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Abstract: Ocular contamination of EEG data is an important and very common problem in 

the diagnosis of neurobiological events. An effective approach is proposed in this paper to 

remove ocular artifacts from the raw EEG recording. First, it conducts the blind source 

separation on the raw EEG recording by the stationary subspace analysis, which can 

concentrate artifacts in fewer components than the representative blind source separation 

methods. Next, to recover the neural information that has leaked into the artifactual 

components, the adaptive signal decomposition technique EMD is applied to denoise the 

components. Finally, the artifact-only components are projected back to be subtracted from 

EEG signals to get the clean EEG data. The experimental results on both the artificially 

contaminated EEG data and publicly available real EEG data have demonstrated the 

effectiveness of the proposed method, in particular for the cases where limited number of 

electrodes are used for the recording, as well as when the artifact contaminated signal is 

highly non-stationary and the underlying sources cannot be assumed to be independent  

or uncorrelated. 

Keywords: electroencephalographic (EEG) signals; electro-oculographic (EOG) artifact; 

stationary subspace analysis (SSA); empirical model decomposition (EMD); signal 

reconstruction; artifact correction 
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1. Introduction 

Quantitative analysis and interpretation of human electroencephalographic (EEG) signals can 

benefit various applications, such as the study of human brain functional states, to evaluate drug 

effects, to diagnose psychiatric and neurological disorders, to use brain-controlled devices to assist 

disabled people through Brain-Computer Interfaces (BCIs) and so on.  

EEG signals are recorded from the scalp surface around the head with electrodes, which, however, 

may be contaminated by interferences. Eye movements and blinks constitute a major source of artifacts 

in EEG recordings, and such artifacts are commonly referred to as ocular artifacts (OA) or 

electrooculographic (EOG) artifacts [1]. In general, the EOG artifacts are characterized by localized 

patterns with higher amplitude and lower frequency than those of the EEG signals. Their vertical 

projection propagates quite symmetrically in an anterior-posterior direction. The potentials generated 

by ocular activity interfere with the electric field of neural origin mainly in the anterior scalp  

regions [2]. Thereby, a critical point in EEG signal processing is the need for careful treatment and 

reduction of these artifacts, which contaminate the EEG recordings and can lead to incorrect results 

and conclusions.  

A classic way to deal with EOG artifacts is to instruct the person to avoid eye movements and 

blinks. This solution, however, may suppress and eventually harm the person’s ongoing cognitive 

processes, thereby affecting the neuroscientific interpretation of the results [3–6]. Moreover, such a 

method is sometimes infeasible, especially in experiments performed on children, disabled people, 

uncooperative subjects, etc. [7,8]. Another early common practice is to simply reject the epochs 

contaminated with artifacts. However, not only the task-relevant neural responses are thrown away by 

such an approach, but also the scarcity of data or a high percentage of contamination makes this 

method unusable in many neural studies [9,10]. 

A practical solution for dealing with EOG artifacts is the procedure of artifact correction, where the 

artifact-laden epochs are “cleaned” by eliminating the artifacts and thus the cerebral activity is 

recovered. A variety of methods have been developed to this end, which can be generally categorized 

into two classes. One class is based on regression in the time domain, in which a proportion of the 

EOG recording is “subtracted” from each scalp electrode [11–13]. Such a method is quite simple, 

nevertheless, its performance is seriously affected by the well-known bidirectional contamination 

problem, which is due to the fact that the EOG signals also capture underlying neural activity 

originating from the prefrontal cortex, so the EOG and EEG recordings in the prefrontal region have 

common cerebral patterns, leading to their removal by regression scheme [3]. The second class of 

EOG artifact correction methods is based on the blind source separation (BSS) techniques. The BSS 

methods are capable of separating a mixture of signals originating from different sources to several 

components. Once the artifactual components are identified, they can be removed during the inverse 

BSS transformation to yield the clean cerebral activity data. Currently, such BSS-based methods have 

been shown to be very useful [14–17]. However, there are also several main problems of  

this methodology.  

First, the classic BSS techniques such as independent component analysis (ICA), second-order 

blind identification (SOBI), may not be effective on the highly non-stationary EOG  

artifact-contaminated EEG recordings. On one hand, the ocular artifacts resulting from eye movements 
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and blinks demonstrate strongly non-stationary characteristics: they are often localized with abruptly 

large amplitude and low frequency; their duration and amplitude appear to differ stochastically and 

considerably between successive eye movements or blinks. This implies that there are significant 

distribution changes in the artifact-contaminated EEG observations, such as the changes in the mean 

and the covariance matrix. However, ICA is not devoted to the understanding of the distribution 

changes, but to find the components that are both statistically independent and non-Gaussian [18–20]. 

