101:17867–17872. [PubMed: 15601762] 

46. Olson ES, Jiang T, Aguilera TA, Nguyen QT, Ellies LG, Scadeng M, Tsien RY. Proceedings of the 
National Academy of Sciences. 2010; 107:4311–4316.

47. Gu G, Xia H, Hu Q, Liu Z, Jiang M, Kang T, Miao D, Tu Y, Pang Z, Song Q, Yao L, Chen H, Gao 
X, Chen J. Biomaterials. 2013; 34:196–208. [PubMed: 23069707] 

48. Scott KF, Sajinovic M, Hein J, Nixdorf S, Galettis P, Liauw W, de Souza P, Dong Q, Graham GG, 
Russell PJ. Biochimie. 2010; 92:601–610. [PubMed: 20362028] 

49. Wells A, Grandis JR. Clin. Exp. Metastasis. 2003; 20:285–290. [PubMed: 12856715] 

50. Vadas P, Browning J, Edelson J, Pruzanski W. J. Lipid Mediat. 1993; 8:1–30. [PubMed: 8257775] 

51. Schmiel DH, Miller VL. Microbes Infect. 1999; 1:1103–1112. [PubMed: 10572314] 

52. Graff JR, Konicek BW, Deddens JA, Chedid M, Hurst BM, Colligan B, Neubauer BL, Carter HW, 
Carter JH. Clin. Cancer Res. 2001; 7:3857–3861. [PubMed: 11751475] 

53. Laye JP, Gill JH. Drug Discov. Today. 2003; 8:710–716. [PubMed: 12927514] 

54. Cummings BS. Biochem. Pharmacol. 2007; 74:949–959. [PubMed: 17531957] 

55. Andresen TL, Davidsen J, Begtrup M, Mouritsen OG, Jørgensen K. J. Med. Chem. 2004; 47:1694–
1703. [PubMed: 15027860] 

56. Linderoth L, Peters GH, Madsen R, Andresen TL. Angewandte Chemie International Edition. 
2009; 48:1823–1826.

57. Butterfield DA, Hardas SS, Lange MLB. J. Alzheimer's Dis. 2010; 20:369–393. [PubMed: 
20164570] 

58. Kundu JK, Surh Y-J. Pharm. Res. 2010; 27:999–1013. [PubMed: 20354764] 

59. Gu Z, Dang TT, Ma M, Tang BC, Cheng H, Jiang S, Dong Y, Zhang Y, Anderson DG. ACS Nano. 
2013; 7:6758–6766. [PubMed: 23834678] 

60. Harnoy AJ, Rosenbaum I, Tirosh E, Ebenstein Y, Shaharabani R, Beck R, Amir RJ. J. Am. Chem. 
Soc. 2014; 136:7531–7534. [PubMed: 24568366] 

61. Rao J, Khan A. J. Am. Chem. Soc. 2013; 135:14056–14059. [PubMed: 24033317] 

62. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nat. Nanotechnol. 2007; 2:751–
760. [PubMed: 18654426] 

63. Ferrari M. Nat. Rev. Cancer. 2005; 5:161–171. [PubMed: 15738981] 

64. Davis ME. Nat. Rev. Drug Discovery. 2008; 7:771–782.

65. Petros RA, DeSimone JM. Nat. Rev. Drug Discovery. 2010; 9:615–627.

66. Hu Q, Gu G, Liu Z, Jiang M, Kang T, Miao D, Tu Y, Pang Z, Song Q, Yao L, Xia H, Chen H, 
Jiang X, Gao X, Chen J. Biomaterials. 2013; 34:1135–1145. [PubMed: 23146434] 

67. Mohanraj V, Chen Y. Tropical Journal of Pharmaceutical Research. 2007; 5:561–573.

68. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. J. Control. Release. 2001; 70:1–20. 
[PubMed: 11166403] 

69. Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, Popović Z, Jain RK, Bawendi 
MG, Fukumura D. Proceedings of the National Academy of Sciences. 2011; 108:2426–2431.

