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Abstract

Embedded systems can operate perpetually without being

connected to a power source by harvesting environmental

energy from motion, the sun, wind, or heat differentials.

However, programming these perpetual systems is challeng-

ing. In response to changing energy levels, programmers can

adjust the execution frequency of energy-intensive tasks, or

provide higher service levels when energy is plentiful and

lower service levels when energy is scarce. However, it is

often difficult for programmers to predict the energy con-

sumption resulting from these adjustments. Worse, explicit

energy management can tie a program to a particular hard-

ware platform, limiting portability.

This paper introduces Eon, a programming language and

runtime system designed to support the development of per-

petual systems. To our knowledge, Eon is the first energy-

aware programming language. Eon is a declarative coordi-

nation language that lets programmers compose programs

from components written in C or nesC. Paths through the

program (“flows”) may be annotated with different energy

states. Eon’s automatic energy management then dynami-

cally adapts these states to current and predicted energy lev-

els. It chooses flows to execute and adjusts their rates of ex-

ecution, maximizing the quality of service under available

energy constraints.

We demonstrate the utility and portability of Eon by de-

ploying two perpetual applications on widely different hard-

ware platforms: a GPS-based location tracking sensor de-

ployed on a threatened species of turtle and on automobiles,
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and a solar-powered camera sensor for remote, ad-hoc de-

ployments. We also evaluate the simplicity and effectiveness

of Eon with a user study, in which novice Eon programmers

produced more efficient efficient energy-adaptive systems in

substantially less time than experienced C programmers.

Categories and Subject Descriptors D.3.2 [Software]:

Language Classifications—Specialized application languages

General Terms Languages, Design, Management, Perfor-

mance

Keywords Coordination Languages, Energy Management,

Energy Harvesting, Embedded Systems

1. Introduction

Sensor devices that rely exclusively on an electrical connec-

tion or on batteries suffer from numerous deployment dis-

advantages, from limited range and mobility to high main-

tenance costs and limited deployment scale and length. Sen-

sor deployments that rely on the limited energy storage of

a battery must either sacrifice data quality in order to max-

imize the lifetime of the network, or force maintainers to

frequently change batteries, limiting the scale and coverage.

In mobile deployments, such as wildlife tracking, the size

of the battery may determine which deployments are even

feasible.

Sensor devices can overcome these obstacles by harvest-

ing energy from their environment. Available energy sources

include solar, wind, and vibration energy [17, 27, 21]. Har-

vesting environmental energy enables the deployment of

large-scale remote sensor systems that can run indefinitely:

we call these perpetual systems. Notable examples of appli-

cations ideal for perpetual operation include wildlife track-

ing (ZebraNet [13]), volcanic eruption monitoring [31], and

forest fire detection [20, 12].

However, despite their deployment advantages, systems

that employ harvested energy face numerous challenges.



• Dynamic energy availability. Sensor devices that rely on

environmental energy must cope with highly variable en-

ergy availability. The amount of available energy is often

difficult to predict, and may change dramatically with lo-

cation, time of day, time of year, weather, and other en-

vironmental factors. Figure 1(a) provides an example of

these variations, in which the amount of energy gathered

by two mobile, solar-powered devices over the same two

week period is plotted on a per day basis. Although both

devices show elements of the same general weather trend,

the two devices show significant variation in the amount

of gathered energy.

• Varying energy costs. The amount of energy required to

perform tasks varies widely, making it difficult to plan for

future energy needs. Figure 1(b) shows the amount of en-

ergy per reading that one device required to acquire GPS

data over the same two week period as Figure 1(a). Be-

cause the device is mobile and the degree of cloud cover

varies, the amount of time (and thus energy) required to

synchronize with satellites varies over an order of mag-

nitude. Comparing the graphs from Figures 1(a) and 1(b)

shows that times of substantial cost do not necessarily

correspond with times of plentiful energy; in this exam-

ple, they are almost opposite.

• Heterogeneous hardware platforms. It is difficult to make

a perpetual system portable or useful across a heteroge-

neous set of devices. Different hardware platforms have

widely varying energy characteristics. Because of the

complexities of testing and tuning a system to perform

well across different processors, storage systems, radios,

energy harvesting sources, and batteries, it is extremely

difficult to write a perpetual system that will work across

different platforms.

When programming systems to cope with these shifting

conditions and platforms, designers are forced to incorporate

adaptation with the core logic of the system. Such programs

are difficult to port, maintain, and understand. Further, there

is a great deal of runtime functionality that must be repli-

cated each time the system is deployed on a a new platform

with new energy characteristics.

Contributions: This paper presents Eon, a new language

and runtime system designed for programming perpetual

computing systems. To our knowledge, Eon is the first

energy-aware programming language. Eon is a declarative

coordination language based on Flux [3] that allows pro-

grammers build programs from code written in a variety of

languages, including nesC and C. Eon provides a simple

way to associate particular control flows with abstract en-

ergy states that represent the available energy in the system.

The Eon runtime system executes only those flows that the

Eon programmer has marked as suitable for the given energy

state. Thus, an Eon programmer can easily write programs

that provide different functionality or data quality based on

current and future energy availability.

Avg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

200

400

600

800

1000

Day

E
n

e
rg

y
 /
 D

a
y
 (

J
)

(a) A histogram of the average amount of daily
energy gathered by two devices.
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(b) The amount of energy needed to take a GPS
reading over the same period.

Figure 1. Energy traces from solar-powered GPS devices

over a two week period.

This flow and energy state information enables automatic

energy management, allowing the runtime system to han-

dle the complexities of adaptation. In response to changes

in energy, the Eon runtime system dynamically adjusts the

execution rate of flows and enables or disables application

features. Because Eon programs describe energy abstractly

(e.g., “high” and “low”), they are portable to hardware plat-

forms with arbitrary energy profiles. The language itself is

also highly portable: the current Eon compiler generates

code for a variety of embedded platforms and operating sys-

tems, including Linux and TinyOS.

To demonstrate Eon’s utility and portability, we have built

and deployed several Eon-based perpetual systems, includ-

ing two solar-powered systems: one for tracking turtles and

automobiles using GPS and another for capturing and trans-

mitting images from remote locations. To quantify the ease

of programming perpetual systems in Eon, we conducted a

user study showing that programmers who had just learned

Eon outperformed a control group using C, taking less time

to produce equally efficient code.