Although SOBI exploits the temporal changes in the covariance matrix of the observations by the joint 

diagonalization of several covariance matrices with different time delays, the changes in the mean of 

the observations have not been taken into account. On the other hand, the underlying sources 

associated with artifacts may not be assumed to be independent or uncorrelated among each other [21]. 

It is known that ICA and SOBI can perform well on the eye blink artifacts contaminated EEG  

signals [16,19]. This is because blink artifacts mainly involve the vertical movement, the sources 

corresponding to the vertical movement and horizontal movement of eyes thus can be assumed to be 

independent or uncorrelated. However, when both the vertical and horizontal eye movements are 

involved in the contamination to the EEG observations, the sources associated with such EOG artifacts 

cannot be assumed to be independent nor uncorrelated anymore, because the vertical and horizontal 

eye movements are often accompanied with each other, in particular for eye ball rolls. Nevertheless, 

ICA instead has imposed the requirement of source-wise independency, while SOBI is based on the 

assumption that the sources should be uncorrelated with each other. Thus on the highly non-stationary 

EOG artifact-contaminated EEG recordings, we find that ICA and SOBI often fail to concentrate the 

artifacts in a small number of components. Since it is usually assumed that the number of sources is no 

greater than the number of channels in the BSS literature, in cases where there are limited number of 

electrodes used for EEG recording (e.g., often used in sleep studies [22] and when subjects are 

neonates or young infants, due to the size of the head [23]), it may lead to the loss of information 

related to brain activity by rejecting those sources found by ICA or SOBI. 

Second, the components selected for removal may also contain neural activity aside from pure 

artifacts, in particular when there are limited numbers of recording electrodes [24–27]. In this sense, 

the removal of the contaminated components, followed by the signal reconstruction may lead to 

distortions of the underlying cerebral activity [17,19]. In order to recover the cerebral activity that has 

leaked into the components, the wavelet enhanced ICA (wICA) in [11] further makes use of wavelet 

decomposition and thresholding for denoising of the demixed components. Nevertheless, the 

performance of wICA largely depends on the quality of the sources separated by ICA, which may not 

be effective on the highly non-stationary EOG artifact-contaminated EEG recordings. Furthermore, 

during the wavelet decomposition, the wavelet basis and decomposition level need to be manually set, 

which may yield spurious harmonics because of the non-stationary and nonlinear characteristic of the 

signals. The inappropriate wavelet decomposition results may subsequently lead to less effective 

denoising through thresholding, causing distortions of the reconstructed signal eventually.  

To address the above two problems of BSS-based methods, we propose a novel approach that aims 

to improve the performance of the EOG artifact correction on raw EEG recordings with a limited 

number of channels. The method utilizes stationary subspace analysis (SSA) [28,29] in conjunction 

with empirical model decomposition (EMD) [30]. Unlike the classic blind source separation with ICA 

or SOBI, the adopted BSS algorithm SSA is explicitly tailored to the understanding of distribution 
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changes [29]. The type of distribution changes that SSA detects are changes in both the mean and the 

covariance matrix. In addition, neither independency nor uncorrelation is required among the sources 

by SSA. Subsequently, artifacts can be concentrated in only a few components. To the best of our 

knowledge, SSA has not been applied to EEG signals for removing artifacts thus far, even though it 

has been shown to have interesting applications in robust motor imagery prediction for  

Brain-Computer Interfaces [28], WiFi localisation [30], geophysical data analysis [29], computer  

vision [31] and change-point detection [32]. To further reduce the distortions in the SSA-corrected 

EEG, the EMD is then used to decompose those artifactual components for recovering cerebral 

activities that have leaked to these components. It is a completely data-driven signal decomposition 

method, the basis of the decomposition is adaptively derived from the data [33]. EMD usually 

demonstrates superior performance on non-stationary data to other methods [34–37], such as Fourier 

or the wavelet transforms, in which the basis needs to be manually specified. Experiments on both 

artificially contaminated data and publicly available real EEG recordings have been conducted, and the 

results show that the proposed method can effectively improve the artifact correction on raw  

EEG recordings 

2. Proposed Approach for EOG Artifacts Correction  

Figure 1 shows the block diagram of the proposed approach. It comprises the following key steps: 

(1) apply SSA to obtain the components containing artifacts ˆ ( )
ns

tS ; (2) apply EMD on such 

components to separate the artifact-only components ˆ ( )
art

tS and the cerebral activity that has leaked to 
ˆ ( )

ns
tS ; (3) project the artifact-only components back to each channel for estimating the artifacts, and 

then subtract the estimated artifacts ˆ ( )
art

tx  from the raw EEG recordings to get a clean EEG. 

Figure 1. Block diagram of the proposed approach. 

