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Abstract: The relationship between linear elasticity theo-
ry of solids and their equations of state (EoS) is reviewed,
along with the commonly-used types of isothermal EoS,
thermal expansion models, and P-V-T EoS. A new con-
sole program, EosFit7c, is presented. It performs EoS cal-
culations and fitting for both volume and linear isother-
mal data, isobaric data and P-T data. Linear data is
handled by cubing the quantities and treating them as
volumes in all EoS formulations. Least-squares fitting of
EoS to data incorporates the option to weight the fit with
the measurement uncertainties in P, V and T simulta-
neously. The EosFit7c program is built with a new library
of subroutines for EoS calculations and manipulation,
written in Fortran. The library has been incorporated as a
module, cfml_eos, in the publicly-available CrysFML li-
brary. The module handles Murnaghan, Tait, Birch-Mur-
naghan, Vinet, and Natural Strain EoS. For P-V-T calcula-
tions any of these isothermal EoS can be combined with
a variety of published thermal expansion models, includ-
ing a model of thermal pressure. The entire library has
been revalidated against other software and against an
ab-initio re-derivation of the EoS, which identified a
number of small errors in published formulae for some
EoS.
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Introduction

An equation of state (EoS) describes how the volume or
density of a material varies with changes in pressure and
temperature. It also defines how some of the elastic prop-
erties of the material change in response to compression

and expansion. Equations of state therefore provide not
only fundamental thermodynamic data that is required,
for example, for the calculation of equilibrium phase dia-
grams (e.g. Berman, 1988; Gottschalk, 1997; Holland &
Powell, 1998; Stixrude & Lithgow-Bertelloni, 2005; Hol-
land & Powell, 2011) but also give insights in to the de-
tails of interatomic interactions within the solid state, as
it is these that resist the externally-applied compressive
stresses (e.g. Brown, Klages & Skowron, 2003; Zhao,
Ross & Angel, 2004; Fabbiani & Pulham, 2006) and con-
trol the dynamics that lead to thermal expansion (e.g.
Willis & Pryor, 1975).

The majority of equation of state studies measure the
volume or unit-cell parameter variations with pressure
(and/or temperature), with the aim of deriving elastic
parameters that are derivatives of the data. For example,
the bulk modulus that defines the instantaneous volume
variation with pressure is K ¼ �Vð@P=@VÞ. The bulk
moduli of most inorganic solids range from ~40 to
400 GPa. Therefore the volume changes induced by com-
pression over the relatively-easily accessible experimen-
tal pressure range (0–10 GPa) are only larger than the ex-
perimental uncertainties by 1 or 2 orders of magnitude.
The need to obtain parameters that are derivatives of the
original data, in combination with the small data range,
clearly makes the reliable determination of the para-
meters difficult to achieve. Strong correlations between
parameters, which include the pressure derivatives of K,
exacerbate the problems. These issues were previously
addressed by the development of the EosFit program
(Angel, 2000a) which provided the capability of fitting
P-V (and unit-cell parameter data) with various EoS, with
the correct algebra and with options to fully weight the
data with the measurement uncertainties. The Eosfit pro-
gram includes utilities to do further EoS calculations be-
yond just fitting EoS parameters to P-V data.

The ready availability of a variety of spread sheets
and algebraic software makes it relatively easy, in princi-
ple, to fit any EoS formulation to data. However, the
complex nature of some equation of state functions has
led to their algebraic forms being mis-stated in the litera-
ture. The additional possibility of errors in coding the
complex equations, and the requirement to implement

DOI 10.1515/zkri-2013-1711  Z. Kristallogr. 2014; 229(5): 405–419

Brought to you by | Universita degli Studi di Padova
Authenticated | rossjohnangel@gmail.com author's copy

Download Date | 5/9/14 9:37 AM



specific (non-standard) weighting methods to overcome
correlation problems, makes imperative the provision of
a validated set of publicly-available self-consistent algo-
rithms for EoS calculations. We have now translated the
original code of EosFit to Fortran-95, revalidated it, and
have built it in to a module that is part of the larger Crys-
tallographic Fortran Modules Library CrysFML (Rodri-
guez-Carvajal & Gonzalez-Platas, 2003). This will ensure
the long-term survival and availability to programmers of
a validated set of easy-to-use procedures for EoS calcula-
tions.

In this paper we first briefly review the relationship
between linear elasticity theory of solids and their equa-
tions of state, and then present the types of isothermal
EoS, thermal expansion models, and thus P-V-T EoS that
are implemented within the new EoS module of CrysFML.
The handling of linear data (e.g. cell parameters) in a
manner consistent with both volume EoS and linear elas-
ticity theory is discussed, prior to a description of the
implementation of these approaches in the CrysFML
module. A new program, EosFit7c, that performs EoS cal-
culations and fits P-V, V-T and P-V-T data (and linear
equivalents), is presented as an example of the new fea-
tures that are available in the module.

Isothermal equations of state

Basis in linear elasticity theory

The variation of the volume of a solid with hydrostatic
pressure at fixed temperature is termed its ‘isothermal
equation of state’. It is characterised by the bulk modu-
lus of the material, K ¼ �V ð@P=@VÞT , which is a func-
tion of both temperature and pressure. For infinitesimal
changes in pressure which give rise to infinitesimal
changes in volume, the bulk modulus can also be de-
fined in terms of the elastic tensor of the material by ap-
plying linear elasticity theory, or ‘Hooke’s law’. In linear
elasticity it is assumed that the strains εi of a solid are
linearly related to the magnitude of the applied stress
field σj by the matrix equation εi ¼ sijσj. The suffixes run
from 1 to 6, with i,j ¼ 1, 2, 3 referring to normal stresses
or strains along orthogonal axes, and i,j ¼ 4, 5, 6 refer-
ring to shear stresses or strains (e.g. Nye, 1957; Angel,
Jackson, Reichmann & Speziale, 2009). The elastic prop-
erties of the material are represented by the values of the
elements of the compliance matrix sij which is symmetric
and can contain up to 21 independent elements for tricli-
nic crystals, less for crystals and materials with higher
symmetries. The compliance matrix is a convenient re-

presentation of the compliance tensor of the material
(Nye, 1957).

Hydrostatic pressure is a special stress state in which
the normal stresses are all equal (σ1 ¼ σ2 ¼ σ3 ¼ P) and
there are no shear stresses (σ4 ¼ σ5 ¼ σ6 ¼ 0). Thus, at
any pressure P, the strains caused by an infinitesimal in-
crease in pressure δP can be calculated through linear
elasticity theory by setting σ1 ¼ σ2 ¼ σ3 ¼ �δP. (Note
that while pressure is considered to be a positive quan-
tity, compressive stresses are by convention considered
to be negative; Nye, 1957). Therefore each of the resulting
strain elements is given by:

εi ¼ ðsi1σ1 þ si2σ2 þ si3σ3Þ ¼ �ðsi1 þ si2 þ si3Þ δP :

The sum of the three normal strains is, in the infinitesi-
mal limit, equal to the fractional change in the volume
@V=V, thus:

�@V=V¼ðε1þε2þε3Þ¼½s11þs22þs33þ2ðs12þs13þs23Þ� δP :

Re-arrangement of this last equation shows that the bulk
modulus for hydrostatic compression at any pressure is
defined by six of the elements of the compressibility ma-
trix at that same pressure:

K ¼ �VδP=δV ¼ ½s11 þ s22 þ s33 þ 2 ðs12 þ s13 þ s23Þ��1 :

This bulk modulus for hydrostatic compression of a so-
lid, whether a powder or single crystal, is therefore equal
to the Reuss bound on the bulk modulus of a polycrystal
made of the same material where it represents the vol-
ume response when every constituent grain is subject to
the same stress.