Outline: The remainder of this paper is organized as fol-

lows. First, Section 2 describes the Eon language, focusing

on the description of flows and energy states. Next, Section 3

describes Eon’s automatic energy management algorithms.

Section 4 describes implementation details of the hardware

and software systems, including the compiler, runtime sys-

tem, and the trace-based simulator that the compiler can gen-

erate to predict performance before deployment. Section 5

describes three Eon-based perpetual systems we have built.

Section 6 presents empirical results both for our user study

and for one of the perpetual systems deployments. Finally,

Section 7 discusses the most closely-related work, and Sec-

tion 8 concludes with directions for future work.

2. The Eon Programming Language

Eon is a domain-specific language intended to support a

broad range of perpetual systems. These include energy-

limited systems that follow an event-response model of op-

eration, such as devices that respond to external stimuli

or to periodic, internally created interrupts. Eon combines

both simplicity and elegance: its goals are to make energy-

adaptive systems simple to write and easy to understand and

to enable the use of optimized energy-aware runtime sys-

tems that automatically choose the highest sustainable ser-

vice level.

The Eon programmer writes code that describes the se-

quence of operations that follow in response to external

events and the desired adaptation policy, i.e., which se-

quences (flows) correspond to higher or lower power en-

ergy states. The Eon runtime system measures the probable

costs of each operation, the probable workload in the system,

and the probable amount of energy the system will acquire.

The runtime system then adjusts the rate of execution of

flows that the programmer has indicated are appropriate for

a given energy state.

It would be possible to build Eon’s energy-aware fea-

tures into either an entirely new general-purpose program-

ming language or as extensions to an existing language.

The first approach would require programmers to learn a

new language while muddling basic constructs such as loops

and conditionals with policy. This approach would also pre-

clude the reuse of the vast amount of code already writ-

ten in general purpose languages. While using annotations

would simplify adoption for new programmers, the annota-

tion syntax would have to be adapted to each new language.

The resulting system would still muddle the issues of adap-

tation with logic. Most importantly, conventional program-

ming languages do not explicitly manage program flows:

these are implicit in program execution, and thus difficult

to annotate.

Instead, Eon is a coordination language [9] that ties to-

gether code written in a conventional programming lan-

guage, like Java, C, or nesC [8]. This approach provides

programmers with a high level of abstraction that separates

the concerns of energy adaptation from program logic. It

also makes it straightforward to reuse existing code. Eon

currently supports a range of different languages (C/nesC)

and operating systems (Linux/TinyOS).

This approach also makes it simple to port an Eon pro-

gram to a new platform. For example, porting an Eon pro-

gram from an XScale-based device to a mote-class device re-

quired only modification of the platform-specific code used

to implement the program logic. This portability makes Eon

a natural candidate for use in embedded devices, given the

wide variety of platforms, operating systems, and languages

currently in use.

2.1 Basic Eon Syntax

A coordination language describes the flow of data through

different components. We have built Eon on top of an exist-

ing coordination language called Flux [3], due to its features,

simplicity and available compiler tools. Flux is a declarative

language that describes a directed acyclic graph embody-

ing the flow of data through the program. Flux sources con-

nect to abstract nodes, which consist of a series of concrete

nodes. Concrete nodes correspond to implementations writ-

ten in a conventional programming language. Flux also al-

lows for conditional flow through a program—a feature that

Eon leverages for energy adaptation.

We illustrate Eon’s syntax using examples from Figure 2

and the graphical representation of the program in Figure 3.

We first describe the parts of the program that are the same

as in Flux, and then describe Eon’s extensions.

Flux-based syntax: As in Flux, an Eon programmer first

declares each source node in the program and what types

of data it outputs, such as ListenBeacon on Line 7, which

produces an output of type msg t.

Source nodes feed data into other concrete nodes, which

correspond to functions implemented in conventional pro-

gramming languages like C and nesC. Each concrete node

takes a set of input arguments and produces an output set

of arguments. For instance, GetGPS (declared on Line 12)

takes no input and produces two output variables: a Gps-

Data t and a boolean. The Eon compiler checks to ensure

that output and input types match in each flow.

Abstract nodes describe the flow of control and data

through multiple concrete or other abstract nodes. For in-

stance, GPSFlow (defined on Line 37) is an abstract node

that is the combination of two other concrete nodes.

Conditional flows are implemented in Eon using predi-

cate types: programmer-defined boolean functions that are

applied to a node’s output. In Figure 2, the StoreGPSData

abstract node specifies two possible execution paths on

Lines 38 and 39. By applying the gotfix predicate to the

output of StoreGPSData, the Eon program decides which

path to take. The test is defined on Line 3.

Each of the concrete nodes and all predicate tests must be

implemented by the programmer in a supported conventional

programming language (currently C or nesC). The Eon com-

piler generates a set of stub functions for each node that must

be implemented by the programmer.



1 // Predicate Types

2 // SYNTAX : typedef PRED_TYPE PRED_TEST

3 typedef gotfix TestGotFix ;

4

5 // Source Node Declaration

6 // SYNTAX : NODENAME () = > ( OUTPUTS );

7 ListenBeacon () = > ( msg_t msg);

8 GPSTimer () = > ();

9

10 // Concrete Node Declaration

11 // SYNTAX : NODEAME ( INPUTS ) => ( OUTPUTS );

12 GetGPS () = >

13 (GpsData_t data , bool valid);

14 LogGPSData(GpsData_t data bool valid)

15 => ();

16 LogGPSTimeout(GpsData_t data bool valid)

17 => ();

18 LogConnectionEvent(msg_t msg ) = > ();

19

20 // Regular Sources

21 // SYNTAX : source NODENAME => NODENAME;

22 source ListenBeacon => HandleBeacon ;

23

24 // Timer Sources

25 // SYNTAX : source timer NODENAME

26 => NODENAME;

27 // Eon Timer Source

28 source timer GPSTimer => GPSFlow ;

29

30 // Eon States

31 // there is always an implicit BASE state

32 stateorder { HiPower };

33

34 // Abstract Nodes and Predicate Flows

35 // SYNTAX : ABSTRACT [[type ,..][ state ]] =

36 // CONCRETE ->... CONCRETE;

37 GPSFlow = GetGPS -> StoreGPSData ;

38 StoreGPSData :[*, gotfix ][*] = LogGPSData ;

39 StoreGPSData :[* ,*][*] = LogGPSTimeout ;

40

41 // Abstract Node using Energy Predicates

42 HandleBeacon :[* ,*][ HiPower]

43 = LogConnectionEvent;

44

45 // Eon Adjustable Timer

46 GPSTimer :[ HiPower ] = (1 hr , 10 hr);

47 GPSTimer :[*] = 10 hr;

Figure 2. A condensed version of Eon source code for the

turtle tracking application.