  

2.1. Blind Source Separation by SSA  

The first key step in the proposed approach is the application of SSA to separate the artifactual 

components from the raw EEG data. The observed signal x(t) is modeled as a linear superposition of 

two groups of sources with an invertible mixing matrix A. One group includes the sources Ss(t) related 

to the cerebral activity, the other are the sources Sns(t) that arise from the eye movement and blink, i.e., 

the highly non-stationary EOG artifactual sources whose distribution changes are the most pronounced: 
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where As and Ans are the corresponding mixing matrices for Ss(t) and Sns(t) respectively. To factorize 

the observed time series x(t) into the cerebral sources Ss(t) and the EOG artifactual sources Sns(t), SSA 

is applied to estimate the inverse mixing matrix A−1 as B=[Bs
T Bns

T]T, such that ˆ ˆ( ) ( )
s s

t tS B x  and 

ˆ ˆ( ) ( )
ns ns

t tS B x  are the estimated cerebral and artifactual sources, respectively. The “weak  

non-stationarity” criterion is adopted in SSA, i.e., the data are split into N consecutive epochs, and 

components are considered to be non-stationary if their empirical distribution (approximated by mean 

and covariance) changes significantly in these epochs [28,29]. It has been shown that such a criterion 

can be approximated as a generalized eigenvalue problem [29]: 

T Tmin Tr subject to   B
BVB BΣB I

 (2)  

with the matrix V defined by: 

 
N

T T T

1

1
2 2

N
k k k k

k

   V μ μ Σ ΣΣ μμ Σ
 

(3)  

where Tr[.] denotes the trace of a matrix, T is the transposition operation, I is the identity matrix, μk 

and Σk are the mean and covariance in the kth epoch respectively,
N1

N 1 kk
 μ μ ,

N1
N 1 kk

 Σ Σ . Such 

an objective function in Equation (3) essentially aims to minimize the distance between each epoch 

mean and covariance and their respective averages. This distance is measured using the variance of the 

mean and covariance across all epochs. This eigen-decomposition problem can be solved efficiently, 

and then the mixing matrix Â  is obtained by 1ˆ B , the estimated components are derived by:  

ˆ ˆ( ) ( )t tS Bx  (4)  

As can be observed from Equations (2) and (3), there are two advantages of SSA over ICA and 

SOBI. Firstly, it explicitly takes into account the distribution changes in both the mean and the 

covariance matrix. Secondly, it does not require the source-wise independency or uncorrelation. In 

fact, SSA allows arbitrary dependence structure among and between the two groups of sources [29]. 

Therefore, the highly non-stationary eye movement or blink artifacts generally will not spread out over 

multiple components but be concentrated into only a few components by SSA. Furthermore, SSA 

orders the components in increasing degree of non-stationarity [29], thereby the components that are 

likely to be associated with the artifacts would be ranked in the bottom. To automatically identify the 

artifactual sources ˆ ( )
ns

tS , we adopted an effective method called ADJUST proposed in [38] recently. 

2.2. EMD Denoising of Artifact Components  

The identified artifactual components extracted by SSA are expected to correspond to artifacts only. 

However, when there are limited number of recording electrodes used, some neural activities usually 

have leaked to these artifactual components [11]. In other words, such components generally can be 

split into a high amplitude artifact ˆ ( )
art

tS localized in time with low frequency and a low amplitude 

cerebral signal ˆ ( )tn  with relatively high frequency: 
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ˆ ˆ ˆ( ) = ( ) +  ( )
ns art

t t tS S n  (5)  

The desired information may be lost if ˆ ( )
ns

tS is simply rejected during reconstruction. To retain the 

cerebral information, ˆ ( )
ns

tS  needs to be denoised in order to obtain ˆ ( )
art

tS , for which we propose to 

employ EMD.  

The principle of EMD is to decompose a signal into a sum of the band-limited intrinsic mode 

functions (IMFs) by their characteristic time scales [30]. In specific, each IMF satisfies two basic 

conditions: (1) in the whole data set, the number of extrema and the number of zero crossings must be 

the same or differ at most by one; (2) at any point, the mean value of the envelope defined by the local 

maxima and the envelope defined by the local minima is zero. Here, the effective steps of EMD are 

briefly summarized as follows [30]: 

(1) Given a single channel signal S(t), indentify all local maxima and minima. 

(2) Interpolate between maxima to estimate the upper envelope Sup(t) and between minima to 

estimate the lower envelope Slow(t). 

(3) Compute the mean of the two envelopes, m(t) = (Sup(t) + Slow(t))/2, and subtract it from the 

data: d(t) = S(t) – m(t).  

(4) Repeat step (1)–(3) on d(t) until a stopping criterion is fulfilled. 