70. Chien M-P, Carlini AS, Hu D, Barback CV, Rush AM, Hall DJ, Orr G, Gianneschi NC. J. Am. 
Chem. Soc. 2013; 135:18710–18713. [PubMed: 24308273] 

71. Gu Z, Yan M, Hu B, Joo K-I, Biswas A, Huang Y, Lu Y, Wang P, Tang Y. Nano Lett. 2009; 
9:4533–4538. [PubMed: 19995089] 

72. Gu Z, Biswas A, Joo K-I, Hu B, Wang P, Tang Y. Chem. Commun. 2010; 46:6467–6469.

Hu et al. Page 13

Nanoscale. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



73. Gu Z, Tang Y. Lab Chip. 2010; 10:1946–1951. [PubMed: 20436969] 

74. Biswas A, Joo K-I, Liu J, Zhao M, Fan G, Wang P, Gu Z, Tang Y. ACS Nano. 2011; 5:1385–1394. 
[PubMed: 21268592] 

75. Torchilin VP. Nat. Rev. Drug Discovery. 2005; 4:145–160.

76. Ramishetti S, Huang L. Therapeutic delivery. 2012; 3:1429–1445. [PubMed: 23323560] 

77. Samad A, Sultana Y, Aqil M. Curr. Drug Deliv. 2007; 4:297–305. [PubMed: 17979650] 

78. Pak CC, Ali S, Janoff AS, Meers P. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1998; 
1372:13–27.

79. Gabizon AA. Adv. Drug Delivery Rev. 1995; 16:285–294.

80. Torchilin V. Adv. Drug Delivery Rev. 2011; 63:131–135.

81. Wan Y, Han J, Fan G, Zhang Z, Gong T, Sun X. Biomaterials. 2013; 34:3020–3030. [PubMed: 
23360783] 

82. Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M. J. Control. Release. 2006; 111:333–342. 
[PubMed: 16488046] 

83. Schärtl W. Nanoscale. 2010; 2:829–843. [PubMed: 20644772] 

84. Zhang L, Chan JM, Gu FX, Rhee J-W, Wang AZ, Radovic-Moreno AF, Alexis F, Langer R, 
Farokhzad OC. ACS Nano. 2008; 2:1696–1702. [PubMed: 19206374] 

85. Hu C-MJ, Fang RH, Luk BT, Zhang L. Nanoscale. 2014; 6:65–75. [PubMed: 24280870] 

86. Jiang T, Mo R, Bellotti A, Zhou J, Gu Z. Adv. Funct. Mater. 2014; 24:2295–2304.

87. Bernardos A, Mondragon L, Aznar E, Marcos MD, Martínez-Máñez R. n. Sancenón F. l. Soto J, 
Barat JM, Pérez-Payá E, Guillem C. ACS Nano. 2010; 4:6353–6368. [PubMed: 20958020] 

88. Mondragon L, Mas N, Ferragud V, de la Torre C, Agostini A, Martinez-Manez R, Sancenon F, 
Amoros P, Perez-Paya E, Orzaez M. Chemistry (Weinheim an der Bergstrasse, Germany). 2014; 
20:5271–5281.

89. Park C, Kim H, Kim S, Kim C. J. Am. Chem. Soc. 2009; 131:16614–16615. [PubMed: 19919132] 

90. Daniel M-C, Astruc D. Chem. Rev. 2004; 104:293–346. [PubMed: 14719978] 

91. Ghosh P, Han G, De M, Kim CK, Rotello VM. Adv. Drug Delivery Rev. 2008; 60:1307–1315.

92. Sun I-C, Lee S, Koo H, Kwon IC, Choi K, Ahn C-H, Kim K. Bioconjug. Chem. 2010; 21:1939–
1942. [PubMed: 20936793] 

93. Xia X, Yang M, Oetjen LK, Zhang Y, Chen Q. Li, J. Xia Y. Nanoscale. 2011; 3:950–953. 
[PubMed: 21225037] 

94. Xu X, Han MS, Mirkin CA. Angew. Chem. 2007; 119:3538–3540.

95. Dong L, Xia S, Wu K, Huang Z, Chen H, Chen J, Zhang J. Biomaterials. 2010; 31:6309–6316. 
[PubMed: 20472287] 

96. Chen C, Geng J, Pu F, Yang X, Ren J, Qu X. Angewandte Chemie International Edition. 2011; 
50:882–886.

97. Chow EK-H, Ho D. Sci. Transl. Med. 2013; 5:216rv214–216rv214.

98. Tai W, Mo R, Lu Y, Jiang T, Gu Z. Biomaterials. 2014

99. Gu Z, Biswas A, Zhao M, Tang Y. Chem. Soc. Rev. 2011; 40:3638–3655. [PubMed: 21566806] 

Hu et al. Page 14

Nanoscale. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
A schematic illustrating typical implementations of enzyme-responsive nanomaterials for 