2.2 Eon Extensions

While the parts of Eon drawn from Flux lets programmers

define the sequence of operations that follow from events,

they lack any method to express runtime adaptations. In this

section, we describe how Eon extends Flux with constructs

that describe what runtime adjustments to make as well as

the priority with which they should be applied. The Eon

application is then mapped to an adaptive runtime system,

GPSTimer

GPSFlow

GetGPS

StoreGPSData

LogGPSData

ListenBeacon

HandleBeacon

LogConnectionEvent

LogGPSTimeout

HiPower State

Implicit 

Error

Implicit Base State

Figure 3. A graph of a simplified turtle tracking application

which continually adjusts the application in order to balance

the demands of fidelity and sustainability. We continue to

use the application shown in Figure 2 as an example.

Power states

Adaptation policies could be expressed as a set of utility

functions describing the relative value of flows, and the rate

of flows in an Eon program [4, 18]. Our own experience

in building adaptive applications as well as anecdotal evi-

dence suggest that general utility functions are difficult for

programmers to use or understand.

In contrast to previous approaches, we have found that

a simple partial ordering of flows and rates is sufficiently

expressive. While a utility function can express a greater

number of policies, such as non-monotonic values, and are

amenable to a great number of interesting analytical results,

their usefulness is questionable while severely complicating

life for the programmer.

In an Eon program, a programmer specifies an adaptation

policy as a collection of behavior adjustments organized in

a state ordering. An adjustment is declared simply by listing

it in the state ordering, and its priority corresponds to the

row in which it appears. All adjustments on a given row are

applied together.

Figure 4 shows how the sample application’s operating

states are derived from the state ordering. An implicit BASE

state (S0) represents the program running without applying

any adjustments. Subsequent states are defined recursively

by applying an additional level of adjustments to the previ-

ous state (i.e. Si = Si−1 + Li−1). Also, a higher operat-

ing state is assumed to be more desirable and more energy-

intensive than all lower states.

The state ordering of an Eon program defines which oper-

ating states can be chosen by the runtime system. In addition

to declaring adjustments, the system designer must also de-

fine what those adjustments are.
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Figure 4. Sample State Order.

Adaptive Timers

One of the most common adjustments used to reduce energy

consumption is to periodically turn off energy-hungry com-

ponents, such as radios [1, 26]. In the turtle tracking appli-

cation, the GPS receiver consumes two orders of magnitude

more power than all other components combined. This cost

makes the frequency of GPS readings the most important

factor in the life of the device. Adaptively adjusting the duty

cycle of a component or task represents a trade-off between

application fidelity and energy consumption.

Duty-cycle adaptation is implemented in Eon using a spe-

cial type of event source node called an adaptive timer.

Adaptive timers differ from other sources in that they are

not concrete nodes and are not implemented by the program-

mer. Instead, the programmer specifies a range of acceptable

timer intervals. For example, the GPSTimer in the turtle ap-

plication can fire anywhere from every hour to once every

12 hours. The interval is then set by the runtime system.

Energy-State Based Paths

Another common way to trade value for energy is to change

the fidelity of data and the availability of services. Lowering

the quality of images, audio, or video reduces the energy a

device spends transmitting. Energy can be conserved further

by making some services unavailable. For example, a remote

camera may store images locally for later querying or only

stream metadata, instead of streaming the full images. [16].

Fidelity and availability adaptation is provided in Eon

using energy-state based paths. This concept is akin to the

predicate types used for conditional flows except that instead

of choosing paths based on output types, paths are chosen

based on the energy state set by the runtime system. In

the case of our turtle application, LogConnectionEvent is

called when HandleBeacon produces any type and is in a

state labeled HiPower. If the node is low on energy, it may

enter the implicit BASE state and cease logging beacons

from other nodes to save energy. HandleBeacon does not

take inputs of the BASE state type, so the flow ends in an

implicit error that has no side-effects. In this example, Eon

lets the programmer express preference for local operations

over providing services to other nodes when energy is low.

Implementing Concrete Nodes

Implementing concrete nodes with nodes that block on I/O

is straightforward, such as read() in a C/Linux system: the

programmer merely adds procedures that run until the I/O

is finished and then return. If concurrency is a concern, Eon

can use Flux’s features for the automatic generation of multi-

threaded code [3].

Implementing Eon nodes for the nesC/TinyOS environ-

ment is less straightforward due to its use of split-phase,

event-based semantics. Instead of a single blocking function,

a TinyOS concrete node is implemented as a simple nesC

component that provides a single ”call” command and an

asynchronous ”done” event that is signaled with the node’s

return values upon completion. This allows simple nodes

that consist of a single function as well as more complex

nodes that perform split-phase TinyOS operations.

Discussion

One feature that we considered but rejected during the de-

velopment of Eon was to implement fine-tuned adjustments

in node fidelity. For instance, like timers, we could have pro-

vided an explicit adjustment in the fidelity of a node that per-

forms an operation such as video encoding. The runtime sys-

tem would then have been able to adjust this knob to adapt

the fidelity of video encoding in a large number of steps.

However, our experience with adaptive systems has been

that only gross levels of adjustment are used. Video is either

high-fidelity, low-fidelity, or perhaps a level in between.

While Eon’s timers are finely adjustable, the semantics of

timers and their resulting energy cost are both simple to

predict and effectively linear. For instance, firing a timer

twice as often will use approximately twice as much energy

per unit time.