The sifting process stops when the final residue r(t) is a constant, a monotonic function, or a 

function with only one maxima and one minima from which no more IMF can be derived. At the end 

of the decomposition, the signal S(t) can be represented as: 

p

1
( ) ( ) ( )

ii
S t d t r t


   (6)  

where p is the total number of IMFs, di(t)’s (i = 1,…,p) represent IMFs that are nearly orthogonal to 

each other and have zero mean. The first IMF owns the smallest time scale which corresponds to the 

fastest time variation of the signal. As the decomposition process proceeds, the time scale increases, 

and hence the mean frequency of the IMF decreases. In general, EMD is advantageous over other 

signal decomposition methods, such as the Fourier or the wavelet transforms, mainly because its basis 

of the decomposition is adaptively derived from the data, rather than manually set [30]. Moreover, 

EMD has demonstrated prominent performance on processing non-stationary signals, which is due to 

the fact that it is based on the local characteristic time scale of the data [19]. 

After applying EMD on each component in the artifactual group ˆ ( )
ns

tS , the slowly varying trend 

representing the EOG artifact is expected to be captured by higher order IMFs (plus the final residue). 

We then separate ˆ ( )
art

tS from ˆ ( )
ns

tS by summing up the IMFs starting from n
th up to the residue, 

where the index n can be easily determined by visual inspection: 

p

, ,
ˆ ( ) ( ) ( )

art j i j ji n
t d t r t


 S  (7)  

where ,
ˆ ( )

art j
tS denotes the j

th artifactual component, di,j (t) represents the ith IMF by applying EMD on 

the jth artifactual component and rj(t) is the corresponding residue.  
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2.3. Reconstruct the EEG Signals  

Using the estimated mixing matrix, Â = [Âs Âns], given by SSA, these artifact-only components 
ˆ ( )

art
tS are projected back to EEG channel, and artifacts in EEG data ˆ ( )

art
tx  are calculated as: 

ˆ ˆˆ ( ) ( )
art ns art

t tx A S   (8)  

Finally, the clean EEG data ˆ( )tx  is obtained by: 

ˆ ˆ( ) ( ) ( )artt t t x x x  (9)  

The complete steps of the proposed approach are summarized in Table 1. 

Table 1. Summary of proposed approach for EOG artifacts correction from raw EEG recordings. 

Processing: 
(1) Apply SSA on x(t), and then identify the artifactual components ˆ ( )

ns
tS as well as the 

corresponding columns of mixing matrix Âns; 
(2) Perform EMD denoising for the artifactual components ˆ ( )

ns
tS  to obtain artifact-only 

components ˆ ( )
art

tS ; 

(3) Estimate the artifacts in multichannel EEG data by ˆ ˆˆ ( ) ( )
art ns art

t tx A S ; 

(4) Subtract the artifacts from EEG data to get clean EEG: ˆ ˆ( ) ( ) ( )artt t t x x x . 

3. Experimental Section 

3.1. Suppression of Artifact on Artificially Contaminated EEG Signals  

3.1.1. Data Generation 

Forty healthy volunteers, 20 males and 20 females, aged between 20 and 33 years (mean age  

27.6 years) were involved in the study. The EEG signals were recorded on 20 volunteers with the 

NeuroScan SynAmps2 system. Six EEG channels (Fp1, Fp2, C3, C4, O1, O2) were used for recording 

and the ground electrode was placed at position Cz, according to the 10–20 system (Figure 2). To 

obtain pure EEG data to be artificially contaminated, a 50-s consecutive epoch, where there were no 

obvious artifacts according to a careful inspection, was recorded for each volunteer in an eyes-closed 

session. Signals were digitized at a rate of 250 Hz, band-pass filtered at 0.5–50 Hz and notch filtered at 

50 Hz. 

To obtain the artifact signals for contaminating the pure EEG, separate EOG signals were obtained 

on the remaining 20 volunteers during eyes-open sessions with eye rolling, which were recorded by 

two electrodes placed above and below the left eye and another two on the outer canthi. This process 

gave rise to two bipolar signals for each volunteer, namely, vertical-EOG (VEOG), which is equal to 

the upper minus lower EOG electrode recordings and horizontal-EOG (HEOG), which is equal to the 

left minus right EOG electrode recordings. These EOG signals were band-pass filtered between  

0.5 and 15 Hz.  
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Finally, to generate the “artificially contaminated EEG signals” (used for evaluating the performance 

of approaches for EOG artifact correction), we have used the Elbert’s contamination model [39]: 

mixed j = inEEGj + αjVEOG + βjHEOG (10)  

where mixedj is the artificially contaminated EEG signal on the jth channel and in EEGj is the collected 

artifact-free EEG signal described above. Variables αj, βj denote the propagation weights for VEOG and 

HEOG, respectively, initialized according to [40]. The mixing procedure by means of Equation (10) was 

carried out 20 times in order to simulate 20 subjects or sets of mixed signals.  