While linear elasticity thus defines the bulk modulus
of a material under hydrostatic compression at any pres-
sure, it cannot define an equation of state which de-
scribes the large (finite) changes in volume due to large
(finite) changes in pressure. In this sense an equation of
state is an extension of linear elasticity; although nor-
mally defined in terms of the volume variation with pres-
sure, it can also be seen as a definition of the variation
of bulk modulus with pressure. Because there is no abso-
lute thermodynamic basis for specifying how the bulk
modulus K varies with pressure, all EoS that have been
developed and are in widespread use are based upon a
number of assumptions (e.g. Anderson, 1995; Duffy &
Wang, 1998; Holzapfel, 2001). The validity of such as-
sumptions can only be judged in terms of whether the
derived EoS reproduces experimental data for volume or
elasticity. For materials that do not exhibit phase transi-
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tions, isothermal equations of state are usually parame-
terized in terms of the values of the bulk modulus and its
pressure derivatives, K 0 ¼ @K=@P and K 00 ¼ @2K=@P2,
evaluated at a reference pressure, normally taken as zero
pressure. If the material undergoes a structural phase
transition, additional parameters are required (e.g. Trös-
ter, Schranz & Miletich, 2002; Schranz, Tröster, Koppen-
steiner & Miletich, 2007). In order to allow for the de-
scription of the variation of the volume with temperature
and pressure, we also define a reference temperature for
the EoS, Tref . We then denote the values of the para-
meters describing an equation of state at the reference
temperature and pressure with two subscripts “0”, thus:

K00 ¼ �V00 ð@P=@VÞP¼0;T¼Tref , K 0
00 ¼ ð@K=@PÞP¼0;T¼Tref ,

and

K 00
00 ¼ ð@2K=@P2ÞP¼0;T¼Tref :

Using this notation leads to the value of the room-pres-
sure bulk modulus at some temperature T being denoted
K0T ¼ �V0T ð@P=@VÞP¼0;T , and its isothermal pressure
derivatives K 0

0T and K 00
0T . The subscript ‘T’ is therefore

not to be read as indicating isothermal as opposed to
adiabatic moduli, although all of the moduli discussed
here are isothermal. Note that the values of adiabatic
bulk moduli are typically a few % larger than isothermal
moduli, by a factor ð1þ αVγTÞ in which αV is the thermal
expansion coefficient, γ the Anderson-Grüneisen para-
meter, and T the temperature.

There are many reviews of equations of state avail-
able in the literature (e.g. Anderson, 1995; Duffy & Wang,
1998; Holzapfel, 2001). In the following sections we re-
strict ourselves to briefly introducing the EoS that are
coded in to the CrysFML EoS module and are available to
a user in the programs built upon it, including our new
console program, EosFit7c. The EoS have been chosen
for the library because of their widespread use and/or
suitability for fitting P-V data in the absence of phase
transitions.

Murnaghan

The Murnaghan EoS (Murnaghan, 1937) can be derived
from the assumption that the bulk modulus varies line-
arly with pressure, KPT ¼ K0T þ K 0

0TP. This results in a
relationship between P and V of:

VPT ¼ V0T 1þ K 0
0T P
K0T

� ��1=K 0
0T

or as:

PVT ¼ K0T

K 0
0T

V0T

V

� �K 0
0T

� 1

" #
:

This illustrates the attraction of the Murnaghan EoS: it is
‘invertible’ (Freund & Ingalls, 1989), which means that it
can be written as either a simple function of V, or as a
simple function of P. This makes it very attractive for use
in thermodynamic databases and calculations in which
both functions and their integrals are frequently re-
quired. However, the Murnaghan EoS only reproduces
P-V data and the correct values of the room pressure
bulk modulus for small compressions up to about 10%
(i.e. V/V0 ~ 0.9). It fails at greater compression because it
has K 00

PT ¼ 0, in contrast to experimental data which in-
dicate that most solids exhibit a small negative value for
K 00

0T of the order of �1=K0T (e.g. Jackson & Niesler,
1982). The obvious simple extension of the Murnaghan
EoS to include an additional term in the expression for
the bulk modulus, KPT ¼ K0T þ K 0

0TP þ K 00
0T P2=2 results

in an extremely complex and impractical function for vol-
ume as a function of pressure (Freund & Ingalls, 1989).

Tait

Freund & Ingalls (1989) showed that the ‘modified Tait
equation’ of Huang & Chow (1974) is a generalised form
of the Murnaghan EoS which remains easily invertible:

PVT ¼ 1
b

ðVPT=V0TÞ þ a� 1
a

� ��1=c

�1

 !

and

VPT ¼ V0Tð1� að1� ð1þ bPÞ�cÞÞ :
The three parameters a, b, c are defined in terms of the
bulk modulus and its derivatives at room pressure:

a ¼ 1þ K 0
0T

1þ K 0
0T þ K0TK 00

0T
K0T ¼ 1

abc

b ¼ K 0
0T

K0T
� K 00

0T

1þ K 0
0T

and the K 0
0T ¼ cþ 1

ac
� 1

inverse
relationships:

c ¼ 1þ K 0
0T þ K0TK 00

0T

ðK 0
0TÞ2 þ K 0

0T � K0TK 00
0T

K 00
0T ¼ b

a
ð1� aÞðcþ 1Þ :

If K 00
0T ¼ 0, then a ¼ 1; b ¼ K 0

0T

K0T
; c ¼ 1

K 0
0T
, and the

equation is reduced to the Murnaghan form (Freund &
Ingalls, 1989). While precise values of K 00

0T are difficult
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to measure, it is clear that for most solids they are not
zero. Holland & Powell (2011) therefore introduced a

‘truncation’ of the Tait equation by setting K 00
0T ¼ �K 0

0T

K0T
.

In the EoS module of CrysFML this estimate of K 00
0T is

named the ‘3rd-order’ form, with the 4th-order form in-
cluding a refineable K 00

0T . There is no rationale for a 2nd-
order formulation, but for completeness we can define a

2nd-order form as having K 0
0T ¼ 4, and thus K 00

0T ¼ �4
K0T

.

Thus all orders of the Tait equation as implemented in
the EoS module of CrysFML have K 00

0T 6¼ 0 and therefore
fit P-V data of solids substantially better than the Murna-
ghan EoS.