The energy consumed by a video codec would likely have

a non-linear relationship to its resolution. Tuning the fidelity

would thus have a corresponding non-linear effect on nodes

downstream that transmit the video. Recall that one of our

goals is to provide a language that is conducive to well-

performing runtime systems. Without an accurate prediction

as to what effect an adaptation will have, it is more difficult

to select the correct operating point. To find such non-linear,

and often noisy, relationships takes a great number of sample

points, each of which may be consuming too much or too

little energy while the system runs.

Further, there are an unlimited number of power man-

agement optimizations that can be made in sensor systems,

from wireless duty-cycling, to link-layer power-control, and

CPU frequency scaling. Our standpoint has been that any-

thing that can be automatically inferred from the program

itself in a general and reasonably efficient manner, should

be. Along these lines, we have considered a great number of

features to add to the language, but have generally favored

simplicity over features instead of building a language that



can express every possible energy-management scheme. For

instance, instead of providing timers that synchronize to a

common time reference for a Synchronized MAC (S-MAC)

duty-cycling [32], we use the low-power listen mode present

in many modern sensor radios.

3. The Eon Runtime System

By using the flow descriptions in the program, on-line mea-

surements of the per-task energy costs and workload, and

predictions about the amount of incoming energy, Eon’s run-

time system adapts program execution according to the pro-

gram’s policies. This adaptation is completely automatic,

and requires minimal online measurements.

3.1 Design Goals

Two goals inform the design of the Eon runtime system.

First, it should support a broad array of low-power platforms,

such as Motes [25] and Stargates [30], powered by solar

energy. Because microcontroller platforms have relatively

small memory sizes, the runtime system must be constrained

to perform few measurements on-line.

Second, the runtime system should not require any ex-

plicit training, such as measuring the system under simu-

lated load in a lab. Not only is this process painful for pro-

grammers, it is also inherently brittle. For example, training

might require repeated measurement every time the program

is changed or deployed on a new platform with new peripher-

als and is dependent on having good models of the expected

workload. As long as in-situ measurement is sufficiently ac-

curate, and can be done with low-overhead, online measure-

ment is greatly preferable.

3.2 Energy Adaptation Algorithm

The runtime system executes an adaptation algorithm that

chooses the ideal power state for the system to use, based

on its measurements of energy consumption and production.

The adaptation algorithm strives to provide the highest fi-

delity to the application while avoiding two states: an empty

battery and a full battery.

An empty battery prevents the application from executing

even high priority flows. In many devices, it also imposes a

period of dead time for the system, during which the battery

must slowly charge up to a minimal level before the device

can turn on again. When the battery is full, any additional

environmental energy that the system harvests is wasted and

cannot be stored for later use.

From Eon’s perspective, any state of the battery between

these two states is effectively equivalent: the goal of the

system is to consume energy at a rate equal to the rate of

energy production. The battery’s role is to act as a buffer,

riding out periods of low energy production and storing

excess energy.

The runtime system periodically makes a decision about

the ideal power state for the system by searching the possible

adaptations, such as timer frequencies and power states. Eon

favors smoothness of adaptation and searches for a single

static policy that is sustainable for a long horizon.

Eon can make large adjustments using the energy-state

based paths, and smaller adjustments using the adjustable

timers. Eon initially assumes that the system runs at the

highest energy state with the minimum frequency for all of

the timers. It then computes the amount of consumed and

produced energy over a short interval Ti. Taking into account

the current state of the battery, if this power state would

empty the battery, the system lowers the energy state (for

instance, Hi-Power to Lo-Power), and then repeats. Once it

finds a state that is sustainable over the short interval Ti,

it looks further into the future to see if the rate is truly

sustainable, examining time horizons 2n ·Ti for n = {1..N}
time intervals.

Once the system finds a sustainable energy state, it per-

forms a binary search on the timers using the same time

horizons to discover the exact sustainable policy. This search

strategy ensures that the policy is sustainable both over the

short and long term, without requiring excessive compute

time. More weight is given to the short term, as the runtime

system periodically reexamines the policy to adapt to chang-

ing workloads and energy dynamics. The entire process runs

in just 100 ms on a Mica2 mote for our full tracking program

with 31 flows and a horizon of half a year.

Energy Attribution and Consumption

For adaptation, the system must have an accurate model of

its energy consumption, including the energy cost and fre-

quency of each independent execution path, or flow, through

the program. Each time an Eon flow completes, the runtime

system updates an exponentially weighted moving averages

(EWMA) of the flow’s energy cost. The system also esti-

mates the originating source’s firing frequency and the prob-

ability of each branch taken by the flow. In the example in

Figure 2, there are four possible paths through the program,

each with a different energy cost and frequency.

Measuring per-path energy consumption requires careful

accounting and hardware support. One option is to use a

Fuel-Gauge IC, like those included in many modern laptop,

mobile phone, and PDA batteries; two popular example in-

clude TI’s bq27000 and Maxim’s DS2770. These chips mea-

sure the capacity of the battery and charge/discharge rates,

including corrections for temperature, battery-chemistry,

and aging effects. A fuel-gauge chip provides an averaged,

coarse-grained view of the energy remaining in the battery

and the current rate of charge or discharge. While necessary,

this information not sufficient to distinguish between energy

consumption and charge, as both occur simultaneously.

The Eon runtime system requires both a fuel-gauge chip

and fine-grain current measurement to attribute energy to in-

dividual program flows. In our hardware platform, we use an

integrated current sensor, which separately measures the rate

of consumption. This hardware is accurate to within 0.6mA,

sensitive enough to measure differences in current consump-



tion due to radio, flash, or peripheral use by individual flows

on a variety of platforms.

The runtime system samples the current once every sec-

ond, while simultaneously tracking the start and end times

of each node in the program graph. Based on the percent-

age of time that nodes from a particular flow were running,

the runtime system attributes energy to the flow. The rest of

the energy is attributed to the runtime system and to the idle

energy consumption of the platform.

Given the amount of energy consumed by the program

and runtime system, Eon estimates the energy production

rate. Adding the energy consumption for a period of time

to the loss or gain in battery capacity yields the energy

production over that same period.

Energy Source Model

In addition to knowing how much energy each path con-

sumes, adaptation requires a model of how much energy

the system is going to receive in the future. While Eon is

not tied to any one energy production method, we concen-

trate on solar power, which is particularly challenging. The

amount of available solar energy is highly variable. It is also

unpredictable, since predicting sun intensity is, in essence,

predicting the weather.