Figure 2. Placement of the EEG electrodes on the scalp according to the recording 10–20 system. 

 

The first six channels in Figure 3a depict an example from one of the 20 artificially contaminated 

EEG signals, while the last two channels show the corresponding VEOG and HEOG used to generate 

the mixed signal. The eye movement and blink artifacts appear in EEG as big pulses localized in time 

and have a strong impact to EEG signals. Besides, the eye movement and blink episodes spread over 

all channels and affect most strongly the frontal sites (Fp1, Fp2). 

3.1.2. Performance Measures 

Thanks to the pre-contaminated EEG signals described above, we were able to conduct quantitative 

comparison between the original and the corrected signals. Two commonly used evaluation metrics 

were adopted in the experiments with two goals: to test how successfully algorithms remove ocular 

artifacts, and how much the EEG signals are distorted after the artifact rejection procedure. 

(1) Mutual Information 

The mutual information (MI) quantifies the mutual dependence of the pre-contaminated EEG 

signals and the artifact-corrected EEG data sets using the following formula [5]: 

inEEG outEEG 1 2

( , )
MI(inEEG,outEEG) ( , ) log

( ) ( )x y

p x y
p x y

p x p y 

 
  

 
   (11)  

where the inEEG denotes the artifact-free EEG data set before the contamination (Section 3.1.1) and 

the outEEG stands for the cleaned EEG signals by an approach for artifact correction. p(x,y) is the joint 
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probability distribution function, and p1(x) and p2(y) are the marginal probability distribution functions 

of inEEG and outEEG, respectively. The larger the MI, the better the corrected EEG resembles the 

original EEG.  

(2) Power Spectrum Distortion 

In order to quantify the spectral distortions across different frequency bands of the cerebral activity 

(Delta: 0.5–4 Hz, Theta: 4–8 Hz, Alpha: 8–12 Hz, Beta: 12–30 Hz and Gamma: 30–45 Hz), which 

were introduced by the artifact correction methods, the following index [5] was used: 

ΔP=|PinEEG-PoutEEG| (12)  

where PinEEG and PoutEEG denote the power spectrum density estimated for the signals before and after 

applying an artifact correction approach, using the Welch method. The parameters used as input in the 

Welch algorithm are: 64 sample points as the window with 60 samples overlapped and 250 Hz 

sampling rate.  

3.1.3. Evaluation of Different Artifacts Correction Methods 

The proposed method (referred to as SSA_EMD) was compared with SOBI-based approach 

(referred to as SOBI), ICA-based approach (referred to as ICA), SSA-based approach without EMD 

denoising (referred to as SSA) and wICA. For the compared approaches based only on SOBI, ICA or 

SSA, we first performed the blind source separation on the contaminated EEG signal, and then rejected 

the artifactual components automatically identified by the ADJUST algorithm (The implementation of 

ADJUST was downloaded from http://www.unicog.org/pm/pmwiki.php/MEG/RemovingArtifacts 

WithADJUST) during the reconstruction. For SOBI and ICA, we adopted the SOBI and infomax ICA 

algorithms implemented in the EEGLAB toolbox [41]. The implementation of wICA was obtained 

from authors of [11], and it is also based on infomax ICA from the EEGLAB toolbox. SSA was 

implemented based on the paper [29].  

By applying SSA on the EEG data on the first six channels shown in Figure 3a, six components 

were obtained and depicted in Figure 3b. The last two components in Figure 3b were identified as the 

artifactual ones by ADJUST, which were strongly non-stationary, featuring abrupt pulses with large 

amplitude and short-duration. By observing the HEOG and VEOG signals that propagated onto the six 

EEG channels, we found that the last two artifactual components actually reflected the horizontal and 

vertical motion of eyes, respectively. Furthermore, these two artifactual components carried appreciable 

brain activity as well (see Figure 3b). Then EMD was applied on these two components for denoising 

them, and the resulting IMFs for each component are shown in two subfigures of Figure 3e. It can be 

observed that the relatively high oscillation both appears in the 1st IMF, the 2nd IMF and the 3rd IMF, 

which are likely to be associated with the cerebral signals. Thereby, the remaining IMFs of each 

artifactual component were summed together to reconstruct the artifact-only one. Finally, the  

artifact-only components were projected back to each channel for estimating the artifacts, and then the 

corrected EEG data were obtained by subtracting the estimated artifacts from the raw EEG recordings. 
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Figure 3. Results of EOG artifact removal on an example EEG data set from the  

20 artificially contaminated ones. (a) The artificially contaminated EEG data with eye 

movement and blink artifacts (shown in the first six EEG channels) and the corresponding 

EOG signals used in the mixing procedure (shown in the last two channels);  

(b) Components separated by SSA; (c) Components separated by SOBI; (d) Components 

separated by ICA; (e) IMFs decomposed by applying EMD on the last two components in 

(b); (f) The mixed, the pre-contaminated EEG and the corrected EEG signals by each 

methods on channel Fp1; (g) The power spectrum estimates for the pre-contaminated EEG 

and the corrected EEG signals by each methods on channel Fp1; (h) The zoomed  

artifacts-corrected signals in the artifact-free epoch.  