Because the Tait EoS is invertible, the expressions for
the bulk modulus and its pressure derivatives as a func-
tion of pressure can be obtained directly (since the para-
meters a, b, and c are constants) by differentiation with
respect to pressure of the expression for the volume:

KPT ¼ K0T
VPT

V0T

� �
ð1þ bPÞðcþ1Þ;

or :

KPT ¼ K0Tð1� að1� ð1þ bPÞ�cÞÞ ð1þ bPÞðcþ1Þ :

Further differentiation with respect to pressure leads to:

K 0
PT ¼ ðK 0

0T þ1Þ½ð1þ bPÞcð1� aÞ þ a� � 1
Setting a¼ 1 (and thus K 00

0T ¼ 0) in these equations
leads to KPT ¼ K0T þ K 0

0TP and K 0
PT ¼ K 0

0T as required
for the Murnaghan EoS.

Birch-Murnaghan

This “finite strain EoS” is derived (Birch, 1947) from the
assumption that the strain energy of a solid undergoing
compression can be expressed as a Taylor series in the
finite Eulerian strain, fE ¼ ½ðV0T=VPTÞ

2=3 � 1�=2. Expan-
sion to 4th-order in the strain yields an EoS:

P ¼ 3K0TfEð1þ 2fEÞ5=2 1þ 3
2
ðK 0

0T �4Þ fE
�

þ 3
2

K0T K 00
0T þðK 0

0T �4ÞðK 0
0T �3Þ þ 35

9

� �
f 2E

�
:

The normalised pressure for the Birch-Murnaghan EoS is
defined as (Stacey, Brennan & Irvine, 1981):

F ¼ P

3fE ð1þ 2fEÞ5=2
:

This allows the Birch-Murnaghan EoS to be expressed as
a simple polynomial:

F ¼ K0T 1þ 3
2
ðK 0

0T �4Þ fE
�

þ 3
2

K0T K 00
0T þ K 0

0T �4ð ÞðK 0
0T �3Þ þ 35

9

� �
f 2E

�
:

If this EoS is truncated at 2nd-order in the energy, then
the coefficient of fE must be identical to zero, which re-
quires that K 0

0T has the fixed value of 4 (higher-order
terms are ignored). The 3rd-order truncation, in which the
coefficient of f 2E is set to zero yields a three-parameter
EoS (with V0T , K0T and K 0

0T ) with an implied value of
K 00

0T given by (Anderson, 1995):

K 00
0T ¼ �1

K0T
ð3� K 0

0TÞð4� K 0
0TÞ þ 35

9

� �
:

The expressions for the bulk modulus and its first deriva-
tive for the 3rd-order Birch-Murnaghan EoS are therefore
(Angel, 2000b):

KPT ¼ K0Tð1þ 2fEÞ
5=2 1þ ð3K 0

0T � 5Þ fE þ 27
2
ðK 0

0T � 4Þ f 2E
� �

K 0
PT ¼ K0T

KPT
ð1þ 2fEÞ

5=2

� K 0
0T þ 16K 0

0T �143
3

� �
fE þ 81

2
ðK 0

0T �4Þ f 2E
� �

:

These are equivalent to the expressions given by Birch
(1986) in his appendix 1, and by Anderson (1995) in his
equations (6.52) to (6.55), except for a typographical error
of K0 for K00 in his equation (6.53). The expressions given
by Stacey et al. (1981) are correct except that for K0,
which is truncated at fE rather than after the f 2E which is
required for the expression to be exact. Expressions for
the 2nd-order Birch-Murnaghan EoS can be obtained by
setting K 0

0T ¼ 4 in all of the above.
We find that fits of the Birch-Murnaghan and Tait

EoS to P-V data normally yield parameters that are indis-
tinguishable within the uncertainties, but with the Birch-
Murnaghan EoS typically having marginally better formal
measures of statistical fit. The 4th-order fits of the two
equations are normally statistically and numerically in-
distinguishable.

Natural strain

Poirier & Tarantola (1998) developed an EoS based upon
the “natural” or “Hencky” measure of linear strain fN
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which, for hydrostatic compression, may be written as
fN ¼ 1=3ln ðV0=VÞ. Note that this definition has been in-
verted with respect to that used in Angel (2000a) in order
to obtain positive values of fN on compression. This
yields a pressure-volume relationship expanded to 4th-or-
der in strain of:

P ¼ 3K0T
V0T

VPT

� �
fN 1þ 3

2
ðK 0

0T � 2Þ fN
�

þ 3
2

K0TK 00
0T þ 1þ ðK 0

0T � 2Þ þ ðK 0
0T � 2Þ2

� �
f 2N

�

which can also be written as in terms of a normalized

pressure F ¼ P

3
V0T

VPT

� �
fN

as:

P ¼ 3K0T
V0T

VPT

� �
fN ½1þ afN þ bf 2N �

with a ¼ 3
2
ðK 0

0T � 2Þ and

b ¼ 3
2

1þ K0T K 00
0T þðK 0

0T �2Þ þ ðK 0
0T �2Þ2

h i
:

Truncation of this “Natural strain” EoS at 2nd-order in the
strain is obtained by setting a ¼ b ¼ 0 and it implies a val-
ue of K 0

0T ¼ 2, different from that of the 2nd-order Birch-
Murnaghan EoS. For truncation at 3rd-order in the strain,
a 6¼ 0; b ¼ 0, and the implied value of K 00

0T is given by:

K 00
0T ¼ �1

K0T
1þ ðK 0

0T � 2Þ þ ðK 0
0T � 2Þ2

h i
:

This value for K 00
0T is normally substantially larger than

that implied by the truncation of the 3rd-order Birch-Mur-
naghan EoS, and this often results in a significantly
poorer fit of P-V data. The bulk modulus and its deriva-
tives for all orders of this EoS are:

KPT ¼ 3K0T
V0T

VPT

� �
1
3
þ ðK 0

0T �1Þ fN þ ðaþ bÞ f 2N þ bf 3N

� �

K 0
PT ¼ K0T

KPT

� �
V0T

VPT

� �
K 0

0T þð4aþ 2bþ 3Þ fN½

þ 3ðaþ 2bÞ f 2N þ 3bf 3N
�

K 00
PT ¼ K0TV0T

K2
PTVPT

1
3
ð4aþ 2bþ 3Þ þ 2ðaþ 2bÞ fN

�

þ 3bf 2N � K 0
0T ½ðK 0

0T �1Þ þ 2ðaþ bÞ fN þ 3bf 2N �
�
:

Vinet

The finite-strain EoS do not accurately represent the vol-
ume variation of most solids under very high compres-
sion ðVPT=V0T  < 0:6Þ, so Vinet, Ferrante, Rose & Smith
(1986) and Vinet, Ferrante, Smith & Rose (1987) derived
an EoS from a generalised inter-atomic potential. Follow-
ing Schlosser & Ferrante (1988), the expression for pres-
sure in the Vinet EoS is:

P ¼ K0T
3fV

ð1� fVÞ2
exp ðηfVÞ

with

fV ¼ 1� VPT

V0T

� �1=3

and η ¼ 3
2
ðK 0

0T �1Þ :

This definition of fV means that fV ¼ 0 at P ¼ 0, and that
fV increases as a positive quantity with increasing pres-
sure and compression. It therefore follows the conven-
tions in the definition of magnitude and sign of Eulerian
finite strain. This is a change from the implementation in
previous versions of EosFit (Angel, 2000a). The presence
of K 0

0T as a refineable parameter also leads, by compar-
ison with other finite strain EoS, to naming this a ‘3rd-or-
der’ EoS.