The model we use in our prototype is an adapted ex-

ponential weighted moving average (EWMA) based pre-

diction algorithm from Kansal, et al. [14, 15]. This model

essentially predicts that the energy production in the fol-

lowing days will be similar to recent days. Eon measures

the energy production over a day, and assigns this value as

E(t). It then computes the expected value of E(t + 1) as

αE(t)+ (1−α)E(t− 1). This model masks the diurnal cy-

cles inherent to solar energy harvesting and is simple enough

for use in small embedded devices.

4. Implementation and Deployment

This section describes the details of the Eon software and its

hardware support. In addition, it describes the details of three

Eon deployments: a turtle tracker, an automobile tracker,

and a remote imaging system. The designs for the hardware,

as well as a release of the application code, compiler, and

runtime system, are all available from our website (http:

//prisms.cs.umass.edu/~sorber/eon).

4.1 Software

The software implementation of Eon includes a compiler

and runtime system, as well as a generator for a trace-based

simulator.

Compiler

The Eon compiler is a three-pass compiler implemented in

Java, using the JLex Lexer and the CUP LALR parser gener-

ator. It is based on the original Flux compiler [3], extended

with support for Eon’s energy management features. The

first two stages of the compiler build a graph representa-

tion of the program and then decorate each edge with in-

put and output types. The third stage links this intermedi-

ate code with the Eon adaptive runtime system and user-

supplied code that contains the program logic.

Eon can be ported to new languages and architectures

with minimal effort. Our current implementation has been

ported to two different environments: an Intel/CrossBow

Stargate [30] XScale Linux system, using nodes written in C,

and an Atmel microcontroller-based TinyOS system using

nodes written in nesC [8]. In addition, we have ported Eon

to a number of hardware platforms, including the Mica2Dot,

Mica2, MicaZ motes [25], the TelosB mote [24], and the

Shockfish Tinynode [5].

Runtime System

The Eon runtime system measures and adapts to energy us-

age and production. At the start and end of every flow, the

code generated by the compiler invokes a set of functions

that interface with the hardware, perform predictions, and

calculate a running state. The result then informs the rest of

the runtime system which state the system will operate in.

The size of the TinyOS runtime is 4850 lines of code, occu-

pying 18 kbytes of program ROM. While running, the run-

time system uses 900 bytes of RAM for an empty program,

plus approximately 30 bytes of RAM for each independent

path in the program, depending on the size of the arguments

passed between nodes.

Trace-Based Simulator

The Eon compiler optionally generates a trace-based sim-

ulator. By feeding an energy trace and traces for external

inputs, an Eon programmer can test different energy pre-

dictors, workloads, programs, and adaptation policies. Dur-

ing deployment, an Eon node collects measurements of so-

lar energy, consumed energy, battery state, estimated idle

power draw, estimated per-path energy costs, path probabil-

ities, and source frequencies. All of this information is then

used as input to the simulator. Additionally, we have found

that the information recorded by the runtime system is ex-

tremely useful as an energy profiling tool. Although not as

accurate as an external measurement tool, it has been crucial

in identifying energy bottlenecks in our systems.

4.2 Hardware

Eon’s adaptation algorithms require hardware support. We

have built a new charging and energy management board

that controls the solar charging of lithium ion batteries, mea-

sures the capacity of the battery with a Maxim DS2770, and

measures the current consumption using a Maxim DS2751.

We have fabricated two versions of the board, one that ac-

cepts a Mica2DOT mote as a drop in module, and one that

attaches to a Shockfish Tinynode via a Molex connector. We

adapted some parts of the hardware design from the He-

liomote project [17]. The same board can be used with the

Stargate, by attaching the board via a mote.

Figure 5 shows the deployment platforms for the Mica2DOT

and TinyNode, shown with battery and GPS. This board can

handle a wide variety of solar cells, ranging from a small,



Figure 5. The two implementations of the energy measure-

ment and charging board with a Mica2Dot and a TinyNode.

25mA peak current cell up to a cell producing 2A. Addi-

tionally, Eon requires no program or runtime changes when

changing the size or number of solar cells, since it only

tracks the amount of energy production.

5. Deployment

In order to evaluate Eon, we have built several energy adap-

tive systems: a turtle tracking node, an automobile tracking

node, and a remote imaging system. The evaluation section

focuses on the automobile tracking system, and we describe

all three systems here. We have also constructed a solar-

powered WiFi web server on the Stargate platform.

While these deployments are somewhat limited in their

scale and duration, we have gathered sufficient data to

demonstrate Eon’s utility in performing energy adaptation.

Perhaps more importantly, these deployments have driven

the development of Eon, rather than following as a conse-

quence of it. The applications have informed which features

to add to the language, runtime system, and hardware sup-

port.

5.1 Turtle Tracking

The first deployment is motivated by the efforts of conserva-

tion biologists to protect threatened turtles. The Wood Tur-

tle (Clemmys insculpta), is found throughout the Northeast

and Great Lakes regions and into Canada. They live pri-

marily in and along streams, and are terrestrial for about

4 months of the year. Wood Turtles are of particular inter-

est since their numbers are rapidly declining. Unfortunately,

conservation efforts have been hindered by a general lack of

data due to current tracking methods. Researchers currently

track turtles manually using radio telemetry and are limited

to taking a single location fix every 2-3 days for each animal

being studied. The turtles often travel up to 1 kilometer be-

tween fixes and practical concerns preclude the collection of

location information at night.

Much of the development of Eon is inspired by this par-

ticular problem. We have designed and built an Eon node

and program to run on the Mica2DOT environment. The

turtle node includes a SiRF Star III-based GPS Receiver,

(a) Photo of an Eon node on a Turtle. (b)
Camera

Figure 6. Photos of two of the test applications, a turtle

tracking device, and a remote camera.

an Ultralife UBC581730 250 mAh battery, and one or two

4.2V PowerFilm flexible solar cells. The node is packaged

in shrink-wrap tubing and the ends are sealed with a water-

proof epoxy. The design of the node is primarily driven by

form-factor. The node must weigh less than 50 grams and fit

without protruding from the shell. Figure 6(a) shows the Eon

node mounted on a turtle’s shell.