 
(a) 

 
(b) 

 
(c) 
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Figure 3. Cont. 

 
(d) 

 
(e) 

 
(f) 
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Figure 3. Cont. 

  
(g) (h) 

For the example data shown in Figure 3a, the components separated by SOBI and ICA are shown in 

Figure 3c,d, respectively. The ADJUST algorithm determined that both SOBI and ICA failed to 

capture the vertical and horizontal movements of eyes into two components, and the artifacts instead 

both spread into the first three components. wICA further performed the wavelet denosing on such a 

separation results by ICA for recovering the EEG. 

3.1.4. Evaluation Results 

(1) Performance of removing the artifacts 

For the example EEG data set shown in Figure 3a, visual comparison of the mixed, the  

pre-contaminated EEG and the corrected EEG signals by different ocular artifacts removal methods is 

given in Figure 3f, where only the EEG on the Fp1 channel is depicted because the frontal channels 

near the eyes are contaminated most severely. The visual inspection confirms that all these five 

methods effectively suppress the EOG artifacts. However, it can be seen that compared to SOBI, ICA 

and wICA, both SSA and SSA_EMD give better approximations of the pre-contaminated EEG signals. 

Moreover, according to the mean and standard deviation of MI over 20 simulated EEG data sets which 

are reported in Table 2 (SSA:0.944 ± 0.105 versus SSA_EMD:1.036 ± 0.211), SSA_EMD outperforms 

SSA, indicating that SSA_EMD removes the ocular artifacts from the EEG signals most successfully 

among all the methods. 

(2) Performance of distorting the cerebral activity 

For the example EEG data set shown in Figure 3a, we have shown the power spectrum density for 

the corrected EEG data by each method on the channel Fp1 in Figure 3g. It can be observed that ICA 

tends to underestimate the EEG power spectrum over all the frequency bands, except the range 

between 30 Hz and 40 Hz, indicating there is loss of brain activity with low frequency. This is 

confirmed by the zoomed ICA-corrected signal during an artifact-free epoch shown in Figure 3h, 

where the slow activities around 19.2 s, 19.4 s and 19.7 s in the pre-contaminated EEG signal have 
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disappeared. SOBI has also considerably underestimated the power spectrum in the range of 0.5–4 Hz 

and eliminated the slow activities around 19.4 s and 19.9 s (see Figure 3h). It even overestimates the 

power spectrum density in the range of 25–40 Hz, which has led to spurious spiky behavior locally that 

does not present in the pre-contaminated EEG signal. Moreover, SSA seems to underestimate the EEG 

power spectrum in the range of 8–40 Hz, implying the neural activity of high frequency was 

undesirably cleaned. Accordingly, the zoomed plot of SSA-corrected signal in Figure 3h indicates that 

the fast oscillations in the original pre-contaminated EEG signal have vanished. For the wICA-corrected 

signal, there is a decrease in the power spectrum in the frequency range of 0.5–6 Hz as well as an 

increase in the frequency range of 6–20 Hz, indicating that wICA distorted the EEG signal 

considerably as can be seen in Figure 3h. By contrast, SSA-EMD has provided the best approximation 

of the power spectrum of the pre-contaminated EEG signal, as can be seen in Figure 3g. Table 2 shows 

the quantitative comparison results of ΔP for the proposed approach as well as other four methods over 

20 simulated EEG data sets on channel Fp1. We can observe that SSA_EMD achieves the lowest 

errors of the power spectrum among all the approaches, indicating that EEG signals are less distorted 

by SSA_EMD than by the compared methods. The three spectral bands with the highest power 

spectrum errors in the EEG signal are the Delta, Theta and Alpha bands, where there may be the main 

incidence of ocular contamination in EEG channels.  

Table 2. MI and ΔP by different EOG artifact correction methods over 20 artificially 

contaminated EEG data sets on channel Fp1. 