In order to obtain a form of the EoS with which to
construct plots of ‘normalised pressure’ against the strain
fV , a normalised pressure has previously been defined as

FV ¼ ln
Pð1� fVÞ2

3fV

 !
(Vinet et al., 1986; Vinet et al.,

1987; Schlosser & Ferrante, 1988). Then

FV ¼ lnðK0TÞ þ 3
2
ðK 0

0T � 1Þ fV , which should be linear in

fV with slope of
3
2
ðK 0

0T � 1Þ. But the intercept at fV ¼ 0 is

lnðK0TÞ. Therefore in the EoS module of CrysFML we im-

plement FV ¼ P ð1� fVÞ2
3fV

, for which FV ¼ K0T exp ðηfVÞ.
The y-axis intercept of a plot of FV against fV is thus K0T ,
and it will give a horizontal line for a 2nd-order EoS with
K 0

0T ¼ 1. A 3rd-order EoS with K 0
0T > 1 will have a curved

line, with increasing gradient with increasing fV . For rea-
sonable values of K 0

0T the curvature is very slight. The

slope at any point is
@FV
@fV

¼ K0T η exp ðηfVÞ, so the initial

slope is
3K0T

2
ðK 0

0T � 1Þ, a form entirely analogous to f-F

plots of the Birch-Murnaghan EoS.

There is no theoretical basis for truncation of the Vi-
net EoS to lower order, although it yields an implied val-
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ue for K 0
0T of 1. The implied value of K 00

0T for the Vinet
EoS is given by Jeanloz (1988) as:

K 00
0T ¼ �1

K0T

K 0
0T

2

� �2

þ K 0
0T

2

� �
� 19

36

� �" #
:

Expansions of the Vinet EoS to include a refineable K 00
0T

have been proposed but are not required to fit most ex-
perimental data of simple solids in the absence of phase
transitions.

Thermal expansion

The volume thermal expansion of a material is defined
as αðTÞ ¼ V�1 ð@V=@TÞP. Integration of this expression
yields the volume variation with temperature at constant
pressure:

V0T ¼ V00 exp
ÐT
Tref

αðTÞ dT :

Where Tref is a reference temperature at which the vol-
ume is V00.

The only thermodynamic constraints on the form of
the function for αðTÞ are that αðTÞ ¼ @α=@T ¼ 0 at abso-
lute zero. Consequently many different forms have been
proposed in the literature, and several have become
widely-used, for example in thermodynamic databases
(e.g. Berman, 1988; Gottschalk, 1997; Holland & Powell,
1998; Holland & Powell, 2011). Some simple formulations
that describe thermal expansion at high temperatures
very well do not include the low-T saturation, but are
widely used and are perfectly adequate for thermody-
namic databases. On the other hand, some equations ex-
plicitly handle the saturation in thermal expansion as
the temperature drops towards absolute zero, but these
often result in unphysical values of thermal expansion at
high temperatures in excess of 1000 K, where experi-
ments indicate that αðTÞ increases approximately linearly
with temperature. Following the reviews of various ther-
mal expansion expressions based on analysis and fitting
of data (Tribaudino, Angel, Camara, Nestola, Pasqual &
Margiolaki, 2010; Tribaudino, Bruno, Nestola, Pasqual &
Angel, 2011; Kroll, Kirfel, Heinemann & Barbier, 2012),
we have implemented the following thermal expansion
equations in the EoS module of CrysFML.

Berman equation

At the lowest level of approximation α(T) can be consid-
ered a constant, in which case integration yields

ln ðV0T=V00Þ ¼ α0ðT�TrefÞ, or V0T ¼ V00 exp ½α0ðT�TrefÞ�.
Truncation to first order in the expansion of the
logarithmic terms results in the expression
V0T ¼ V00ð1þ α0ðT � TrefÞÞ. Strictly, this truncation leads
to a slightly varying thermal expansion coefficient be-
cause re-differentiation of the truncated equation leads to
@V0T

@T
¼ V00α0, which means that α ¼ V00

V0T
α0. Berman

(1988) proposed a simple extension to accommodate non-
linear thermal expansion:

V0T ¼ V00ð1þ α0ðT � TrefÞ þ 1
2
α1ðT � TrefÞ2Þ :

Differentiation yields
1

V0T

@V0T

@T
¼ V00

V0T
½α0 þ α1ðT � TrefÞ�.

Given the small changes in volume with temperature,
this is approximately α � ½α0 þ α1ðT � TrefÞ�. The para-
meter α0 is the thermal expansion coefficient at Tref .
However, this equation is not valid for low temperatures
because it predicts a finite value for αðTÞ at absolute zero
except for the special case of α1 ¼ α0=Tref .

Fei equation

Earlier versions of EosFit (Angel, 2000a) implemented a
linear variation of thermal expansion as α ¼ α0 þ α1T
but without the truncation of the exponential term im-
plied by the Berman equation. Fei (1995) proposed an ex-
pansion of this expression to α ¼ α0 þ α1T þ α2T�2 (with
T in Kelvin). This leads to the high-temperature volume
at zero pressure given as:

V0T ¼V00 exp α0ðT� TrefÞþ 1
2
α1ðT2� T2

refÞ� α2
1
T
� 1
Tref

� �� �
:

With this formulation, the actual values of α0, α1 and α2
that describe a V-T curve are those at 0 K, and not those
at Tref , so their values are independent of Tref . It also has

the advantage that the derivative
1

V0T

@V0T

@T
is exactly

α ¼ α0 þ α1T þ α2T�2 at all temperatures. The disadvan-
tage is that the full expression predicts non-physical be-
haviour at low temperatures because the term in T�2

causes the value of α to diverge towards infinity as T ap-
proaches 0 K. If α2 ¼ 0 the simplified form α ¼ α0 þ α1T
remains mathematically valid at all temperatures
although it does not yield α ¼ 0 at T ¼ 0 K.
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Modified Holland-Powell (1998) equation

Pawley, Redfern & Holland (1996) proposed a model that
ensures that the thermal expansion becomes approxi-
mately constant at high temperatures:

V0T ¼ V00ð1þ α0ðT � TrefÞ � 2α1ð
ffiffiffiffi
T

p � ffiffiffiffiffiffiffiffi
Tref

p ÞÞ :

Pawley et al. (1996) used 298 K as a fixed reference tem-
perature, but there is no need to do so. They also pro-
posed a simplification with α1 ¼ 10α0 in which case the
equation becomes:

V0T ¼ V00 1þ α0ðT � TrefÞ � 2ð10α0ð
ffiffiffiffi
T

p
�

ffiffiffiffiffiffiffiffi
Tref

p
ÞÞ

� �
:

This is sufficient to model low-resolution datasets, but
maintains the saturation in thermal expansion at high
temperatures. In order to accommodate this simplifica-
tion in a simple manner which also allows the use of the
more general equation, we modified the Pawley et al.
(1996) equation to:

V0T ¼ V00ð1þ α0ðT � TrefÞ � 2ð10α0 þ α1Þð
ffiffiffiffi
T

p � ffiffiffiffiffiffiffiffi
Tref

p ÞÞ :

Note that the entire term ð10α0 þ α1Þ of this equation is
equal to the α1 coefficient used by Pawley et al. (1996).
Thus, when α1 is fixed at zero the whole term ð10α0 þ α1Þ
becomes equal to 10α0 and the simplified equation pro-
posed by Pawley et al. (1996) and used in Holland & Po-
well (1998) is obtained. In the EoS module of CrysFML,

the correct value of α ¼ 1
VPT

@VPT

@T
is always calculated, so

the returned values from the program will differ from
those obtained by inserting the parameters in to the ap-
proximate equations for thermal expansion given by the
previous authors. This equation cannot be used at low

temperatures because below T ¼ 10α0 þ α1
α0

� �2

the ther-

mal expansion becomes negative and the volume is pre-
dicted to increase with decreasing temperature. If α1 ¼ 0
this limiting temperature is 100 K. Note also that, even

when α1 ¼ 0, α ¼ 1
V0T

@V0T

@T
at Tref is not equal to α0.