Unfortunately, our deployment took place at the end of

an unusually cool fall. The turtles prepared for hibernation

early and spent a large amount of their time immobile and

underwater, not emerging until the next summer. We thus

collected relatively little data from the turtles: five days of

solar traces and a handful of GPS locations.

Despite this small amount of data, we learned new facts

about turtle behavior that were useful from a zoological

perspective and that have led to improvements in our system.

In particular, we discovered that the turtles were underwater

98.5% of the time. Because GPS does not work underwater,

we added a water sensor to the node that lets the programmer

specify that no GPS readings should take place if the turtle

is underwater. In addition, we found that the turtles receive

a great deal less energy while underwater, so little that even

our upper-bound for the GPS timer was not sufficient to let

the node survive. The combination of these two fixes should

allow the node to survive long periods of time underwater.

5.2 Automobile Tracking

As a proxy for the turtles, we performed a second deploy-

ment using automobiles. We used the same hardware, adap-

tation policy, program, and runtime system, and collected

two weeks of data from five devices mounted on the roofs

of cars. The weather for that two weeks was highly vari-

able, with several days of consecutive cloudy weather. These

traces can be extended by looping them, which gives us a

good idea of how Eon adapts to changing conditions. In

addition, this automobile-based deployment has led to bug

fixes and other improvements to the runtime system.

While we plan to redeploy the turtle nodes in a large-

scale experiment in the summer, the evaluation we present



here is based on data gathered from the automobile-based

experiment. The complete application, excluding Eon run-

time code, is 7900 lines of code. The complete system, in-

cluding the Eon runtime, compiles to 42 Kbytes of program

memory, and runs in 3600 bytes of RAM.

5.3 Remote Camera

Finally, we have built a remote camera application that

demonstrates Eon’s versatility. This application was inspired

by various remote image applications at James Reserve [20],

in SensEye [16], and at Virginia Coast Reserve (VCR) [6].

Of note is the fact that VCR researchers programmed their

cameras to scale their frame rates to cope with fluctuations

of gathered solar power.

To ease their programming burden, we have constructed

the video system using a TinyNode [5], a CMUCam low-

power camera [28], a 400-mW-peak solar panels, and a 1 Ah

battery, shown in Figure 6(b). The Eon application trades off

the competing concerns of the frequency of image capture,

and image streaming(high power), and image storage (lower

power). Using the TinyNode’s XE1205 radio, the images can

be streamed from the solar-powered node to a base-station

up to 1 kilometer away.

Once the CMUCam was connected, building a fully adap-

tive application took a single developer only three hours to

build. No modifications were required to handle the larger

solar cells or the energy requirements for the new platform

and camera.

6. Evaluation

Our primary goal in Eon was to provide a simple language

for building efficient energy-adaptive embedded systems. In

this section, we evaluate the Eon language with respect to

both usability and system performance.

6.1 User Study

To evaluate Eon’s usability, we conducted a user study. Nine

programmers were recruited for the study, the majority from

a junior-level operating systems course and all having at

least 4 years of prior programming experience. None had

any prior knowledge of Eon and all were familiar with C.

Each subject was initially asked to provide a self evaluation

of past experience and programming expertise, which was

used to divide them into two balanced groups, one using Eon

and the other using C.

Each test subject then completed the user study individ-

ually. Participants were first given a 45-minute long tuto-

rial covering the programming tools and computing environ-

ment, and an overview of energy-aware embedded systems.

Following the tutorial, each subject was asked to write two

applications.

The first application was a simple sensor application

which periodically samples a sensor, stores the collected

sensor readings, and answers simple network requests for

past readings. The second application was an extension of

the first application to make it adaptive, with the goal of

providing the best sampling rate that their device could sus-

tain without running out of energy. After completing these

programming assignments, each participant was asked to

take a post-experiment survey qualitiatively evaluating their

experience.

The students performed the study in a simulated environ-

ment that included APIs for measuring energy spent using

the Flash device, the radio, and for taking sensor readings.

Also, in order to provide a fair comparison, we provided

the C group with the same solar energy predictor used by

the Eon runtime system. The build environment was instru-

mented in order to collect a snapshot of each participant’s

code with every successful compile. After the study was

complete, we tested each submission. The initial program

was tested for correctness to verify that it performed read-

ings and answered queries correctly. The adaptive code was

evaluated in terms of how well it was able to adapt to the

provided solar trace.

Figures 7(a) and 7(b) show the results of the user study

for the first and second applications, respectively. In Fig-

ure 7(a), the progress of each group is shown with respect

to time spent (in minutes). Progress is measured as the per-

centage of correctness tests passed, with 100% meaning that

all members of the group had passed all test cases.

One striking feature is the similarity in progression be-

tween experienced C programmers and first-time Eon pro-

grammers. Members of the Eon group commented that the

primary difficulties were learning Eon’s syntax and under-

standing how Eon sources and flows are executed. Some

commented that once these details were overcome, Eon pro-

vided a simple and intuitive programming style. We believe

that the small difference between groups can be attributed to

the Eon group’s initial unfamiliarity with the language. We

expect that experienced Eon programmers would be able to

produce correct code for non-adaptive applications at least

as quickly as programmers using a conventional general pur-

pose language.

However, the results from the second application, shown

in Figure 7(b), demonstrate the clear advantages of us-

ing Eon when building energy-aware software. This figure

shows the performance of user submissions over time in

terms of percent coverage. Every time a sensor reading is

taken, an arbitrary amount of time t before and after the

reading is considered “covered.” The figure shows the per-

centage of time that was covered by at least one reading. For

this experiment, we chose t such that the highest sustainable

sampling rate would provide 100% coverage. Choosing a

rate that is either too aggressive or too conservative results

in reduced coverage. In this figure, we plot an individual line

for each study participant. We also plot the best solution so

far to make the figure easier to understand.

Unlike the results from the first stage, Figure 7(b) shows

a substantial difference between the two groups. All mem-

bers of the Eon group achieved 90% coverage within 40

minutes, while the C group lagged behind both in program-

ming time and coverage. The Eon group’s solutions were
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Figure 7. User study results

also uniformly good; this result stems from the effective-

ness of Eon’s runtime system. Three of the five members

of the C group eventually achieved performance comparable

to the Eon group, but took between 90 to 140 minutes to de-

velop their solutions. Two of these solutions were inspired

by TCP’s exponential backoff. The other two C program-

mers’ best submissions achieved 60% and 12% coverage,

respectively. The longer programming times, high variance,

and user comments all demonstrate the difficulty of writing

adaptive software in conventional programming languages,

even on a simplified sensor platform that avoids many com-

mon real-world complications.