controlled drug delivery. (A) Drugs can be directly released from a variety of carriers upon 

site-specific cleavage by enzymes. (B) Drug carriers can be activated by enzymes to expose 

targeting ligands for the subsequent cellular delivery. (C) Enzymes can facilitate the 

generation of specific products that result in drug release from carriers.
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Fig. 2. 
(A) Schematic illustration of development and enzyme-responsive mechanism of peptide-

grafted polymers. (B) Luciferase activity in tumor site 24 h after intratumoral injection of 

peptide-grafted polymers 1 or 2 (C/A = 2.0). Arrows and circles indicate the site of 

xenografted-tumor tissue. Reproduced from ref. 40 with permission from American 

Chemical Society.
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Fig. 3. 
Schematic illustration of activatable CPPs. The enzyme-responsive inhibitory domain can be 

dissociated at cleavable site, resulting in the internalization of nanoparticles. Reproduced 

from ref. 45 with permission from the National Academy of Sciences.
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Fig. 4. 
Schematic illustration of the mechanism of prodrug based liposome which could be 

hydrolyzed by sPLA2 to release the drug after cyclization. Reproduced from ref. 56 with 

permission from WILEY.
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Fig. 5. 
Injectable glucose-responsive nano-network for insulin delivery. (a) Ketal modified dextran-

based nanoparticle encapsulated with insulin, Gox and catalase. (b) Decoration of 

nanoparticles with chitosan and alginate, respectively. (c) Formation of Nano-network (NN) 

via electrostatic interaction and dissociation via the catalytic conversion of glucose into 

gluconic acid (d) Schematic of glucose-responsive insulin delivery for type 1 diabetes 

treatment using the STZ-induced diabetic mice model. Reproduced from ref. 5 with 

permission from American Chemical Society.
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Fig. 6. 
(A) Schematic of preparation and enzyme-responsive mechanism of a smart micellar 

nanocarrier. Reproduced from ref. 60 with permission from American Chemical Society. (B) 

Schematic representation of the disruption of PEG-N=N-PS block copolymer based micellar 

in the presence of azoreductase. Reproduced from ref. 61 with permission from American 

Chemical Society.
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Fig. 7. 
(A) Schematic illustration of size change of QDGelNPs and release of 10-nm QD NPs in the 

presence of MMP-2. (B) GFC chromatograms of QDGelNPs after incubation with MMP-2. 

Reproduced from ref. 69 with permission from the National Academy of Sciences. (C) 

Retention of enzyme-responsive nanoparticles in HT-1080 tumors after intratumoral 

injection. Reproduced from ref. 70 with permission from American Chemical Society.
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Fig. 8. 
Schematic illustration of preparation and mechanism of protein nanocapsules. (A) 

Preparation of protein nanocapsules via in situ polymerization. (B) Typical monomers and 

cross-linker used in enzyme-responsive nanocapsule system. Reproduced from ref. 71 with 

permission from American Chemical Society.
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Fig. 9. 
Scheme of of the enzyme-responsive liposome for the tumor cell-specific delivery of 

adenoviral vectors. Reproduced from ref. 81 with permission from Elsevier.
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Fig. 10. 
Schematic illustration of mechanism of core–shell-based Gel–Liposome for programmed 

and site-specific drug delivery. Reproduced from ref. 86 with permission from WILEY.
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Fig. 11. 
Si-MPs-based enzyme-responsive drug delivery system. (A) Schematic illustration of Si-

MP-CD. (B) FE-SEM image of Si-MP-CD. (C) Functional ligand on the surface of SiMP-

NBE-CD. (D) α-amylase and lipase triggered release of guest molecules from Si-MP-CD. 

Reproduced from ref. 89 with permission from American Chemical Society.
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Fig. 12. 
Schematic illustration of enzyme-cleavable DEVD peptide-conjugated gold nanoparticles 

(DEVD-AuNPs). Reproduced from ref. 92 with permission from American Chemical 

Society.
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Fig. 13. 
Enzyme-based dual responsive drug delivery system. (A) Schematic illustration of design of 

CPX1 and CPX2. Reproduced from ref. 95 with permission from Elsevier. (B) Release of 

cargoes from temperature/enzyme dual-responvie MSPs. Reproduced from ref. 96 with 

permission from WILEY.

Hu et al. Page 27

Nanoscale. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