Salje equation

The saturation of thermal expansion at low temperature
can be addressed using an equation of the form sug-
gested by Salje, Wruck and Thomas (1991):

V0T ¼ ½p0 þ p1θsat coth ðθsat=TÞ�3

in which p0 and p1 are fitting parameters and θsat is
termed the “saturation temperature”. In fact the thermal
expansion coefficient only becomes zero below
T � θsat=10. The equation should only be used to de-
scribe volume variation at low temperatures, because it
leads to an expression (Kroll et al., 2012) for the thermal
expansion coefficient of:

αðTÞ ¼ 3p1θ2sat
V

1=3
0T

coth2 ðθsat=TÞ � 1
T2

" #
:

At moderate temperatures, above about 3θsat(θsat is typi-
cally 200–500 K), the thermal expansion becomes almost
independent of temperature, which is not observed for
most materials. The value of p1 is thus approximately 3
times the high-temperature value of α. At T ¼ 0 K the
coth function has the value of unity, so the volume at
T ¼ 0 is ½p0 þ p1θsat�3. Therefore, in order for the para-
meter V00 to have the value of the volume at the tem-
perature Tref ¼ 0 K, we re-write the equation as:

V0T ¼ ½V 1=3
00 þ p1θsat ½coth ðθsat=TÞ � 1��3 :

The Salje equation could also be re-written in terms of a
reference temperature, but since it is only applicable to
low-temperature thermal expansion, this is not imple-
mented in the EoS module of CrysFML, which therefore
sets Tref ¼ 0.

Kroll form of Holland & Powell (2011)

From the preceding discussion, it is clear that simple ex-
pressions in temperature for the thermal expansion coef-
ficient do not simultaneously meet the thermodynamic
requirement αðTÞ ¼ @α=@T ¼ 0 at T ¼ 0 and match the
experimental observation that αðTÞ becomes linear with
temperature at high temperatures. The solution is to use
an equation for thermal expansion that explicitly relates
the volume to lattice energy of the material. Kroll et al.
(2012) show that the Kumar (2003, and references there-
in) version of this approach is superior to that of Suzuki
(1975) and Wallace (1972). The disadvantage of the Ku-
mar thermal expansion is that it is referenced to absolute
zero. Holland & Powell (2011) developed a similar func-
tion that is expressed in terms of parameters at a refer-
ence temperature. Although this formulation is not quite
as robust in extrapolation as the Kumar expression when
the underlying data are sparse, when the data are suffi-
cient it produces fits and parameters that are indistin-
guishable from those of the Kumar equation (Kroll et al.,
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2012). Tribaudino et al. (2011) and Kroll et al. (2012) give
different but equivalent expressions, of which the latter
is perhaps clearer:

V0T ¼ V00 �K 0
00 þð1þ K 0

00Þ 1� K 0
00ðK 0

00 þ 2Þ
ðK 0

00 þ 1Þ A
� �B

" #
:

The two expressions for A and B are:

A ¼ α0;Tref
θE
ξ0

� �
1

exp ðθE=TÞ � 1
� 1
exp ðθE=TrefÞ � 1

� �

B ¼ �1=K 0
00ðK 0

00 þ 2Þ :

In the expression for A, the factor

ξ0 ¼ ðθE=TrefÞ2 exp ðθE=TrefÞ
ðexp ðθE=TrefÞ � 1Þ2 :

The Einstein temperature, θE, in the coth functions pro-
vides the saturation in α at low temperatures, below
T � θE=10. The value of α0 is the thermal expansion coef-
ficient at Tref . The value of θE can be approximated from
the molar standard state entropy (e.g. Holland & Powell,
2011), but tests indicate that its precise value is not criti-
cal for the correct description of the volume variation
with temperature and, consequently, it normally cannot
be reliably determined by refinement to data.

P-V-T equations of state

Equations to describe the variation of volume with both
pressure and temperature can be developed by combin-
ing any thermal expansion model with any isothermal
equation of state, and a model of the variation of bulk
modulus with temperature at room pressure, @K0T=@T.

The simplest approach of assuming a linear variation
of K0 with temperature, so @K0T=@T is constant, has been
justified at high temperatures by direct measurements of
the bulk moduli of many materials by elasticity measure-
ments (e.g. as summarised in Anderson, 1995). In combi-
nation with an expression for thermal expansion that al-
lows @α=@T 6¼ 0, and an isothermal EoS with K 0

00 6¼ 0,
this approach includes all second derivatives of the vol-
ume with respect to the intensive variables P and T, and
is thus algebraically internally consistent. This is because
@K0T=@T provides the cross-derivative @2V=@T@P; thus if
@K0T=@T ¼ 0 then α does not change with pressure.

However, as Hellfrich & Connolly (2009) pointed out,
this formulation with a constant @K0T=@T often leads to
the prediction of non-physical negative thermal expan-

sion coefficients at reasonably modest pressures for a
large number of materials. Hellfrich & Connolly (2009)
used the definition of the Anderson-Gruneisen parameter
δ, to propose an alternative description of the variation
of K0T with temperature:

K0T ¼ K00 exp �δ
ÐT
Tref

αðTÞdT
" #

:

This can be re-arranged as: K0T ¼ K00 exp
ÐT
Tref

αðTÞdT
 !" #�δ

and thus K0T ¼ K00
V00

V0T

� �δ
.

Note that δ is approximately equal to K 0
00, so as a first

approximation P-V-T data can be handled without any
additional parameters. An alternative approach that
yields indistinguishable P-V-T relationships and also
avoids negative values of thermal expansion, is the con-
cept of thermal pressure.

Thermal pressure

The idea of thermal pressure (e.g. Anderson, 1995) is that
the total pressure at a given V and T can be expressed as
the sum of two terms:

PðV ;TÞ ¼ PðV;TrefÞ þ PthðTÞ :

The function PðV ;TrefÞ is the isothermal equation of state
for the material at the reference temperature, but using
the ‘observed’ volume from P and T. The thermal-pres-
sure function PthðTÞ is the pressure that would be cre-
ated by increasing the temperature from Tref to T at con-
stant volume at room pressure. The thermal pressure at
Tref is thus zero, so at Tref the thermal-pressure EoS re-
duces to the isothermal EoS. The thermal pressure at
other temperatures clearly depends on the bulk modulus.
The inverse problem of determining V at a given P and T
consists of calculating the PthðTÞ, and then solving the
isothermal EoS at Tref to find V for an ‘effective pressure’
equal to PðV ;TrefÞ ¼ PðV;TÞ � PthðTÞ.