6.2 Adaptation

One of the primary benefits of Eon is its ability to adapt the

rate of flows in a program based on its currently available

and predicted energy supply. Here we compare Eon’s per-

formance against several other possible systems and across

individual devices.

To provide a fair and realistic comparison, we use trace-

driven simulations based on data collected during the two

week automobile deployment. During this deployment, each

of the five nodes collected hourly measurements that we then

fed into our trace-based Eon simulator. To avoid measuring

transient behavior based on the initial battery state and to

show long-term behavior, we loop the measured traces to

extend our simulations from two weeks to three months, and

report only the results for the last month. Each test was run

five times, and the simulator generates the amount of energy

used by the GPS drawn from the distribution gathered from

each trace.

In each test case, we change the GPS sampling rate ac-

cording to five energy policies: a conservative, static pol-

icy based on the minimum sustainable rate across all of the

traces; a similar, greedy, static policy based on the maxi-

mum sustainable rate; a best sustainable rate taken for each

device individually; Eon using the solar predictor algorithm

(T = 24); and Eon (Oracle) that uses a perfect weather pre-

dictor that knows the exact amount of solar energy that can

be harvested in the future. Note that the conservative pol-

icy is an over-provisioning implementation that a system de-

signer may try first: collect traces, find the one that gave the

least amount of energy, derive a static policy, and use that on

all of the devices.

The results presented in Figure 8 show the average rate

of GPS readings. The error bars represent the standard de-

viation of the rate within each trace averaged over the five

runs. This demonstrates the variability of the policy over the

duration of each run.

The results in Figure 8 show that a conservative policy,

unsurprisingly, only performs well for device 5, from which

the policy was derived. The rest of the devices pay a large

opportunity cost for not using a more aggressive policy.

The Eon (oracle) policy, best sustainable, and Eon provide

similar average results. However, Eon shows more variance,

demonstrating that misprediction in energy harvesting leads

to a larger range of rates. It is important to note that neither

the best sustainable policy, nor the oracular system can be

realized, as both require advance knowledge of future solar

trends.

We initially found it surprising that the Eon predictor

would do as well as the oracle. However, a closer look

reveals that given the size of the battery in the system and

the typical rate of consumption, a full battery will last for

five days. This lifetime means that the solar power prediction

does not need to be extremely accurate day-to-day, as long
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Figure 8. The average number of daily GPS readings taken

are shown for different energy policies and energy traces.

Despite large variations in energy supply, Eon is able to

accurately approximate the best sustainable energy policy.

as it is accurate on average. In systems where the ratio of

consumption to battery size is higher, prediction algorithms

have more impact. Lastly, the greedy system exhibits a high

average rate for most of the traces, but its variation is high.

This variation is because the node often ran out of energy,

dropping the rate to zero for long periods of time.

Figure 9 shows a more detailed view of the results from

the same experiment. The stacked bars show the breakdown

of how energy was spent by the different policies. The per-

centage numbers at the top of the bars show the average

amount of time during the trace the device had a dead bat-

tery. The board overhead is the energy spent in the measure-

ment board, the idle is the energy spent by the mote while

not executing a flow (e.g. the overhead of the runtime sys-

tem and the cost of an idling mote). The GPS energy was

spent on taking samples, unused energy was energy left in

the battery, and wasted is any energy that was collected, but

could not be stored due to a full battery.

This graph shows the chief shortcoming of the greedy

policy: aggressive use of energy leads to large periods of

dead time. While sparse and bursty readings are generally

undesirable, there is a more serious downside: the inability to

run higher-priority flows. As we show in later experiments,

when the program contains more than one flow, the dead

time caused by one flow’s overuse negates any prioritization

the program may need.

6.3 Impact of Energy-State Based Paths

To examine the usefulness of energy-state based paths, we

conducted a longer experiment using the remote camera ap-

plication. Rather than conduct a year-long deployment, we

used the solar cell to collect adequate solar traces for simu-

lation, and then lengthened those traces using solar intensity

data from the US Climate Reference Network, National Cli-

mate Data Center, and NOAA. By constructing a model that
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Figure 9. This figure shows the amount of each trace’s

energy that is consumed by different parts of the system.

The percent dead time is also shown for traces that are not

sustainable, above the corresponding bar.

maps solar intensities to the power produced by the solar

cells, we were able to extend the trace backwards for years’

worth of data. Note that this process only works for the sta-

tionary camera. Long-term simulation of mobile nodes re-

quires information about each node’s mobility as well as the

weather, to determine its energy budget.

Using the energy profiles collected from a running cam-

era system and generated by our simulator, we compared the

behavior of Eon against two systems, one that uses a fixed

rate of 7 frames per hour (Fph) and one that uses 2.4 Fph.

We then determined when each system had a dead battery,

and thus could not respond to any queries for old images,

and when the Eon system switched into its querying-only

mode. The resulting frame rates, dead times, and querying-

only times are shown in Figure 10. Note that the Eon system

experienced no dead time for the entire trace, so we only plot

dead time for the two static policies.

The results show that Eon can completely avoid dead bat-

tery times by adaptively switching into a query-only mode,

while simultaneously lowering its frame rate. Note that it

would be trivial to adjust this policy in Eon, e.g., to pre-

fer higher frame rates over streaming. Without the ability

to adapt, a fixed frame rate system may remain completely

unavailable for months at a time. Eon is also able to scale

its frame rate in tune with the seasons and short periods of

cloudy weather.

6.4 System Overhead

In this section, we discuss the overhead incurred by using

Eon on our turtle/automobile monitoring node.

Since the focus of Eon is energy, the energy overhead of

the system must be kept to a minimum. Here, we measure

the energy costs of several operations performed by the

runtime system. We measure current draw using an Agilent
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Energy Costs

Operation Energy Time

Path Init 0.6µJ 0.3ms

Edge 1.4µJ 0.8ms

Path Cleanup 5.4µJ 2.1ms

GPS Reading 1 − 100J 20 − 400s

Evaluate State 0.5 − 2.0mJ 50 − 100ms

Figure 11. Measurements of Eon overhead in comparison

to GPS readings.