Quantification Metrics SOBI ICA wICA SSA SSA_EMD 

MI 0.102 ± 0.062 0.169 ± 0.084 0.059 ± 0.021 0.944 ± 0.105 1.036 ± 0.211 

ΔP in Delta band (dB/Hz) 1.678 ± 2.227 4.317 ± 1.025 6.153 ± 2.59 0.674 ± 0.473 0.669 ± 0.328 

ΔP in Theta band (dB/Hz) 1.739 ± 2.359 4.752 ± 2.468 1.927 ± 2.893 1.329 ± 1.564 1.025 ± 0.946 

ΔP in Alpha band (dB/Hz) 0.684 ± 0.846 4.494 ± 3.156 1.586 ± 2.121 1.400 ± 1.791 0.655 ± 0.269 

ΔP in Beta band (dB/Hz) 0.501 ± 0.297 2.176 ± 4.012 0.227 ± 0.319 2.835 ± 3.984 0.147 ± 0.120 

ΔP in Gamma band (dB/Hz) 2.373 ± 4.682 0.118 ± 0.197 0.021 ± 0.147 4.060 ± 2.556 0.006 ± 0.003 

3.1.5. Discussion on the Evaluation Results 

There are three important characteristics of the artificially contaminated EEG signals. One is that 

the EEG data set was recorded with limited number of channels (six channels, see Section 3.1.1), 

implying that the BSS algorithms can only separate the signal into six or even less underlying sources. 

Another is that the signal is highly non-stationary. The last is that the eye rolling artifactual sources 

used to construct the signal cannot be assumed to be independent or uncorrelated, since the vertical and 

horizontal movements of eyes were always accompanied with each other when eyes roll. On such a 

data set, both SOBI and ICA spread the artifacts in several components due to their drawbacks, 

considerable neural information thus got lost by rejecting more than necessary number of artifactual 

components during the reconstruction (see Figure 3g, Figure 3h and Table 2). In contrast, because the 

distribution changes in both the mean and the covariance matrix have been explicitly taken into 

account by SSA, and neither source-wise independency nor uncorrelation is assumed for the 

underlying sources, SSA succeeded to concentrate the EOG artifacts into fewer components. However, 

there is significant leakage of cerebral signals into them. Without applying EMD on these artifactual 
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components, the residual cerebral activity cannot be recovered (see Figure 3g, Figure 3h and Table 2). 

Although wICA was also developed to utilize wavelet denosing for recovering the neural information, 

which has leaked into components by ICA, it worked on the separation results by ICA which has been 

found to be not very effective on such a kind of data, thus resulting in inferior performance to 

SSA_EMD. 

3.2. Suppression of Artifact on the Real EEG Signals  

3.2.1. Data Description 

In this section, we applied the artifact correction methods on a publicly available real EEG data set 

(downloaded from http://www.commsp.ee.ic.ac.uk/~mandic/EEG-256Hz.zip). This data set also 

contains EOG artifacts from round movement of the eyes, which was recorded using the same 

collection configuration shown in Figure 2. In addition, the data set was sampled at 256 Hz and notch 

filtered at 50 Hz. As can be seen from the Figure 4a, which shows the real EEG signals, the EOG 

artifacts were present on all six EEG channels, while the artifacts are much stronger on the frontal lobe 

electrodes (Fp1, Fp2) and highly non-stationary (its amplitude differs between successive eye 

movements). Unlike the “artificially” contaminated EEG recordings, there is no ground truth “pure” 
EEG (pre-contaminated EEG), thus we can only present qualitative results in this section. 

Figure 4. Results of EOG artifact removal on the real EEG data. (a) The raw EEG 

recordings with eye movement and blink artifacts, as well as the simultaneous recordings 

of the EOG signals; (b) Components separated by SSA; (c) Components separated by 

SOBI; (d) Components separated by ICA; (e) IMFs decomposed by applying EMD on the 

last two components in (b); (f) The raw EEG recording and the corrected EEG signals by 

each methods on channel Fp1; (g) The zoomed artifacts-corrected signals in the  

artifact-free epoch on channel Fp1.  

 
(a) 
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Figure 4. Cont. 
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3.2.2. Evaluation of Different Artifacts Correction Methods 

For the proposed approach, the six components separated by SSA are shown in Figure 4b, where 

the last two components were identified as the artifactual ones by ADJUST. These two components 

accounted for the eye blinking and rolling. We have observed that these components carried some 

brain activities as well, which thus were further denoised by EMD. The resulting IMFs for each 

component are shown in two subfigures of Figure 4e. It can be observed that the relatively high 

oscillation both appears in the 1st–4th IMFs, which are likely to be associated with the cerebral 

signals. Thereby, the remaining IMFs of each artifactual component were summed together to 

reconstruct the artifact-only one. Finally, the artifact-only components were projected back to each 

channel for estimating the artifacts, and then the corrected EEG data were obtained by subtracting the 

estimated artifacts from the raw EEG recordings. 

The results of components separation by SOBI and ICA are shown in Figure 4c,d, respectively. 

According to the results by ADJUST, SOBI grasped the time courses of the eye movement and blink 

artifacts in the first three components, while ICA located the artifacts in the top four components. 

wICA performed the wavelet denoising on all the six components by ICA before the EEG 

reconstruction. 