The Holland & Powell (2011) expression for the ther-
mal pressure is incorporated in to the EoS module of
CrysFML. It employs an Einstein function:

Pth ¼ α0K00
θE
ξ0

� �
1

exp ðθE=TÞ � 1
� 1
exp ðθE=TrefÞ � 1

� �

with ξ0 being the same as in the thermal expansion
equation of Kroll et al. (2012). This thermal-pressure
model has the properties that the product αK becomes
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constant at high temperatures while it decreases to zero
at low temperatures. This means that both the bulk mod-
ulus K0T and the thermal expansion become constant at
low temperatures, and both have an approximately line-
ar variation with temperature above θE. The exact expres-
sions for thermal expansion and bulk modulus as a func-
tion of temperature depend on the choice of isothermal
equation of state, but at Tref and zero pressure α ¼ α0
(Holland & Powell, 2011).

Linear EoS

The variation of the linear dimensions of a material with
temperature and pressure can be expressed in terms of
the linear thermal expansion and compressibility ma-
trices:

αi ¼ 1
xi

@xi
@T

� �
P

and βi ¼ �1
xi

@xi
@P

� �
T
:

Both of these can be converted to tensor forms (Nye,
1957; Knight, 2010) with the same factors for the shear
terms (i ¼ 4, 5, 6) as used for the conversion of strain
between matrix elements and tensor components. The
use of a negative sign in the definition of the compressi-
bility is purely a convention to obtain positive values for
the first three (i ¼ 1, 2, 3) matrix elements. We have al-
ready shown that the linear strains due to a small incre-
ment in pressure are given by linear elasticity theory as:

εi ¼ ðsi1σ1 þ si2σ2 þ si3σ3Þ ¼ �ðsi1 þ si2 þ si3Þ δP :

Given the definition of the infinitesimal normal strains as
εi ¼ @xi=xi, it follows that the linear compressibilities are
also given by the sum of elements of the compliance ma-
trix: βi ¼ �εi=δP ¼ ðsi1 þ si2 þ si3Þ. As for the volume var-
iation with pressure and temperature, there is however
no absolute thermodynamic basis for specifying the var-
iation in individual distances or cell parameters of a crys-
tal with P and T because this involves finite strains. The
only constraint that we can apply is that the sum of the
normal strains must be equal to the volume strain in the
infinitesimal limit. As a consequence:

α1 þ α2 þ α3 ¼ 1
V

@V
@T

� �
P
¼ αV and

β1 þ β2 þ β3 ¼
�1
V

@V
@P

� �
T
¼ 1

K
:

The only way to ensure such consistency between de-
scriptions of volume variation and variation in individual

cell parameters or other distances in the same material is
to use the same equations as used for the volume varia-
tion (Angel, 2000a). For linear quantities a, the quantity
is cubed and then treated as a volume in the same equa-
tions described above for the volume variation with P
and T. It is clear that for cubic or isotropic materials a
description of the volume variation, V ¼ a3, will lead to
values of αV ¼ 3αa and βV ¼ 3βa. The same is true for all
other symmetries, except that the values of cubed
lengths are not the true volume. The EoS module of
CrysFML handles these inter-conversions of parameter
values internally and always returns the thermal expan-

sion in the linear case as αi ¼ 1
xi

@xi
@T

� �
P
. For linear com-

pression we can define a linear modulus as

Mi ¼ �xi
@P
@xi

� �
T
¼ 1

βi
¼ ðsi1 þ si2 þ si3Þ�1. Thus the rela-

tionship between the linear moduli and bulk moduli is

K ¼ 1
M1

þ 1
M2

þ 1
M3

� ��1

. For isotropic and cubic materi-

als this reduces to K ¼ Ma

3
and thus βV ¼ 3βa, as re-

quired. The linear moduli and their pressure derivatives
defined in this way (which correspond to the elastic com-
pliances) have numerical values three times those of the
corresponding volume bulk modulus. Again, the EoS
module of CrysFML handles the inter-conversions inter-
nally and always returns the correct values of the moduli
M, and its derivatives for the linear case. Note that this is
a change from earlier versions of EosFit (Angel, 2000a)
which returned volume-like values for the linear moduli.
The consequence of using these conventions is that the
corresponding values of finite strain and normalised
pressure are those for volume, not for linear quantities.
Therefore f-F plots of linear data yield values of inter-
cepts and slopes of lines that correspond to the values of
volume bulk moduli and their derivatives, not those of
the linear moduli. When an f-F plot is used to display
linear data, the moduli derived from its intercept and
slope must therefore be multiplied by 3 to obtain the lin-
ear moduli and its pressure derivatives.

Implementation in CrysFML

CrysFML is a set of Fortran modules that can be ‘used’
(in the Fortran sense) by external programs for perform-
ing crystallographic and related calculations (Rodriguez-
Carvajal & Gonzalez-Platas, 2003). Each module contains
subroutines, functions and data structures (as user-de-
fined types) for certain kinds of crystallographic opera-
tions, for example symmetry generation or structure-fac-
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tor calculations. All of the modules are written in a sub-
set of Fortran-95 that ensures that the library can be
compiled and linked with a wide range of commercial
and non-commercial compilers. We have written and va-
lidated a new EoS module for CrysFML called cfml_eos
that allows the external programmer to easily write pro-
grams that can read, manipulate and fit EoS data, and
perform related calculations for all of the EoS that we
have described above. In order to use the library, the
CrysFML code should be downloaded and compiled to a
library, which must then be linked to the external pro-
gram. Access to the procedures and data types defined in
the EoS module is obtained through the inclusion of just
a single Fortran statement:

USE CFML_EOS

The entire CrysFML has to be compiled and installed be-
cause the EoS module also makes use of other modules
within CrysFML to manipulate unit-cell data and text in-
formation in files.

Manipulation of EoS and their parameters is greatly
simplified for the programmer by the definition in the
EoS module of a data type called eos_type. This data
structure holds all of the parameters required to define a
P-V-T equation of state, including the type of isothermal
model, the type of thermal expansion model, whether it
is a linear or volume EoS, and the names, values and de-
scriptions of the parameters. Once a variable of this type
has been declared in the external program, it can be in-
itialized by the subroutine init_eos in the module,
after which the values of any of the components can be
set by the external program (see Example). If a linear
EoS is specified, then all of the values in the eos_type

variable are the linear quantities; the length, linear mod-
uli and linear thermal expansion coefficients at the refer-
ence conditions. The eos_type variable can then be
used in calls to functions in the cfml_eos module that
return individual values of P, V or T at the values of the
other two variables. The properties at any P, V or T of the
EoS, the bulk modulus and its derivatives or the thermal
expansion coefficient, at any given volume and tempera-
ture are obtained by calls to individual functions (Ta-
ble 1). The subroutine eos_cal returns all of these val-
ues at any P and T as an array. If the EoS parameters
have been obtained through fitting to data, the subrou-
tine eos_cal_esd provides estimates of the uncertain-
ties of the properties at pressure and temperature by the
manipulation of the variance-covariance matrix from the
parameter refinement. Subroutines are also provided to
calculate the finite strain and normalized stress from the

EoS parameters (see Example) and the data. For P-V-T
EoS we use the convention that normalized pressures F
and finite strains f are defined isothermally in terms of
VPT=V0T . Programming using the module is also made
easier by the provision of a number of ‘utility’ routines,
for example to set the implied values for an EoS, and to
output the parameters (Table 1). The subroutine
deriv_partial_p provides partial derivatives of EoS
parameters with respect to pressure, which can then be
used in external least-squares routines to fit EoS. For the
reasons of numerical stability (see Angel, 2000a), the de-
rivatives of pressure with respect to the parameters V00,
K00, K 0

00, K 00
00 and @K00=@T are all coded analytically.