54621D oscilloscope, measuring the voltage drop across a 1-

Ohm sense resistor. We integrate the trace to determine the

energy cost of the operation. Figure 11 presents these energy

measurements.

Periodically reevaluating the energy state, which presents

the largest single energy cost, varies widely depending on

the structure of the application graph and the state of the

system. If, for example, the battery is low and little energy

is expected, the algorithm will quickly rule out higher power

states. More complex applications will also take longer than

simple applications since they have more flows to consider.

As Figure 11 shows, the turtle tracking application re-

quires up to 2.0mJ in the worst case to choose an energy

state. However, since state evaluation happens only once per

hour, this cost is easily amortized, resulting in an increase

of only 2µW in the average power of the device. There is

also a fixed overhead incurred every time a path is executed,

which is equal to (6.0 ∗ 1.4N)µ J where N is the number

of edges in the given path. In comparison with the cost of

taking a GPS reading, this overhead is insignificant, since it

is at least 6 orders of magnitude smaller.
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Figure 12. Device dead time is shown for different battery

sizes for systems using one and three solar panels. Perfor-

mance using Eon’s EWMA predictor is compared with per-

fect energy prediction (Oracle). The benefit of better energy

prediction is most notable when using a very small battery

and the cost of prediction errors is greatest.

6.5 Measurement Accuracy

The runtime system’s ability to accurately estimate the cost

of individual paths in the program graph is vital to being

able to make accurate adaptation decisions. We evaluate this

accuracy by comparing measured task costs with the sys-

tem’s corresponding estimate for tasks that consume differ-

ent amounts of energy. In this experiment we focus on small

tasks (e.g. transmit data, write to Flash, etc) that consume a

few mJ and large tasks (e.g. GPS readings) that incur a high

energy cost.

For small tasks (<100 mJ) the course grained averaging

of our energy measurement board results in large errors in

individual estimates (we observed up to 80%); however, av-

eraging six consecutive estimates consistently yields an es-

timate within 10% of the measured value. For larger tasks

(1-10 J) the Eon runtime system estimates the per-task en-

ergy cost to within 10% for individual task executions, and

six consecutive estimates consistently results the measured

cost to within 0.5%. The Eon runtime system benefits from

this trend of increased accuracy for high-energy tasks. The

penalty for mispredicting a small task is also small, and as

these tasks are performed more frequently the system’s cost

estimate becomes more accurate. Mispredictions of large

tasks, on the other hand, can have significant consequences

on system lifetime, and cost estimates must be more accu-

rate. Since large tasks are often performed infrequently, it

is important to be able to provide accurate estimates with a

small number of executions.

6.6 Impact of Battery Capacity

Our final experiment examines the impact that battery capac-

ity has on Eon’s ability to adapt, and on the cost of prediction



errors. This experiment is set up as described in Section 6.2,

except that we vary the size of the battery and the number of

solar panels used.

The results of this experiment, shown in Figure 12,

demonstrate how prediction errors are magnified as battery

size decreases. While a 250mAhr battery is able to miti-

gate prediction errors, those prediction errors translate into

large amounts of dead time when a 50mAhr battery is used.

Applications that require a very small battery due to size

and weight restrictions should use either more accurate or

consistently conservative energy predictors.

We note that an additional benefit of Eon’s automatically-

generated simulators is the ability to use them to determine

what size battery or solar panel to choose for a given deploy-

ment.

7. Related Work

Eon derives from a large body of work on energy adaptation

in operating systems, as well as dataflow and coordination

languages.

Languages: To our knowledge, Eon is the first system

that specifically targets energy adaptation at the program-

ming language level. Eon’s energy adaptation features are

built on a dataflow-based, coordination language [9, 22].

Eon uses this dataflow abstraction to expose just enough

structure to make building an adaptive runtime system pos-

sible. However, in contrast with many dataflow languages,

Eon’s goal is to simplify writing energy-adaptive programs,

rather than expressing concurrency or real-time ordering

constraints [2, 11].

Coordination languages have also been proposed in or-

der to simplify the programming of embedded sensors.

SNACK [10] provides language constructs that combine

components written in NesC [8], in order to simplify and

encourage code reuse. The Flask language [19] has been

developed concurrently with Eon [29], and both languages

share many properties: both are coordination languages that

combine nesC modules together in an acyclic graph. How-

ever, unlike Eon, Flask does not provide support for energy

adaptation. In addition, Flask is a macroprogramming sys-

tem, while Eon programs run on a single node. We view the

use of dataflow-based coordination languages for embed-

ded sensors as a natural response to the difficulty of writing

event-based code without sacrificing the growing base of

NesC and TinyOS modules.

Energy Application Adaptation: There has been a

wealth of research on building systems that adapt to current

conditions, including energy. Odyssey provided the sem-

inal work in application-aware adaptation [23], and later

work extended it to account for energy [7]. The Ecosystem

project uses application adaptation to share energy fairly

between applications, and governs that system’s consump-

tion rate [33]. In each case, energy-aware adaptation trades

fidelity for energy savings to target a particular device life-

time. Eon builds on this concept by targeting perpetual op-

eration, while expressing the adaptation policy as part of

the program. This provides a much tighter integration of

resources, programming language, and runtime system.

8. Future Work and Conclusions

We plan to build on this work in several areas. To date we

have focused on balancing energy for a single device. We are

now working on using Eon to manage energy in a network

of devices—including a full-scale deployment on turtles this

summer—which introduces new challenges and allows us to

better understand how local adaptation decisions impact the

network as a whole.

We also hope to improve Eon to incorporate the needs of

new applications. For instance, timer sources take very little

power, but receiving packets that are later discarded wastes

energy. By turning off sources in low-power modes, we can

avoid these costs completely.

In conclusion, we have presented Eon: a new language

and runtime system for self-adapting perpetual systems. De-

signed to be both expressive and simple, Eon eases the bur-

den of building energy-adaptive applications. The Eon run-

time system effectively manages changing energy availabil-

ity and demands, while hiding most of the complexity.
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