3.2.3. Evaluation Results 

Figure 4f presents the visual comparison of the raw real EEG recording and the corrected EEG 

recording on Fp1 channel by different ocular artifacts correction methods. The EOG artifacts are 

effectively suppressed by all the five methods, except wICA, which has only suppressed the blink 

artifacts with a large amplitude and short-duration, but left over many eye movement artifacts in the 

corrected signals. Moreover, by observing zoomed signals during an artifact-free epoch in Figure 4g, we 

can find that SOBI，ICA and SSA have introduced considerable distortions, i.e., the activities of high 

frequency in the original raw EEG signal have disappeared. In contrast, it is observed that SSA_EMD 

has effectively corrected the ocular artifacts without altering much of the high frequency cerebral activity.  

3.2.4. Discussion on the Evaluation Results 

This real EEG recording has the same three characteristics as the artificially contaminated EEG 

signals. Both SOBI and ICA again failed to concentrate the artifacts in fewer components on this data 

set. Although SSA captured the eye blink and movements in only two components, such components 

also contained neural activity aside from the artifacts. Therefore, the removal of the contaminated 

components, followed by a signal reconstruction has led to distortions of the underlying cerebral 

activity (see Figure 4g). Nevertheless, by denoising the artifactual components found by SSA with the 

adaptive decomposition method EMD, the residual neural information was effectively recovered (see 

Figure 4g). Though wICA also attempted to recover the cerebral activity from the components by ICA, 

it only suppressed the blink artifacts with high amplitude (see Figure 4f) but still left over many eye 

movement artifacts. It is the manually set wavelet decomposition basis that might be blamed, which 

may only fit the eye blink artifacts well but may not match the eye movement ones with much more 

complicated localized temporal structures.  
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4. Discussion and Conclusions  

Ocular artifacts represent a critical issue for quantitative EEG analysis, in particular when a limited 

number of channels are used for the recording, as well as when the contaminated signal is highly  

non-stationary and the underlying sources cannot be assumed to be independent or uncorrelated. In this 

paper, we have proposed an effective method for removing ocular artifacts from the raw EEG 

recording. It first performs blind source separation on the signal with SSA, which can concentrate the 

artifacts in only a few components. Then the adaptive signal decomposition technique EMD is applied 

on artifact sources to recover cerebral activity that has leaked to these sources. Experimental results on 

both the simulated data and real EEG recordings show that the proposed method not only effectively 

suppresses the highly non-stationary ocular artifacts, but also conserves much better the cerebral 

activity outside the artifact episodes.  

The key to assure that the artifacts can be captured in fewer components so as to keep more neural 

information in the remaining cerebral sources is to choose a BSS algorithm with particularly designed 

strength, as well as proper underlying assumptions that most closely match the physical properties of 

the problem at hand. SSA’s ability to separate highly non-stationary signals with arbitrary dependency 

among the underlying sources is one reason for the differences in the observed performance of 

SSA_EMD based approach versus the SOBI or ICA based ones. This is also the primary reason it was 

chosen for the proposed procedure on the eye movement (in particular eye roll) artifacts-contaminated 

EEG recordings with a limited number of channels. However, when there are enough electrodes for 

recording, such a problem is not so critical anymore. The discussion above is intended to enhance the 

awareness that BSS algorithms may not produce physical meaningful components unless they take the 

characteristics of the signals into account and their underlying assumption meets the properties of 

signals to be analyzed. 

The rationality behind the combination of SSA and EMD will also be discussed. On one hand, 

although SSA is able to capture the artifacts in only a few components, there is still considerable 

neural activity carried by these artifactual components. Thereby it may lead to loss of cerebral 

information by simply rejecting the artifactual components during the reconstruction. On the other 

hand, despite the fact that EMD adaptively derives the decomposition basis from local dynamics in the 

data, it has been reported that EMD may fail to correct the artifacts by directly working on the raw 

EEG recordings [42]. This is because the ratio of artifact magnitude to the cerebral activity magnitude 

in a channel may not be high enough to separate them effectively [42]. 

Nevertheless, ocular artifacts can be concentrated in only a few components by SSA, where the 

ratio is much higher than in the artifact contaminated channel. Thus it is preferable to apply EMD on 

the artifactual components rather than directly on the raw recording. In other words, such a 

combination can substantially overcome the individual main drawbacks of SSA and EMD. 

The main limitation of the proposed method is that the starting IMF for reconstructing the  

artifact-only component after applying EMD is identified manually. More efforts are needed in order 

to upgrade SSA_EMD to an automatic methodology. Besides, we have mainly focused on ocular 

artifacts and performance of other types of artifacts is yet to be investigated in the future work. 
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