Numerical derivatives suffice for the parameters describ-
ing thermal expansion.

The use of sensible default values for the parameters
of an EoS, which can be set by a call to init_eos, to-
gether with extensive exception trapping, make program
crashes within the module exceedingly rare. If an error
state occurs, for example because physically or mathe-
matically-invalid results are calculated within the
cfml_eos module, the err_eos flag is set true and an
explanation is written to the err_eos_message charac-
ter variable (Table 2), both of which can be interrogated
by the external program (see Example). At the same time,
the cfml_eos module always returns ‘reasonable’ finite
values of variables when an error condition is met, and
should never return undefined or infinite quantities
(such as nan).

The handling of data is also simplified by use of two
defined data types (Table 2). Eos_data_type can hold
all of the unit-cell parameters and volume, the pressure
and temperature, and all of their uncertainties for a sin-
gle measurement. The eos_data_list_type is essen-
tially an array of the data points, allowing the use of ob-
ject-oriented style programming structures to manipulate
the data. Utility routines are provided to dynamically al-
locate and deallocate memory to these structures, if that
is required. Full details of all available data structures
and subroutines are provided in the CrysFML help file
provided as part of the distribution.

Data file format

Programmers can define their own data file formats, and
write their own routines to populate the eos_data_-

type and eos_data_list_type variables in order to
use the data manipulation and fitting routines within the
cfml_eos module. But we have implemented a flexible,
keyword-directed file format, and we provide the rou-
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tines in the cfml_eos module to read the data from
files. The over-riding design considerations were to allow
all of the data associated with an experiment (perhaps
just P and V, but possibly all of the unit-cell parameters)
to be stored and read from a single file with the maxi-
mum flexibility and minimum input for the user. So there
are only four keywords to provide information, as in this
example:

TITLE KALSILITE HIGH P DATA GATTA ET AL (2011) AM MIN 96:1363

#

# Note that no volume data is given

#

SYSTEM hexagonal

TSCALE C

FORMAT 1 T P SIGP A SIGA C SIGC

25,0.000,0.004,5.16026,0.00021,8.71661,0.00021

25,0.328,0.004,5.14963,0.00020,8.70565,0.00019

25,0.565,0.004,5.14195,0.00012,8.69821,0.00013

TITLE allows a title to be put on the file. If the crystal
system is specified with the keyword SYSTEM, then
only the symmetry-independent unit-cell parameters
have to be given. If the file is read with the cfml_eos
module subroutine read_eos_datafile, that will set
the remaining unit-cell parameters to correspond to the
conventional setting of the crystal system. Cell para-
meters are not required; data consisting of only vo-
lumes can also be read, and in this case the SYSTEM
keyword does not have to be used. The data itself can
appear on one or two lines for each data ‘point’. The
order of the individual data items is specified by the
entries after the FORMAT keyword. Uncertainties in
values can either be given by separate columns of val-
ues, or in the standard format with parentheses, e.g.
5.16026(21). The TSCALE keyword allows temperature
data to be input as degrees C or F, with a default when
no keyword is present of K. Data in °C and °F are im-
mediately converted on reading to K, and the
cfml_eos module works entirely in K.

Software validation

It has recently been noted that much published science
relies on unvalidated software or algorithms (e.g. Barnes,
2010; Alden & Read, 2013; Hayden, 2013). Given that we
have also identified errors in EoS in the published litera-
ture (as noted above), we record here the processes of
validation of the cfml_eos module within CrysFML.
The EosFit v5.2 program (Angel, 2000a) was previously

validated by the first author and many users indepen-
dently against a variety of calculations in external pro-
grams including spread-sheets, algebraic manipulation
software, and data analysis software. This led to a num-
ber of corrections and modifications to the code in the
first years following its initial release. For the last decade
the code has not been changed and produces results in
good agreement with other programs and calculations.
For the cfml_eos module, the entire algebra of all of
the EoS was first derived again ab-initio, and the code
confirmed against these new derivations. The results
from individual sub-programs were checked against
those from EosFit v5.2 where possible. For new features,
including the Tait EoS and the new thermal expansion
models, validation of individual routines was performed
against spread-sheet calculations. The difference in cod-
ing methods and structures between Fortran and spread-
sheets makes the exact duplication of errors between the
two methods unlikely. Comparisons of the values of KPT ,
K 0

PT and K 00
PT calculated with the analytical expressions

in the code with the derivatives calculated numerically
from values of V at closely-spaced values of P confirm
that the code is internally consistent. The least-squares
routines incorporated in to the EosFit7c program were
then validated by comparing fitting results against those
from version 5.2 for a wide variety of datasets. All of
these tests can be repeated by users and programmers.

Implementation in EosFit7c

A new console program, named EosFit7c, has been writ-
ten to perform EoS calculations and fitting with the
cfml_eos module within CrysFML. This program pro-
vides the same utilities as the previous EosFit v5.2 pro-
gram (Angel, 2000a), including the calculation of proper-
ties of an EoS, and EoS parameters can be determined
with the program by fitting to P-V or P-linear data by the
method of least-squares. Some changes have been made
in the organisation of the command-line interface to re-
duce the number of available commands and thus make
learning the program easier. There is now a single ‘input’
command with which the user can load parameters for
both the compressional and thermal models. A single
command returns all of the properties of the EoS at any
T and P, in place of the individual commands to return
individual parameter values in the previous version. The
calculation of P from V and T is provided by a separate
command. Output of all parameters for ranges of pres-
sures and/or temperatures to text files allows any para-
meter of the EoS to be plotted with external programs.
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When uncertainties in parameters are available (e.g. from
a least-squares fit to data), all calculated output values
are accompanied by estimated uncertainties calculated
from transformation of the variance-covariance matrix.
We emphasise that these features allow the EosFit7c pro-
gram to be used for EoS calculations, and it is not just
limited to fitting EoS to data.

The development of the cfml_eos module has al-
lowed a number of new features to be added to the Eos-
Fit7c program. The Tait isothermal equation of state has
been added, along with all of the thermal expansion and
thermal pressure models described above. The program
reads both the new format data files, and the data files
in the format for EosFit v5.2. If there is more than one set
of fit-able data (e.g. if the file contains cell parameters as
well as unit-cell volumes) then the user can select each
in turn for fitting. The remainder of the program works
only with one selected dataset at a time. In addition, if

sufficient cell parameter data is provided, the lattice re-
peat in any direction [UVW] or any plane spacing d(hkl)
can be selected and fit with a linear EoS. This allows the
principal axes of strain in monoclinic and triclinic crys-
tals to be fit directly with an EoS. For fitting, individual
data can now be omitted from the least-squares fitting,
which obviates the previous need to edit and re-read
data files. The data can be converted to normalised pres-
sure and finite strain for output to external plotting pro-
grams. Sets of EoS parameters can be saved and subse-
quently read back into the program from a specific ‘eos’
file format, which also stores the variance-covariance
matrix if it is available. This allows uncertainties to be
given for calculated pressure and volumes, without the
need to refit the original data. The other important
change from EosFit v5.2 is that, as described above in
more detail, the definition of thermal expansion coeffi-
cients and moduli for linear EoS have been changed to

Example program

use cfml_eos
implicit none

type (eos_type) :: eos !declare eos variable

real,dimension(4) :: vals
!> set eos and parameters

call init_eos(eos) !initialise eos variable

eos%imodel¼2 !Birch-Murnaghan

eos%iorder¼3 ! 3rd order

eos%params(1)¼112.98 ! vo

eos%params(2)¼37.12 ! ko

eos%params(3)¼5.99 ! kprime

call set_kp_kpp_cond(eos) ! set other default values

call write_info_eos(eos) ! report the values

t¼0.0 ! temperature not used

do i¼1,10
call init_err_eos ! initialises error system

p¼real(i)
call eos_cal(p,t,eos,vals) ! calculate all values

call ffcal_eos(p,t,eos,fp,fs) ! calculate finite stress/strain

if(err_eos)then ! print warning and error messages

write(6,’(f10.4,’’: ’’,a)’)p,trim(err_eos_mess)
else ! print eos values

write(6,’(7f10.4)’)p,vals(1:4),fs,fp
endif

enddo

end
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make them consistent with the definitions and conven-
tions of linear elasticity theory.

EoS fitting

The EosFit7c program implements all of the recommen-
dations with respect to fitting EoS parameters to P-V (or
P-linear) data of Angel (2000a), in exactly the same way
as did EosFit v5.2. We note the key points here. Because
the relative experimental uncertainties in P are usually
significantly greater than those in V, all fits are per-
formed by least-squares minimization of the difference in
observed and calculated pressures, and not volumes. The

Tab. 1: Public subroutines and functions in the cfml_eos module.

Data structure manipulation Purpose
subroutine allocate_eos_data_list(n, e) Allocates memory to a data list
subroutine allocate_eos_list(n, e) Allocates memory to a eos list
subroutine deallocate_eos_data_list(e) De-allocates memory for a data list
subroutine deallocate_eos_list(e) De-allocates memory for a eos list
subroutine init_eos_thermal(eospar) Initialises the thermal part of an eos
subroutine init_eos_type(eospar,clin,ithermal) Initialises an eos
subroutine init_eos_data_type(eospar) Initialises an eos data type
subroutine init_err_eos() Initialises/resets the error system

Data manipulation
subroutine read_eos_datafile(fname,dat) Reads in data from a datafile
subroutine ffcal_dat(v,v0,p,eospar,f,s) Calculates finite stress and strain from the data
subroutine ffcal_dat_esd(v,sigv,v0,sigv0,p,sigp,
eospar,f,sigf,s,sigs)

Calculates finite stress and strain and their esd’s
from the data and its esd’s

Eos initialisation
subroutine set_eos_names(eospar) Sets the names of variables
subroutine set_eos_use(eospar) Sets flags to show which variables are used in the chosen

types of eos and thermal expansion models
subroutine set_kp_kpp_cond(eospar) Sets implied values of eos parameters

Eos properties Returned values
subroutine deriv_partial_p(v,t,eospar,td) Partial derivatives of P with respect to eos parameters
subroutine eos_cal(p,t,eospar,parvals) VPT , KPT , K 0

PT , K 00
PT , @KPT=@T , αPT at the input P and T

subroutine eos_cal_esd(p,t,eospar,esd) Esd’s of the values of VPT , KPT , K 0
PT , K 00

PT , @KPT =@T , αPT at the input P and T
function get_volume(p,t,eospar) VPT at input P, T
function k_cal(v,t,eospar) KPT at input P, T
function kp_cal(v,t,eospar) K 0

PT at input P, T
function kpp_cal(v,t,eospar) K 00

PT at input P, T
function dkdt_cal(p, t, eospar) @KPT=@T at input P, T
function alpha_cal(p,t,eospar) αPT at input P, T
subroutine ffcal_eos(p,t,eospar,f,s) F, f at the input P, T
subroutine write_info_eos(eospar, iout) All eos parameters to unit iout
function get_pressure(v,t,eospar) P at input V, T
function get_pressure_esd(v,t,eospar) Esd(P) at input V,T from esd’s in eos parameters
function get_volume_s(f,t,eospar) V at input finite strain and T
function pthermal(t,eospar) Thermal pressure at T
function pressure_f(f,s,eospar) Pressure from input f, F
function strain(vv0,eospar) Finite strain from input VPT=V0T

Tab. 2: Data structures and public variables in the cfml_eos module.

Parameters
n_eospar Max number of eos parameters
ncol_data_max Max number of data items per line

in a datafile
err_eos .true. when error in the module
err_eos_mess error message or information

Data structure types
eos_type All parameters for one eos
eos_list_type A list of eos_type
eos_data_type All the data for one data point

(P,T,V, cell parameters and esd’s)
eos_data_list_type A list of eos_data_type to contain a

whole dataset
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choice of weighting scheme is left to the user, but if
weights are derived from volume and/or temperature un-
certainties, then the “effective variance method” (Orear,
1982) is used to calculate the overall weight, w, applied
to a data point as:

1
w
¼ σ2

P þ σ2
V

K
V

� �2

þ σ2
TðαKÞ2 :

Because the weight of an individual data point clearly
depends on the parameter values of the EoS, the
weights are updated in every least-squares cycle. Once
the least-squares process has converged, a full set of
statistical fit criteria plus the variance/covariance matrix
and the correlation coefficients between parameters are
provided to the user to allow critical evaluation of the
results.

Availability

The CrysFML subroutine library, which includes the EoS
module described in this paper, is described at http://
www.ill.eu/other_sites/fullprof/php/programs.html, and
can be downloaded from https://forge.epn-campus.eu/
projects/crysfml. The EosFit7c console program to per-
form EoS calculations and fit EoS parameters to data is
available for Windows and Linux operating systems at
www.rossangel.net, together with example datasets and
complete documentation.

Conclusions and future prospects

The development of the cfml_eos module within
CrysFML provides a validated set of subroutines that per-
form all conceivable EoS calculations, allowing the pro-
grammer to focus on writing software to solve scientific
problems without having to worry about the technical-
ities of complex EoS formulations. The inclusion of the
module within a library of much wider use should en-
sure its longer-term survival and availability. The
cfml_eos module is structured so that it could be ea-
sily extended to include further types of isothermal EoS
or thermal expansion models. The authors have also de-
veloped a GUI version of EosFit7 (Gonzalez-Platas et al.,
in prep.) that incorporates full facilities for plotting EoS
as well as the features in EosFit7c, and will continue to
develop other EoS utilities based on the cfml_eos mod-
ule in CrysFML, and to maintain and upgrade the mod-
ule itself.
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